Using the E5 Embedded

!!‘Triscend DMA Controller

July 2001 AN-22
Abstract

This application note describes how to use the DMA feature of the E5 by working through example
designs.

Contents

Using the E5 Embedded DMA CONLIOIEToiiii ettt e e e e e 1
Yol 0] o1 PP PP PP PPPPPPPPPTPP 2
L@ T = PRSPPI 2
FUNCHONAI DESCIIPLION ...eeeeeiee ettt ettt ettt e e e oo ekttt e e e e e e s e abb b et e e e e e e e e e nbnbeeeeeesasnnnbraeaaaaeas 3
Configuring the DMA ChanneISuuiiiiiieii e e e e s s e e e e e e e s e e e e e e e e snnnrnraees 4

Appendix A: Example Design ProjeCt — DMA WIFEScoiii ittt 8
2T (o] (=R 1= x4 o] €= Ut (=Y o PR 8
o 0] o =P 8
DESION OVEIVIEW ...ttt ettt oottt et e oo 4o b bttt e e e e e 4o e e b et ettt e e e e e s e e b b bbe e e e e e e e e aaaanbbeeeeeaaannnbraeaeaaeas 9
Configuring the DMA ChannelSuuiiiiiiei it e e e s e e e e e e s s e e e e e e e e ennnrnraees 9
Selecting and Configuring 1P MOAUIES..........coouiiiiiiie e 11
Configure 1/0 Constraints and Memory Interface Unit (MIU)...........coeevveeiiiiciiiieeee e 18
Generate Code fOr YOUI COMPIIETiiiii et e e e e e e e e e ebb e e e e e e e e ereeees 20
BN the PrOJECT..... ettt e e e ettt et e e e s e e ka b bt et e e e e e e e e anbbeee e e e e sannbeeeaaaaeas 21
7Y 0] 0] o= 11T o I @0 o - SRR 21
Using the BFEM With the DIMAttt e et e e e e e e s e bbb e e e e e e e e e aneeaaae s 27

Appendix B: Example Design Project — DMA Grabccoocciiiiiiii e 30
Before GettiNg STAMEAc.ooi ittt e e ettt e e e e e e e bbb e e e e e e e e sannbeeeeaae s 30
Yol o] o1 PP P PP PPPPPPPPPPPPN 30
(TS o T @ Y= 1 SR 30
Configuring the DMA ChanNEISuiiiiiiiii et a e e e e e e e e e e nanebeees 31
Selecting and Configuring 1P MOAUIES............ccuiiiiiiie e e e e e e e e ennaeees 35
J Y o] o] o= 11 o] o I @o o [TP PPT PRI 42

© 2001 by Triscend Corporation. All rights reserved. www.triscend.com

Triscend Part Number APP305-0022-001

This DMA application note will demonstrate how to use the DMA channels on the E5 device contained
on the Triscend Development Board. Although the information contained in this application note is
valid for all E5 CSoC devices, this document will focus on the E520 because it featured on the E5
development board. The basics of the DMA feature can be found in the E5 Data Sheet. This
application note will cover the following more advanced DMA functions:

= Software Request Mode
= Continuous Initialization
= DMA Reads
= DMA Writes

It is assumed that the user understands the basics of FastChip, FastChip Device Link Utility, and Keil
Software development tools for software development and debug.

Overview

The E5 features an embedded two-channel DMA controller, which allows the CSL to access memory.
Each channel is autonomous from the 8032 micro-controller, freeing the processor from mundane,
performance-stealing, data transfer tasks. Each channel is designed to transfer a byte of data on each
clock cycle. The following data transfer modes are available:

» DMA Read - 1/O (CSL) to Memory
= DMA Write > Memory to I/O (CSL)

= Memory-to-Memory

A device associates itself with a particular channel via the DMA control register (DMA Selector), which
contains a request and acknowledge signal pair. The two DMA channels can be paired to perform
memory-to-memory transfers.

Triscend Part Number APP305-0022-001

WaTriscend

"Numh_rtamn [agai Oevica TEERIGA0-800 [T vabestion Lpnsss] - sl T a3 10 : _,_-H_ﬂ
o Gmis Tew gew s S
Gl & 208 We G
o Expmi Carmrin Bl jrot omieell | Dwseos i Emerd bnamn
B oo om0 Homm e S H =
_ LT Ecreent

= Bk | i any
CPS

A et Ly
#__| Derplwsn

. :-r :'::.. The two DMA channels,

£ | Cosspanision DMA_0 and DMA 1, are
I dedicated resources of
- the E5.

£ D

| Wgrwory

= | [epamcaimi
£ | Emryplion

@y

Poe Sinil Aesgaron Eaimess
Mcmceisyonml— 1K EEOreeEtal 0 OGN 0 O COifrecmniaa ON 0 posrossl 08

© Cosiail Ol Mﬁﬁ]

B iy peesn] reme 1 T Ten n

Lomeing ooried sailes T Seporsadl o Tick sopgeer ni

B Liwiwliing sl dullnfl O Begetealar a i ST R LE PR

B Clmsing pressct O e Tk fop

Craaled ceaeci DS, Smrmo .d

B

Figure 1: DMA channels shown in FastChip

Functional Description

The E5’s DMA feature is comprised of two independent channels. The operation for each DMA
channel is defined by a set of parameters. From a designer’s point of view, the most important set-up
parameters are:

» Memory starting address
» Starting transfer count

= Direction of transfer

Although each channel has its own set of registers, a designer can configure each DMA channel
without delving into the details of each configuration register. By using FastChip, a designer can easily
configure each DMA channel via the GUI.

Triscend Part Number APP305-0022-001

Configuring the DMA Channels

The easiest and most efficient way to configure the DMA channels is via FastChip’s GUI. Figure 2
illustrates the relationship between FastChip and the DMA channels.

. Configurable
. System Logic

REGSEL
ACKSEL

Bovie @ A e
L L Eopumi: Cweseyomy Pl j ik o] Dy Lirw:
2
nn. [£ iy
[==T] Tocks 1] Tran 1 Tiewr_1 A

| DMA Control Register

e

Reguest

DMA
EYnrEnee | Channel 1
Regquest
AcknoveledodEeELTEIRI

Sl
res

i

[egmemce

i
Ui ervpigsheriSerth
=l
o bl Condiod
B | Rk Bur
== Sslsciara
o AR T

l:n:l 1A

Pra-tornl Hsans e Extimats

o oSt cete 2onm] 1K Enofscean 0 08 - CRiGsecwre Ty BN

pomrcun NE

10

B
o
L=

. =153
|5 Croia jopl Codn,_ s

Vi gy pre 1 DAL b TS, _reals Py

1 Ls mding: projpeci reled T Dl desraDbasd _rieemcin
!i i bl R 8

| & [oplrry’ womiin pegrs 2

fLas

Fo e peua FY

s | R e || et | Gma | o | e | # {0 s | BlCaws [

ARET Tl

Figure 2: Relationship between E5 Dedicated DMA Resource and FastChip

Triscend Part Number APP305-0022-001

WaTriscend

DMA Selector Module

The DMA Selector is FastChip’s version of the DMA Control Register (please see Figure 2). The DMA
selector offers DMA services to functions within the CSL logic by providing bus-mastering services for
CSL peripherals. The main features of the DMA Selector include:

= Providing request and acknowledge steering to a specific DMA channel
= Always one byte wide

= Exists in either Data or SFR space

= Accessible via a symbolic address

Figure 3 shows a DMA Selector in FastChip.

