TOSHIBA

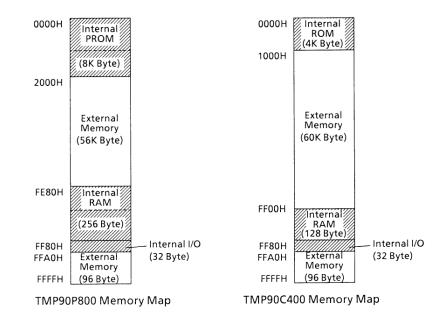
TLCS-90 Series

CMOS 8–Bit Microcontrollers

TMP90P800N/TMP90P800F

1. Outline and Characteristics

The TMP90P800 is a system evaluation LSI having a built in One-Time PROM for TMP90C400/800.


A programming and verification for internal PROM is

achieved by using a general EPROM programmer with an adapter socket.

The function of this device is exactly same as the TMP90C400 by programming to the internal PROM.

The differences between TMP90P800 and TMP90C400 are the memory size (ROM/RAM).

The following are the memory map of TMP90P800 and TMP90C400.

The TMP90P800N is in a Shrink Dual Inline Package (SDIP64-P-750).

The TMP90P800F is in a Quad Flat Package (QFP64-P-1420A).

Parts No.	ROM	RAM	Package	Adapter Socket No.
TMP90P800N	OTP	256 x 8bit	64-SDIP	BM1142
TMP90P800F	8192 x 8bit	2.30 X ODIL	64-FP	BM1147

The information contained here is subject to change without notice.

The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. These TOSHIBA products are intended for usage in general electronic equipments (office equipment, communication equipment, measuring equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these TOSHIBA products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life (atomic energy control, spaceship, traffic signal, combustion control, all types of safety devices, etc.). TOSHIBA cannot accept liability on y damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.

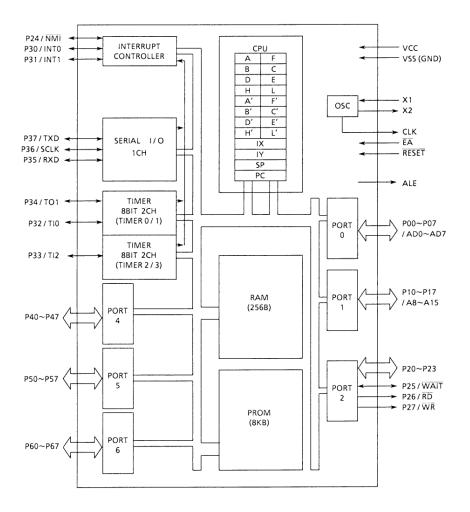


Figure 1. TMP90P800 Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins, their names and functions are described below.

2.1 Pin Assignment

Figure 2.1 shows pin assignment of the TMP90P800.

					L	
	P40 🗆	1	\smile	64	D Vcc	
	P41 🗀	2		63	P37	(TxD)
	P42 🗆	3		62	🖵 P36	(SCLK)
	P43 🖂	4		61	D P35	(RxD)
	P44 🗆	5		60	🗀 РЗ4	(TO1)
	P45 🗆	6		59	🗀 РЗЗ	(TI2)
	P46 🗆	7		58	🗀 P32	(TIO)
	P47 🗀	8		57	🗆 P31	(INT1)
	P50 🗆	9		56	🗀 P30	(INTO)
	P51 🗔	10		55	🖵 P67	
	P52 🗆	11		54	🗖 P66	
	Р53 🗆	12		53	🗆 P65	
	P54 🗆	13		52	🗀 P64	
	P55 🖂	14		51	🖵 P63	
	P56 🗆	15		50	🗖 P62	
	P57 🖂	16		49	🗆 P61	
	P20 🗔	17		48	🗀 P60	
	P21 🗆	18		47	🗆 EA	
	P22 🖂	19		46	D P27	(WR)
	P23 🗔	20		45	🖵 P26	(RD)
(NMI)	P24 🗆	21		44	⊨ clk	
(WAIT)	P25 🖂	22		43	🖵 P17	(A15)
(AD0)	P00 🗔	23		42	🖵 P16	(A14)
(AD1)	P01 🖂	24		41	D P15	(A13)
(AD2)	P02 🖂	25		40	🗀 P14	(A12)
(AD3)	P03 🗆	26		39	□ P13	(A11)
(AD4)	P04 🖂	27		38	□ P12	(A10)
(AD5)	P05 🗀	28		37	□ P11	(A9)
(AD6)	P06 🖂	29		36	D P10	(A8)
(AD7)	P07 🗀	30		35	RESE	Т
	ALE 🖂	31		34	□ X2	
(GND)	Vss 🗀	32		33	□ X1	
]	

