TLCS-90 Series TMP90CH02/H03

CMOS 8-Bit Microcontrollers

TMP90CH02P/TMP90CH02M

TMP90CH03P/TMP90CH03M

1. Outline and Characteristics

The TMP90CH02 is a high-speed advanced 8-bit microcontroller applicable to a variety of equipment.

With its 8-bit CPU, ROM, RAM, timer/event counter and general-purpose serial interface integrated into a single CMOS chip, the TMP90CH02 allows the expansion of external memories for programs (up to 48K byte). The TMP90CH03 is the same as the TMP90CH02 bit without the ROM.

The TMP90CH02P/H03P is in a DIP ppackage. The TMP90CH02M/H03M is in a SOP (Small Outline Package).

The characteristics of the TMP90CH02 include:

(1) Powerful instructions: 163 basic instructions, including Multiplication, division, 16-bit arithmetic operations, bit

- manipulation instructions
- (2) Minimum instruction executing time: 250ns (at 16MHz oscillation frequency)
- (3) Internal ROM: 16K byte (the TMP90CH03 does not have a built in ROM)
- (4) Internal RAM: 512 byte
- (5) Memory expansion
 External memory: 48K byte
- (6) General-purpose serial interface (1 channel) Asynchronous mode, I/O interface mode
- (7) 8-bit timers (4 channels): (1 external clock input)
- (8) Port with zero cross detection circuit (1 input)
- (9) Input/Output ports (90CH02: 32 pins, 90CH03: 6 pins)
- (10) Interrupt function: 8 internal interrupts and 3 external interrupts
- (11) Micro Direct Memory Access (DMA) function (4 channels)
- (12) Watchdog timer
- (13) Standby function (4 HALT modes)

The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. These TOSHIBA products are intended for usage in general electronic equipments (office equipment, communication equipment, measuring equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these TOSHIBA products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life (atomic energy control, spaceship, traffic signal, combustion control, all types of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.

TOSHIBA CORPORATION 1/12

The information contained here is subject to change without notice.

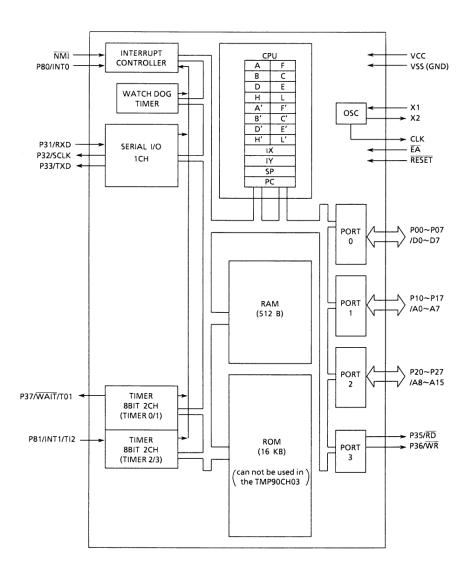


Figure 1. TMP90CH02 Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins, their names and functions are described below.

2.1 Pin Assignment

Figure 2.1 (1) shows pin assignment of the TMP90CH02/CH03.

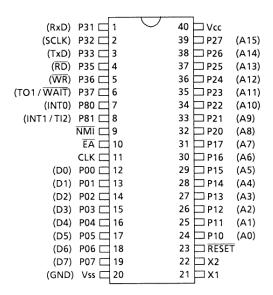


Figure 2.1 (1). Pin Assignment (Shrink Dual Inline Package)

2.2 Pin Names and Functions

The names of input/output pins and their functions are summarized in Table 2.2.

Table 2.2 Pin Names and Functions (1/1)