When active, the Req
input requests a DMA
transaction.

FADimanel_& - DMA Selachy

m The Ack signal is active
when the DMA controller
acknowledges the
transaction request.

- - Allows a user to specify a
I’E‘i | x I ? “I Hl symbolic address that their

application code will use to
FA Dmred_A - DMA Selacto reference the memory-

mapped resource. FastChip
Compared Nete fuasel b equates the symbolic address
to a physical address in the
":“'“"“'“ E"’“"’" header file.
RO POk ~Channel salechion
fisel 17 Chanel 8
- Addre=sing Options T Chanvl 1
0 Allow FasiChip o allscaie ihe address Allows a user to select
m " Addrass Epace Respanss which DMA channel to
 Dste ‘ access.
£ 5FR
(™ Sipeify an soplol sdidrness ...
Allows a user to select
between XDATA and SFR
space. Triscend recommends
that XDATA space be used
fw;l xg-:ul ? pl lnpat| for normal applications.

Figure 3: A DMA Selector in FastChip

Triscend Part Number APP305-0022-001

DMA Channel Module

FastChip provides two DMA Channel Controller Modules (DMA_0 and DMA_1), one for each channel.
Figure 4 shows a DMA Channel Controller Module in FastChip.

[+ Gnmraln ol
| Transies Type
| = 1 o My (A Rl
| P~ w10 { Dl W)
|il_h'rr:|ﬂh:||1'rln'r|:|rrrrll:l.lrll brodfs el)
| ihis channet s from e sure memony iacaian)
| Trnzies Sefings
| photier o1 bepties 10 fraester (4 bk
|4 : -
i+_alim.n appicatar o
ﬁ E[_Eu*m.urmnru-

| I Bk rupmet rmessa
| ™ prtoin £RE cherking (DMA Rend oriy)
rhddmeE Ganeraian- i
| Imerment e ansler
| ™ Decrement gi= tanzie
| I Congiant sddrwes |
| wirup Erbis
| [Temnaney Courter rescies 00TC_EW)
| [St ol e 1T
| T Eerctireg Trarerter Crunier reer e (CVTR_E =

Wk | Momed | Pimn| Omeat| [fi]ren e |

L&
-

Ewalled aepaiatuly
OMA Control
Usnr Loglc—{ REQSEL RCKSEL

Figure 4: DMA Channel 0 in FastChip

The DMA Channel Module is composed of four major control sections, each of which is described
below.

Transfer Type
The Transfer Type control allows a user to define the type of DMA transaction for a specified channel.

Transfer Type Data Read From Data Written To
DMA Read - 1/0 to Memory CSL memory
DMA Write > Memory to I/O memory CSL
Memory-to-Memory memory memory

Table 1: DMA Transfer Types

Triscend Part Number APP305-0022-001

MuTriscend

It is important to remember that a CSL location is accessed via a DMA Selector. A memory location is
any addressable location, however, the DMA controllers operate in a 32-bit physical address space, not
the 16-bit logical space. See the example project (Appendix A) for a software routine to convert 16-bit
logical addresses to 32-bit physical addresses. The example at the end of this app note will address
this issue.

For memory-to-memory transfers, DMA Channel 0 is used to control the transfer and is responsible
for reading the source location whereas Channel 1 is responsible for writing to the destination location.

Transfer Settings

The Transfer Settings area allows a user to define a 24-bit transfer count, a 32-bit start address, set
continuous initialization until reset, and block request mode. Each of these options is explained in
detail in the E5 Data Sheet and in FastChip help. It is important to remember that the 32-bit start
address must be defined in the application code. See Figure 5 for an example.

/1l Must set up the Starting Address registers,

/! enable and initialize the channel before starting any transfers.
// DVA Start Address is a 32-bit _physical _ address val ue stored
/1 in the follow ng | ocations

// DVASADRO_O = Start_Address[7:0]

/1 DVASADRO_1 = Start_Address[15: 8]

// DVASADRO_2 = Start_Address[23: 16]

/1 DVASADRO_3 = Start_Address[31: 24]

Figure 5: Excerpt of C code needed to define the starting address for a DMA transfer

Address Generation

The Address Generation area allows the user to decide how the DMA source address is modified after
each transfer in order to set up for the following transfer. There are three possible options:

e Increment after transfer — increments the current address by one byte.
» Decrement after transfer — decrements the current address by one byte.

e Constant address — maintains the current address value for the next transfer.

Interrupt Enables

Each DMA channel has its own set of interrupt sources and interrupt enable controls. The user can
choose the source of an interrupt by clicking on the appropriate choice in the Interrupt Enables area.
Interrupts may be generated for the following cases:

e Transfer terminal count — transfer counter reaches 0. This indicates that the desired number of
bytes has been transferred.

e Transfer initialization — indicates a DMA channel has been initialized including the cases when the
continuous initialization until reset mode is used.

e Pending request overflow — indicates that the DMA has greater than 64K unserviced requests.

Clicking on the View Header button displays the code that is generated by FastChip.

Triscend Part Number APP305-0022-001

Appendix A: Example Design Project — DMA Wires

Before Getting Started

Before starting this tutorial make sure that you have the following items. Please refer to the Triscend E5
Development Board for information on all the items included with the Triscend E5 Evaluation Kit

= Latest version of FastChip properly installed on your computer.
= Keil uVision2 properly installed on your computer.

= A Triscend E5 Development Board with a download cable.

This example design project introduces you to the basic operations and the design flow of the Triscend
FastChip development system. It guides you through a sample project using the E5’s DMA controllers.

It will provide an introduction to hardware design with CSoC devices, specifically utilizing the DMA
controller modules and some of their main features.

The audience for this example design project is an intermediate user. First time users may first want to
review the FastChip online tutorial. The tutorial is available by opening FastChip, then making the
menu selection Help = Triscend CSoC Learning Center (Tutorial).

In this tutorial you will learn how to:
= Add IP modules from the FastChip library, including the DMA Selectors.

= Connect the signals between the IP modules.
= Set up CSoC dedicated resources.

= Assign I/O pins

Generate header and source file for your C application
» Bind the project.

» Download the CSL configuration and the C application image to external Flash memory, via the
CSoC device.

Triscend Part Number APP305-0022-001

MuTriscend

Design Overview

This FastChip example project uses the DMA to emulate a set of wires. Information from a DIP switch
is displayed on an 7-segment LED display. Using the DMA channels, the same information is sent to
the second LED display.

DMA Read DMA Write
DMA CTRL O DMA CTRL 1 D2
Dip Switch |—
ACK ———p REQ ——» 8
REQ [«—— ACK

. T D1
Holding |

Register " 8.

Figure Al: Block Diagram

Configuring the DMA Channels

This project makes use of both DMA channels, DMA_0 and DMA_1. FastChip’s interface to the E5’s
dedicated resources is shown in Figure A2.