Figure 2.1 (1). Pin Assignment (64-SDIP)

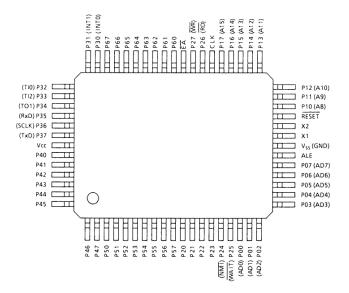


Figure 2.1 (2). Pin Assignment (64-FP)

2.2 Pin Names and Functions

The TMP90P800 has MCU mode and PROM mode.

(1) MCU Mode (The TMP90C400 and the TMP90P800 are pin compatible).

Pin Name	No. of pins	I/O 3 states	Function				
P00 ~ P07	8	I/O	Port 0: 8-bit I/O port that allows selection of input/output on bit basi.s				
/AD0 ~ AD7	0	3 states	Address/Data Bus: Also functions as the lower 8 bits bidirectional data bus for external memory.				
P10 ~ P17	8	I/O	Port 1: 8-bit I/O port that allows selection on bit basis.				
/A8 ~ A15	0	Output	Address Bus: The upper 8 bits address bus for external memory.				
P20 ~ P23	4	I/O	Port 20 ~ 23: 4-bit I/O port with a pull-up resistor that allows selection on bit basis				
P24	1	I/O	Port 24: 1-bit I/O port with a pull-up resistor.				
/NMI	I	Input	Non-maskable interrupt request pin: Falling edge interrupt register pin.				
P25	1	I/O	Port 25: 1-bit I/O port with a pull-up resistor.				
/WAIT	1	Input	Wait: Input pin for connecting slow speed memory of peripheral LSI				
P26	1	Output	Port 26: 1-bit output port				
/RD	1	Output	Read: Generates strobe signal for reading external memory.				
P27		Output	Port 27: 1-bit output port				
/WR	1	Output	Write: Generates strobe signal for writing into external memory				
		I/O	Port 30: 1-bit I/O port with a pull-up resistor.				
P30 /INTO	1	Input	Interrupt request pin 0: Interrupt request pin (Level/rising edge is programmable)				
		I/O	Port 31: 1-bit I/O port with a pull-up resistor.				
P31 /INT1	1	Input	Interrupt request pin 1: Rising edge interrupt request pin				
P32	1	I/O	Port 32: 1-bit I/O port with a pull-up resistor.				
/T10	1	Input	Timer input 0: Counter input pin for Timer 0				
P33	1	I/O	Port 33: 1-bit I/O port with a pull-up resistor.				
/TI2	I	Output	Timer input 2: Counter input pin for Timer 2				

Table 2.2.1 Pin Names and Functions (1/2)

Table 2.2.1 Fin Names and Functions (2/2)									
P35	1	I/O	Port 35: 1-bit I/O port with a pull-up resistor.						
/RxD	I	I/O	Receive Serial Data						
P36	1	I/O	Port 36: 1-bit I/O port with a pull-up resistor.						
/SCLK	I	Output	Serial clock output						
P37	4	I/O	Port 37: 1-bit I/O port with a pull-up resistor.						
TxD	I	Output	Transmitter Serial Data						
P40 ~ P47	8	I/O	Port 4: 8-bit I/O port that allows I/O selection on bit basis.						
P50 ~ P57	8	I/O	Port 5: 1-bit I/O port with a pull-up resistor.						
P60 ~ P67	8	I/O	Port 6: 8-bit I/O port that allows I/O selection on bit basis.						
ALE	1	Output	Address latch enable signal: The negative edge of ALE supplies an address latch timing for external memory access.						
ĒĀ	1	Input	External access: Connects with V _{CC} pin in the TMP90P800 built ROM is used.						
CLK	1	Output	Clock output: Generates clock pulse at 1/4 frequency of clock oscillation. It is Pulled up internally during resetting.						
RESET	1	Input	Reset: Initializes the TMP90P800.						
X1/X2	2	I/O	Pin for quartz crystal or ceramic resonator						
V _{CC}	1	-	Power supply (+5V)						
V _{SS}	1	_	Ground (0V)						

