TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC # TC7SH00F, TC7SH00FU ## 2-INPUT NAND GATE The TC7SH00 is an advanced high speed CMOS 2-INPUT NAND GATE fabricated with silicon gate C²MOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The internal circuit is composed of 3 stages including buffer output, which provide high noise immunity and stable output. An input protection circuit ensures that 0 to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interfase 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages. #### **FEATURES** - High Speed \cdots $t_{pd} = 3.7 \text{ns}$ (Typ.) at $V_{CC} = 5V$ - Low Power Dissipation $I_{CC} = 2\mu A$ (Max.) at - High Noise Immunity ················ V_{NIH} = V_{NIL} = 28% V_{CC} (Min.) - Power Down Protection is provided on all inputs. - Balanced Propagation Delays ······ t_{pLH}≒t_{pHL} - Wide Operating Voltage Range…… V_{CC (opr)} = 2~5.5V Weight SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A : 0.006g (Typ.) #### **MAXIMUM RATINGS** | PARAMETER | SYMBOL | VALUE | UNIT | |------------------------------------|------------------|---------------------------|------| | Supply Voltage Range | Vcc | -0.5~7.0 | V | | DC Input Voltage | VIN | -0.5~7.0 | V | | DC Output Voltage | Vout | -0.5~V _{CC} +0.5 | ٧ | | Input Diode Current | ΙΚ | - 20 | mΑ | | Output Diode Current | ^I ОК | ± 20 | mA | | DC Output Current | IOUT | ± 25 | mΑ | | DC V _{CC} /Ground Current | Icc | ± 50 | mA | | Power Dissipation | PD | 200 | mW | | Storage Temperature | T _{stg} | -65∼150 | °C | | Lead Temperature (10s) | TL | 260 | °C | #### MARKING TRUTH TABLE | Α | В | Y | |---|---|---| | L | L | Н | | L | Н | Н | | Н | L | Н | | Н | Н | L | 961001EBA2 TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. ## **LOGIC DIAGRAM** ## PIN ASSIGNMENT (TOP VIEW) ## **RECOMMENDED OPERATING CONDITIONS** | PARAMETER | SYMBOL | VALUE | UNIT | | | | |--------------------------|--------------------------------|---|-------|--|--|--| | Supply Voltage | Vcc | 2.0~5.5 | V | | | | | Input Voltage | VIN | 0~5.5 | ٧ | | | | | Output Voltage | Vout | 0~V _{CC} | ٧ | | | | | Operating Temperature | T _{opr} | - 40∼85 | °C | | | | | Innut Disc and Fall Time | ا ا ما | $0\sim100 \text{ (V}_{CC}=3.3\pm0.3\text{V)}$ | / \ / | | | | | Input Rise and Fall Time | d _t /d _v | $0\sim 20 \ (V_{CC} = 5 \pm 0.5V)$ | ns/V | | | | ## DC ELECTRICAL CHARACTERISTICS | DADAMETED | CVMPOL | TEST
SYMBOL CIR- | | TECT CONDITION | | | Ta = 25°C | | | Ta = − 40~85°C | | |-----------------------------|-----------------|---------------------|--|-------------------------|------------|--------------------------|-----------|--------------------------|--------------------------|--------------------------|---------| | | | CIR-
CUIT | | | VCC | MIN. | TYP. | MAX. | MIN. | MAX. | UNIT | | High-Level Input | | | | | 2.0 | 1.50 | _ | _ | 1.50 | _ | | | Voltage | VIH | _ | | _ | | V _C C
×0.7 | _ | <u> </u> | V _C C
×0.7 | _ | V | | | | | | | 5.5
2.0 | | | 0.50 | X 0.7 | 0.50 | | | Low-Level Input | \ \/ | | _ | | 3.0~ | _ | _ | | l - | 1 | v | | Voltage | V _{IL} | _ | | | 5.5 | _ | _ | V _C C
×0.3 | _ | V _C C
×0.3 | ľ | | | | | VIN = VIH | I _{OH} = -50μA | 2.0 | 1.9 | 2.0 | l — | 1.9 | _ | | | Illiada Ilavial | | | | | 3.0 | 2.9 | 3.0 | — | 2.9 | _ | | | High Level | VOH | _ | | | 4.5 | 4.4 | 4.5 | l — | 4.4 | _ | | | Output-Voltage | | | | $I_{OH} = -4mA$ | 3.0 | 2.58 | _ | — | 2.48 | _ | | | | | | | $I_{OH} = -8mA$ | 4.5 | 3.94 | _ | — | 3.80 | _ | | | | | | — V _{IN} = V _{IH} | I _{OL} = 50μA | 2.0 | _ | 0.0 | 0.1 | - | 0.1 | | | Low-Level
Output-Voltage | | | | | 3.0 | _ | 0.0 | 0.1 | l — | 0.1 | | | | VOL | _ | | | 4.5 | _ | 0.0 | 0.1 | | 0.1 | V | | | | | | $I_{OL} = 4mA$ | 3.0 | _ | _ | 0.36 | _ | 0.44 | | | | | | | $I_{OL} = 8mA$ | 4.5 | _ | _ | 0.36 | | 0.44 | | | Input Leakage
Current | IN | _ | V _{IN} = 5.5V or GND | | 0~
5.5 | | | ± 0.1 | | ± 1.0 | | | Quiescent Supply
Current | lcc | _ | V _{IN} = V _{CC} or GND | | 5.5 | _ | _ | 2.0 | _ | 20.0 | μ A | 961001EBA2' The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice. ## AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3ns$) | PARAMETER SYMBOL | TEST | TEST CONDITION | | | Ta = 25°C | | | Ta = − 40~85°C | | UNIT | | |----------------------------------|------------------|--------------------|---------------------|---------------------|-----------|------|------|----------------|------|------|----| | | CIR-
CUIT | | V _{CC} (V) | C _L (pF) | MIN. | TYP. | MAX. | MIN. | MAX. | | | | Propagation tpLH Delay Time tpHL | | | _ | 3.3 ± 0.3 | 15 | _ | 5.5 | 7.9 | 1.0 | 9.5 | - | | | t _{PLH} | | | | 50 | _ | 8.0 | 11.4 | 1.0 | 13.0 | | | | tPHL | t _{PHL} — | | 5.0 ± 0.5 | 15 | _ | 3.7 | 5.5 | 1.0 | 6.5 | ns | | | | | | | 50 | _ | 5.2 | 7.5 | 1.0 | 8.5 | | | Input Capacitance | C _{IN} | _ | _ | | | | 4 | 10 | _ | 10 | | | Power Dissipation Capacitance | C _{PD} | _ | Note (1) | | | _ | 14 | _ | _ | _ | рF | Note (1): CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC (opr) = CpD·VCC·fIN + ICC ## INPUT EQUIVALENT CIRCUIT