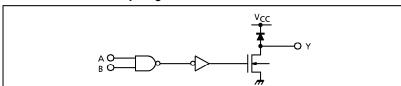
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

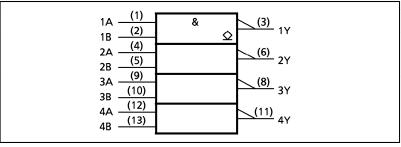
TC74VHC03F, TC74VHC03FN, TC74VHC03FT

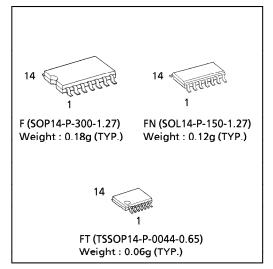
QUAD 2-INPUT NAND GATE (OPEN DRAIN)

The TC74VHC03 is an advanced high speed CMOS 2-INPUT NAND GATE fabricated with silicon gate C2MOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

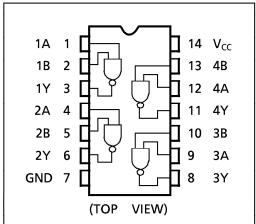

Pin configuration and function are the same as the TC74VHC00. But the TC74VHC03 has, as its outputs, high performance MOS N-channel transistors. (OPEN-DRAIN outputs) This device can, therefore, with a suitable pull-up resistors, be used in wired-AND, LED driver and other application.

An input protection circuit ensures that 0 to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.


FEATURES:


- High Speed······ $t_{DZ} = 3.7 \text{ns}(\text{typ.})$ at $V_{CC} = 5 \text{V}$
- High Noise Immunity $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Power Down Protection is provided on all inputs.
- Wide Operating Voltage Range ···· V_{CC} (opr) = 2V ~ 5.5V
- Low NoiseV_{OLP} = 0.8V (Max.)
- Pin and Function Compatible with 74ALS03

SYSTEM DIAGRAM (per gate)



IEC LOGIC SYMBOL

PIN ASSIGNMENT

TRUTH TABLE

Α	В	Υ	
L	L	Z	1
L	Н	Z	
Н	L	Z	
Н	Н	L	1

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in t recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V_{cc}	-0.5~7.0	V
DC Input Voltage	V _{IN}	-0.5~7.0	V
DC Output Voltage	V_{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	I _{LK}	-20	mA
Output Diode Current	Ioĸ	± 20	mA
DC Output Current	I _{OUT}	25	mA
DC V _{CC} /Ground Current	I _{cc}	± 50	mA
Power Dissipation	P _D	180	mW
Storage Temperature	T _{stg}	−65~150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V_{cc}	2.0~5.5	V
Input Voltage	V _{IN}	0~5.5	V
Output Voltage	V _{OUT}	0~V _{CC}	V
Operating Temperature	T _{opr}	−40~85	°C
Input Rise and Fall Time	dt/dv	$0\sim100 \ (V_{CC} = 3.3 \pm 0.3 V)$ $0\sim20 \ (V_{CC} = 5 \pm 0.5 V)$	ns / V

DC ELECTRICAL CHARACTERISTICS

De ELECTRICAL CHARACTERISTICS										
PARAMETER SYMBOL		TEST CONDITION		V _{cc}	Ta = 25°C			Ta = - 4	UNIT	
PARAIVIETER	STIVIBOL	1 1 231 CC	TEST CONDITION		MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High - Level	.,					-	_	1.50	_	.,
Input Voltage	V _{IH}			3.0~ 5.5	$V_{cc} \times 0.7$	_	-	$V_{cc} \times 0.7$	_	V
Low - Level				2.0	_	_	0.50	_	0.50	
Input Voltage	V _{IL}				_	1	$V_{cc} \times 0.3$	_	$V_{cc} \times 0.3$	V
		$V_{1N} = V_{1H}$	$I_{OL} = 50 \mu A$	2.0	_	0.0	0.1	_	0.1	
Low - Level Output Voltage	V _{OL}			3.0 4.5	_	0.0 0.0	0.1 0.1	_	0.1 0.1	٧
	put voltage	$I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5		1 1	0.36 0.36		0.44 0.44		
Output Off-State Current	I _{OZ}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND		5.5	_	-	± 0.25	_	± 2.50	
Input Leakage Current	I _{IN}	V _{IN} = 5.5V or GND		0~5.5	_	_	±0.1	_	± 1.0	μ A
Quiescent Supply Current	I _{cc}	$V_{1N} = V_{CC}$ or GND		5.5	_	_	2.0	_	20.0	

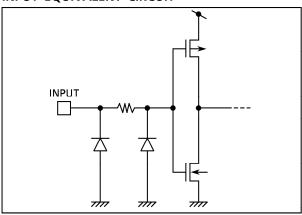
961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

AC ELECTRICAL CHARACTERISTICS (Input t	$_{r} = t_{f} = 3 \text{ ns}$
--	---------	-------------------------------