Table 2.2.1 Pin Names and Functions (2/2)

(2) PROM Mode

Table 2.2.2

Pin Function Name	No. of pins	I/O	Function	Pin Name (MCU mode)			
A7 ~ A0	8	Input	Dragram Mamory Address Insut	P67 ~ P60			
A12 ~ A8	5	Input	Program Memory Address Input	P14 ~ P10			
A15 ~ A13	3	Input	Be fixed to "L" level. (Note)	P17 ~ P15			
D7 ~ D0	8	I/0	Data Input/Output	P07 ~ P00			
ŌĒ	1	Input	Output Enable Input	P26			
CE	1	Input	Chip Enable Input	P27			
VPP	1	Power Supply	12.5V/5V (Programming Power Supply)	ĒĀ			
VCC	1	Power Supply	5V	ł			
VSS	1	Power Supply	0V				
Pin Name	No. of pins	I/O	Pin Setting				
P20 ~ P23	4	Input	Be fixed to "L" level.				
NMI	1	Input	Be fixed to "H" level.				
WAIT	1	Input	Be fixed to "H" level.				
P30 ~ P34	5	Input	Be fixed to "L" level.				
P35, P36	2	Input	Be fixed to "H" level.				
P37	1	Input	Be fixed to "L" level.				
P40 ~ P47 P50 ~ P57	8 8	Input	Be fixed to "L" level.				
RESET	1	Input	Be fixed to "L" level.				
CLK	1	Input	Be fixed to "L" level.				
ALE	1	Output	Open				
X1	1	Input	Pacapater connection pin				
Х2	1	Output	Resonator connection pin				

(Note) Be fixed to "H" level when The 400-mode Bit or The Security Bit is programmed.

3. Operation

The TMP90P800 is the OTP version of the TMP90C400 that is replaced an internal ROM from Mask ROM to EPROM.

The function of TMP90P800 is exactly as that of TMP90C400 except the internal ROM/RAM size.

Refer to the TMP90C400 except the functions which are not described this section.

The following is an explanation of the hardware configuration and operation in the relation to the TMP90P800.

The TMP90P800 has an MCU mode and a PROM mode.

3.1 MCU Mode

(1) Mode Setting and Function

The MCU mode is set by opening the CLK pin (Output status).

In the MCU mode, the operation is the same as that of TMP90C400.

(2) Memory Map

Figure 3.1 shows the memory map of TMP90P800, and the accessing area by the respective addressing mode.

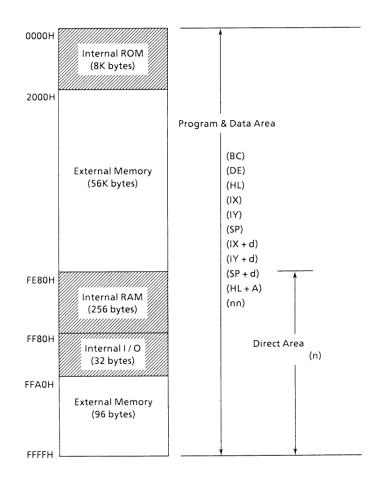


Figure 3.1. TMP90P800 Memory Map

3.2 PROM Mode

(1) Mode Setting and Function

PROM mode is set by setting the RESET and CLK pins to the "L" level.

The programming and verification for the internal PROM is achieved by using a general EPROM programmer with the adaptor socket. The device selection (ROM Type) should be "27256" with following conditions. size: 256Kbit (32K x 8bit) VPP: 12.5V TPW: 1ms Figure 3.2 shows the setting of pins in PROM mode.

