
CMOS 8-BIT MICROCONTROLLER

TMP88PU74F

The 88PU74 are the high-speed and high performance 8-bit single chip microcomputers which built in a program storage area (96K byte) and the One-Time PROM of bector table storage area (256 byte). The 88PU74 is pin compatible with the 88CU74. The operations possible with the 88PU74 can be performed by writing programs to PROM. The 88PU74 can write and verify in the same way as the TC571000 an EPROM programmer.

PART No.	OTP	RAM	PACKAGE	ADAPTOR SOCKET
TMP88PU74F	96K byte + 256 byte	2K byte	QFP80-P-1420-0.80B	BM11131

PIN FUNCTION

The 88PU74 has two modes: MCU and PROM.

(1) MCU mode
In this mode, the 88PU74 is pin compatible with the 88CU74 (fix the TEST pin at low level).

(2) PROM mode

PIN NAME (PROM mode)	INPUT/OUTPUT	FUNCTIONS	PIN NAME (MCU mode)	
A16 A15 to A8 A7 to A0	Input	PROM address inputs	P60 P05, P32 to 30, P53 to 50 P47 to P40	
D7 to D0	I/O	PROM data input/outputs	P17 to P10	
CE		Chip enable signal input (active low)	P03	
ŌĒ	Input	Output enable signal input (active low)	P04	
PGM		Program mode single input	P02	
VPP		+ 12.75 V / 5 V (Program supply voltage)	TEST	
vcc	Power supply	+ 6.25 V / 5 V	VDD	
GND		ov	VSS	
P37 to P30				
P47 to P41		Pull-up with resistance for input processing		
P54 to P50				
P01	la mont	DDOM was do setting win. Do fined at high level		
P21	Input	PROM mode setting pin. Be fixed at high level.		
P07, P06, P00				
P22 , P20		PROM mode setting pin. Be fixed at low level.		
RESET				
P67 to P61				
P77 to P70				
P87 to P80	Output	Open		
P97 to P90				
PD4 to PD0				
XIN	Input	Connect an 10 MHz oscillator to stabilize the internal	state	
XOUT	Output	Connect an Town 12 oscinator to stabilize the Internal	state.	
VAREF		0.77(CND)		
VASS	Power supply	0 V (GND)		
VKK		Open		

OPERATIONAL DESCRIPTION

The configuration and functions of the 88PU74 are the same as those of the 88CU74, except in that a one-time PROM is used instead of an on-chip mask ROM.

1. OPERATING MODE

The 88PU74 has two modes: MCU and PROM.

1.1 MCU Mode

The MCU mode is activated by fixing the TEST / VPP pin at low level. In the MCU mode, operation is the same as with the 88CU74 (the TEST / VPP pin cannot be used open because it has no built-in pull-down resistance).

1.1.1 Program Memory

The 88PU74 has a 96K byte (addresses 04000_H to $18FFF_H$ in the MCU mode, addresses 00000_H to $17FFF_H$ in the PROM mode) of program storage area and 256 byte (addresses FFF00 to $18FFF_H$ in the MCU mode, addresses 18F00 to $18FFF_H$ in the PROM mode) one-time PROM of vector table storage area.

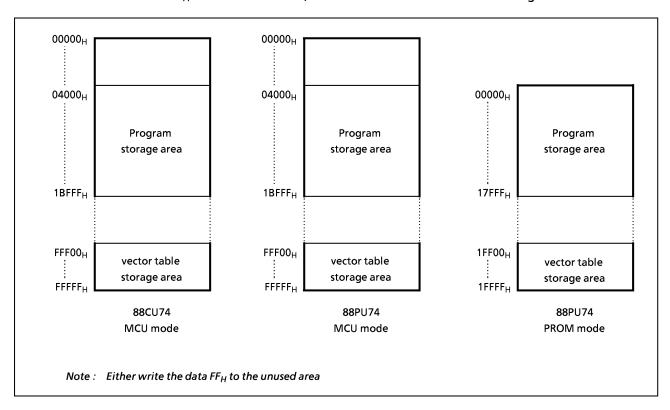


Figure 1-1. Program Storage Area

1.1.2 Data Memory

The 88PU74 has an on-chip 2k byte data memory (static RAM).

1.1.3 Input/Output Circuitry

(1) Control pins

The control pins of the 88PU74 are the same as those of the 88CU74 except that the TEST pin has is no built-in pull-down resistance.

