700-mW MONO LOW-VOLTAGE AUDIO POWER AMPLIF SLOS336C - DECEMBER 2000 - REVISED OCTOBER 2002 - Fully Specified for 3.3-V and 5-V Operation - Wide Power Supply Compatibility 2.5 V - 5.5 V - Power Supply Rejection at 217 Hz - 84 dB at $V_{DD} = 5 V$ - 81 dB at V_{DD} = 3.3 V - Output Power for $R_I = 8 \Omega$ - 700 mW at V_{DD} = 5 V - 250 mW at V_{DD} = 3.3 V - **Ultralow Supply Current in Shutdown** Mode . . . 1.5 nA - **Thermal and Short-Circuit Protection** - **Surface-Mount Packaging** - SOIC - PowerPAD™ MSOP - MicroStar Junior™ (BGA) #### D OR DGN PACKAGE (TOP VIEW) **SHUTDOWN E** Ш V∩-BYPASS□ ☐ GND 2 IN+□ 3 V_{DD} IN-□ V_O+ MicroStar Junior™ (GQS) Package (TOP VIEW) (E2) (A2) SHUTDOWN BYPASS (E3) (A3) GND IN+ (E4) (A4) V_{DD} 0000 (A5) V_O+ _(E5) IN-0000 (SIDE VIEW) NOTE: The shaded terminals are used for thermal connections to the ground plane. #### description The TPA751 is a bridge-tied load (BTL) audio power amplifier developed especially for low-voltage applications where internal speakers are required. Operating with a 3.3-V supply, the TPA751 can deliver 250-mW of continuous power into a BTL 8- Ω load at less than 0.6% THD+N throughout voice band frequencies. Although this device is characterized out to 20 kHz, its operation is optimized for narrower band applications such as wireless communications. The BTL configuration eliminates the need for external coupling capacitors on the output in most applications, which is particularly important for small battery-powered equipment. This device features a shutdown mode for power-sensitive applications with a supply current of 1.5 nA during shutdown. The TPA751 is available in a 3.0 × 3.0 mm MicroStar Junior™ (BGA), 8-pin SOIC surface-mount package and a surface-mount PowerPAD™ MSOP. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD and MicroStar Junior are trademarks of Texas Instruments # 700-mW MONO LOW-VOLTAGE AUDIO POWER AMPLIFIER WITH DIFFERENTIAL INPUTS SLOS336C - DECEMBER 2000 - REVISED OCTOBER 2002 #### **AVAILABLE OPTIONS** | | F | PACKAGED DEVICES | | | | | |-----------------------|----------------------------------|-----------------------------------|----------------------------|--|--|--| | | MicroStar-Junior (BGA)‡
(GQS) | SMALL OUTLINE [†]
(D) | MSOP [‡]
(DGN) | | | | | Device | TPA751GQS | TPA751D | TPA751DGN | | | | | Package symbolization | TPA751 | TPA751 | ATC | | | | [†] In the SOIC package, the maximum RMS output power is thermally limited to 350 mW; 700 mW peaks can be driven, as long as the RMS value is less than 350 mW. #### **Terminal Functions** | TERMINAL | | | | | | |------------------|-----|--------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | NAME | | NO. | 1/0 | DESCRIPTION | | | NAME | GQS | D, DGN | | | | | BYPASS | E3 | 2 | I | BYPASS is the tap to the voltage divider for internal mid-supply bias. This terminal should be connected to a 0.1 - μ F to 2.2 - μ F capacitor when used as an audio amplifier. | | | GND | § | 7 | | GND is the ground connection. | | | IN- | E5 | 4 | I | IN – is the inverting input. IN – is typically used as the audio input terminal. | | | IN+ | E4 | 3 | I | IN+ is the noninverting input. IN+ is typically tied to the BYPASS terminal for SE input. | | | SHUTDOWN | E2 | 1 | I | SHUTDOWN places the entire device in shutdown mode when held low (I _{DD} = 1.5 nA). | | | V_{DD} | A4 | 6 | | V _{DD} is the supply voltage terminal. | | | V _O + | A5 | 5 | 0 | V _O + is the positive BTL output. | | | VO- | A2 | 8 | 0 | V _O – is the negative BTL output. | | [§] A1, A3, A5, B1–B5, C1–C5, D1–D5 are electrical and thermal connections to the ground plane. ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)¶ | Supply voltage, V _{DD} | 6 V | |----------------------------------------------------------|-----------------------------------------------------| | Input voltage, V _I | 0.3 V to V _{DD} +0.3 V | | Continuous total power dissipation | . Internally limited (see Dissipation Rating Table) | | Operating free-air temperature range, T _A | –40°C to 85°C | | Operating junction temperature range, T _J | –40°C to 150°C | | Storage temperature range, T _{stq} | –65°C to 150°C | | Lead temperature 1,6 mm (1/16 inch) from case for 10 sec | | [¶] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### **DISSIPATION RATING TABLE** | PACKAGE | T _A = 25°C | DERATING FACTOR | T _A = 70°C | T _A = 85°C | |---------|-----------------------|-----------------|-----------------------|-----------------------| | GQS | 1.66 W | 13.3 mW/°C | 1.06 W | 866 mW | | D | 725 mW | 5.8 mW/°C | 464 mW | 377 mW | | DGN | 2.14 W [#] | 17.1 mW/°C | 1.37 W | 1.11 W | [#] See the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report (SLMA002), for more information on the PowerPAD package. The thermal data was measured on a PCB layout based on the information in the section entitled Texas Instruments Recommended Board for PowerPAD on page 33 of that document. See the Texas Instruments document, *MicroStar Junior™ Made Easy Application Brief* (SSYA009A) for board layout information on the MicroStar Junior package. [‡] The D, DGN, and GQS packages are available taped and reeled. To order a taped and reeled part, add the suffix R to the part number (e.g., TPA751DR). #### recommended operating conditions | | MIN | MAX | UNIT | |--------------------------------------------------------|--------------------|--------------------|------| | Supply voltage, V _{DD} | 2.5 | 5.5 | V | | High-level input voltage, V _{IH} , (SHUTDOWN) | 0.9V _{DD} | | V | | Low-level input voltage, V _{IL} , (SHUTDOWN) | | 0.1V _{DD} | V | | Operating free-air temperature, TA | -40 | 85 | °C | ## electrical characteristics at specified free-air temperature, V_{DD} = 3.3 V, T_A = 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|-----|------|------|------| | Vos | Output offset voltage (measured differentially) | $\overline{\text{SHUTDOWN}} = V_{\text{DD}}, R_{\text{L}} = 8 \Omega, RF = 10 \text{ k}\Omega$ | | | 20 | mV | | PSRR | Power supply rejection ratio | V _{DD} = 3.2 V to 3.4 V | | 85 | | dB | | I _{DD} | Supply current | SHUTDOWN = V_{DD} , RF = 10 k Ω | | 1.25 | 2.5 | mA | | I _{DD(SD)} | Supply current, shutdown mode (see Figure 4) | $\overline{\text{SHUTDOWN}} = 0 \text{ V, RF} = 10 \text{ k}\Omega$ | | 1.5 | 1000 | nA | | IIIII | | SHUTDOWN, $V_{DD} = 3.3 \text{ V}$, $V_i = V_{DD}$ | | | 1 | μΑ | | I _I L | | SHUTDOWN, V _{DD} = 3.3 V, V _i = 0 V | | | 1 | μΑ | ### operating characteristics, V_{DD} = 3.3 V, T_A = 25°C, R_L = 8 Ω | | PARAMETER | | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |----------------|--------------------------------------|---------------------------|----------------------|---------------|-----|-------|-----|---------| | PO | Output power, See Note 1 | THD = 0.2% , | See Figure 9 | | | 250 | | mW | | THD + N | Total harmonic distortion plus noise | $P_0 = 250 \text{ mW},$ | f = 200 Hz to 4 kHz, | See Figure 7 | | 0.55% | | | | Вом | Maximum output power bandwidth | $A_{V} = -2 \text{ V/V},$ | THD = 2%, | See Figure 7 | | 20 | | kHz | | B ₁ | Unity-gain bandwidth | Open loop, | See Figure 15 | | | 1.4 | | MHz | | | Supply ripple rejection ratio | f = 1 kHz, | $C_B = 1 \mu F$, | See Figure 2 | | 79 | | dB | | Vn | Noise output voltage | $A_V = -1V/V$, | $C_B = 0.1 \mu F$, | See Figure 19 | | 17 | | μV(rms) | NOTE 1: Output power is measured at the output terminals of the device at f = 1 kHz. ## electrical characteristics at specified free-air temperature, V_{DD} = 5 V, T_A = 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|-------------------------------------------------|--------------------------------------------------------------------------------|-----|------|------|------| | Vos | Output offset voltage (measured differentially) | $\overline{\text{SHUTDOWN}} = V_{DD}, R_L = 8 \Omega, RF = 10 \text{ k}\Omega$ | | | 