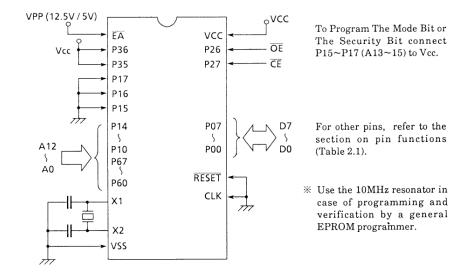


Figure 3.2. PROM Mode Pin Setting

(2) Programming Flow Chart

The programming mode is set by applying 12.5V (programming voltage) to the VPP pin when the following pins are set as follows,

- (Vcc : 6.0V) *These conditions can be
- (RESET : "L" level) obtained by using adaptor
- (CLK : "L" level) socket.

After the address and data have been fixed, a data on the Data Bus is programmed when the \overline{CE} pin is set to "Low" (1ms plus is required).

General Programming procedure of an EPROM programmer is as follows,

• Write a data to a specified address for 1ms.

• Verify the data. If the read-out data does not match the expected data, another writing is performed until the correct data is written (Max. 25 times).

After the correct data is written, an additional writing is performed by using three times longer programming pulse width (1ms x programming times), or using three times more programming pulse number. Then, verify the data and increment the address.

The verification for all data is done under the condition of Vpp = Vcc = 5V after all data were written. Figure 3.3 shows the programming flow chart.

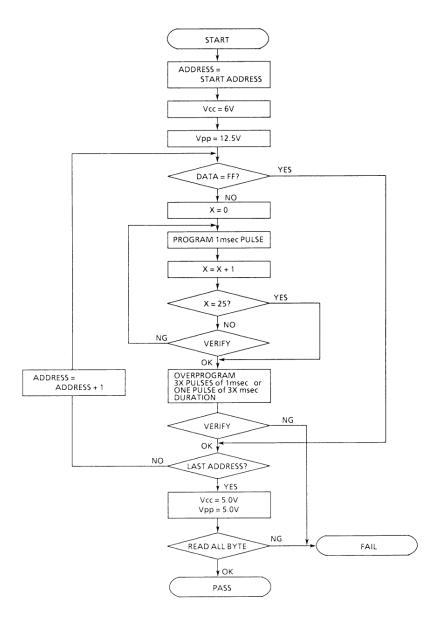


Figure 3.3. Flow Chart

(3) The 400-mode Bit and The Security Bit

The TMP90P800 has The 400-mode Bit and The Security Bit in PROM cell. If The 400-mode Bit is programmed to "0", The TMP90P800 functions as its memory size is same as TMP90C400 (ROM: 0000H ~ 0FFFH, RAM: FF00H ~ FF7FH). If The Security Bit is programmed to "0", the content of the PROM is disable to read in PROM mode. If both The 400-mode Bit and The Security Bit is programmed to "0", the memory size is as same as TMP90C400 and its content of the PROM is disable to read. How to Program The 400-Mode Bit or The Security Bit.

- 1) Connect A13, A14 and A15 pins to Vcc. [Otherwise connect them to GND to program PROM. (address 0000H ~ 1FFFH)]
- 2) Set programming address to 0000H.
- 3) To program the 400-mode Bit, set D1 to "0".
- 4) To program the Security Bit, set D0 to "0".
- 5) Set D2 ~ D7 to "1" respectively.

The following table shows the 8-bit data to program The 400-mode Bit or The Security Bit.

Table 3.1 Data to Program

Bit To PROGRAM	D0 ~ D7	A0 ~ A12	A13, A14, A15
The 400-mode Bite	FDH		
The Security Blt	FEH	all "0"	all "1"
The 400-mode Bit and The Security Bit	FCH		
PROM (0000H ~ 1FFFH)	-	_	all "0"

4. Electrical Characteristics

TMP90P800N/TMP90P800F

4.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
V _{CC}	Supply voltage	-0.5 ~ + 7	V
V _{IN}	Input voltage	-0.5 ~ V _{CC} + 0.5	V
PD	Power dissipation (Ta = 85°C)	F 500	mW
'D		N 600	11111
T _{SOLDER}	Soldering temperature (10s)	260	°C
T _{STG}	Storage temperature	-65 ~ 150	°C
T _{OPR}	Operating temperature	-40 ~ 85	°C