Pin Name	No. of Pins	I/O 3 states	Function
P00 ~ P07		1/0	Port 0: 8-bit I/O port that allows selection of input/output on byte basis
/D0 ~ D7	8	3 states	Data Bus: Also functions as 8-bit bidirectional data bus for external memory (For CH03, fixed to databus)
P10 ~ P17		1/0	Port 1: 8-bit I/O port that allows selection on byte basis
/A0 ~ A7	8	Output	Addrress Bus: The lower 8 bits address bus for external memory (For CH03, fixed to address bus)
P20 ~ P27		1/0	Port 2: 8-bit I/O port that allows selection on byte basis
/A8 ~ A 15	8	Output	Addrress Bus: The uppper 8 bits address bus for external memory (For CH03, fixed to address bus)
P31	1	lonut	Port 31: 1-bit input port
/RxD	1	Input	Receives serial data
P32			Port 32: 1-bit output port
/TxD /RTS /SCLK	1	Output	Serial clock output
P33			Port 33: 1-bit output port
/TxD	1	Output	Transmits serial data
P35			Port 35: 1-bit output port
/RD	1	Output	Read: Generates strobe signal for reading external memory
P36			Port 36: 1-bit output port
/WR	1	Output	Writes: Generates strobe signal for writing external memory
P37			Port 37: 1-bit input port
/WAIT	1	Input	Wait: Input pin for connecting slow speed memory or peripheral LSI
			Port 80: 1-bit input port
P80 /INTO	1	Input	Interrupt request pin 0: Interrupt request pin (Level/rising edge is programmable)
			Port 81: 1-bit input port
P81			Interrupt request pin 1: Interrupt request pin (Rising/falling edge is programmable)
/INT1	1	Input	1 The representative to the second print (morning range of the programmability)
/TI4			The should Complete the billion of the Times A
			Timer input 4: Counter/capture trigger signal for Timer 4
NMI	1	Input	Non-maskable interrupt request pin: Falling edge interrupt request pin
CLK	1	Output	Clock output: Generates clock pulse at 1/4 frequency of clock oscillation. It is Pulled up internally during resetting.
ĒĀ	1	Input	External access: Connects with GND pin in the TMP90C802A using internal ROM, and with GND pin in the TMP90C803A with no internal ROM.
RESET	1	Input	Reset: Initializes the TMP 90CH02/CH03. (Built-in pull-up resistor)
X1/X2	2	Input/ Output	Pin for quartz crystal or ceramic resonator (1 ~ 16MHz)
V _{CC}	1	-	Power supply (+5V)
V _{SS} (GND)	1	_	Ground (0V)

4/12

3. Operation

The following explains the TMP90CH02 functions and basic operations. The CPU functions and internal I/O functions of the TMP90CH02 are the same as the TMP90C840A.

Refer to the "TMP90C840A" section concerning functions which are not explained the following.

3.1 CPU

The TMP90CH02 has an internal high-performance 8-bit CPU. Refer to the book TLCS Series CPU Core Architecture concerning CPU operation.

3.2 Memory Map

The TMP90CH02 supports a program memory of up to 64K bytes.

The program memory may be assigned to the address space from 00000H to 0FFFFH, while the data memory can be allocated to any address from 0000H to FFFFH.

(1) Internal ROM

The TMP90CH02 internally contains a 16K byte ROM. The address space from 0000H to 3FFFH is provided to the ROM. The CPU starts executing a program from 0000H by resetting.

The addresses from 0010H to 007FH in this internal ROM area are used for the entry area for the interrupt processing.

The TMP90CH03 does not have a built-in ROM; therefore, the address space 0000H ~ 3 FFFH is used as external memory space.

(2) Internal RAM

The TMP90CH02 also contains a 512-byte RAM, which is allocated to the address space FDC0H \sim FFBFH. The CPU allows the access to whole RAM area (FF00H \sim FFBFH, 192 bytes) by a short operation code (opcode) in the "direct addressing mode". The addresses from FF30H \sim FF7FH in this RAM area can be used as parameter area for micro DMA processing (and for any other purposes when the micro DMA function is not used).

(3) Internal I/O

The TMP90CH02 provides a 48-byte address space as an internal I/O area, whose addressess range from FFC0H to FFEFH. This I/O area can be accessed by the CPU using a short opcode in the "direct addressing mode".

Figure 3.2 is a memory map indicating the areas accessible by the CPU in the respective addressing mode.

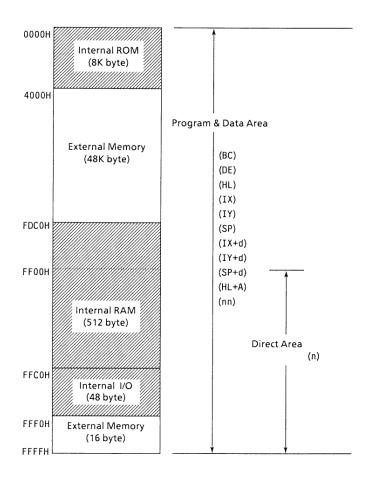


Figure 3.2. Memory Map

4. Electrical Characteristics

TMP90CH02N/TMP90CH02F

4.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
V _{CC}	Supply voltage	-0.5 ~ + 6.5	V
V _{IN}	Input voltage	-0.5 ~ V _{CC} + 0.5	V
D	Power dissipation (Ta = 70°C)	F 500	mW
P_{D}	Tower dissipation (1a = 70 G)	N 600	IIIVV
T _{SOLDER}	Soldering temperature (10s)	260	°C
T _{STG}	Storage temperature	-65 ~ 150	°C
T _{OPR}	Operating temperature	-20 ~ 70	°C

