CMOS 4-BIT MICROCONTROLLER ## TMP47P443VN TMP47P443VM TMP47P443VDM The 47P443V is the system evaluation LSI of 47C243/443 with 32K bits one-time PROM. The 47P443V programs / verifies using an adapter socket to connect with PROM programmer, as it is in TMM27256AD. In addition, the 47P443V and the 47C243/443 are pin compatible. The 47P443V operates as the same as the 47C243/443 by programming to the internal PROM. | PART No. | ROM | RAM | RACKAGE | ADAPTER SOCKET | |--------------|--------------|-------------|-------------------|----------------| | TMP47P443VN | OTP | | SDIP28-P-400-1.78 | BM11100 | | TMP47P443VM | | 256 × 4-bit | SOP28-P-450-1.27 | BM11101 | | TMP47P443VDM | 4096 × 8-bit | | SSOP30-P-300-0.65 | BM11115 | ## **PIN ASSIGNMENT (TOP VIEW)** # **PIN FUNCTION** The 47P443V has MCU mode and PROM mode. (1) MCU mode The 47C243/443 and the 47P443V are pin compatible. # (2) PROM mode | PIN NAME | INPUT / OUTPUT | FUNCTIONS | PIN NAME(MCU mode) | |-----------|----------------|--|--------------------| | A11 to A8 | | | R63 to R60 | | A7 to A4 | INPUT | Address inputs | R53 to R50 | | A3 to A0 | | | R43 to R40 | | 17 to 15 | | | R72 to R70 | | 14 | I/O | Data inputs / outputs | R90 | | 13 to 10 | | | R83 to R80 | | CE | Input | Chip Enable input | R92 | | ŌĒ | Прис | Output Enable input | R91 | | VPP | | + 12.5V / 5V (Program supply voltage) | RESET | | vcc | Power supply | + 5V | VDD | | VSS | | 0V | VSS | | HOLD | Input | PROM mode setting pin. Be fixed to low level. | | | XIN | Input | Input the clock from the external oscillator. (6 MHz typ.) | | | XOUT | Input | Be pulled down to VSS level. (750 Ω typ.) | | #### **OPERATIONAL DESCRIPTION** The following is an explanation of hardware configuration and operation in relation to the 47P443V. The 47P443V is the same as the 47C243/443 except that an OTP is used instead of a built-in mask ROM. ### 1. OPERATION mode The 47P443V has a MCU mode and a PROM mode. ### 1.1 MCU mode The MCU mode is set by attaching a resonator between the XIN and Xout pins. Operation in the MCU mode is the same as for the 47C243/443. In the 47P443V, RC oscillation is impossible. ## 1.1.1 Program Memory The program storage area is the same as for the 47C443. Data conversion tables must be set in two locations when using the 47P443V to check 47C243 operation. Figure 1-1. Program area (ROM) Figure 1-2. RAM addressing ### 1.1.2 Data Memory The 47P443V has 256×4 -bit of data memory (RAM). When the 47P443V is used as the 47C243 evaluator, programming should be performed assuming that the RAM is assigned to address 00 to 0F_H and 90 to FF_H as show in Figure 1-2. When the BM47C443 (emulator) is used as the 47C243 evaluator, it is same. ## 1.1.3 Input/Output Circuitry ## (1) Control pins 47P443V is the same as code SA or SG. In the 47P443V, RC oscillation is impossible. Connecting the resonator is required when using as evaluator of I/O code SD. ### (2) I/O Ports The input/output circuit except pin R72 of the 47P443V is the same as the 47C243/443. In the 47P443V, port option (code SA, SD or SG) of pin R72 is programably selectable. R72 or VAREF is selected by command register (bit3 of the OP0E). That should be executed over head part on the program. This bit data become dummy data at the 47C243/443. An undefined value is read from bit 2 of the