4.2 DC Characteristics

$V_{CC} = 5V \pm 10\% \ TA = -40 \sim 85^\circ C \ (1 \sim 10 MHz) \\ TA = -20 \sim 70^\circ C \ (1 \sim 12.5 MHz)$

Symbol	Parameter	Min	Max	Unit	Test Conditions
-			-		
V _{IL}	Input Low Voltage (P0)	-0.3	0.8	V	-
V _{IL1}	P1, P2, P3, P4, P5, P6	-0.3	0.3V _{CC}	V	-
V _{IL2}	RESET, NMI	-0.3	0.25V _{CC}	V	-
V _{IL3}	ĒĀ	-0.3	0.3	V	-
V_{IL4}	X1	-0.3	0.2V _{CC}	V	-
V _{IH}	Input High Voltage (P0)	2.2	V _{CC} + 0.3	V	-
V _{IH1}	P1, P2, P3, P4, P5, P6	0.7V _{CC}	V _{CC} + 0.3	V	-
V _{IH2}	RESET, NMI	0.75V _{CC}	V _{CC} + 0.3	V	-
V _{IH3}	ĒĀ	V _{CC} - 0.3	V _{CC} + 0.3	V	-
V _{IH4}	X1	0.8V _{CC}	V _{CC} + 0.3	V	-
V _{OL}	Output Low Voltage	-	0.45	V	I _{OL} = 1.6mA
V _{OH} V _{OH1} V _{OH2}	Output High Voltage	2.4 0.75V _{CC} 0.9V _{CC}	_	V V V	I _{DH} = -400μA I _{DH} = -100μA I _{DH} = -20μA
I _{DAR}	Darlington Drive Current (8 I/O pins) (Note)	-0.1	-3.5	mA	$\label{eq:VEXT} \begin{array}{l} V_{EXT} = 1.5 V \\ R_{EXT} = 1.1 k \Omega \end{array}$
ILI	Input Leakage Current	0.02 (Typ)	±5	μA	$0.0 \le \text{Vin} \le \text{V}_{\text{CC}}$
I _{LO}	Output Leakage Current	0.05 (Typ)	±10	μA	0. 2≤ Vin ≤ V _{CC} - 0.2
I _{CC}	Operating Current (RUN) Idle 1 Idle 2	20 (Typ) 1.5 (Typ) 6 (Typ)	40 5 15	mA mA mA	tosc = 10MHz (25%Up @12.5MHz)
	STOP (TA = -40 ~ 85°C) STOP (TA = 0 ~ 50°C)	0.05(Typ)	50 10	μΑ μΑ	$0.2 \le \text{Vin} \le \text{V}_{\text{CC}} - 0.2$
V _{STOP}	Power Down Voltage (@STOP)	2 RAM BACK UP	6	V	$\label{eq:VIL2} \begin{array}{l} V_{IL2} = 0.2 V_{CC}, \\ V_{IH2} = 0.8 V_{CC} \end{array}$
R _{RST}	RESET Pull Up Register	50	150	KΩ	-
CIO	Pin Capacitance	_	10	pF	testfreq = 1MHz
V _{TH}	Schmitt width RESET, NMI	0.4	1.0 (Typ)	V	-

Note: $\ensuremath{\mathsf{I}_{\mathsf{DAR}}}$ is guaranteed for a total of up to 8 optional ports.

