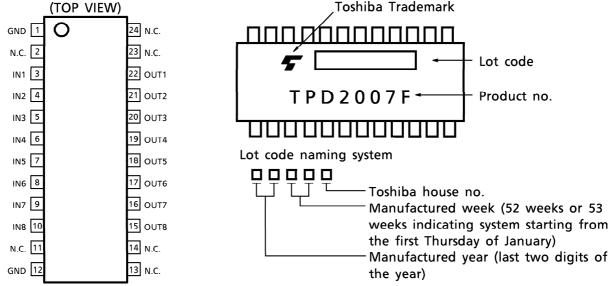
TOSHIBA TPD2007F

TOSHIBA INTELLIGENT POWER DEVICE SILICON MONOLITHIC POWER MOS INTEGRATED CIRCUIT

TPD2007F

LOW-SIDE POWER SWITCH ARRAY (8 CHANNELS) for MOTORS, SOLENOIDS, and LAMP DRIVES

The TPD2007F is an 8-channel low-side switch array for vertical power MOS FET output. A monolithic power IC, it can directly drive a power load from a CMOS or TTL logic circuit (such as an MPU). It offers overcurrent and overtemperature protection functions.


FEATURES

- A low-side switch array incorporating an N-channel power MOS FET. (1.4 Ω max.)
- Can directly drive a power load from a microprocessor.
- Built-in protection against overtemperature protection and overcurrent protection.
- 8-channel access enables space-saving design.
- High operating voltage: 40 V
- Low on-resistance : 1.4 Ω max. $@V_{DD} = 12 \text{ V}$, $I_{O} = 0.5 \text{ A}$ (per channel)
- Supports parallel operation.
- Built-in an active clamp circuit
- Supplied in an SSOP-24 package (300 mil) in embossed taping.

HERRICHER SSOP24-P-300-1.00B Weight: 0.29 g (typ.)

PIN ASSIGNMENT

MARKING

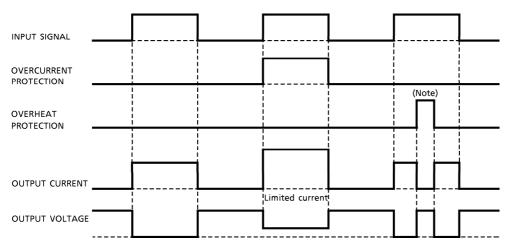
This device uses MOS structure, it is sensitive to electrostatics. Please take this into account 980910EBA2


- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.


BLOCK DIAGRAM

PIN DESCRIPTION

PIN No.	SYMBOL	DESCRIPTION					
1	GND	iND pin; in common with the pin no.12 internally.					
2	N.C.	_					
3	IN1	Control input pin for channel 1 and built-in pull-down resistor (300 k Ω typ.)					
4	IN2	Control input pin for channel 2 and built-in pull-down resistor (300 k Ω typ.)					
5	IN3	Control input pin for channel 3 and built-in pull-down resistor (300 k Ω typ.)					
6	IN4	Control input pin for channel 4 and built-in pull-down resistor (300 k Ω typ.)					
7	IN5	Control input pin for channel 5 and built-in pull-down resistor (300 k Ω typ.)					
8	IN6	Control input pin for channel 6 and built-in pull-down resistor (300 k Ω typ.)					
9	IN7	Control input pin for channel 7 and built-in pull-down resistor (300 k Ω typ.)					
10	IN8	Control input pin for channel 8 and built-in pull-down resistor (300 k Ω typ.)					
11	N.C.	_					
12	GND	GND pin; in common with the pin no.1 internally.					
13	N.C.	_					
14	N.C.	_					
15	OUT8	Output pin for channel 8					
16	OUT7	Output pin for channel 7					
17	OUT6	Output pin for channel 6					
18	OUT5	Output pin for channel 5					
19	OUT4	Output pin for channel 4					
20	OUT3	Output pin for channel 3					
21	OUT2	Output pin for channel 2					
22	OUT1	Output pin for channel 1					
23	N.C.	_					
24	N.C.	-					

TIMING CHART

(Note): The overheating detector circuits feature hysteresis. After overheating is detected, normal operation is restored only when the junction temperature falls by the hysteresis amount (10°C typ.) in relation to the overheating detection temperature.