EADMA_denc [Taigel Device: TEE2NSAD-400) [Evaluation Licenze] - Triscend FaCh =1®] x|
fie Corstats Toos View bep il Triscerd
Fooi: @ A S a7

an wm O N o e O Ea & H

Tirear 01 Tiner_1 Torraar_2 LIART ([l Walchciog D0 D, 1 Pareesr

Conligurable Systam Inbarconnec (S50} Bus

w& Configurabile System Logic (C50) =10 x]
= Ll

= MosueLibray (3]

Fn || P vt e

Figure A2: Dedicated resources window in FastChip.

Configuring DMA_O
=E

Click ™ from the dedicated resources window to configure DMA Channel 0. For this project,
DMA_0 needs to be configured for I/O to Memory transfers, because data from the DIP switch needs
to be transferred to a memory mapped register (Holding_Reg).

Triscend Part Number APP305-0022-001

For this project, DMA_O needs to be continuously initialized until reset so that DMA_0 and DMA_1
can feed off each other continuously. This option can be set in the Transfer Settings section (see
Figure A3).

Since the source of the DMA transfer is a single memory-mapped register, we need to keep the starting
address constant. This option can be set in the Address Generation section (see Figure A3).

For this project, DMA_O should be configured as shown in Figure A3.

F—— generate C or asse
—mw eader code for D
I3 100 1 Mo ey NN B}
(" Moy 10 1D (DA Vet

1 e

=t IET.W-“I- A positio erefore
bt e Ao 5
[e R shckng (T4 e v ! <. i
Address Generaton
F‘tq;:-ulhrkn-r
e elect co 0
[Temmter Coumiler immevas O {TC_EM)
I Sttt gt (AT P .
[~ Eending Trangier Counter overios (0VER_IN) cep the addre

| Wiwes| Piwe| wowe| (e |

Figure A3: Configuring DMA_0

Checking the Generate Code box initiates a header code generation session. All the DMA_0's
registers will be set appropriately depending on the options selected in the configuration window. It is
important to note that the start address must be defined in the application code.

10
Triscend Part Number APP305-0022-001

MnmuMMm:nm elect I/O to Memo
i channal reacs fram tho sourcs mamary locatiost a DMA read transfe

WaTriscend

Configuring DMA_1

DMA Channel 1 should be configured exactly like DMA_0, except DMA_1 needs to be configured for

Memory to I/O transfers. See Figure A4 to see how to configure DMA_1.

FA s Channsl 1
FP* o

Transfit Tape
i‘Ll:rh:l iy (Teas Feeadl]
'F"-r__[nw“

‘,..-lll'l'llilrl'h ey (remdres ol Ehannal gl

(thiz channal weims do the deslrstion memoey Incation)

~Transfar Bedings
Bt i i Irifalar (39 ba)

JMMHM
e | [oo watislizetien il iesel
[Emecs recusasi Mo
|, NG SIS oA P
Adiress Geneabory

™ ncpemant wrier jranster

I Doatimerord afins ks

AT Sonjt Wi vie
| infemupt Enabies

[Trane e Coshler rescsues 3(TC_EW)
[Sharl of rbinigaticn (1T _EVY)

Ubgeer L

Emabiled separ
DMA Control

REGSEL

ACKSEL
ACH

Al T o —

Enables FastChip to
generate C or assembly
header code for DMA_0.

Keep the address
constant.

Figure A4: Configuring DMA_1

Selecting and Configuring IP Modules

For this project, six different modules are instantiated directly from the Triscend IP module library. The
following modules will be used in this example project:

= DMA Selectors — used for interaction between the CSL and the DMA channels.

= Command Register — used for the holding register.

= Data Write — write data from the CSI bus’ point of view.

= Data Read — read data from the CSI bus’ point of view.

= Inputs — used to input data from the DIP switch.

= Qutputs — used to output data to the 7-segment displays.

DMA Selectors

Two DMA Selectors are needed for this project — one for DMA Channel 0 (DMA_0) and the other for
DMA Channel 1 (DMA_1). The modules can be found in the module library tree under CSI Bus 2>

Selectors.

Triscend Part Number APP305-0022-001

Each IP module has a Component Name which can the designer can choose. The Component
Name does not affect the functionality of the design in any way. It is used only to label the
modules. We will name the two selectors DMAread and DMAwrite.

DMAread

Drag and drop the DMA Selector into the CSL window and click the module to access Connections
and Properties dialog boxes. Figure A5 illustrates the Connections dialog box for a DMA Selector.

FADmMAresd - DMA Salscion |

Pick a uniqgue name of the DMA
Corguaturd Mira [[HAre=d Selector. We have chosen

o : | DMAread.
fRisrite_ark 3

The Ack output of this DMA
Selector needs to be connected

IE] to the Req input of the second

DMA Selector (DMAwrite).

The Req input of this DMA
Selector needs to be connected
to the Ack output of the second
DMA Selector (DMAwrite).

oo | Moores| P e | wipea

Figure A5: Configuring the connections of a DMA Selector for DMA_0

After configuring the connections as shown in Figure A5 click on the Properties tab to configure the
DMA Selector’s properties. Figure A6 illustrates the Properties dialog box for a DMA Selector.

FA Dpitrend - DMA Selecio

This DMA Selector is going to
access DMA Channel 0.

IE] drass Space Response———————————
 tetn
I 5FR

™ Sgecity sn swpiok sddnsse ...

Give the DMA Selector a

symbolic name. This will be
used in the application code.

oo | Mowos| P iee | wipea

Figure A6: Configuring the properties of a DMA Selector for DMA_0

12
Triscend Part Number APP305-0022-001

WaTriscend

DMAwrite

Drag and drop another DMA Selector into the CSL window. As before, click the module to access
Connections and Properties dialog boxes. Figure A7 illustrates the Connections dialog box for a
DMA Selector.

F_'.'l [1btuweite - DMA Selootn
Pick a uniqgue name of the DMA
Selector. We have chosen
DMAwrite.

Corngearand Marta [[MAvL L
Emiread ack d

The Ack output of this DMA
Selector needs to be connected

:E] to the Req input of the second

DMA Selector (DMAread).

The Req input of this DMA
Selector needs to be connected
to the Ack output of the second
DMA Selector (DMAread).

o | Momes| e | opea|

Figure A7: Configuring the connections of a DMA Selector for DMA_1

After configuring the connections as shown in Figure A7 click on the Properties tab to configure the
DMA Selector’s properties. Figure A8 illustrates the Properties dialog box for a DMA Selector.

F_'.'l [ibAweibe - DMA Selacin I

Cortgatun MHartu i
Lere frmamrice] This DMA Selector is going to
I covecions mhq—w:] access DMA Channel 1.
Addrass ~Channgl sals
Prteice |[|| 1 chaprein
Addressing Options ¥ Channel 1
1% Alberes FastChip o alocte the G
:E] drass Space Rasponse
I~ Datn
I 5FR
™ Specity an evpiok sddmss ...
Give the DMA Selector a
symbolic name. This will be
used in the application code.
Vo | Mowos| P e | Opeen |

Figure A8: Configuring the properties of a DMA Selector for DMA_1

The DMA portion of this example project has been configured.