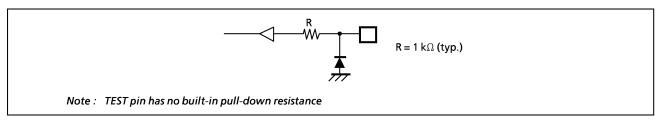


Figure 1-2. TEST Pin

(2) I/O ports

The I/O circuitries of 88PU74 I/O ports are the same as the code A type I/O circuitries of the 88CU74.

1.2 PROM Mode

The PROM mode is activated by setting shown in Figure 1-2. The PROM mode is used to write and verify programs with a general-purpose PROM programmer. The high-speed programming mode can be used for program operation.

The 88PU74 is not supported an electric signature mode, so the ROM type must be set to TC571000. Set the adaptor socket switch to "N".

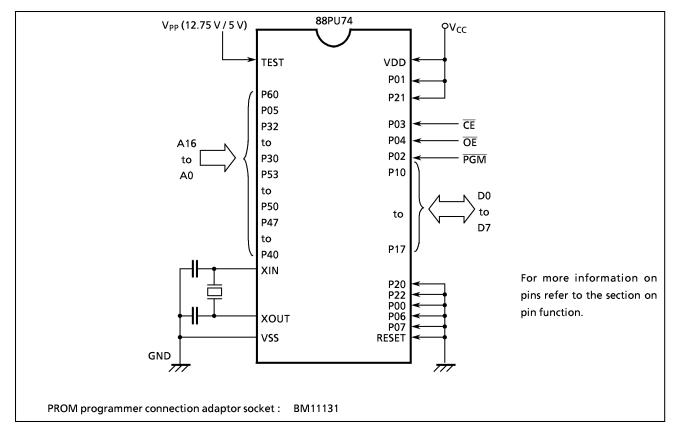


Figure 1-3. Setting for PROM Mode

1.2.1 Programming Flowchart (High-speed Programming)

The high-speed programming mode is achieved by applying the program voltage (\pm 12.75 V) to the Vpp pin when Vcc = 6.25 V. After the address and input data are stable, the data is programmed by applying a single 0.1ms program pulse to the \overline{CE} input. The programmed data is verified. If incorrect, another 0.1ms program pulse is applied and then the programmed data is verified. This process should be repeated (up to 25 times) until the program operates correctly. After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = Vpp = 5 V.

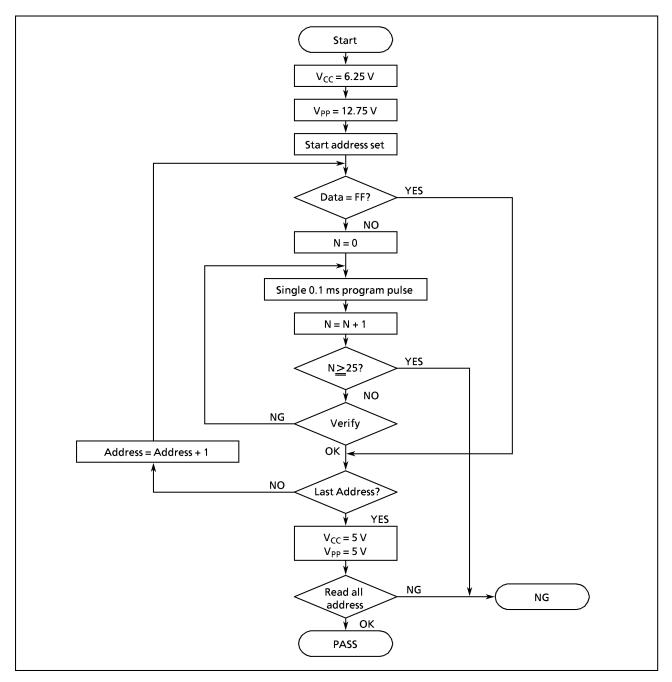


Figure 1-4. Flowchart of High-speed Programming

1.2.2 Writing Method for General-purpose PROM Program

- (1) Adapters BM11131
- (2) Adapter setting Switch (SW1) is set to side N.
- (3) PROM programmer specifying
 - i) PROM type is specified to TC571000.