4.3 AC Characteristics

Quark al	Parameter	Var	iable	10MH	lz Clock	12.5M	Hz Clock	
Symbol		Min	Мах	Min	Max	Min	Max	– Unit
tosc	Oscillation cycle (= x)	80	1000	100	-	80	_	ns
t _{CYC}	CLK Period	4x	4x	400	-	320	-	ns
t _{WH}	CLK High width	2x - 40	-	160	-	120	-	ns
t _{WL}	CLK Low width	2x - 40	-	160	-	120	-	ns
t _{AL}	A0 ~ 7 effective address—ALE fall	0.5x - 15	_	35	-	25	-	ns
t _{LA}	ALE fall \rightarrow A0 ~ 7 hold	0.5x - 15	-	35	-	25	-	ns
t _{LL}	ALE Pulse width	x - 40	-	60	-	40	-	ns
t _{LC}	ALE fall RD/WR fall	0.5x - 30	-	20	-	10	-	ns
t _{CL}	$\overline{\text{RD}}/\overline{\text{WR}} \rightarrow \text{ALE rise}$	0.5x - 20	-	30	-	20	-	ns
t _{ACL}	A0 ~ 7 effective address $\rightarrow \overline{RD}/\overline{WR}$ fall	x - 25	_	75	-	55	-	ns
t _{ACH}	Upper effective address $\rightarrow \overline{\text{RD}}/\overline{\text{WR}}$ fall	1.5x - 50	-	100	-	70	-	ns
t _{CA}	$\overline{\text{RD}}/\overline{\text{WR}}$ fall \rightarrow Upper address hold	0.5x - 20	-	30	-	20	-	ns
t _{ADL}	A0 ~ 7 effective address →Effective data input	_	3.0x - 35	-	265	-	205	ns
t _{ADH}	Upper effective address \rightarrow Effective data input	_	3.5x - 55	-	295	-	225	ns
t _{RD}	$\overline{\text{RD}}$ fall \rightarrow Effective data input	_	2.0x - 50	-	150	-	110	ns
t _{RR}	RD Pulse width	2.0x - 40	-	160	-	120	-	ns
t _{HR}	$\overline{\text{RD}}$ rise \rightarrow Data hold	0	-	0	-	0	-	ns
t _{RAE}	$\overline{\text{RD}}$ rise \rightarrow Address enable	x - 15	-	85	-	65	-	ns
t _{WW}	WR pulse width	2.0x - 40	-	160	-	120	-	ns
t _{DW}	Effective data→WR rise	2.0x - 50	-	150	-	110	-	ns
t _{WD}	WR rise→Effective data hold	0.5x - 10	-	40	-	30	-	ns
t _{ACKH}	Upper address—CLK fall	2.5x - 50	-	200	-	150	-	ns
t _{ACKL}	Lower address \rightarrow CLK fall	2.0x - 50	-	150	-	110	-	ns
t _{CKHA}	CLK fall \rightarrow Upper address hold	1.5x - 80	-	70	-	40	-	ns
t _{ССК}	$\overline{\text{RD}}/\overline{\text{WR}}$ \rightarrow CLK fall	x - 25	-	75	-	55	-	ns
t _{СКНС}	CLK fall→ $\overline{RD}/\overline{WR}$ rise	x - 60	-	40	-	20	-	ns
t _{DCK}	Valid data CLK fall	x - 50	-	50	-	30	-	ns
t _{CWA}	$\overline{\text{RD}}/\overline{\text{WR}}$ fall \rightarrow Valid $\overline{\text{WAIT}}$	_	x - 40	-	60	-	40	ns
t _{AWAL}	Lower address →Valid WAIT	-	2.0x - 70	-	130	-	90	ns
t _{WAH}	$CLK \text{ fall} \rightarrow Valid \overline{WAIT} \text{ hold}$	0	-	0	-	0	_	ns
t _{AWAH}	Upper address →Valid WAIT	-	2.5x - 70	-	180	-	130	ns
t _{CPW}	CLK fall →Port Data Output	_	X + 200	-	300	-	280	ns
t _{PRC}	Port Data Input →CLK fall	200	-	200	-	200	-	ns
t _{CPR}	CLK fall \rightarrow Port Data hold	100	-	100	-	100	-	ns

 $V_{CC} = 5V \pm 10\% \text{ TA} = -40 \sim 85^{\circ}\text{C} (1 \sim 10\text{MHz}) \\ \text{TA} = -20 \sim 70^{\circ}\text{C} (1 \sim 12.5\text{MHz})$

AC Measuring Conditions

• Output level: High 2.2V/Low 0.8V, $C_L = 50 pF$

(However, CL = $100\overline{pF}$ for AD0 ~ 7, A8 ~ 15, ALE, \overline{RD} , \overline{WR})