Command Register

We will instantiate a Command Register to act as a memory-mapped holding register for the DMA
transfers. The Command Register can be found in the module library tree under Peripherals >

13
Triscend Part Number APP305-0022-001

Control. As with the DMA Selectors, drag and drop a Command Register into the CSL window and

configure the Command Register as shown in Figures A9 and A10.

") Holding Fleg - Command Renicter

Component width should be 8
since we are doing byte-wide
transfers.

Label the Q output of the

Command Register.
CmdReg_A[7:0] is the default

name.

Give this IP module a name.
We have chosen Holding _Reg.

Figure A9: Configuring the connections of a Command Register

) Holding Fleg - Command Register v_2

This memory-mapped register
will reside in the E5’s XData
space.

Give the DMA Selector a
symbolic name. This will be
used in the application code.

Figure A10: Configuring the properties of a Command Register

14

Triscend Part Number APP305-0022-001

WaTriscend

CSI Bus Connections

Data Read

Since we are getting data from the DIP switch, we need a way to place the data on the CSl bus. The
Data Read IP module is used exactly for this purpose. It can be found in the module library tree under
CSI Bus - Data Bus. Figure All illustrates the Data Read IP module.

Congonant Hane foafa

et teng7a 0]

@I The input for the Data Read is the DIP
switch.

The enable input is driven by the Ack
output of the DMA Selector named
DMAread because the data only needs to
be transferd after the DMA controller

oo | Mowos | P | £iRese | acknowledges the request.

Figure A11: Data Read

Data Write

The DMA controller (DMAwrite) will automatically place the transferred data onto the CSI bus.
However, we need a way to get the data from the CSI bus and send it to the 8-segment LED. The
Data Write module, the opposite of a Data Read module, is used for this purpose. Figure A12 shows
the Data Write module.

A Datawdy - Daks Wiiks

Give this module a component name.
We've chosen DataWr.

Pick a name for the output net. We've
chosen DataWr[7:0]. This net will be
connected to output pins, which will be
assigned to the 8-segment LED.

o | Mowes | P | g |

Figure A12: Data Write

15
Triscend Part Number APP305-0022-001

Inputs

For this project we need to instantiate 8 input pins. Drag and drop one input IP module into the CSL
and configure it as shown in Figure A13. The IP module can be found in the module library tree under
CSI Bus 2 /0.

A Dip 5 witch - gt w 2 s . .
- o L The Component Width is 8 because we

need 8 pins for the DIP switch.

corprmt o[}
r—g—— e r— -
Q)

ME“_| [iipAuin

o[Ti0] <

As with the other IP modules, give this one
a name. Since these inputs are from a DIP
switch, we have chosen DipSwitch.

Label the output net. We have chosen

switch[7:0]. This will connect this input
tn tha Nata Raad IP mndiila

| Moses | P oo | IR |

Figure A13: Configuring the connections of an input.

The properties of an input IP module can also be configured, however, for this example project we
have left them at their default settings.

Outputs

This project requires 16 output pins to connect to the two 7-segment LED displays. Drag and drop two
output IP modules into the CSL and configure them as shown in Figures A14 — A16. The IP module
can be found in the module library tree under CSI Bus - 1/O.

Output for D1

FADn1 - Dutpat w2

The Component Width is 8 because we
—_ Componant vdan | a- need 8 pins for the 8-segment LED.

Campornl Nem pj_
= CwdReqg k[7i0]

As with the other IP modules, give this one
a name. Since these outputs are for the
D1 7-segment LED, we've chosen D1.

Label the input net. We have chosen
CmdReg_A[7:0]. This will connect the
output of the Holding Register to this
output module.

o | Mowes | P rew | wimee |

Figure A14: Configuring the connections of an output for D1

16
Triscend Part Number APP305-0022-001

WaTriscend

For the D1 input, the Properties do not need to be configured. Leave them at their default settings.

Output for D2

FAnz - Dutpat w2

The Component Width is 8 because we
—_ Componant i | a- need 8 pins for the 8-segment LED.

W | ralx [710 d -

Corponen Mame |2

As with the other IP modules, give this one
a name. Since these outputs are for the
D2 7-segment LED, we've chosen D2.

Label the input net. We have chosen
DataWr7:0]. This will connect the output
of DataWr to this output module.

| Mowes | P e | g |

Figure A15: Configuring the connections of an output for D2

For this example project, we would like to latch the data into registers. Configuring the properties of the
output IP module can do this as shown in Figure A16.

FAnz - Dutpat w2

!:I' The latches need to be clocked by

BusClock.

m——— tompernrtvh [5|

BB cormctors ﬂﬁwﬂul

—mmmw—i ~ Okt Bufer Slew Rabe Conden
™ e, i) " Fasl
¥ 1 il Dsnr

- !‘l‘!ll'll'ﬂl'lﬂl.l:l

b.w:l.uah —

e Diram Cpeealion
Guput Funclionaity during ®o
ﬁ.nn-mudm

Q)

We only want to latch the data after the

1Té_ &k -~ DMA Controller for DMA_1 has
Coulir Foesyl e acknowledged the request. Therefore the
Ack signal from the DMAwrite module
A
grﬁtlll - should act as the clock enable.

| Mowes | P e | g |

Figure A16: Configuring the properties for D2

17
Triscend Part Number APP305-0022-001

Configure I/O Constraints and Memory Interface Unit (MIU)

In order for the example project to function properly, the input and output pads need to be assigned to
specific package pins. The FastChip 1/0O Editor provides an intuitive interface to assign I/O pads to the
package pin. Select I/O Editor from the Constraints menu. Once the I/0O window comes up, click

=i

Fub Screen| expand the window.

CALT L vt | P achage | ppe- M50 - Diecami FasChe 3008

=N

[S - [T

WaTriscend.
BE T5520540-40Q

i

sl o owme o I e v e w Dl Bmivis va | - | T T T U T e e

Figure A17: FastChip’s I/O Editior with all pads assigned

You can view all unassigned I/O pads from the Available /O Pads area on the left. To assign a pad to a
package pin, simply drag the pad into the chip package image window and drop it onto the desired
package pin. If you make an error, you can move the pad by dragging and dropping it onto another pin.
Assign all pads to their respective package pins according to the following table. Click OK after you
finished assigning pads.

18
Triscend Part Number APP305-0022-001

MuTriscend

Module Pad Name Pin Number

D1.0 65

D11 94

D1.2 85

D1.3 82

D1

D1.4 79

D1.5 57

D1.6 55

D1.7 89

D2.0 44

D2.1 50

D2.2 34

D2.3 33

D2 D2.4 31
D2.5 41

D2.6 35

D2.7 36

DipSwitch.7 12

DipSwitch.6 16

DipSwitch.5 17

DipSwitch.4 32

DIP SWITCH

DipSwitch.3 42

DipSwitch.2 43

DipSwitch.1 48

DipSwitch.0 49

Table Al: I/O Pin Assignment

Configuring the MIU

For this example we are going to use the E5 development board Flash memory to configure the CSoC
device. To perform this we need to assign the external memory 1/O pins to the device. Click on MIU in
the 1/0 Editor window, shown in Figure A17. Select the external 512Kx8-bit external memory, as shown

19

Triscend Part Number APP305-0022-001

in Figure A18. Note, alternatively the CSoC can be configured directly from the download cable. In this
case no external memory I/O pins need to be assigned

BIMECLE, DOSOIN, CE-, WE-ISEN-, OE-1SRET h the 512K x 8-bit
&117-0], O[T 0, CE-, WE-SEr-, OE-}SRET CHOOSENES o0
external memory.