20 | mV | | PSRR | Power supply rejection ratio | V _{DD} = 4.9 V to 5.1 V | | 78 | | dB | | I _{DD} | Supply current | SHUTDOWN = V_{DD} , RF = 10 kΩ | | 1.45 | 2.5 | mA | | IDD(SD) | Supply current, shutdown mode (see Figure 4) | $\overline{\text{SHUTDOWN}} = 0 \text{ V, RF} = 10 \text{ k}\Omega$ | | 5 | 1500 | nA | | IIIII | | SHUTDOWN, V _{DD} = 5.5 V, V _i = V _{DD} | | | 1 | μΑ | | I _I L | | $\overline{\text{SHUTDOWN}}$, $V_{DD} = 5.5 \text{ V}$, $V_i = 0 \text{ V}$ | | | 1 | μΑ | ### operating characteristics, V_{DD} = 5 V, T_A = 25°C, R_L = 8 Ω | | PARAMETER | | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |----------------|--------------------------------------|---------------------------|----------------------|---------------|-----|------|-----|---------| | PO | Output power | THD = 0.5% , | See Figure 13 | | | 700† | | mW | | THD + N | Total harmonic distortion plus noise | $P_0 = 250 \text{ mW},$ | f = 200 Hz to 4 kHz, | See Figure 11 | | 0.5% | | | | Вом | Maximum output power bandwidth | $A_V = -2 \text{ V/V},$ | THD = 2%, | See Figure 11 | | 20 | | kHz | | B ₁ | Unity-gain bandwidth | Open loop, | See Figure 16 | | | 1.4 | | MHz | | | Supply ripple rejection ratio | f = 1 kHz, | $C_B = 1 \mu F$, | See Figure 2 | | 80 | | dB | | ٧n | Noise output voltage | $A_{V} = -1 \text{ V/V},$ | $C_B = 0.1 \mu F$ | See Figure 20 | | 17 | | μV(rms) | [†] The GQS and DGN packages, properly mounted, can conduct 700 mW RMS power continuously. The D package, can only conduct 350 mW RMS power continuously, with peaks to 700 mW. #### PARAMETER MEASUREMENT INFORMATION Figure 1. BTL Mode Test Circuit #### **TYPICAL CHARACTERISTICS** #### **Table of Graphs** | | | | FIGURE | |----------------|--------------------------------------|--------------------|---------------| | ksvr | Supply ripple rejection ratio | vs Frequency | 2 | | I_{DD} | Supply current | vs Supply voltage | 3, 4 | | D- | Output a succe | vs Supply voltage | 5 | | PO | Output power | vs Load resistance | 6 | | THD+N | Total harmonia distartion plus paiga | vs Frequency | 7, 8, 11, 12 | | IND+N | Total harmonic distortion plus noise | vs Output power | 9, 10, 13, 14 | | | Open loop gain and phase | vs Frequency | 15, 16 | | | Closed loop gain and phase | vs Frequency | 17, 18 | | V _n | Output noise voltage | vs Frequency | 19, 20 | | P_{D} | Power dissipation | vs Output power | 21, 22 | ## **OUTPUT POWER SUPPLY VOLTAGE** 1000 **THD+N 1%** f = 1 kHz 800 Po - Output Power - mW 600 $R_L = 8 \Omega$ 400 $R_L = 32 \Omega$ 200 0 2.5 4.5 5.5 V_{DD} – Supply Voltage – V Figure 5 #### **OUTPUT POWER LOAD RESISTANCE** 800 THD+N = 1% f = 1 kHz 700 600 Po - Output Power - mW $V_{DD} = 5 V$ 500 400 300 $V_{DD} = 3.3 V$ 200 100 0 8 16 32 40 48 56 64 R_L – Load Resistance – Ω TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Figure 6 #### TOTAL HARMONIC DISTORTION PLUS NOISE #### TOTAL HARMONIC DISTORTION PLUS NOISE ## TOTAL HARMONIC DISTORTION PLUS NOISE #### TOTAL HARMONIC DISTORTION PLUS NOISE #### **TOTAL HARMONIC DISTORTION PLUS NOISE** Figure 11 ### TOTAL HARMONIC DISTORTION PLUS NOISE Figure 12 #### **TOTAL HARMONIC DISTORTION PLUS NOISE** Figure 13 #### TOTAL HARMONIC DISTORTION PLUS NOISE TEXAS INSTRUMENTS #### **OPEN-LOOP GAIN AND PHASE** Figure 15 #### **OPEN-LOOP GAIN AND PHASE** vs **FREQUENCY** 80 180° $V_{DD} = 5 V$ 70 R_L = Open 140° 60 100° Phase 50 Open-Loop Gain - dB 60° 40 **20**° 30 Gain –20∘ ਜੋ 20 10 -60° 0 **−100**° -10 -140° -20 -30 **–180**° 10² 10³ 10⁴ 101 f - Frequency - kHz Figure 16 #### **CLOSED-LOOP GAIN AND PHASE** Figure 17 #### **CLOSED-LOOP GAIN AND PHASE** Figure 18 #### bridged-tied load Figure 23 shows a linear audio power amplifier (APA) in a BTL configuration. The TPA751 BTL amplifier consists of two linear amplifiers driving both ends of the load. There are several potential benefits to this differential drive configuration, but initially consider power to the load. The