Writing voltage: 12.75 V (high-speed program)

ii) Data transfer (copy) (note 1)

In TMP88PU74, EPROM is within the addresses 0000_H to 7FFF_H. Data is required to be transferred (copied) to the addresses where it is possible to write. The program area in MCU mode and PROM mode is referred to "Program memory area" in Figure 1-1.

Ex. In the block transfer (copy) mode, executed as below.

Program area : transferred addresses 04000_H to 1BFFF_H to addresses 00000 to 17FFF_H

Vector area : transferred addresses FFF00_H to FFFFF_H to 1FF00 to 1FFFFF_H

iii) Writing address is specified. (note 1)

Start address: 0000_H End address: 1FFFF_H

(4) Writing

Writing/Verifying is required to be executed in accordance with PROM programmer operating procedure.

- Note 1: The specifying method is referred to the PROM programmer description. Either write the data FF_H to the unused area or set the PROM programmer to access only the program storage area.
- Note 2: When MCU is set to an adapter or the adapter is set to PROM programmer, a position of pin 1 must be adjusted. If the setting is reversed, MCU, the adapter and PROM program is damaged.
- Note 3: The TMP88PU74 does not support the electric signature mode (hereinafter referred to as "signature"). If the signature is used in PROM program, a device is damaged due to applying $12V \pm 0.5V$ to the address pin 9 (A9). The signature must not be used.

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

 $(V_{SS} = 0 V)$

PARAMETER	SYMBOL	PINS	RATINGS	UNIT
Supply Voltage	V_{DD}		- 0.3 to 6.5	V
Program Voltage	V_{PP}	TEST / VPP	- 0.3 to 13.0	V
Input Voltage	V _{IN}		- 0.3 to V _{DD} + 0.3	V
Output Voltage	V _{OUT1}	P2, P3 (at open drain)	- 0.3 to V _{DD} + 0.3	V
	V _{OUT2}	P6, P7, P8, P9, PD	$V_{DD} - 40 \text{ to } V_{DD} + 0.3$	V
	I _{OUT1}	P0, P1, P2, P4, P5	3.2	4
Output Current (Per 1 pin)	I _{OUT2}	P6, P7, P8, P9, PD	- 25	mA
	Σ I _{OUT1}	P0, P1, P2, P3, P4, P5	- 40	
Output Current (Total)	Σ I _{OUT2}	P0, P1, P2, P3, P4, P5	120	mA
	Σ I _{OUT3}	P6, P7, P8, P9, PD	- 160	
Power Dissipation [Topr = 25 °C]	PD	note	1200	mW
Soldering Temperature (time)	Tsld		260 (10 s)	°C
Storage Temperature	Tstg		– 55 to 125	°C
Operating Temperature	Topr		- 30 to 70	°C

Note: Power Dissipation (PD); For PD, it is necessary to decrease 14.3 mW/°C. (Refernce to TMP88CU74)

RECOMMENDED OPERATING CONDITIONS

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -30 \text{ to } 70 \,^{\circ}\text{C})$

PARAMETER	SYMBOL	PINS	(CONDITIONS	Min.	Max.	UNIT
			fc = 12.5	NORMAL1, 2 modes	4.5		
			MHz	IDLE1, 2 modes	4.5		
Supply Voltage	V_{DD}		fs = 32.768	SLOW mode	2.7	5.5	V
			kHz	SLEEP mode	2.7		
				STOP mode	2.0		
	V _{IH1}	Except hysteresis input	V _{DD} ≥ 4.5 V V _{DD} < 4.5 V		V _{DD} × 0.70		
Input High Voltage	V _{IH2}	Hysteresis input			V _{DD} × 0.75	V _{DD}	V
	V _{IH3}				V _{DD} × 0.90		
	V_{IL1}	Except hysteresis input		V >45V		$V_{DD} \times 0.30$	
Input Low Voltage	V _{IL2}	Hysteresis input	V _{DD} ≧ 4.5 V		0	$V_{DD} \times 0.25$	V
	V _{IL3}		V _{DD} <4.5 V			V _{DD} × 0.10	
Clask Fraguency	fa	XIN, XOUT	V _{DD} =	V _{DD} = 4.5 V to 5.5 V Note)		12.5	MHz
Clock Frequency	fc	XTIN, XTOUT	V _{DD} = 2.7 V to 5.5 V		30.0	34.0	kHz

Note: Clock frequency fc: Supply voltage range is specified in NORMAL 1/2 mode and IDLE 1/2 mode.