BlR 2 0L D7 O, CE-, WESER-
Alan 0], DY of, CE, WE-rSEN- OESBRET
AlZE:0), DTS, €&, WE-SSEN.. OE-JSRET
ML), DI O, G-, WESSEN-, DE-SIRET

of o | Mowcw | P e |

Figure A18: Configuring the MIU

Generate Code for Your Compiler

FastChip can generate C or assembly source code with declarations for the addressable registers in
the configurable logic, such as the symbolic address Holding_Reg in the Holding_Reg command
register IP module.

In addition, you can instruct FastChip to generate initialization functions for the dedicated resources.
Some of the dedicated resource dialog boxes allow you to specify the desired startup state of the
dedicated resources. You can selectively enable the Generate Code option to instruct FastChip to
include functions for setting up the special function registers (SFR) associated with that dedicated
resource in the generated source code.

At this time, no other Dedicated Resources need to be configured, and you can disable the Generate
Code options in them to reduce the already modest code size of the generated source code.

Click Mto invoke the Generate Code dialog box.

A Gaparste Code
- Cenerabed Langumsg
B Gty g
I 8081 Aaeenbly {51, ne]
~Genaratad Code Ta DiFpcin
Cinectory |02 Froajects DHA, DRRGE £a3,
[+ Part all oot (regisiers and infislzation restines) in a single
[e G o 1208 ot ade e usinr e eodieny feed el e

[Wi oo bt Progact Husscter il (uiing the scdarrel e selor]

Select language for generated header
code.

It is a good idea to place the .h file in the
same directory as the rest of the project,
including the application code.

Select this option to put all the header
oo | Mowes | P o | code in a single .h file. The file will be

named <project_name>.h.

Figure A19: Generate Code window

If the Put all code (registers and initialization routines) in a single file option is selected, FastChip
generates only one file:

20
Triscend Part Number APP305-0022-001

MuTriscend

DMAwires.h <project_name>.h

This file contains necessary macro definitions and all the external address declarations for IP modules.
It also contains prototypes for the dedicated resources init functions. This file also contains necessary
macro definitions, address declarations for IP modules, and function definitions of the dedicated
resources init functions.

For the E5 CSoC, if the project name is more than 8 characters long, the file name is truncated. This is
because some of the 3" party vendor software only support 8.3 notation file names.

Important

Subsequent generate sessions will overwrite the previous <project_name>.h files with no warning.
Make sure that you do not have any other files in the project directory with this name prior to
performing a Generate.

Bind the Project

In order to realize the logic in your FastChip project on the CSoC silicon, the design content will need to
be processed into configuration information for the configurable system logic on the silicon. This
process is called Bind. This process is analogous to the compile-link-load process when compiling a
program or the map-place-route process for creating a gate array or FPGA.

@,
Click ﬂ Accept the default selection of minimum bind effort and click OK.

Bind is a computational-intensive process. FastChip applies several complex computing algorithms to
optimize your design and to fit it into the CSL. Typical bind processing for a project like DMAwires
takes three to five minutes on computers meeting the minimum system requirement. The status bar on
the wait dialog box shows you how Bind is progressing.

The final result from Bind is an initialization file called <project_name>.csl. You will use this file later to
combine it with your software application image to download to the CSoC.

Application Code

The following is the application code for this example project. The header file, DMAwires.h, has been
included as a comment for your reference.

/1 1Include header file created by Fast Chip
#i ncl ude "DVAwWi res. h"

/'l Header file for routines that convert an 8032 | ogi cal
/] address to a 32-bit physical address

#i ncl ude "dnmap. h"

void main() {

unsi gned char Updat e;

/1 Call initialization routines created by FastChip. These functions

21
Triscend Part Number APP305-0022-001

/'l set up the dedicated resources, including the DVA Controller.

/1 The initialization routines do not setup the Start Address for the
/1 DVA transfer, nor do they enable or initialize the channels.

DMVAWI res_INIT ();

/1 Wite an arbitrary value to the 'Hol ding_Register', which connects to LED D2.

/1 If LED D2 equals this value later, then we are not able to transfer data using

/1 the DVA controller.
Hol di ng_Reg = 0x00;

R O S S O

* This section is a copy of the DVA O setup code created automatically by

* FastChip. This code is executed as part of the DMAW red_I NI T() routine.

* [/ DMACTRLO_O (Address Oxff27)

* /] Hoem o - Hoem o - Hoem o - [R Feomm o - Feomm o - Feomm o - Feomm o - +

* 1 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Bl T LOCATI ONS
* /] + + + + + + + + +

* 1] | WR-| PAIR BLOCK| SFTREQQ CONT| INIT| EN| CLR | Bl T NAMES

* /] + + + + + + + + +

* 1] | 0 | O | O | o 1] O] O | 0 | REG STER VALUE
* /] Hoem o - Hoem o - Homm o - [R Feomm o - Feomm o - Feomm o - Feomm o - +

* [/ DMACTRLO_1 (Address Oxff28)

*] L p—_— L p—_— L [L [e p—— [[+

* [| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | BI T LOCATI ONS
* /] + + + + + + + + +

* [| | | | | | CRC_EN| ADRML| ADRMD| BI T NAMES

* /] + + + + + + + + +

* [| o] o | O | O | O | o | o0 | 1 | REQ STER VALUE
* /] L p—_— L p—_— L p—_— L L [e p—— [[+

* [/ DMAEI NTO (Address Oxff29)

* /] Hoem o - Hoem o - Hoem o - Homm o - Hoem o - [R Fomm o Feomm o - +
* | 7| 6 | 5 | 4] 3| 2| 1 | 0 | BITLOCATIONS
* |/ + + + + + + + + +

22

Triscend Part Number APP305-0022-001

WaTriscend

* [| | | | | | OVR_EN| I NI T_EN| TC_EN| BI T NAMES

* /] + + + + + + + + +

* [| o] o | O | O | O | 0 | o | 0 | REQ STER VALUE
* [/ L p—_— L p—_— L p—_— L L [e p—— [[+

* [/ Set up the DVMA Channel 0 control register

L2 B
* DMACTRLO_O = 0x01; /1 Clear DVA channel 0 control register

* DMACTRLO_1 = 0x01; /1 Set high-byte settings in control register
* DMACTRLO_O = 0x08; /1 Set lowbyte settings in control register

* [/ Set up the transfer count

T L

* [/ NOTE: TRANSFER COUNT = (BYTE_COUNT - 1)

* DMASCNTO_O0 = 0x00; // Move transfer cnt lowbyte of DVA O tansfer cnt reg

* DMASCNTO_1 = 0x00; // Move transfer cnt mid-byte of DMA O transfer cnt reg
* DMASCNTO_2 = 0x00; // Move transfer cnt high-byte of DVA O transfer cnt reg

* [/ Enable the DVA Channel O interrupts

o

* DMAI NTO = 0x07; /I Clear DVA channel O interrupt flags by witing ones to bit
* DMAEI NTO = 0x00; // Enable DVA channel O interrupts

*

* [/ NOTE: Must still set up the Starting Address registers and

* [] ==== enable and initialize the channel before starting any transfers.

