TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7WU04F, TC7WU04FU

3 INVERTER

The TC7WU04 is a high speed C²MOS INVERTER fabricated with silicon gate C²MOS technology. It achives the high speed operation similar to equivalent LSTTL while maintaining the C²MOS low power dissipation.

As the internal circuit is composed of single stage inverter, it can be applied for crystal oscillation. All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES

•	High Speed	 ~~	(Typ.)	at
		\/aa - 5\/		

• Low Power Dissipation $I_{CC} = 1\mu A$ (Max.) at

Ta = 25°C

• High Noise Immunity $V_{NIH} = V_{NIL}$

= 10% V_{CC} (Min.)

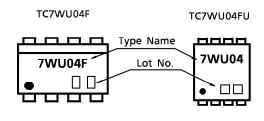
Output Drive Capability 10 LSTTL Loads

Symmetrical Output Impedance ... $|I_{OH}| = I_{OL} = 4mA$

(Min.)

Balanced Propagation Delays t_{pLH}≒t_{pHL}

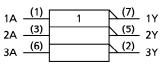
■ Wide Operating Voltage Range ... V_{CC (opr)} = 2~6V


TC7WU04F SOP8-P-1.27 TC7WU04FU SSOP8-P-0.65

Weight SOP8-P-1.27 : 0.05g (Typ.) SSOP8-P-0.65 : 0.02g (Typ.)

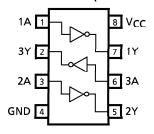
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~7	V
DC Input Voltage	VIN	-0.5~V _{CC} +0.5	V
DC Output Voltage	Vout	-0.5~V _{CC} +0.5	٧
Input Diode Current	lικ	± 20	mA
Output Diode Current	loк	± 20	mΑ
DC Output Current	IOUT	± 25	mΑ
DC V _{CC} /Ground Current	ICC	± 25	mΑ
Power Dissipation	PD	300	mW
Storage Temperature	T _{stg}	– 65∼150	°C
Lead Temperature (10s)	ΤL	260	°C


MARKING

961001EBA2

[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.


LOGIC DIAGRAM

TRUTH TABLE

Α	Υ
L	Н
Н	L

PIN ASSIGNMENT (TOP VIEW)

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	Vout	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40∼85	°C

DC ELECTRICAL CHARACTERISTICS

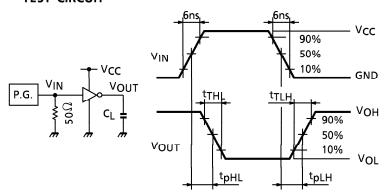
CHARACTERISTIC	SYMBOL	TEST CONDITION			Ta = 25°C Ta = −40~85°C					UNIT
CHARACTERISTIC	3 TIVIBUL			Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	ONIT
Himb Lavel				2.0	1.7	-	-	1.7	_	
High-Level	V _{IH}		_	4.5	3.6	—	l —	3.6	_	V
Input Voltage				6.0	4.8	—	 	4.8	—	
I avvi I avval				2.0	_	_	0.3	_	0.3	
Low-Level	VIL		_	4.5	 	 	0.9	_	0.9	V
Input Voltage				6.0	_	_	1.2	_	1.2	
	VOH			2.0	1.8	2.0	_	1.8	_	
lug to to the		V _{IN} = V _{IL}	$I_{OH} = -20 \mu A$	4.5	4.0	4.5	—	4.0	_	
High-Level				6.0	5.5	5.9	—	5.5	_	V
Output Voltage		V _{IN} = GND	I _{OH} = -4mA	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -5.2 \text{mA}$	6.0	5.68	5.80	—	5.63	—	
	V_{OL} $V_{IN} = V_{IH}$ $V_{IN} = V_{CC}$			2.0	_	0.0	0.2	_	0.2	
		$ V_{IN} = V_{IH}$	$I_{OL} = 20 \mu A$	4.5	l —	0.0	0.5	_	0.5	
Low-Level				6.0	 	0.1	0.5	_	0.5	V
Output Voltage		V _{IN} = V _{CC}	I _{OL} = 4mA	4.5	_	0.17	0.26	_	0.33	
			$I_{OL} = 5.2 \text{mA}$	6.0	—	0.18	0.26	_	0.33	
Input Leakage	lisi	V V	or CND	6.0			± 0.1		± 1.0	
Current	IN	$\Lambda^{IM} = \Lambda^{CC}$	JI GIND	0.0					1.0	
Quiescent		Vivi – Vica or GND		6.0			1.0		10.0	μ A
Supply Current	lcc	$V_{IN} = V_{CC}$ or GND		0.0 —		1.0		10.0		

961001EBA2'

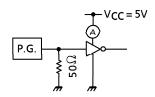
The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, $V_{CC} = 5V$, Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	Т	UNIT		
CHARACTERISTIC	3 TIVIBUL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition	^t TLH			4	8	ns
Time	tTHL	_		4	0	113
Propagation Delay	t_{pLH}			4	8	nc
Time	t_{pHL}	_		4	0	ns


AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)

CHARACTERISTIC	SYMBOL	TEST CONDITION		Ta = 25°C			Ta = -4	UNIT	
CHARACTERISTIC ISTNIBOL		TEST CONDITION		MIN.	TYP.	MAX.	MIN.	MAX.	
Output Transition	t		2.0	_	30	75	_	95	
•	t _{TLH}	_	4.5	_	8	15	_	19	ns
Time	t _{THL}		6.0	_	7	13	—	16	
Dramagation Dalay	4		2.0	_	18	60	_	75	
Propagation Delay	t _{pLH}	_	4.5	<u> </u>	6	12	<u> </u>	15	ns
Time	t _{pHL}		6.0	—	5	10	—	13	
Input Capacitance	CIN	_		_	9	15	_	15	
Power Dissipation Capacitance	C _{PD}	(Note 1)		_	13	_	_	_	pF


Note 1 : C_{PD} is defined as the value of internal equivalent capacitance of IC which is calculated from the operating current consumption without load (refer to Test Circuit). Average operating current can be obtained by the equation hereunder.

ICC (opr) = C_{PD}·V_CC·f_{IN} + I_{CC}/3 (per gate)

SWITCHING CHARACTERISTICS TEST CIRCUIT

OPERATING CURRENT CONSUMPTION TEST CIRCUIT

This input waveform is equal to SWITCHING CHARACTERISTICS TEST CIRCUIT input waveform.