4.2 DC Characteristics

 $V_{CC} = 5V \pm 10\%$ TA = -40 ~ 85°C (1 ~ 10MHz) TA = -20 ~ 70°C (1 ~ 16MHz)

Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage (P0)	-0.3	0.8	V	_
V _{IL1}	P1, P2, P3, P8	-0.3	0.3V _{CC}	V	-
V _{IL2}	RESET, INTO, NMI	-0.3	0.25V _{CC}	V	-
V _{IL3}	ĒĀ	-0.3	0.3	V	-
V _{IL4}	X1	-0.3	0.2V _{CC}	V	-
V _{IH}	Input Low Voltage (D0 ~ D7)	2.2	V _{CC} + 0.3	V	-
V _{IH1}	P3, P5, P6, P7, P8	0.7V _{CC}	V _{CC} + 0.3	V	-
V _{IH2}	RESET, INTO, NMI	0.75V _{CC}	V _{CC} + 0.3	V	-
V _{IH4}	X1	0.8V _{CC}	V _{CC} + 0.3	V	-
V _{OL}	Output Low Voltage	-	0.45	V	I _{OL} = 1.6mA
V _{0H} V _{0H1} V _{0H2}	Output High Voltage	2.4 0.75V _{CC} 0.9V _{CC}	-	V V V	I _{OH} = -400μA I _{OH} = -100μA I _{OH} = -20μA
I _{DAR}	Darlington Drive Current (8 I/O pins)	-1.0	-3.5	mA	$V_{EXT} = 1.5V$ $R_{EXT} = 1.1k\Omega$
I _{LI}	Input Leakage Current	0.02 (Typ)	±5	μA	$0.0 \le \text{Vin} \le \text{V}_{CC}$
I _{LO}	Output Leakage Current	0.05 (Typ)	±10	μА	0.2 ≤ Vin ≤ V _{CC} - 0.2
I _{CC}	Operating Current (RUN) Idle 1 Idle 2	17 (Typ) 1.5 (Typ) 6 (Typ)	30 5 15	mA mA mA	tosc = 10MHz (60% Up @ 16MHz)
	STOP (TA = -20 ~ 70°C) STOP (TA = 0 ~ 50°C)	0.2 (Typ)	50 10	μA μA	0.2 ≤ Vin ≤ V _{CC} - 0.2
V _{STOP}	Power Down Voltage (@STOP)	2 RAM BACK UP	150	ΚΩ	$V_{IL2} = 0.2V_{CC},$ $V_{IH2} = 0.8V_{CC}$
R _{RST}	RESET Pull Up Register	50	150	КΩ	-
CIO	Pin Capacitance	-	10	pF	testfreq = 1MHz
V _{TH}	Schmitt width RESET, NMI, INTO	0.4	1.0 (Typ)	V	-

Note: $\ensuremath{I_{DAR}}$ is guaranteed for a total of up to 8 optional ports.