* [/ DVA Start Address is a 32-bit _physical _ address value stored in the follow ng
* [/ locations

* |/ DMASADRO_O
* [/ DMASADRO 1
* |/ DNVASADRO_2
* |/ DVMASADRO_3

Start_Address[7: 0]
Start_Address[15: 8]
Start_Address[23: 16]
Start_Address[31: 24]

***/

/1 Convert the 8032's 16-bit |ogic address pointing to the XDATA
/1 RAM buffer into a 32-bit physical address required by the

/1 DVA controller. Using this nethod allows this code to

/'l operate regardl ess of the initialization nethod used.

11

23
Triscend Part Number APP305-0022-001

/1 Put |ogical address in special variables LADDR 1 and LADDRO,

/] as shown bel ow.

LADDR 1 = (unsigned char) ((unsigned short)&Hol di ng_Reg >> 8);
LADDR_0O = (unsigned char)((unsigned short)&Hol di ng_Reg & Oxff);

/1 Call the special routine that converts the 16-bit | ogical
/1 address to a 32-bit physical address. The 32-bit address is
/1 provided in variables PADDR 3 t hrough PADDR_O.

xdat a_l ogi cal _to_physical ();

/1 Setup DMAQ's start address register

DVASADRO_ 0 = PADDR 0;
DVASADRO_1 = PADDR 1;
DVASADRO_2 = PADDR 2;
DVASADRO_3 = PADDR 3;

/1l Enable the DVA channel 0 and initialize the transfer

DVACTRLO_O | = OxO06;

/1 Enabl e DVMA _READ control register to access DVA channel 0
/1 NOTE: Upper and | ower nibbles MJST be identical.
DVAread = 0x11;

| X o o e e e e e e e e e e e e e mieeeao- * [
/* SET UP DVA CHANNEL 1 */
| X e e e e e e e e e e e e e e eieeea-- * [

EZE R I S O O o

* This section is a copy of the DMA O setup code created autonatically by
* FastChip. This code is executed as part of the DMAwired_I NI T() routine.

*

* [/ DMACTRL1_O (Address Oxff3b)

* /] L p—_— L p—_— L p—_— [p—— [[[[+
* 1] | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | BI T LOCATI ONS
* /] + + + + + + + + +
* 1] | WR-| PAIR BLOCK| SFTREQQ CONT| INIT| EN| CLR | BI T NAMES
* /] + + + + + + + + +
* 1] | 1 | O | 0O | o] 1] o0 | O | 0 | REQ STER VALUE
* /] L p—_— L p—_— L [e p—— [[[[+
*
24

Triscend Part Number APP305-0022-001

WaTriscend

11
11
11
11
11
11
11
11

11
11
11
11
11
11
11
11

11
11

11
11
11

11
11

11
11
11
11

DMACTRL1 1 (Address Oxff3c)

R R R R R Fommem - Fommm- Fommm- +
| 7] 6| 5 | 4] 3| 2] 1 | 0 | BITLOCATIONS
+ + + + + + + + +

| | | | | | CRC_EN| ADRML| ADRVD| BI T NAMES

+ + + + + + + + +

| 0] O] O] O] O] 0] O | 1 | REGSTER VALUE
R R R R R Fommem - Fommm- Fommm- +

Fomamn Fomamn Fomamn Fomamn Fomamn Fommm o S Fomm - +
| 71 6 | 5] 4] 3] 2] 1 | 0 | BITLOCATIONS
+ + + + + + + + +

| | | | | |OVR EN|INIT_EN| TC_EN| BI T NAMES

+ + + + + + + + +

| o] o] O] O] O] O] O | O | REGSTER VALUE
EO EO EO EO EO T oo Foaa-a +

Set up the DVA Channel 1 control register

DMACTRL1 0 = 0x01; // C ear DWVA channel 1 control register
DMACTRL1 1 = 0x01; // Set high-byte settings in control register
DMACTRL1 0 = 0x88; // Set lowbyte settings in control register

Set up the transfer count

NOTE: TRANSFER COUNT = (BYTE_COUNT - 1)

DMASCNT1 0 = 0x00; // Move transfer cnt |owbyte of DVA 1 transfer cnt reg
DMASCNT1 1 = 0x00; // Move transfer cnt nmid-byte of DMA 1 transfer cnt reg
DMASCNT1 2 = 0x00; // Move transfer cnt high-byte of DVA 1 transfer cnt reg

Enabl e the DVA Channel 1 interrupts

DMVAI NT1 = 0x07; // Clear DVA 1 interrupt flags by witing ones to bit
DVAEI NT1 = 0x00; // Enable DVA channel 1 interrupts
NOTE: Must still set up the Starting Address registers and

==== enable and initialize the channel before starting any transfers.
DVA Start Address is a 32-bit _physical _ addr value stored in the follow ng

| ocati ons:

25
Triscend Part Number APP305-0022-001

*

*

*

11
11
11
11

11
11

DVASADRL 0 Start_Address[7: 0]
DMASADRL 1 = Start_Address[15: 8]
DVASADRL 2 Start_Address[23: 16]
DMASADRL 3 = Start_Address[31: 24]

DVMA Channel 1 grabs value from ' Hol di ng_Register' and displays it on LED D1.
Load the start address of DVA Channel 1.

DVASADRL_3 = 0x88;
DVASADRL 2 = 0x10;
DMASADRL 1 = Oxef;
* DMASADRL_0 = Oxfc;

R S S O O S S R S S S */

11
11
11
11
11

Setup DMAO's start address register

Since the start address for DMA 1 is also the '"Holding Register', the starting
address for DVA 1 will be the same as the starting address for DVA 0. If they
had different starting adddresses, then you woul d have to use the sane routine
that was used for DVA O.

DVASADRL_0 = PADDR 0;
DVASADRL_1 = PADDR 1;
DVASADRL_2 = PADDR 2;
DVASADRL_3 = PADDR 3;

11

Enabl e the DVA channel 1 and intialize the transfer

DMACTRL1_0 | = 0xO06;

11

Enabl e DMA WRI TE control register to access DVA Channel 1

DMAwWrite = 0x33;

11

Start the fun by performng a software DVA request on DVA Channel O

DMACTRLO_O | = 0x10;

/1 An enbedded system program never ends
while (1) {

Updat e++;
}

26
Triscend Part Number APP305-0022-001

WaTriscend

Using the BFM with the DMA

This section describes how to use the DMA functionality of the Bus Functional Model. For a thorough
description of the BFM please refer to Application Note AN32. Code for the testbench.v file follows.

“tinmescal e 1ns/10ps

/**

*

* Tri scend Corporation

*

* Fast Chip 2.0 Project

LR I I S o S O S S O O O

* Modul e: CSL RTL Testbench

*

* Descri ption:

*

* This is the testbhench for interfacing your CSL design

* to the Bus Functional Mdel, for the purposes of testing
* it before needing to download it onto the hardware.

