TOSHIBA TPC8403

TOSHIBA FIELD EFFECT TRANSISTOR SILICON N, P CHANNEL MOS TYPE (U-MOSII)

TPC8403

MOTOR DRIVE NOTE BOOK PC PORTABLE DEVICES

- Low Drain-Source ON Resistance
 - : P CHANNEL $R_{DS(ON)} = 45 \,\mathrm{m}\Omega$ (Typ.) N CHANNEL $R_{DS(ON)} = 25 \,\mathrm{m}\Omega$ (Typ.)
- High Forward Transfer Admittance
 - : P CHANNEL $|Y_{fs}| = 6.2 \text{ S}$ (Typ.)
 - N CHANNEL $|Y_{fs}| = 7.8 \text{ S}$ (Typ.)
- Low Leakage Current
 - :P CHANNEL $I_{DSS} = -10 \,\mu\text{A} \,(V_{DS} = -30 \,\text{V})$
 - N CHANNEL IDSS = $10 \mu A \text{ (VDS} = 30 \text{ V)}$
- Enhancement-Mode
 - : P CHANNEL $V_{th} = -1.0 \sim -2.2 \text{ V } (V_{DS} = -10 \text{ V}, I_D = -1 \text{ mA})$ N CHANNEL $V_{th} = 1.3 \sim 2.5 \text{ V}$ ($V_{DS} = 10 \text{ V}$, $I_{D} = 1 \text{ mA}$)

MAXIMUM RATINGS (Ta = 25°C)

CHARACTE	SYMBOL	RAT	UNIT		
CHARACTE	GIMDOL	P CHANNEL	N CHANNEL	ONII	
Drain-Source Volta	Drain-Source Voltage			-30 30	
Drain-Gate Voltage $(R_{GS} = 20 \text{ k}\Omega)$	$v_{ m DSS}$ $v_{ m DGR}$	-30 30		v	
Gate-Source Voltag	v_{GSS}	±20 ±20		V	
Drain Current	DC	I_{D}	-4.5	6	Α
Drain Current	Pulse	I_{DP}	-18	24	Α
Drain Power Dissiport (Ta = 25°C)	P _D 1)	2	w		
Single Pulse Avala	anche Energy	EAS	26.3**	46.8***	mJ
Avalanche Current	I_{AR}	-4.5	6	Α	
Repetitive Avalance	E_{AR}	0.2		mJ	
Channel Temperat	T_{ch}	150		°C	
Storage Temperatu	${ m T_{stg}}$	-55°	°C		

INDUSTRIAL APPLICATIONS Unit in mm

CIRCUIT CONFIGURATION

1) Mount on glass epoxy board [1 inch² \times 0.8 t]

Note;

- Repetitive rating; Pulse Width Limited by Max. Junction temperature.
- ** $V_{DD}=-24$ V, Starting $T_{ch}=25$ °C, L=1.0 mH, $R_{G}=25$ Ω , $I_{AR}=-4.5$ A *** $V_{DD}=24$ V, Starting $T_{ch}=25$ °C, L=1.0 mH, $R_{G}=25$ Ω , $I_{AR}=6.0$ A

THERMAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	MAX.	UNIT
Thermal Resistance, Channel to Ambient	$R_{th (ch-a)^{1}}$	62.5	°C/W

This transistor is an electrostatic sensitive device. Please handle with caution.

961001EAA2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

P-ch ELECTRICAL CHARACTERISTICS (Ta = 25°C)