D.C. CHARACTERISTICS

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -30 \text{ to } 70 \text{ °C})$

PARAMETER	SYMBOL	PINS	CONDITIONS	Min.	Тур.	Max.	UNIT
Hysteresis Voltage	V _{HS}	Hysteresis input		-	0.9	_	٧
	I _{IN1}	TEST					
Input Current	I _{IN2}	Open drain ports, Tri-state ports	V _{DD} = 5.5 V V _{IN} = 5.5 V / 0 V	-	_	± 2	μA
i T	I _{IN3}	RESET, STOP	V (= 3.3 V / C V				
Input Resistance	R _{IN3}	RESET		100	220	450	kΩ
Pull-down Resistance	R _K	Source open drain ports	$V_{DD} = 5.5 \text{ V}, V_{KK} = -30 \text{ V}$	50	80	110] K22
	I _{LO1}	Sink open drain ports	V _{DD} = 5.5 V, V _{OUT} = 5.5 V	_	-	2	
Output Leakage	I _{LO2}	Source open drain ports	$V_{DD} = 5.5 \text{ V}, \ V_{OUT} = -32 \text{ V}$	_	-	- 2	<i>μ</i> A
Current	I _{LO3}	Tri-state ports	$V_{DD} = 5.5 \text{ V}, V_{OUT} = 5.5 \text{ V} / 0 \text{ V}$	_	_	2]
Output High Voltage	V _{OH2}	Tri-state ports	$V_{DD} = 4.5 \text{ V}, I_{OH} = -0.7 \text{ mA}$	4.1	_	_	V
Output Low Voltage	V _{OL}	Except XOUT	V _{DD} = 4.5 V, I _{OL} = 1.6 mA	_	_	0.4	V
Output High current	Іон	P6, P7, P8, P9, PD port	$V_{DD} = 4.5 \text{ V}, V_{OH} = 2.4 \text{ V}$	_	- 20	_	mA
Supply Current in NORMAL 1, 2 modes			V _{DD} = 5.5 V V _{IN} = 5.3 V / 0.2 V	-	18	-	
Supply Current in IDLE 1, 2 modes			fc = 12.5 MHz fs = 32.768 kHz	-	9	-	mA
Supply Current in SLOW mode	I _{DD}		V _{DD} = 3.0 V V _{IN} = 2.8 V / 0.2 V	-	30	60	μΑ
Supply Current in SLEEP mode			fs = 32.768 kHz		15	30	μA
Supply Current in STOP mode			$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.3 \text{ V} / 0.2 \text{ V}$	-	0.5	10	μA

Note 1: Typical values show those at Topr = 25 $^{\circ}$ C, V_{DD} = 5V.

Note 2: Input Current I_{IN3}; The current through resistor is not included, when the input resistor (pull-up/pull-down) is contained.

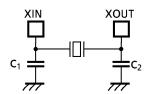
A/D CONVERSION CHARACTERISTICS

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70 \text{ °C})$

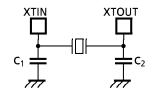
PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
	V _{AREF}		4.5	_	V _{DD}	
Analog Reference Voltage	V _{ASS}		V _{SS}	V		
Analog Reference Voltage Range	V_{AIN}		V _{ASS}	-	V _{AREF}	V
Analog Input Voltage	I _{REF}	V _{AREF} = 5.5 V, V _{ASS} = 0.0 V	_	0.5	1.0	mA
Nonlinearity Error			_	ı	± 1	
Zero Point Error		$V_{DD} = 5.0 \text{ V}, V_{SS} = 0.0 \text{ V}$	_	-	± 1	
Full Scale Error		V _{AREF} = 5.000 V	_	_	± 1	LSB
Total Error		V _{ASS} = 0.000 V	-	_	± 2	

Note: Quantizing error is not contained in those errors.