TOSHIBA CORPORATION 7/12

4.3 AC Characteristics

Symbol	Parameter	Vai	riable	12.5MHz Clock		16MHz Clock		IImia.
	Parameter	Min	Max	Min	Max	Min	Max	Unit
t _{OSC}	OSC. Period = x	62.5	1000	80	-	62.5	_	ns
t _{CYC}	CLK Period	4x	4x	320	-	250	_	ns
t _{WL}	CLK Low width	2x - 40	-	120	-	85	-	ns
t_{WH}	CLK High width	2x - 40	-	120	_	85	_	ns
t_{AC}	Address Setup to RD, WR	x - 45	-	35	-	18	_	ns
t _{RR}	RD Low width	2.5x - 40	-	160	-	117	-	ns
t _{CA}	Address Hold Time After RD, WR	0.5x - 20	-	20	-	12	-	ns
t _{AD}	Address to Valid Data In	-	3.5x - 95	-	185	_	123	ns
t _{RD}	RD to Valid Data In	-	2.5x - 80	-	120	-	76	ns
t _{HR}	Input Data Hold After RD	0	-	0	-	0	_	ns
t _{WW}	WR Low width	2.5x - 40	-	160	-	117	-	ns
t _{DW}	Data Setup to WR	2x - 50	-	110	-	75	-	ns
t _{WD}	Data Hold After WR	20	70	20	70	20	70	ns
t _{CWA}	RD, WR to Valid WAIT	_	1.5x - 100	-	20	-	13	ns
t _{AWA}	Address to Valid WAIT	_	2.5x - 130	-	70	-	26	ns
t _{WAS}	WAIT Setup to CLK	50	-	50	-	50	-	ns
t _{WAH}	WAIT Hold After CLK	0	-	0	-	0	-	ns
t _{RV}	RD/WR Recovery Time	1.5x - 35	-	85	-	59	-	ns
t _{CPW}	CLK to Port Data Output	_	x + 200	-	280	_	262	ns
t _{PRC}	Port Data Setup to CLK	200	-	200	-	200	_	ns
t _{CPR}	Port Data Hold After CLK	100	-	100	_	100	-	ns
t _{CHCL}	RD/WR Hold After CLK	x - 40	-	40	-	23	-	ns
t _{CLC}	RD/WR Setup to CLK	1.5x - 25	-	95	_	69	-	ns
t _{CLHA}	Address Hold After CLK	1.5x - 80	-	40	_	14	_	ns
t _{ACL}	Address Setup to CLK	2.5x - 80	-	120	_	77	_	ns
t _{CLD}	Data Setup to CLK	x - 50	-	30	-	13	-	ns

• AC output level High 2.2V/Low 0.8V

• AC input level High 2.4V/Low 0.45V (D0 \sim D7)

High $0.8V_{CC}/Low~0.2V_{CC}$ (excluding D0 ~ D7)

4.4 Pin Names and Functions

The names of input/output pins and their functions are summarized in Table 2.2.

Table 2.2 Pin Names and Functions (1/1)

Pin Name	No. of Pins	I/O 3 states	Function
P00 ~ P07	0	1/0	Port 0: 8-bit I/O port that allows selection of input/output on byte basis
/D0 ~ D7	8	3 states	Data Bus: Also functions as 8-bit bidirectional data bus for external memory
P10 ~ P17	0	1/0	Port 1: 8-bit I/O port that allows selection on byte basis
/A0 ~ A7	8	Output	Addrress Bus: The lower 8 bits address bus for external memory
P20 ~ P27		1/0	Port 2: 8-bit I/O port that allows selection on byte basis
/A8 ~ A 15	8	Output	Addrress Bus: The uppper 8 bits address bus for external memory
P31			Port 31: 1-bit input port
/RxD	1	Input	Receives Serial Data
P32			Port 32: 1-bit output port
/TxD /RTS /SCLK	1	Output	Serial clock output
P33	4	Outside	Port 33: 1-bit output port
/TxD	1	Output	Transmits Serial Data
P35	4	Outside	Port 35: 1-bit output port
/RD	1	Output	Read: Generates strobe signal for reading external memory
P36	1	Output	Port 36: 1-bit output port
/WR	1	Output	Writes: Generates strobe signal for writing external memory
			Port 37: 1-bit input port
P37 /WAIT	1	Input	Wait: Input pin for connecting slow speed memory or peripheral LSI
T01	'	Output	Timer output 1: Output of Timer 0 or 1
			Port 80: 1-bit input port
P80 /INTO	1	Input	Interrupt request pin 0: Interrupt request pin (Level/rising edge is programmable)
			Port 81: 1-bit input port
P81 /INT1 /TI2	1	Input	Interrupt request pin 1: Interrupt request pin (Rising/falling edge is programmable)
			Timer input 2: Counter/capture trigger signal for Timer 2
NMI	1	Input	Non-maskable interrupt request pin: Falling edge interrupt request pin
CLK	1	Output	Clock output: Generates clock pulse at 1/4 frequency of clock oscillation. It is pulled u internally during resetting.
ĒĀ	1	Input	External access: Connects with GND pin in the TMP90CH02 using internal ROM, an with GND pin in the TMP90CH03 with no internal ROM.
RESET	1	Input	Reset: Initializes the TMP 90CH02/CH03. (Built-in pull-up resistor)
X1/X2	2	Input/ Output	Pin for quartz crystal or ceramic resonator (1 ~ 16MHz)
V _{CC}	1	-	Power supply (+5V)
V _{SS} (GND)	1	-	Ground (0V)

TOSHIBA CORPORATION 9/12

4.5 Zero-Cross Characteristics

$$V_{CC} = 5V \pm 10\%$$
 TA = -40 ~ 85°C (1 ~ 10MHz)
TA = -20 ~ 70°C (1 ~ 16MHz)