differential drive to the speaker means that as one side is slewing up, the other side is slewing down, and vice versa. This, in effect, doubles the voltage swing on the load as compared to a ground referenced load. Plugging $2 \times V_{O(PP)}$ into the power equation, where voltage is squared, yields $4 \times$ the output power from the same supply rail and load impedance (see equation 1). $$V_{(rms)} = \frac{V_{O(PP)}}{2\sqrt{2}}$$ $$Power = \frac{V_{(rms)}^{2}}{R_{L}}$$ $$V_{DD}$$ $$V_{DD$$ Figure 23. Bridge-Tied Load Configuration In a typical portable handheld equipment sound channel operating at 3.3 V, bridging raises the power into an 8- Ω speaker from a singled-ended (SE, ground reference) limit of 62.5 mW to 250 mW. In sound power that is a 6-dB improvement, which is loudness that can be heard. In addition to increased power, there are frequency response concerns. Consider the single-supply SE configuration shown in Figure 24. A coupling capacitor is required to block the dc offset voltage from reaching the load. These capacitors can be quite large (approximately 33 μ F to 1000 μ F), so they tend to be expensive, heavy, occupy valuable PCB area, and have the additional drawback of limiting low-frequency performance of the system. This frequency-limiting effect, due to the high pass filter network created with the speaker impedance and the coupling capacitance, is calculated with equation 2. $$f_{C} = \frac{1}{2\pi R_{L} C_{C}} \tag{2}$$ #### APPLICATION INFORMATION #### bridged-tied load (continued) For example, a $68-\mu$ F capacitor with an $8-\Omega$ speaker would attenuate low frequencies below 293 Hz. The BTL configuration cancels the dc offsets, which eliminates the need for the blocking capacitors. Low-frequency performance is then limited only by the input network and speaker response. Cost and PCB space are also minimized by eliminating the bulky coupling capacitor. Figure 24. Single-Ended Configuration and Frequency Response Increasing power to the load does carry a penalty of increased internal power dissipation. The increased dissipation is understandable considering that the BTL configuration produces 4× the output power of a SE configuration. Internal dissipation versus output power is discussed further in the *thermal considerations* section. #### BTL amplifier efficiency The primary cause of linear amplifier inefficiencies is voltage drop across the output stage transistors. There are two components of the internal voltage drop. One is the headroom or dc voltage drop that varies inversely to output power. The second component is due to the sinewave nature of the output. The total voltage drop, can be calculated by subtracting the RMS value of the output voltage from V_{DD} . The internal voltage drop multiplied by the RMS value of the supply current, I_{DD} rms, determines the internal power dissipation of the amplifier. An easy-to-use equation to calculate efficiency starts out being equal to the ratio of power from the power supply to the power delivered to the load. To accurately calculate the RMS values of power in the load and in the amplifier, the current and voltage waveform shapes must first be understood (see Figure 25). Figure 25. Voltage and Current Waveforms for BTL Amplifiers #### BTL amplifier efficiency (continued) Although the voltages and currents for SE and BTL are sinusoidal in the load, currents from the supply are very different between SE and BTL configurations. In an SE application, the current waveform is a half-wave rectified shape, whereas in BTL it is a full-wave rectified waveform. This means RMS conversion factors are different. Keep in mind that for most of the waveform both the push and pull transistors are not on at the same time, which supports the fact that each amplifier in the BTL device only draws current from the supply for half the waveform. The following equations are the basis for calculating