A.C. CHARACTERISTICS


 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, Topr = -30 \text{ to } 70 \,^{\circ}\text{C})$

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
		In NORMAL1, 2 modes	0.22	-	0.5	
Machine Cycle Time		In IDLE1, 2 modes	0.32			
	tcy	In SLOW mode	447.6	-	133.3	μS
		In SLEEP mode	117.6			
High Level Clock Pulse Width	t _{WCH}	For external clock operation	70	_		ne
Low Level Clock Pulse Width	t _{WCL}	(XIN input), fc = 16 MHz	70	_	_	ns
High Level Clock Pulse Width	t _{WSH}	For external clock operation	14.7	_	_	μS
Low Level Clock Pulse Width	t _{WSL}	(XTIN input), fs = 32.768 kHz	14.7	_		μ3


RECOMMENDED OSCILLATING CONDITIONS

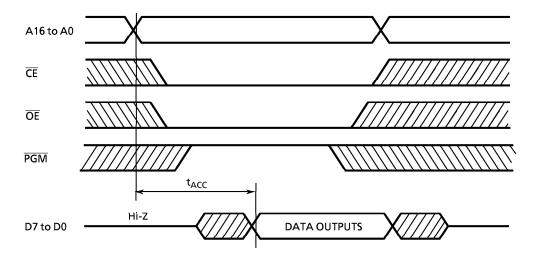
(V_{SS} = 0 V,
$$V_{DD}$$
 = 4.5 to 5.5 V, Topr = -30 to 70 °C)

		Oscillation			Recommended Constant		
PARAMETER	PARAMETER Oscillator		Recomm	ended Oscillator	C ₁	C ₂	
High-frequency Oscillation Crystal Osci	Canana'a Basanatan	12.5 MHz	Murata	CSA12.5MTZ	30 pF	30 pF	
	Ceramic Resonator	8 MHz	Murata	CSA8.00MTZ	30 pF	30 pF	
	Crystal Oscillator	12.5 MHz	NDK	AT-51	10 pF	10 pF	
Low-frequency Oscillation	Crystal Oscillator	32.768 kHz	NDK	MX-38T	15 pF	15 pF	

(1) High-frequency Oscillation

(2) Low-frequency Oscillation

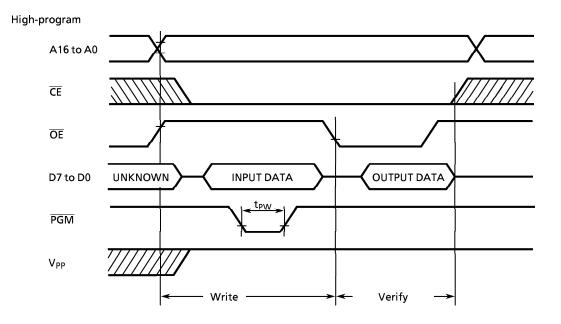
Note: An electrical shield by metal shied plate on the IC package should be recommend able in order to prevent the device from the high electric fieldstress applied for continuous reliable operation.


D.C./A.C. CHARACTERISTICS (PROM mode)

 $(V_{SS} = 0 V)$

(1) Read Operation (VDD = 5.0 ± 0.25 V, Topr = 25 ± 5 °C)

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
Input High Voltage (A0 to A16, CE, OE, PGM)	V _{IH4}		VDD×0.7	-	VDD	٧
Input Low Voltage (A0 to A16, CE, OE, PGM)	V _{IL4}		0	-	0.8	٧
Program Power Supply Voltage	V _{PP}		4.75	5.0	5.25	V
Address Access Time	t _{ACC}		-	1.5tcyc + 300	ı	ns


Note: tcyc = 400 ns at 10 MHz

(2) High-Speed Programming Operation

 $(Topr = 25 \pm 5 \, ^{\circ}C, VDD = 6.25 \pm 0.25 \, V)$

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
Input High Voltage (D0 to D7, A0 to A16, CE, OE, PGM)	V _{IH4}		VDD×0.7	-	VDD	>
Input Low Voltage (D0 to D7, A0 to A16, CE, OE, PGM)	V _{IL4}		0	-	0.8	V
Program Power Supply Voltage	V _{PP}		12.5	12.75	13.0	>
Initial Program Pulse Width	t _{PW}	V _{DD} = 6.0 V	0.095	0.1	0.105	ms

Note1: When V_{cc} power supply is turned on or after, V_{pp} must be increased. When V_{cc} power supply is turned off or before, V_{pp} must be decreased.

Note2: The device must not be set to the EPROM programmer or picked up from it under applying the program voltage (12.75V \pm 0.5V) to the V_{pp} pin as the device is damaged.

Note3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.