TRUTH TABLE

INPUT SIGNAL	OUTPUT SIGNAL	STATE
L	Н	Normal
Н	L	Normal
L	Н	Overcurrent protection
Н	Internally limited	Overcurrent protection
L	Н	Overtemperature
Н	Н	protection

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Input Voltage	VIN	- 0.5~7	V	
Drain-source Voltage	V _{DSS}	40	V	
Output Current	ID	Internally Limited	Α	
Power Dissipation	D-	0.8	w	
(Operating All Channels, Ta = 25°C)	PT	1.5 (Note)	VV	
Single Pulse Avalanche Energy	EAS	10	mJ	
Operating Temperature	Topr	- 40~85	°C	
Junction Temperature	Tj	150	°C	
Storage Temperature	T _{stg}	- 55∼150	°C	

THERMAL CHARACTERISTIC

CHARACTERISTIC	SYMBOL	RATING	UNIT
Thermal Resistance Junction to Ambient	SB.	156.3	°C/W
(Operating All Channels, Ta = 25°C)	Σ R _{th (j-a)}	83.4 (Note)	C / VV

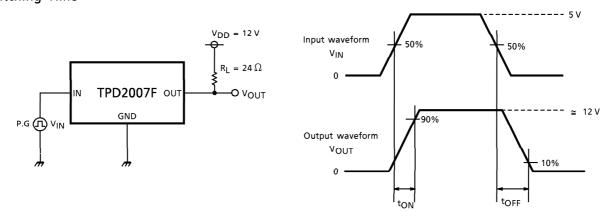
(Note) : $60 \text{ mm} \times 60 \text{ mm} \times 1.6 \text{ t}$ when a device is mounted on a glass epoxy PCB. (DC)

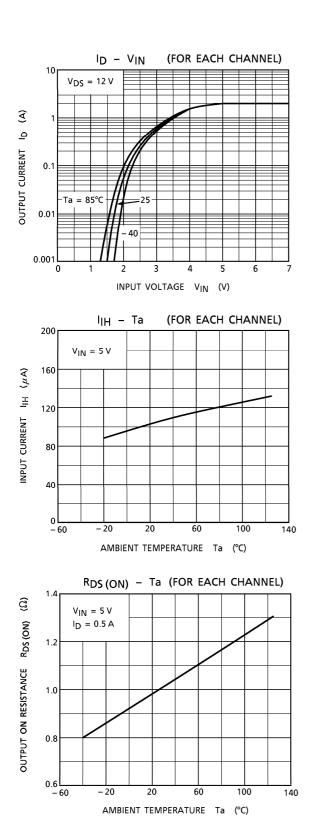
ELECTRICAL CHARACTERISTICS	(Unless	otherwise	specified,	Ta = 2!	5°C)
-----------------------------------	---------	-----------	------------	---------	------

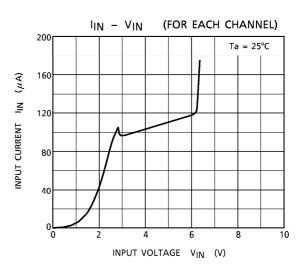
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Drain-Source Clan	Drain-Source Clamp Voltage		_	I _D = 10 mA, V _{IN} = 0 V	40	_	_	
Input Voltage		V (BR) DSS V _{th}	_	$V_{DS} = 24 \text{ V}, I_{DS} = 1 \text{ mA}$	0.8	_	2.0	٧
Input Current		IJL	_	V _{IN} = 0 V	- 10	_	10	μ A
		lН	_	V _{IN} = 5 V	_	140	300	μ A
On Resistance		R _{DS} (ON)		$V_{IN} = 5 V$, $I_{O} = 0.5 A$	_	1.0	1.4	Ω
Off Current		IDSS	_	V _{DS} = 40V	_	_	100	μ A
Overcurrent Protection		^l S (1)	_	$V_{DS} = 12 \text{ V}, V_{IN} = 5 \text{ V}, R_{L} = 3 \Omega$	1	2	3	Α
		l _S (2)	_	$V_{DS} = 30 \text{ V}, V_{IN} = 5 \text{ V}, R_{L} = 3 \Omega$	0.7	_	2	
Overtemperature	Temperature	TSD	_	V _{IN} = 5 V	_	160	_	°C
Protection	Hysteresis	∆TSD	_	_	_	10	_	'
Switching Time		ton	1	V_{DD} = 12 V, R_L = 24 Ω ,	_	10	50	4.6
		tOFF	1	$V_{IN} = 0 V / 5 V$	_	10	50	μ s
Operating Input Voltage Protection Circuit		V _{IN} (P)	_	_	4.5	_	6.0	٧
Drain-Source Diode Forward Voltage		V _{DSF}	_	IF = 1 A, V _{IN} = 0 V	_		1.6	٧