***/

/1 (Optional) To globally initialize flip-flops and |atches:

/1 1. conpile TriscendV.v with the TRDEF_GLOBAL fl ag defi ned

/1 (+defi ne+TRDEF_GLOBAL conmand |ine option can be used)

/1 2. uncomment the “define below or conpile with +defi ne+TRDEF_GLOBAL
/1 3. conpile Triscendd obal .v

/1l 4. specify top-level nodul es as: testbench, TRGLOBAL

“define TRDEF_GLOBAL
“define BUS_CLOCK _PERI QD 20

Setting Verbose to 1 will give more
“define VERBOSE 1 information during simulation which will

help during the debugging process.

nmodul e testbench ();

27
Triscend Part Number APP305-0022-001

/1 CSI BUS Decl aration
wire [127:0] CSIBUS;

/'l Sideband for interrupts
wire [127:0] Sl DEBAND;

/1 include the file with task declarations and | ogic
“include "saddressmap. v"

“include "bfmtasks.v"

Simulates the input from the DIP switch.
In this example we’ve used the value
wire [7:0] |edl; 0x55 (01100110) as the input.

wire [7:0] |ed2;
reg [7:0] cnt;

/'l ny declarations

i nteger adrO, adrl;

/'l Your csl nodel is instantiated here
/1 “include "csl.v"
DVAW res csl (.CSIBUS (CSIBUS), .\DipSwitch. (8 h55), .\Dl1. (ledl), .\D2. (led2));

Il put task calls and testbench |ogl Normally the csl model is instantiated in a
s file called csl.v. For this example we've
initial : . . .
instantiated the csl model directly in
begi n testbench.v.
@ posedge bfm brstN);
bf m.i dl e(5);

Sets up the basic DMA transfer
parameters — source address, destination
address, transfer byte count, transaction

/1 reset and set up DMA channels O and 1 size — for a specified channel. For /O >

dma_reset (0); memory transactions ignore the source
] address. For memory - |/O transactions
dma_reset (1); ignore the destination address.

dme_setup (0, 0, 32'h0010_effd, 16'h0001, 2' b0O);
dma_setup (1, 32 h0010 effd, 0, 16'h0001, 2' b0O);

/'l enable DMAread and DVAwite. DMAread access DVA channel O
/1 and DVAwite accesses DVA channel 1

cpu_wite8 (°DMAread, 8' hll);

cpu_wite8 ('DMMwite, 8 h33);

/1 find the base address for DVAO and DVA1l
adr0 = bf m dma_base_address(0);

adrl = bf m.dna_base_address(1);

28
Triscend Part Number APP305-0022-001

WaTriscend

cnt =0;
while (cnt<4)
begin

/1 initialize an /O to nmenory DMA transfer
dme_i o2mem.init (0);

cpu_wite8 (adr0, 8 h56); // issue a SWrequest

/1 initialize a menory to I/ O DVA transfer
dma_nenRio_init (1);
cpu_wite8 (adrl, 8 hl1l6); // issue a SWrequest

/1 wait for DVA interrupts
dma_wait (0, 1);
dma_wait (1, 1);

/1 if everything works properly LED1 and LED2 shoul d equal the D pSwitch
$display ("LED1 = %", |edl);
$display ("LED2 = %", |ed2);

cnt = cnt+1;
end
$finish;

end

endnodul e // testbench

29
Triscend Part Number APP305-0022-001

Appendix B: Example Design Project — DMA Grab

Before Getting Started

Before starting this tutorial make sure that you have the following items. Please refer to the Triscend E5
Development Board for information on all the items included with the Triscend E5 Evaluation Kit

» The latest version of FastChip properly installed on your computer.
= Keil uVision2 properly installed on your computer.

= A Triscend E5 Evaluation Board with a download cable.

This example design project introduces you to the basic operations and the design flow of the Triscend
FastChip development system. It guides you through a sample project using the E5’s DMA controllers.

It will provide an introduction to hardware design with CSoC devices, specifically utilizing the DMA
controller modules and some of their main features.

The audience for this example design project is an intermediate user. First time users may first want to
review the FastChip online tutorial. The tutorial is available by opening FastChip, then making the
menu selection Help = Triscend CSoC Learning Center (Tutorial).

In this tutorial you will learn how to:
= Add IP modules from the FastChip library, including the DMA Selectors.

= Connect the signals between the IP modules.

= Set up CSoC dedicated resources.

Design Overview

This FastChip example project uses the DMA to transfer data from a counter to the LED displays.
Information from a counter is displayed on an 7-segment LED. Using the DMAs the CSoC sends the

30
Triscend Part Number APP305-0022-001

MuTriscend

same information to the second LED display. When everything works properly, the two LEDs will
match.

DMA Read DMA Write
DMA CTRL 0 DMA CTRL 1 D2
Counter —P —> —>
—» 8
REQ ACK REQ ACK
D1

Figure B1: Block Diagram

Configuring the DMA Channels

This project makes use of both DMA channels, DMA_0 and DMA_1. FastChip’s interface to the E5’s
dedicated resources is shown in Figure B2.

PADMA_ demn [T arget Device: TEGZKS40-400) [Evaluation License| - Triscend FaChip £ 20 =11 =]
fie Conzirants Tooks Wiew beip wl, Trisoerdd
Hooih: ©® A e T

b
& o om0 = e & Sa e H

Clacks Tirer 0 Tiner_1 Tirar_2 IART W W chiog Drit_0 Dvia, 1 Porwver

Canfigurable Systam Inbarconnec (CS51) Bus

w8 Configurabile System Logic {C50) =10 %]
o

ElETT H

ARl || R vpade (3

Figure B2: Dedicated resources window in FastChip.

Configuring DMA_0

For this project, DMA_0 needs to be configured for /O to Memory transfers. In addition, DMA_0 needs
to be configured for block request mode. This option can be set in the Transfer Settings section
(see Figure B3).

Since the source of the DMA transfer is a 256-byte buffer, we need to increment the starting address
after transfer. This option can be set in the Address Generation section (see Figure B3).

Unlike the project described in Appendix A, this example project will make use of the Interrupt Enables.
Specifically, we will enable an interrupt when the Transfer Counter reaches 0. This option can be set
in the Interrupt Enables section (see Figure B3).

31
Triscend Part Number APP305-0022-001

For this project, DMA_0 should be configured as shown in Figure B3.

i,.,m"' 1 vy (rédiress bath ehanneis
s shannal rwask fiom ihe seurce mamany location)

Ussr L

Emihled separately
DMA Contral
REGSEL ACKSEL

o] Mo

P | e | s |

Figure B3: Configuring DMA_0

Checking the Generate Code box initiates a header code generation session. All the DMA_0’s
registers will be set appropriately depending on the options selected in the configuration window. It is
important to note that the start address must be defined in the application code.

32

Triscend Part Number APP305-0022-001

WaTriscend

Configuring DMA_1

DMA Channel 1 should be configured similar to DMA_0. DMA_1 needs to be configured for Memory
to I/O transfers and must be set to single request mode (i.e. not block request mode). See Figure A4
to see how to configure DMA_1.

apie a P 10
Tiansfor Typs cader code for D
% Mesmony 1 10 QRN VR
BORY (repares bath ehannels ey Ve 5 1/0
iz channul wrins 1o Ihe destinakon mamary ngation) 2 DMA e

[Contruous ntecsson it reselt. Eavailerl seqanabely .