amplifier efficiency. Efficiency of a BTL amplifier = $$\frac{P_L}{P_{SUP}}$$ (3) where $$P_L = \frac{V_L \text{rms}^2}{R_I}$$, and $V_{LRMS} = \frac{V_P}{\sqrt{2}}$, therefore, $P_L = \frac{V_P^2}{2R_I}$ and $$P_{SUP} = V_{DD}I_{DD}$$ avg and I_{DD} avg $= \frac{1}{\pi}\int_{0}^{\pi} \frac{V_{P}}{R_{L}} \sin(t) dt = \frac{1}{\pi} \times \frac{V_{P}}{R_{L}} \left[\cos(t)\right]_{0}^{\pi} = \frac{2V_{P}}{\pi R_{L}}$ therefore, $$P_{SUP} = \frac{2 V_{DD} V_{P}}{\pi R_{I}}$$ substituting P_L and P_{SUP} into equation 7, Efficiency of a BTL amplifier $= \frac{\frac{V_P^2}{2 R_L}}{\frac{2 V_{DD} V_P}{\pi R_L}} = \frac{\pi V_P}{4 V_{DD}}$ where $$V_{P} = \sqrt{2 P_{L} R_{L}}$$ therefore, $$\eta_{BTL} = \frac{\pi \sqrt{2 P_L R_L}}{4 V_{DD}}$$ P_L = Power delivered to load P_{SUP} = Power drawn from power supply V_{LRMS} = RMS voltage on BTL load R_L = Load resistance V_P = Peak voltage on BTL load I_{DD}avg = Average current drawn from the power supply V_{DD} = Power supply voltage η_{BTL} = Efficiency of a BTL amplifier (4) #### application schematics Figure 26 is a schematic diagram of a typical handheld audio application circuit, configured for a gain of -10 V/V. Figure 26. TPA751 Application Circuit Figure 27 is a schematic diagram of a typical handheld audio application circuit, configured for a gain of -10 V/V with a differential input. Figure 27. TPA751 Application Circuit With Differential Input #### application schematics (continued) It is important to note that using the additional R_F resistor connected between IN+ and BYPASS causes $V_{DD}/2$ to shift slightly, which could influence the THD+N performance of the amplifier. Although an additional external operational amplifier could be used to buffer BYPASS from R_F , tests in the lab have shown that the THD+N performance is only minimally affected by operating in the fully differential mode as shown in Figure 27. The following sections discuss the selection of the components used in Figures 26 and 27. #### component selection #### gain setting resistors, RF and RI The gain for each audio input of the TPA751 is set by resistors R_F and R_I according to equation 5 for BTL mode. BTL gain = $$-2\left(\frac{R_F}{R_I}\right)$$ (5) BTL mode operation brings about the factor 2 in the gain equation due to the inverting amplifier mirroring the voltage swing across the load. Given that the TPA751 is a MOS amplifier, the input impedance is very high; consequently input leakage currents are not generally a concern, although noise in the circuit increases as the value of R_F increases. In addition, a certain range of R_F values is required for proper start-up operation of the amplifier. Taken together it is recommended that the effective impedance seen by the inverting node of the amplifier be set between 5 k Ω and 20 k Ω . The effective impedance is calculated in equation 6. Effective impedance = $$\frac{R_F R_I}{R_F + R_I}$$ (6) As an example, consider an input resistance of 10 k Ω and a feedback resistor of 50 k Ω . The BTL gain of the amplifier would be -10 V/V and the effective impedance at the inverting terminal would be 8.3 k Ω , which is well within the recommended range. For high performance applications, metal film resistors are recommended because they tend to have lower noise levels than carbon resistors. For values of R_F above 50 $k\Omega$, the amplifier tends to become unstable due to a pole formed from R_F and the inherent input capacitance of the MOS input structure. For this reason, a small compensation capacitor of approximately 5 pF should be placed in parallel with R_F when R_F is greater than 50 $k\Omega$. This, in effect, creates a low-pass filter network with the cutoff frequency defined in equation 7. For example, if R_F is 100 k Ω and C_F is 5 pF, then f_C is 318 kHz, which is well outside of the audio range. #### APPLICATION INFORMATION #### input capacitor, CI In the typical application an input