						1	
CHARAC	CTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	Current	IGSS	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μ A
Drain Cut-Off	Current	$I_{ m DSS}$	$V_{DS} = -30 V, V_{GS} = 0 V$	_	_	-10	μ A
Drain-Source 1	Breakdown	V _(BR) DSS	$I_{\mathrm{D}} = -10\mathrm{mA},\ V_{\mathrm{GS}} = 0\mathrm{V}$	-30		_	v
Voltage		V _(BR) DSX	$I_{D} = -10 \mathrm{mA}, \ V_{GS} = 20 \mathrm{V}$	-15	—	_	
Gate Threshol	d Voltage	$ m V_{th}$	$V_{DS} = -10 V, I_{D} = -1 mA$	-1.0	_	-2.2	V
Drain-Source (ON Resistance	R _{DS} (ON)	$V_{GS} = -4.5 V, I_{D} = -2.2 A$	_	66	90	$\mathbf{m}\Omega$
Diam-Source V	OIV Resistance	R _{DS} (ON)	$V_{GS} = -10 \text{ V}, I_{D} = -2.2 \text{ A}$	_	45	55	
Forward Trans	sfer Admittance	$ Y_{fs} $	$ m V_{DS} = -10 V, I_{D} = -2.2 A$	3.1	6.2	_	S
Input Capacitance		C_{iss}	N 10 N N 0 N	_	940	_	pF
Reverse Transfer Capacitance		$\mathrm{C}_{\mathrm{rss}}$	${ m V_{DS} = -10 V, V_{GS} = 0 V,} \ { m f = 1 MHz}$	_	270	_	
Output Capacitance		Coss		_	390	_	
Switching Time	Rise Time	t _r	$V_{GS} = \begin{array}{c} 0 \text{ V} \\ -10 \text{ V} \\ \end{array}$ $V_{OUT} = \begin{array}{c} I_{D} = -2.2 \text{ A} \\ V_{OUT} \\ R_{L} = \\ 6.8 \Omega \\ \end{array}$ $V_{DD} = -15 \text{ V}$	_	13	_	
	Turn-On Time	t _{on}		_	21	_	ns
	Fall Time	t _f		<u> </u>	25	_	115
	Turn-Off Time	t _{off}	$V_{\mathrm{IN}}: \mathrm{t_r}, \mathrm{t_f} < 5 \mathrm{ns}, \ \mathrm{Duty} \leq 1\%, \mathrm{t_W} = 10 \mu \mathrm{s}$	_	73	_	
Total Gate Charge (Gate- Source Plus Gate-Drain)		$\mathbf{Q}_{\mathbf{g}}$	$V_{DD} = -24 \text{ V}, V_{GS} = -10 \text{ V}$	_	18	_	C
Gate-Source Charge		$\mathbf{Q}_{\mathbf{g}\mathbf{s}}$	$I_{\mathrm{D}} = -4.5\mathrm{A}$	_	14	_	nC
Gate-Drain ("Miller") Charge		\mathbf{Q}_{gd}		_	4	_	

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Continuous Drain Reverse Current	$I_{ m DR}$	_	_	_	-4.5	A
Pulse Drain Reverse Current	$I_{ m DRP}$	1		_	-18	A
Diode Forward Voltage	$v_{ m DSF}$	$I_{ m DR} = -4.5 m A, V_{ m GS} = 0 m V$		_	1.2	V

TOSHIBA TPC8403

N-ch ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARA	CTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	e Current	I_{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μ A
Drain Cut-Of	f Current	$I_{ m DSS}$	$V_{DS} = 30 \text{ V}, \ V_{GS} = 0 \text{ V}$	_	_	10	μ A
Drain-Source	Breakdown	V _(BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	30	_	_	V
Voltage			$I_{\rm D} = 10 {\rm mA}, \; { m V}_{ m GS} = -20 { m V}$	15		_	V
Gate Thresho	old Voltage	$V_{ m th}$	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$	1.3	_	2.5	V
Droin Source	ON Resistance	R _{DS} (ON)	$ m V_{GS} = 4.5 \ V, \ I_{D} = 3 \ A$	_	38	46	$\mathbf{m}\Omega$
Drain-Source	On Resistance	R _{DS} (ON)	$V_{GS} = 10 \text{ V}, I_D = 3 \text{ A}$	_	25	33	$\mathbf{m}\Omega$
Forward Tran	nsfer Admittance	$ Y_{fs} $	$V_{DS} = 10 \text{ V}, I_{D} = 3 \text{ A}$	3.9	7.8	-	S
Input Capaci	tance	C_{iss}	N 10 N N 0 N	_	850	_	
Reverse Transfer Capacitance		C_{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, $ f = 1 MHz	_	180	_	pF
Output Capacitance		Coss	$\begin{cases} 1 = 1 \text{ MHz} \end{cases}$	_	270	_	
Switching Time	Rise Time	t _r	$V_{GS} \underset{0}{\overset{10}{\text{V}}} \underset{V}{\overset{10}{\text{V}}} V$	_	11	_	
	Turn-On Time	ton		_	18	_	
	Fall Time	tf		_	6.5	_	ns
	Turn-Off Time	toff	$V_{\mathrm{IN}}: \mathrm{t_r}, \mathrm{t_f} < 5 \mathrm{ns}$ $\mathrm{Duty} \leq 1\%, \mathrm{t_W} = 10 \mu \mathrm{s}$	_	27	_	
Total Gate Charge (Gate- Source Plus Gate-Drain)		$\mathbf{Q}_{\mathbf{g}}$	$V_{DD} = 24 \text{ V}, V_{GS} = 10 \text{ V}$	_	17	_	C
Gate-Source Charge		$\mathbf{Q}_{\mathbf{g}\mathbf{s}}$	$ brack I_{ m D}=6{ m A}$	_	13	_	nC
Gate-Drain ('	'Miller") Charge	\mathbf{Q}_{gd}			4		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Continuous Drain Reverse Current	$I_{ m DR}$	_		_	6	A
Pulse Drain Reverse Current	$I_{ m DRP}$			_	24	Α
Diode Forward Voltage	$v_{ m DSF}$	$I_{\mathrm{DR}} = 6 \mathrm{A}, \; \mathrm{V}_{\mathrm{GS}} = 0 \mathrm{V}$		_	-1.2	V

MARKING