Symbol	Parameter	Condition	Min	Max	Unit
V _{ZX}	Zero-cross detection input	AC coupling $C = 0.1 \mu F$	1	1.8	VAC p - p
A _{ZX}	Zero-cross accuracy	50/60Hz sine wave	-	135	mV
F _{ZX}	Zero-cross detection input frequency	_	0.04	1	kHz

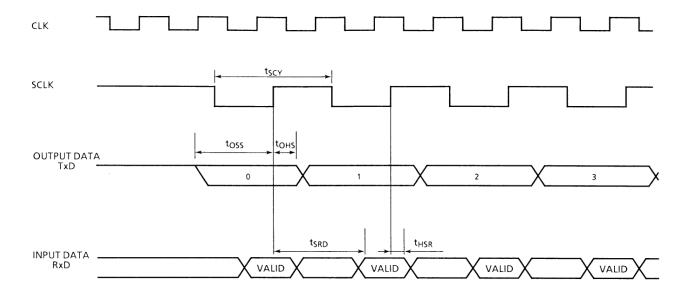
4.6 Serial Channel Timing-I/O Interface Mode

$$V_{CC} = 5V \pm 10\%$$
 TA = -40 ~ 85°C (1 ~ 10MHz)
CL = 50pF TA = -20 ~ 70°C (1 ~ 16MHz)

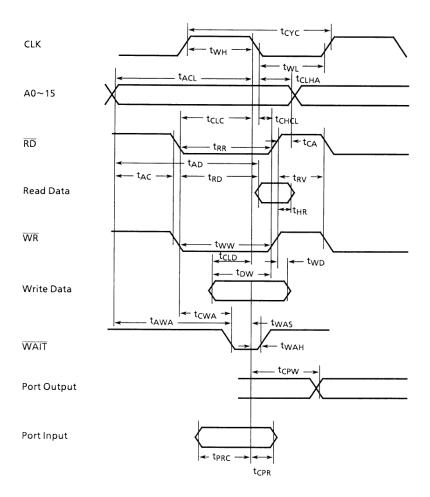
Symbol	Parameter	Variable		12.5MHz Clock		16MHz Clock		Unit
Syllibul	Farameter	Min	Max	Min	Max	Min	Max	UIIIL
t _{SCY}	Serial Port Clock Cycle Time	8x	-	640	-	500	-	ns
t _{OSS}	Output Data Setup SCLK Rising Edge	6x - 150	-	320	-	225	-	ns
t _{OHS}	Output Data Hold After SCLK Rising Edge	2x - 120	-	120	-	45	-	ns
t _{HSR}	Input Data Hold After SCLK Rising Edge	0	-	0	-	0	-	ns
t _{SRD}	SCLK Rising Edge to Input DATA Valid	-	6x - 150	-	450	-	225	ns

4.7 8-bit Event Counter

$$V_{CC} = 5V \pm 10\%$$
 TA = -40 ~ 85°C (1 ~ 10MHz)
TA = -20 ~ 70°C (1 ~ 16MHz)


Symbol	Parameter	Variable		12.5MHz Clock		16MHz Clock		Unit
Symbol	raiailietei	Min	Max	Min	Max	Min	Max	Uiiit
t _{VCK}	TI2 clock cycle	8x + 100	-	740	-	600	-	ns
t _{VCKL}	TI2 Low clock pulse width	4x + 40	-	360	-	290	-	ns
t _{VCKH}	TI2 High clock pulse width	4x + 40	-	360	-	290	ı	ns

4.8 Interrupt Operation


$$V_{CC} = 5V \pm 10\%$$
 TA = -40 ~ 85°C (1 ~ 10MHz)
TA = -20 ~ 70°C (1 ~ 16MHz)

Symbol	Parameter	Variable		12.5MHz Clock		12.5MHz Clock		Unit
Syllibul	rarameter	Min	Max	Min	Max	Min	Max	Unit
t _{INTAL}	NMI, INTO Low level pulse width	4x	-	320	-	250	-	ns
t _{INTAH}	NMI, INTO High level pulse width	4x	-	320	-	250	-	ns
t _{INTBL}	INT1, INT2 Low level pulse width	8x + 100	-	740	-	600	-	ns
t _{INTBH}	INT1, INT2 High level pulse width	8x + 100	-	740	-	600	-	ns

4.9 I/O Interface Mode Timing Chart

4.10 Timing Chart

12/12