MICROWAVE POWER GaAs FET

Internally Matched Power GaAs FETs (X, Ku-Band)

Features

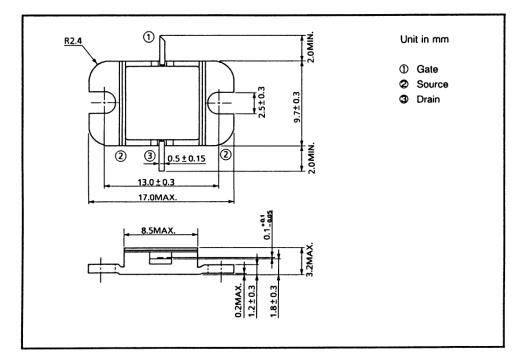
- High power
 - $P_{1dB} = 33.5 \text{ dBm}$ at 10.7 GHz to 11.7 GHz
- High gain
- G_{1dB} = 7.5 dB at 10.7 GHz to 11.7 GHz
 Broadband internally matched
- Hermetically sealed package

RF Performance Specifications ($T_a = 25^{\circ}C$)

Characteristic	Symbol	Condition	Unit	Min.	Тур.	Мах
Output Power at 1dB Compression Point	P _{1dB}	V _{DS} = 9V f = 10.7 - 11.7 GHz	dBm	32.5	33.5	-
Power Gain at 1dB Compression Point	G _{1dB}		dB	6.5	7.5	-
Drain Current	I _{DS}		А	-	0.85	1.1
Power Added Efficiency	η_{add}		%	-	24	-
Channel-Temperature Rise	ΔT_{ch}	$V_{DS} \times I_{DS} \times R_{th (c-c)}$	°C	-	-	60

Electrical Characteristics (T_a = 25°C)

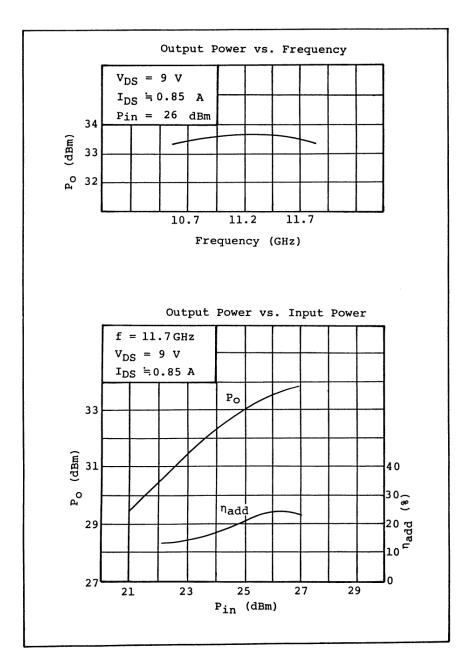
Characteristic	Symbol	Condition	Unit	Min.	Typ.	Max.
Transconductance	gm	V _{DS} = 3V I _{DS} = 1.0A	mS	-	600	-
Pinch-off Voltage	V _{GSoff}	V _{DS} = 3V I _{DS} = 30 mA	V	-2	-3.5	-5
Saturated Drain Current	I _{DSS}	V _{DS} = 3V V _{GS} = 0V	Α	-	2.0	2.6
Gate-Source Breakdown Voltage	V _{GSO}	I _{GS} = -30 μA	V	-5	-	-
Thermal Resistance	R _{th (c-c)}	Channel to Case	°C/W	-	5	6

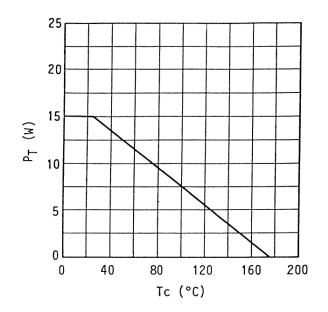

The information contained here is subject to change without notice.

The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. These TOSHIBA products are intended for usage in general electronic equipments (office equipment, communication equipment, measuring equipment, domestic electrinic of place maps of robust and and place of the second of the s of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.

Absolute Maximum Ratings (T_a = 25°C)

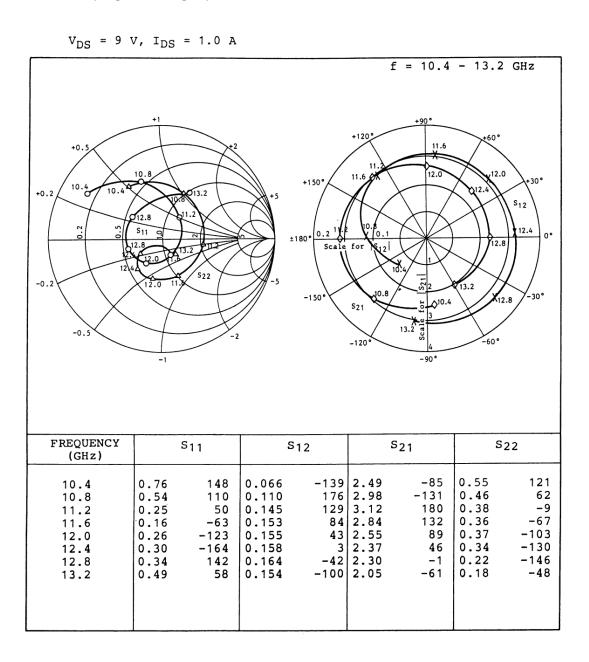
Characteristic	Symbol	Unit	Rating
Drain-Source Voltage	V _{DS}	V	15
Gate-Source Voltage	V _{GS}	v	-5
Drain Current	I _D	Α	2.6
Total Power Dissipation ($T_c = 25^{\circ}C$)	PT	w	15
Channel Temperature	T _{ch}	°C	175
Storage Temperature	T _{stg}	°C	-65 ~ 175


Package Outline (2-9D1B)


Handling Precautions for Packaged Type

Soldering iron should be grounded and the operating time should not exceed 10 seconds at 260°C.

RF Performances



Power Dissipation vs. Case Temperature

4/5

TIM1011-2 S-Parameters (Magn. and Angles)