capacitor, C_I , is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation. In this case, C_I and R_I form a high-pass filter with the corner frequency determined in equation 8. The value of C_I is important to consider, as it directly affects the bass (low frequency) performance of the circuit. Consider the example where R_I is 10 k Ω and the specification calls for a flat bass response down to 40 Hz. Equation 8 is reconfigured as equation 9. $$C_{I} = \frac{1}{2\pi R_{I} f_{C}} \tag{9}$$ In this example, C_I is 0.40 μ F, so one would likely choose a value in the range of 0.47 μ F to 1 μ F. A further consideration for this capacitor is the leakage path from the input source through the input network (R_I , C_I) and the feedback resistor (R_F) to the load. This leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applications, as the dc level there is held at $V_{DD}/2$, which is likely higher than the source dc level. It is important to confirm the capacitor polarity in the application. #### power supply decoupling, CS The TPA751 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling is achieved by using two capacitors of different types that target different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1 μ F, placed as close as possible to the device V_{DD} lead, works best. For filtering lower-frequency noise signals, a larger aluminum electrolytic capacitor of 10 μ F or greater placed near the audio power amplifier is recommended. ## 700-mW MONO LOW-VOLTAGE AUDIO POWER AMPLIFIER WITH DIFFERENTIAL INPUTS SLOS336C - DECEMBER 2000 - REVISED OCTOBER 2002 #### APPLICATION INFORMATION #### midrail bypass capacitor, CB The midrail bypass capacitor, CB, is the most critical capacitor and serves several important functions. During start-up or recovery from shutdown mode, CB determines the rate at which the amplifier starts up. The second function is to reduce noise produced by the power supply caused by coupling into the output drive signal. This noise is from the midrail generation circuit internal to the amplifier, which appears as degraded PSRR and THD + N. The capacitor is fed from a 250-k Ω source inside the amplifier. To keep the start-up pop as low as possible, the relationship shown in equation 10 should be maintained. This insures the input capacitor is fully charged before the bypass capacitor is fully charged and the amplifier starts up. $$\frac{10}{\left(C_{\mathsf{B}} \times 250 \,\mathrm{k}\Omega\right)} \le \frac{1}{\left(R_{\mathsf{F}} + R_{\mathsf{I}}\right) C_{\mathsf{I}}} \tag{10}$$ As an example, consider a circuit where C $_B$ is 2.2 μF , C $_I$ is 0.47 μF , R $_F$ is 50 k Ω , and R $_I$ is 10 k Ω . Inserting these values into the equation 10 we get: $$18.2 \le 35.5$$ which satisfies the rule. Bypass capacitor, C_B , values of $0.1\,\mu\text{F}$ to $2.2\,\mu\text{F}$ ceramic or tantalum low-ESR capacitors are recommended for the best THD and noise performance. #### using low-ESR capacitors Low-ESR capacitors are recommended throughout this applications section. A real (as opposed to ideal) capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance, the more the real capacitor behaves like an ideal capacitor. #### 5-V versus 3.3-V operation The TPA751 operates over a supply range of 2.5 V to 5.5 V. This data sheet provides full specifications for 5-V and 3.3-V operation, as these are considered to be the two most common standard voltages. There are no special considerations for 3.3-V versus 5-V operation with respect to supply bypassing, gain setting, or stability. The most important consideration is that of output power. Each amplifier in TPA751 can produce a maximum voltage swing of $V_{DD} - 1 \text{ V}$. This means, for 3.3-V operation, clipping starts to occur when $V_{O(PP)} = 2.3 \text{ V}$ as opposed to V_{O(PP)} = 4 V at 5 V. The reduced voltage swing subsequently reduces maximum output power into an 8-Ω load before distortion