• Input level: High 2.4V/Low 0.45V (AD0 ~ AD7)

High 0.8V_{CC}/Low 0.2V_{CC} (excluding AD0 ~ AD7)

4.4 Zero-Cross Characteristics

$V_{CC} = 5V \pm 10\% \ TA = -40 \sim 85^\circ C \ (1 \sim 10 MHz) \\ TA = -20 \sim 70^\circ C \ (1 \sim 12.5 MHz)$

Symbol	Parameter Condition		Min	Max	Unit
V _{ZX}	Zero-cross detection input	AC coupling $C = 0.1 \mu F$	1	1.8	VAC р-р
A _{ZX}	Zero-cross accuracy	50/60Hz sine wave	-	135	mV
F _{ZX}	Zero-cross detection input frequency	-	0.04	1	KHz

4.5 Serial Channel Timing-I/O Interface Mode

$\begin{array}{l} V_{CC} = 5V \pm 10\% \mbox{ TA} = -40 \sim 85^\circ C \mbox{ (1 } \sim 10 \mbox{ MHz}) \\ CL = 50 \mbox{ pF TA} = -20 \sim 70^\circ C \mbox{ (1 } \sim 12.5 \mbox{ MHz}) \end{array}$

Symbol	Poromotor	Variable		10MHz Clock		12.5MHz Clock		Unit
Symbol	Parameter	Min	Max	Min	Max	Min	Max	UIII
t _{SCY}	Serial Port Clock Cycle Time	8x	-	800	-	640	-	ns
t _{OSS}	Output Data Setup SCLK Rising Edge	6x - 150	_	450	-	330	-	ns
t _{OHS}	Output Data Hold After SCLK Rising Edge	2x - 120	-	80	-	40	-	ns
t _{HSR}	Input Data Hold After SCLK Rising Edge	0	-	0	-	0	-	ns
t _{SRD}	SCLK Rising Edge to Input DATA Valid	-	6x - 150	-	450	-	330	ns

4.6 8-bit Event Counter

$\begin{array}{c} V_{CC} = 5V \pm 10\% \ \ TA = -40 \sim 85^{\circ}C \ (1 \sim 10MHz) \\ TA = -20 \sim 70^{\circ}C \ (1 \sim 12.5MHz) \end{array}$

Symbol	Parameter	Variable		10MHz Clock		12.5MHz Clock		Unit
	Falanielei	Min	Max	Min	Max	Min	Max	Unit
t _{VCK}	Tl2 clock cycle	8x + 100	-	900	-	740	-	ns
t _{VCKL}	TI2 Low clock pulse width	4x + 40	-	440	-	360	-	ns
t _{VCKH}	TI2 High clock pulse width	4x + 40	_	440	-	360	-	ns

4.7 Interrupt Operation

$V_{CC} = 5V \pm 10\% \ \ TA = -40 \sim 85^\circ C \ (1 \sim 10 MHz) \\ TA = -20 \sim 70^\circ C \ (1 \sim 12.5 MHz)$

Symbol	Parameter	Variable		10MHz Clock		12MHz Clock		Unit
		Min	Max	Min	Max	Min	Мах	UIII
t _{INTAL}	NMI, INTO Low level pulse width	4x	-	400	_	320	_	ns
t _{INTAH}	NMI, INTO High level pulse width	4x	_	400	_	320	_	ns
t _{INTBL}	INT1 Low level pulse width	8x + 100	_	900	_	740	-	ns
t _{INTBH}	INT1 High level pulse width	8x + 100	_	900	_	740	_	ns

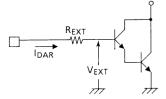
4.8 Read Operation (PROM Mode)