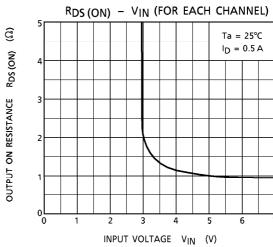
DESCRIPTION OF PROTECTOR CIRCUIT

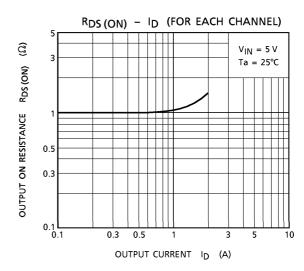
(1) Overtemperature Protection

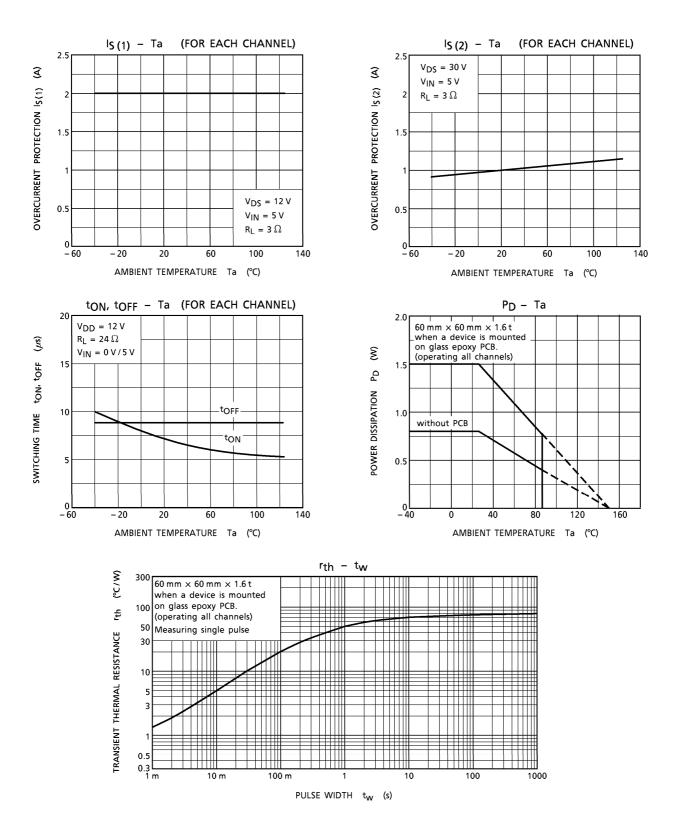

• The overheating detector circuits feature hysteresis. After overheating is detected, normal operation is restored only when the junction temperature falls by the hysteresis amount (10°C typ.) in relation to the overheating detection temperature.

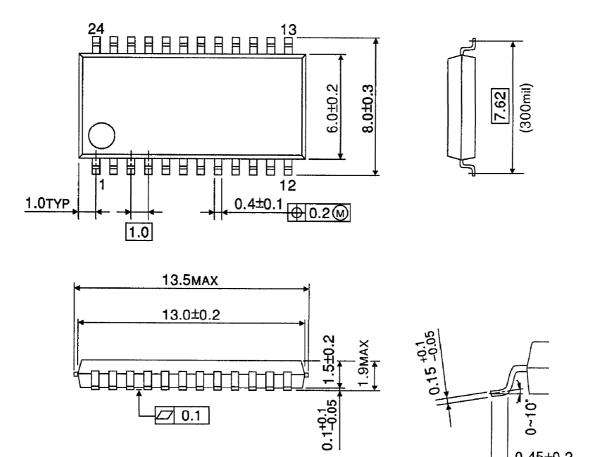

(2) Overcurrent Protection


• When overcurrent is detected, the overcurrent limiter function limits the output current. Normal operation is restored when the load current drops below the overcurrent detection value.


TEST CIRCUIT


Switching Time




MOISTURE-PROOF PACKING

After the pack is opened, use the devices in a 30°C, 60% RH environment, and within the 48 hours. Embossed-tape packing cannot be baked. Devices so packed must be within their allowable time limits after unpacking, as specified on the packing.

Tape packing quantity: 500 devices/reel (EL) or 2000 devices/reel (EL1)

PACKAGE DIMENSIONS

SSOP24-P-300-1.00B Unit: mm

Weight: 0.29 g (typ.)

0.45±0.2