becomes significant. Operation from 3.3-V supplies, as can be shown from the efficiency formula in equation 4, consumes approximately two-thirds the supply power of operation from 5-V supplies for a given output-power level. #### APPLICATION INFORMATION #### headroom and thermal considerations Linear power amplifiers dissipate a significant amount of heat in the package under normal operating conditions. A typical music CD requires 12 dB to 15 dB of dynamic headroom to pass the loudest portions without distortion as compared with the average power output. From the TPA751 data sheet, one can see that when the TPA751 is operating from a 5-V supply into an $8-\Omega$ speaker that 700 mW peaks are available. Converting watts to dB: $$P_{dB} = 10 Log \frac{P_W}{P_{ref}} = 10 Log \frac{700 \text{ mW}}{1 \text{ W}} = -1.5 \text{ dB}$$ Subtracting the headroom restriction to obtain the average listening level without distortion yields: $$-1.5 \text{ dB} - 15 \text{ dB} = -16.5 \text{ (15 dB headroom)}$$ $$-1.5 \text{ dB} - 12 \text{ dB} = -13.5 \text{ (12 dB headroom)}$$ $$-1.5 dB - 9 dB = -10.5 (9 dB headroom)$$ $$-1.5 dB - 6 dB = -7.5 (6 dB headroom)$$ $$-1.5 \text{ dB} - 3 \text{ dB} = -4.5 \text{ (3 dB headroom)}$$ Converting dB back into watts: $$P_W = 10^{PdB/10} x P_{ref}$$ = 22 mW (15 dB headroom) = 44 mW (12 dB headroom) = 88 mW (9 dB headroom) = 175 mW (6 dB headroom) = 350 mW (3 dB headroom) This is valuable information to consider when attempting to estimate the heat dissipation requirements for the amplifier system. Comparing the absolute worst case, which is 700 mW of continuous power output with 0 dB of headroom, against 12 dB and 15 dB applications drastically affects maximum ambient temperature ratings for the system. Using the power dissipation curves for a 5-V, $8-\Omega$ system, the internal dissipation in the TPA751 and maximum ambient temperatures is shown in Table 1. Table 1. TPA751 Power Rating, 5-V, 8-Ω, BTL | PEAK OUTPUT
POWER | AVERAGE | POWER
DISSIPATION | D PACKAGE
(SOIC) | DGN PACKAGE
(MSOP) | GQS PACKAGE
(MicroStar Junior™) | |----------------------|---------------|----------------------|--------------------------------|--------------------------------|------------------------------------| | (mW) | OUTPUT POWER | (mW) | MAXIMUM AMBIENT
TEMPERATURE | MAXIMUM AMBIENT
TEMPERATURE | MAXIMUM AMBIENT
TEMPERATURE | | 700 | 700 mW | 675 | 34°C | 110°C | 99°C | | 700 | 350 mW (3 dB) | 595 | 47°C | 115°C | 105°C | | 700 | 176 mW (6 dB) | 475 | 68°C | 122°C | 114°C | | 700 | 88 mW (9 dB) | 350 | 89°C | 125°C | 123°C | | 700 | 44 mW (12 dB) | 225 | 111°C | 125°C | 125°C | Table 1 shows that the TPA751 can be used to its full 700-mW rating without any heat sinking in still air up to 110°C, 34°C, and 99°C for the DGN package (MSOP), D package (SOIC), and GQS (MicroStar Junior™) package, respectively. #### **MECHANICAL DATA** #### GQS (S-PBGA-N24) #### **PLASTIC BALL GRID ARRAY** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. MicroStar Junior configuration #### **MECHANICAL DATA** #### D (R-PDSO-G**) #### 14 PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: D. All linear dimensions are in inches (millimeters). E. This drawing is subject to change without notice. F. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). G. Falls within JEDEC MS-012 ## 700-mW MONO LOW-VOLTAGE AUDIO POWER AMPLIFIER WITH DIFFERENTIAL INPUTS SLOS336C - DECEMBER 2000 - REVISED OCTOBER 2002 #### **MECHANICAL DATA** #### DGN (S-PDSO-G8) #### PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions include mold flash or protrusions. - D. The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad. This pad is electrically and thermally connected to the backside of the die and possibly selected leads. - E. Falls within JEDEC MO-187 PowerPAD is a trademark of Texas Instruments. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2002, Texas Instruments Incorporated