DC Characteristic, AC Characterisc

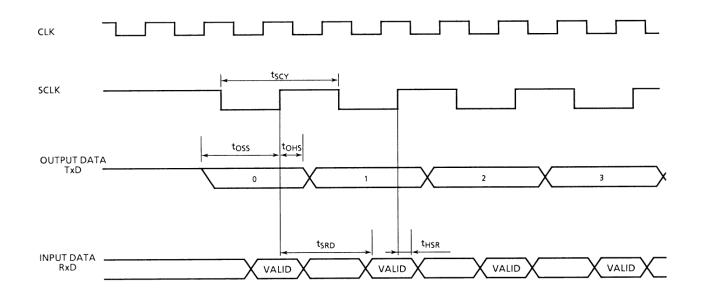
TA = -40 ~ 85°C Vcc = 5V \pm 10%

Symbol	Parameter	Condition	Min	Max	Unit
V _{PP} V _{IH1} V _{IL1}	V _{PP} Read Voltage Input High Voltage (A0 ~ A15, <u>CE</u> , <u>OE</u>) Input Low Voltage (A0 ~ A15, <u>CE</u> , <u>OE</u>)		4.5 0.7 x V _{CC} -0.3	5.5 Vcc + 0.3 0.3 x V _{CC}	V V V
t _{ACC}	Address to Output Delay	$C_L = 50_P F$	-	2.25TCYC + α	ns

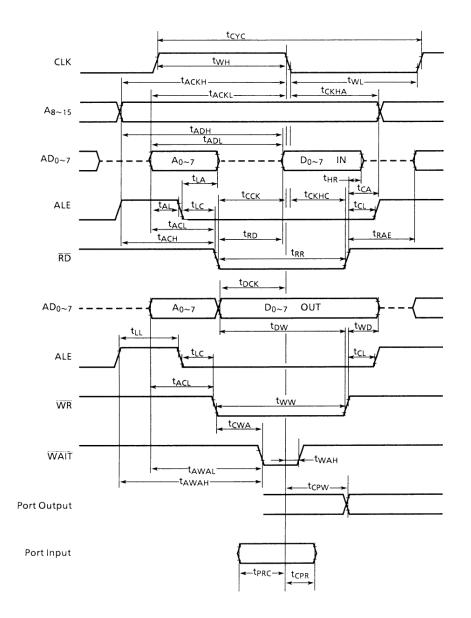
TCYC = 400ns (10MHz Clock) α = 200ns

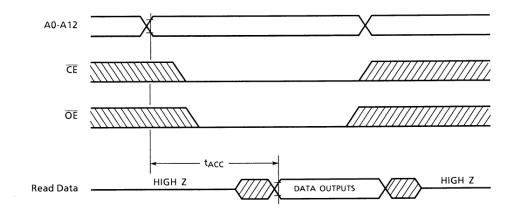

4.9 Programming Operation (PROM Mode)

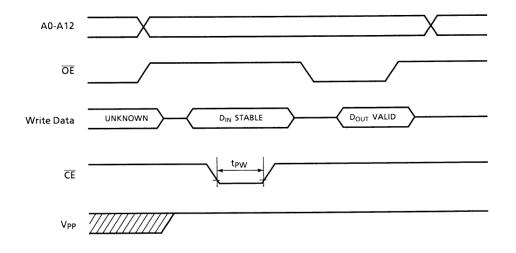
DC Characteristic, AC Characteristic


TA = 25 \pm 5°C Vcc = 6V \pm 0.25V

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{PP}	Programming Voltage	_	12.25	12.50	12.75	V
VIH	Input High Voltage (D0 ~ D7)	-	0.2V _{CC} + 1.1		V _{CC} + 0.3	V
VII	Input Low Voltage (D0 ~ D7)	-	-0.3		0.2V _{CC} - 0.1	V
V _{IH1}	Input High Voltage (A0 ~ A15, CE, OE)	-	0.7V _{CC}		V _{CC} + 0.3	V
V _{IL1}	Input Low Voltage (A0 ~ A15, CE, OE)	-	-0.3		0.3V _{CC}	V
I _{CC}	V _{CC} Supply Current	t _{OSC} = 10MHz	-		50	mA
I _{PP}	V _{PP} Supply Current	V _{PP} = 13.00V	-		50	mA
t _{PW}	CE Programming Pulse Width	$C_L = 50_P F$	0.95	1.00	1.05	ms


(Reference) Definition of IDAR


4.10 I/O Interface Mode Timing


4.11 Timing Chart

4.12 Read Operation Timing Chart (PROM Mode)

4.13 Programming Operation Timing Chart (PROM Mode)