IP07 with an input instruction when VAREF is selecting as the A/D converter analog reference voltage. Figure 1-3. R72 (VAREF) Note. Bit 2 to 0 must be set to "0". Figure 1-4. Command register #### 1.2 PROM mode The PROM mode is set by inputting the external clock to the XIN pin when XOUT pin is pulled down to the VSS level. In PROM mode, programs can be written or verified using a general-purpose PROM writer with an adapter socket being attached. Figure 1-5. Setting for PROM mode ## 1.2.1 Program Writing When writing a program, set a ROM type to "57256A" (programming voltage : 12.5V) . Since the 47P443V has a 4096×8 -bit internal PROM (000 to FFF_H), set a stop address of a PROM writer to "FFF_H" . For a general-purpose PROM writer, use the writer which does not have or can release an electric signature mode. Note. When the data written to OTP is same as the data of PROM programmer, there is the possibility that the security writing can not be executed, which is depended on the types of PROM programmers. In this case, set the data of PROM programmer to "00" and execute the security writing after writing the data to OTP. ## 1.2.2 High Speed Programming Mode The program time can be greatly decreased by using this high speed programming mode. The device is set up in the high speed programming mode when the programming voltage (+ 12.5V) is applied to the V_{PP} terminal with $V_{CC} = 6V$ and $\overline{CE} = V_{IH}$. The programming is achieved by applying a single low level 1ms pulse the $\overline{\text{CE}}$ input after addresses and data are stable. Then the programmed data is verified by using Program Verify Mode. If the programmed data is not correct, another program pulse of 1ms is applied and then programmed data is verified. This should be repeated until the program operates correctly (max. 25 times). After correctly programming the selected address, one additional program pulse with pulse width 3 times that needed for programming is applied. When programming has been completed, the data in all addresses should be verified with $V_{CC} = V_{PP} = 5V$. Figure 1-6. Flow Chart # **ELECTRICAL CHARACTERISTICS** ABSOLUTE MAXIMUM RATINGS $(V_{SS} = 0V)$ | PARAMETER | SYMBOL | PINS | | RATING | UNIT | | | | | |--|-------------------------------|-----------------------------|------|--------------------------------|------|--|----------|--|---| | Supply Voltage | V _{DD} | | | | | | – 0.3 to | | ٧ | | Program Voltage | V _{PP} | RESET / VPP pin - | | – 0.3 to 13.0 | V | | | | | | Input Voltage | V _{IN} | | | - 0.3 to V _{DD} + 0.3 | ٧ | | | | | | Output Voltage | V _{OUT} | | | - 0.3 to V _{DD} + 0.3 | V | | | | | | | I _{OUT1} Port R5, R6 | | 30 | _ | | | | | | | Output Current (Per 1 pin) | I _{OUT2} | Port R4, R7, R8, R9 | 3.2 | mA | | | | | | | Output Current (Total) | ΣΙ _{ΟUT1} | Port R4, R5, R6, R7, R8, R9 | | 120 | mA | | | | | | | | | DIP | 300 | | | | | | | Power Dissipation [T _{opr} = 70 °C] | PD | | SOP | 180 | mW | | | | | | | | | SSOP | 145 | | | | | | | Soldering Temperature (time) | T _{sld} | | | 260 (10 s) | °C | | | | | | Storage Temperature | T _{stg} | | | – 55 to 125 | °C | | | | | | Operating Temperature | T _{opr} | | | – 30 to 70 | °C | | | | | RECOMMENDED OPERATING CONDITIONS $(V_{SS} = 0V, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$ | PARAMETER | SYMBOL | PINS | CONDITIONS | Min. | Max. | UNIT | |-------------------------------|------------------|-------------------------|-------------------------------|------------------------|------------------------|------| | | | | fc = 8.0MHz | 2.7 | | | | Supply Voltage V _E | V _{DD} | | fc = 4.2MHz | 2.2 | 5.5 | v | | | | | In the HOLD mode | 2.0 | | | | | V _{IH1} | Except Hysteresis Input | resis Input In the normal | | | | | Input High Voltage | V _{IH2} | Hysteresis Input | operating area | V _{DD} × 0.75 | V _{DD} | V | | | V _{IH3} | | In the HOLD mode | $V_{DD} \times 0.9$ | | | | | V _{IL1} | Except Hysteresis Input | In the normal | | $V_{DD} \times 0.3$ | | | Input Low Voltage | V _{IL2} | Hysteresis Input | operating area | 0 | V _{DD} × 0.25 | V | | | V _{IL3} | | In the HOLD mode | | $V_{DD} \times 0.1$ | | | Clark Francisco | | VIN VOLIT | V _{DD} = 2.7 to 5.5V | 0.4 | 8.0 | MHz | | Clock Frequency | fc | XIN, XOUT | V _{DD} = 2.2 to 5.5V | 0.4 | 4.2 | | D.C. CHARACTERISTICS $(V_{SS} = 0V, T_{opr} = -30 \text{ to } 70 \text{ °C})$ | PARAMETER | SYMBOL | PINS | CONDITIONS | Min. | Тур. | Max. | UNIT | |---|------------------|-------------------------|---|------|------|------|------| | Hysteresis Voltage | V _{HS} | Hysteresis Input | | _ | 0.7 | _ | V | | | I _{IN1} | RESET, HOLD | | | | | | | Input Current | I _{IN2} | Open drain output ports | $V_{DD} = 5.5V, V_{IN} = 5.5V/0V$ | _ | _ | ± 2 | μA | | Input Resistance | R _{IN} | RESET | | 100 | 220 | 450 | kΩ | | Output Leakage
Current | I _{LO} | Open drain output ports | V _{DD} = 5.5V, V _{OUT} = 5.5V | - | _ | 2 | μΑ | | Output Low | | | V _{DD} = 4.5V, I _{OL} = 1.6mA | ı | _ | 0.4 | | | Voltage | V _{OL} | Port R4, R7, R8, R9 | $V_{DD} = 2.2V$, $I_{OL} = 20 \mu A$ | _ | _ | 0.1 | V | | Output Low Current | I _{OL1} | Port R5, R6 | $V_{DD} = 4.5V, \ V_{OL} = 1.0V$ | 7 | 20 | _ | mA | | Supply Current | | | V _{DD} = 5.5V, fc = 4MHz | _ | 2 | 4 | | | (in the Normal | I _{DD} | | $V_{DD} = 3.0V$, fc = 4MHz | _ | 1 | 2 | mA | | operating mode) | | | V _{DD} = 3.0V, fc = 400kHz | _ | 0.5 | 1 | | | Supply Current
(in the HOLD
operating mode) | I _{DDH} | | V _{DD} = 5.5V | ı | 0.5 | 10 | μA | Note 1. Typ. values show those at $T_{opr} = 25$ °C, $V_{DD} = 5V$. Note 2. Input Current I_{IN1}: The current through resistor is not included. Note 3. Supply Current: The analog supply current (I_{REF}) is not included. Note 4. Supply Current: $V_{IN} = 5.3V / 0.2V (V_{DD} = 5.5V), 2.8V / 0.2V (V_{DD} = 3.0V)$ A / D CONVERSION CHARACTERISTICS $(T_{opr} = -30 \text{ to } 70 \,^{\circ}\text{C})$ | PARAMETER | SYMBOL | CONDITIONS | Min. | Тур. | Max. | UNIT | |--------------------------------|--------------------|--|-----------------------|------|-----------------|------| | Analog Reference Voltage | VAREF | | V _{DD} – 1.5 | _ | V _{DD} | V | | Analog Reference Voltage Range | △V _{AREF} | V _{AREF} - V _{SS} | 2.7 | _ | _ | V | | Analog Input Voltage | V _{AIN} | | V _{SS} | _ | V _{DD} | V | | Analog Supply current | I _{REF} | | _ | 0.5 | 1.0 | mA | | Nonlinearity Error | | | _ | _ | ± 1 | | | Zero Point Error | | $V_{DD} = 2.7 \text{ to } 5.5 \text{V},$ | _ | _ | ± 1 | LCD | | Full Scale Error | | $V_{AREF} = V_{DD} \pm 0.001V$ | _ | _ | ± 1 | LSB | | Total Error | | $V_{55} = \pm 0.001V$ | _ | _ | ± 2 | İ | A.C. CHARACTERISTICS $$(V_{SS} = 0V, Topr = -30 to 70 °C)$$ | PARAMETER | SYMBOL | COV | IDITIONS | Min. | Тур. | Max. | UNIT | |------------------------------|------------------|---|---|-----------------------|--------|------|------------| | | | | $V_{DD} = 2.7 \text{ to } 5.5 \text{V}$ | 1.0 | | 20 | | | Instruction Cycle Time | tcy | | $V_{DD} = 2.2 \text{ to } 5.5 \text{V}$ | 1.9 | _ | | μ S | | | | t _{WCH} For external clock (XIN input) | V _{DD} ≧ 2.7V | 80 | | _ | | | High level clock pulse width | t _{WCH} | | V _{DD} <2.7V | 120 | | | | | | | | V _{DD} ≧ 2.7V | 80 | _ | | ns | | Low level clock pulse width | t _{WCL} | | (XIIV III put) | V _{DD} <2.7V | 120 | | | | A/D Conversion Time | t _{ADC} | | | _ | 24 tcy | - | μ s | | A/D Sampling Time | t _{AIN} | | | - | 2 tcy | - | μ3 | | Shift data Hold Time | t _{SDH} | | | 0.5 tcy – 300 | _ | _ | ns | Note 1 A/D conversion timing: Internal circuit for pins AIN0 to 7 Electrical change inust be loaded into the buit-in condensen during t_{AIN} for normal A/D conversion. Note2 Shift data Hold Time: External circuit for pins **SCK** and SO A/D conversion timing Serial port (completed of transmission) ZERO-CROSS DETECTION CHARACTERISTICS $| (V_{SS} = 0V, T_{opr} = -30 \text{ to } 70 ^{\circ}\text{C}) |$ $$(V_{SS} = 0V, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$$ Characteristics are equivalent to the 47C243/443's. RECOMMENDED OSCILLATING CONDITIONS $| (V_{SS} = 0V, V_{DD} = 2.2 \text{ to } 5.5V, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$ $$(V_{SS} = 0V, V_{DD} = 2.2 \text{ to } 5.5V, T_{opr} = -30 \text{ to } 70^{\circ}C)$$ Recommended oscillating conditions of the 47P443V are equal to the 47C243/443's but RC oscillation is impossible. ## DC/AC CHARACTERISTICS $(V_{SS} = 0V)$ ## (1) Read Operation | PARAMETER | SYMBOL | CONDITION | Min. | Тур. | Max. | UNIT | |---------------------------|------------------|-------------------------------|-----------------------|------|-----------------------|------| | Output Level High Voltage | V _{IH4} | | V _{CC} × 0.7 | - | V _{CC} | V | | Output Level Low Voltage | V _{IL4} | | 0 | _ | V _{CC} × 0.3 | V | | Supply Voltage | V _{CC} | | 4.75 | | 6.0 | v | | Programming Voltage | V_{PP} | | 4.73 | _ | 0.0 | V | | Address Access Time | t _{ACC} | V _{CC} = 5.0 ± 0.25V | 0 | _ | 350 | ns | # (2) High Speed Programming Operation | PARAMETER | SYBOL | CONDITION | Min. | Тур. | Max. | UNIT | |--------------------------------------|------------------|-------------------------------|-----------------------|------|-----------------------|------| | Input High Voltage | V _{IH4} | | V _{CC} × 0.7 | - | V _{CC} | V | | Input Low Voltage | V _{IL4} | | 0 | _ | V _{CC} × 0.3 | ٧ | | Supply Voltage | V _{CC} | | 4.75 | _ | 6.0 | V | | V _{PP} Power Supply Voltage | V _{PP} | | 12.0 | 12.5 | 13.0 | ٧ | | Programming Pulse Width | t _{PW} | V _{CC} = 6.0 ± 0.25V | 0.95 | 1.0 | 1.05 | ms | Note. There are some PROM programmer types which cannot program OTP. In TMP47P443V, VPP pin is also used as RESET pin. To set a mode, REST/VPP pin must be set to "low" during 1 ms and more after the rising of power-on and the rising of VDD electrical power. Recommended EPROM programmer **TYPE** R4945 (ADVANTEST) UNISITE (DATA I/O) AF – 9706 (ANDO) PECKER – 11 (AVAL DATA)