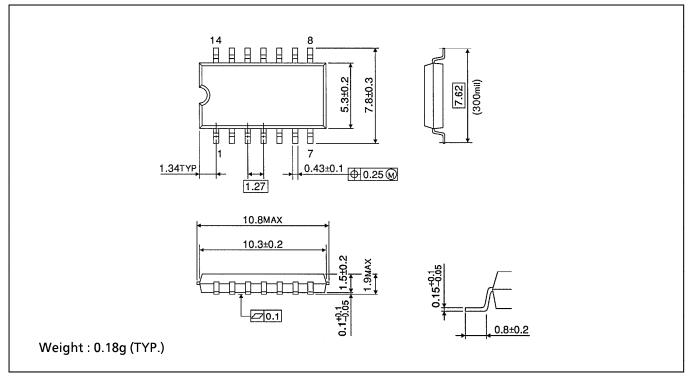
DADAMETED	SYMBOL	TEST CONDIT		DITION Ta = 25°C			Ta = -4	UNIT		
PARAMETER	STIVIBUL	•	V _{CC} (V)	C _L (pF)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
			3.3 ± 0.3	15	_	5.5	7.9	1.0	9.5	
Propagation Delay Time t _{pZL}	.	D 1k∩	3.3 ± 0.3	50	_	8.0	11.4	1.0	13.0	200
	pZL ا	PZL $R_L = 1k\Omega$	5.0 ± 0.5	15	_	3.7	5.5	1.0	6.5	ns
				50	_	5.2	7.5	1.0	8.5	
Proposition Doloy Time	4	t_{pLZ} $R_L = 1k\Omega$	3.3 ± 0.3	50	_	8.0	11.4	1.0	13.0	20
Propagation Delay Time	^t pLZ		5.0 ± 0.5	50	_	5.2	7.5	1.0	8.5	ns
Input Capacitance	CIN				_	4	10	_	10	рF
Output Capacitance	COUT				_	5	_	_	_	рF
Power Dissipation Capacitance	C _{PD}	(1	Note 1)		_	6	_	_	_	рF

Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

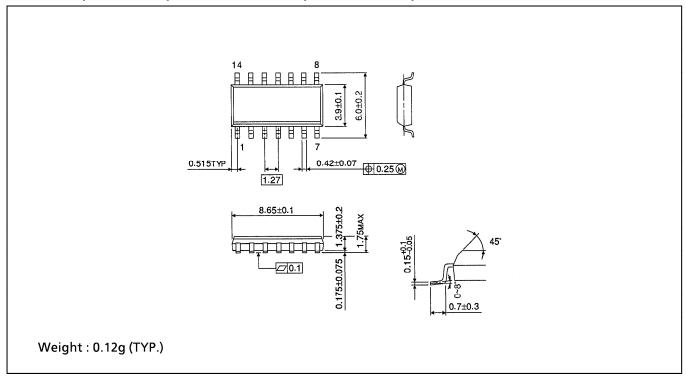

Average operating current can be obtained by the equation:

 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 4 \text{ (per Gate)}$

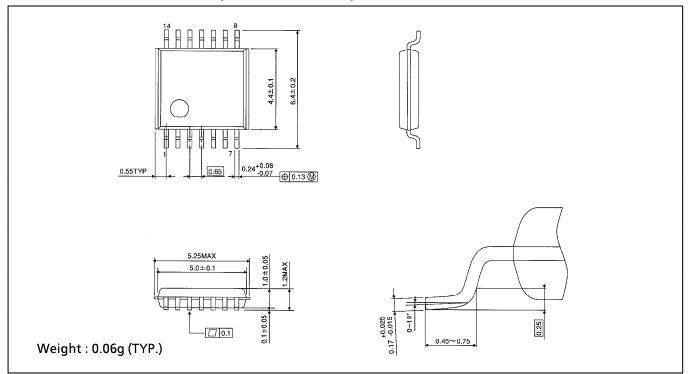
NOISE CHARACTERISTICS (Input $t_r = t_f = 3ns$)


PARAMETER	SYMBOL	TEST CONDIT	Ta =	UNIT		
PARAIVIETER	STIVIBUL		V _{CC} (V)	TYP.	LIMIT	UNIT
Quiet Output Maximum Dynamic V _{OL}	V _{OLP}	$C_L = 50pF$	5.0	0.3	0.8	٧
Quiet Output Minimum Dynamic V _{OL}	V _{OLV}	C _L = 50pF	5.0	-0.3	-0.8	>
Minimum High Level Dynamic Input Voltage	V _{IHD}	$C_L = 50pF$	5.0	_	3.5	٧
Maximum Low Level Dynamic Input Voltage	V _{ILD}	C _L = 50pF	5.0	_	1.5	٧

INPUT EQUIVALENT CIRCUIT


SOP 14PIN (200mil BODY) OUTLINE DRAWING (SOP14-P-300-1.27)

Unit in mm


SOP 14PIN (150mil BODY) OUTLINE DRAWING (SOL14-P-150-1.27)

Unit in mm

TSSOP 14PIN OUTLINE DRAWING (TSSOP14-P-0044-0.65)

Unit in mm

