TENTATIVE

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T C 7 W 3 4 F U

(UNDER DEVELOPMENT)

TRIPLE NON-INVERT BUFFER

The TC7W34FU is high speed CMOS BUFFER fabricated with silicon gate CMOS technology.

The internal circuit is composed of 2 stage including buffer output, which enable high noise immunity and stable output.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

- High Speed $\cdots t_{pd} = 6ns$ (Typ.) at $V_{CC} = 5V$
- High Noise Immunity V_{NIH} = V_{NIL} = 28% V_{CC} (Min.)

SYMBOL

Vcc

 V_{IN}

lικ

lok

Icc

P_D T_{stg}

 T_L

IOUT

VOUT

- Output Drive Capability 10 LSTTL Loads
- Symmetrical Output Impedance ··· |IOH| = IOL = 4mA (Min.)
- Balanced Propagation Delays ······ t_{pLH} ≒t_{pHL}

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC

Supply Voltage Range

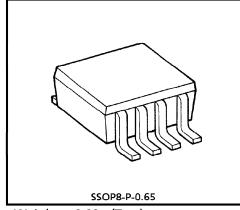
DC Input Voltage

DC Output Voltage

DC Output Current

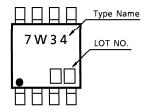
Power Dissipation

Storage Temperature


Lead Temperature (10 s)

Input Diode Current

Output Diode Current


DC V_{CC}/Ground Current

Wide Operating Voltage Range… V_{CC} (opr) = 2~6V

Weight: 0.02g (Typ.)

MARKING

TRUTH TABLE

Α	Υ
L	L
Н	Н

RATING

 $-0.5 \sim 7$

 $-0.5 \sim V_{CC} + 0.5$

 $-0.5 \sim V_{CC} + 0.5$

± 20

±20

±25

±25

300

 $-65 \sim 150$

260

UNIT

V

٧

٧

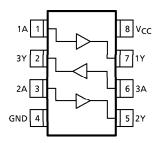
mΑ

mΑ

mΑ

mΑ

mW


°C

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

LOGIC DIAGRAM

1.4.—	(1)	1	(7)
24	(3)	'	(5)
2A-	(6)		(2) 3Y
3A-			3 Y

PIN ASSIGNMENT (TOP VIEW)

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	V _C C	2~6	V
Input Voltage	VIN	0~V _{CC}	٧
Output Voltage	Vout	0~V _{CC}	٧
Operating Temperature	T _{opr}	- 40~85	°C
		0~1000 (V _{CC} = 2.0V)	
Input Rise and Fall Time	t _r , t _f	0~500 (V _{CC} = 4.5V)	ns
		0~400 (V _{CC} = 6.0V)	

DC ELECTRICAL CHARACTERISTICS

CHADACTEDICTIC	SYMBOL	TEST CONDITION			1			$Ta = -40 \sim 85^{\circ}C$		UNIT
CHARACTERISTIC	STIVIBUL	IESI C	TEST CONDITION		MIN.	TYP.	MAX.	MIN.	MAX.	UIVII
High Loyal				2.0	1.5	_	-	1.5	_	
High-Level Input Voltage	V_{IH}			4.5	3.15	_	_	3.15	_	V
Imput voitage				6.0	4.2	_	_	4.2	_	
Lavelaval				2.0		_	0.5	_	0.5	
Low-Level Input Voltage	VIL			4.5	_	_	1.35	_	1.35	V
Imput voitage				6.0	_	_	1.8	_	1.8	
			I _{OH} = -20μA	2.0	1.9	2.0	_	1.9	_	
Ligh Lovel	V _{OH}	V _{IN} = V _{IH}		4.5	4.4	4.5	_	4.4	_	V
High-Level				6.0	5.9	6.0	_	5.9	_	
Output Voltage			$I_{OH} = -4mA$	4.5	4.18	4.31	_	4.13	_	
			IOH = -5.2mA	6.0	5.68	5.80	<u> </u>	5.63	_	
			I _{OL} = 20μA	2.0		0.0	0.1	_	0.1	
l avy l aval		V _{IN} = V _{IL}		4.5	_	0.0	0.1	_	0.1	
Low-Level Output Voltage	v_{OL}			6.0	_	0.0	0.1	_	0.1	V
Output Voltage			I _{OL} = 4mA	4.5		0.17	0.26	_	0.33	
			I _{OL} = 5.2mA	6.0	_	0.18	0.26	_	0.33	
Input Leakage Current	I _{IN}	V _{IN} = V _{CC} or GND		6.0	_	_	±0.1	_	± 1.0	μ A
Quiescent Supply Current	lcc	V _{IN} = V _{CC} o	or GND	6.0			1.0	_	10.0	μ A

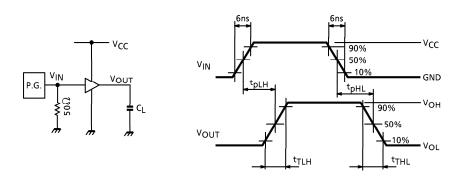
961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

AC ELECTRICAL CHARACTERISTICS ($C_1 = 15pF$	$V_{CC} = 5V$	$Ta = 25^{\circ}C$
---------------------------------	--------------	---------------	--------------------

CHARACTERISTIC	SYMBOL	TEST CONDITION	٦	UNIT		
CHARACTERISTIC	STIVIBOL	TEST CONDITION		TYP.	MAX.	UNIT
Output Transition Time	t _{TLH} t _{THL}		1	4	8	ns
Propagation Delay Time	t _{pLH} t _{pHL}	_		6	12	ns

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)


CHARACTERISTIC SYMBOL TEST CONDITION			Ta = 25°C			Ta = -4	UNIT		
CHARACTERISTIC SYMBOL TEST CONDITION	VCC	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT		
Outrot Transition		2.0	_	30	75	_	95		
Output Transition Time	t _{TLH}	_	4.5	_	8	15	_	19	ns
Time t _{THL}		6.0	_	7	13	_	16		
Business Care Balls		2.0	_	27	75	_	95		
Propagation Delay Time	, L'E	_	4.5	_	9	15	_	19	ns
Time t _{pHL}		6.0	_	8	13	_	16		
Input Capacitance	CIN	_		_	5	10	_	10	рF
Power Dissipation Capacitance	C _{PD}	(Note 1)		_	20	_	_		pF

(Note 1): CpD is defined as the value of the internal equivalent capacitance of IC which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation hereunder.

ICC (opr) = CpD · VCC · fIN + ICC / 3 (per gate)

SWITCHING CHARACTERISTICS TEST CIRCUIT