User Logic—| REQSEL ACKSEL
[R i T o 1 | Stwa T
ISFTREQ)

| Mo | Q| mes | e | S

Figure B4: Configuring DMA_1

Configuring the Watchdog Timer (WDT)

The WDT is used by the application code to initiate software requests for DMA_1. For this project,
configure the WDT as shown in Figure B5. The WDT can be found in the Dedicated Resources section
of FastChip as shown in Figure B2.

33
Triscend Part Number APP305-0022-001

|~ Grnarale Coae
Timet nleral

| A7 chock tvting
| (D10, WOOS D)
|~ IAB,STE cluck cyrlne
1" D=0, Won=1)
| i BRB00 clack ycies
AT, D00}
{-I:'I',HJB.HI tock cptien
L]l AN, W01}
;ﬂ,mumﬂsum

Enable the watchdog
timer interrupt.

(]| Jcwes| s | xahesst | (i ot |

Figure B5 Configuring the Watch Dog Timer (WDT)

In order for the watchdog timer interrupt to be recognized, all the E5’s interrupt system must be
enabled. This can be accomplished by configuring the Interrupt Controller Unit (ICU) in the
Dedicated Resources window of FastChip (Figure B2).

[indeddual Imbetiupl Enabies Galsd by n
I Esterrest bt [ER) ...

& Timet) Owertour (ETT, contriied is Timer 0

I Egtirmi irdmirapt 1 EX8) .

 Timer | Chmeoue (ETT kit o Timer T

o Servel Pt (ET, paniobed w (AET

o Timar T Owesow (ETTL, conbmiied i Timer 7

& D Confrailer, conleaiied o DL Chaseal 0 asg T

& Watohdng Timer [EINY oraiied (v Waiofaiog Timer

+ Hgh-Prianty inlgrugit
-

Enalile High: Frinrly imeem EHEL WHCCA)

{aweys h hﬂ!i_hﬂiﬂﬂ

i mﬁmmmmmu

Selecting Enable all
interrupts enables the
E5 interrupt system.

Figure B6: Configuring the ICU

34

Triscend Part Number APP305-0022-001

WaTriscend

Selecting and Configuring IP Modules

For this project, five different modules are instantiated directly from the Triscend IP module library. The
following modules will be used in this example project:

= DMA Selectors — used for interaction between the CSL and the DMA channels.
= Command Register — used for the holding register.

= Data Write — write data from the CSI bus’ point of view.

= Data Read - read data from the CSI bus’ point of view.

= Qutputs — used to output data to the 7-segment displays.

DMA Selectors

Two DMA Selectors are need for this project — one for DMA Channel 0 (DMA_0) and the other for DMA
Channel 1 (DMA_1). The modules can be found in the module library tree under CSI Bus >
Selectors.

Each IP module has a Component Name which can the designer can choose. The Component
Name does not affect the functionality of the design in any way. It is used only to label the
modules. We will name the two selectors DMA_Counter and DMA_Write.

DMA_Counter

Drag and drop the DMA Selector into the CSL window and click the module to access Connections
and Properties dialog boxes. Figure B7 illustrates the Connections dialog box for a DMA Selector.

FADMA_Counter - (MA Selecto £
Pick a unigue name of the DMA
Cormparend bt [0, _Couter Selector. We have chosen

N L

The Ack output of this DMA
Selector drives the data read
ﬁl CSI bus connection.

The Req input of this DMA
Selector should to be connected
to gnd because this DMA

transfer will be initiated by a
o | Mores| e | ipe | software request.

Figure B7: Configuring the connections of a DMA Selector for DMA_O

After configuring the connections as shown in Figure B7 click on the Properties tab to configure the
DMA Selector’s properties. Figure B8 illustrates the Properties dialog box for a DMA Selector.

35
Triscend Part Number APP305-0022-001

FA ks _Counter - A Selecio

This DMA Selector is going to
access DMA Channel 0.

b | drass Spacs Response
 Duts
I~ 5FR

™ Sgecity sn swpiok sddnsse ...

Give the DMA Selector a
symbolic name. This will be
used in the application code.

V| WNiowes | e | S|

Figure B8: Configuring the properties of a DMA Selector for DMA_O
DMA_Write

Drag and drop another DMA Selector into the CSL window. As before, click the module to access
Connections and Properties dialog boxes. Figure B9 illustrates the Connections dialog box for a
DMA Selector.

FADMA_‘afrite - Dk Solscto

Pick a unigue name of the DMA
Selector. We have chosen
DMAwrite.

it ok *
The Ack output of this DMA
Selector is used to enable the
H latch of the output of DMA_1.

The Req input of this DMA
Selector should to be connected
to gnd because this DMA
transfer will be initiated by a
software request.

Cormgearand hara [IHA_Wrute
b —

Vo | Wiwes | P e | wpeen |

Figure B9: Configuring the connections of a DMA Selector for DMA_1

After configuring the connections as shown in Figure B9 click on the Properties tab to configure the
DMA Selector’s properties. Figure B10 illustrates the Properties dialog box for a DMA Selector.

36
Triscend Part Number APP305-0022-001

WaTriscend

FADMA_‘afrite - Dk Solscto

This DMA Selector is going to
access DMA Channel 1.

+E drass Space Rasponse
 Duts
R

™ Spacity anspiok sddrese ...

Give the DMA Selector a
symbolic name. This will be
used in the application code.

o | Mowes| P iee | wpee

Figure B10: Configuring the properties of a DMA Selector for DMA_1
The DMA portion of this example project has been configured.

Counter

A counter will serve as the data source for this example project. Configure the counter as shown in
Figures B11 and B12.

We're using at 8-bit counter for
this design.

FA Countier - ielsadable Dinaiy Comnten v,

Lomponant Heme [Counter —

J——

Pick a name for the output. This

net will be connected to the CSI

r =S Counz| V2 0] bus so that the DMA can take
over the transfer.

r

"ty

F CikEna Pick a unigue name of the DMA
Selector. We've chosen

r Fumyms Counter.

Justio e
This counter uses BusClock as

o | Moo | 7 vew | wrmee | the clock source.

Figure B11: Configuring the Counter module

After configuring the connections of the counter, we will need to set the properties as shown in Figure
B12.

37
Triscend Part Number APP305-0022-001

| A Courten - feloadable Dinaty Counter v3 The counter should count up.

oo | Mowon | P e | i |

Figure B12: Setting the Properties of the Counter module

Command Register

We will instantiate a Command Register to act as a memory-mapped holding register verifying the
DMA transfers. The Command Register can be found in the module library tree under Peripherals -
Control. As with the DMA Selectors, drag and drop a Command Register into the CSL window and
configure the Command Register as shown in Figures B13 and B14.

[FPALED_02 - Command egistes v-2 £ Component width should be 8.
Corpatmnl Masw (LED T2 |uuu-ul.;ml] g
r ' pz[7:0]
Label the Q output of the
' Command Register.

Give this IP module a name.
We have chosen LED_D2.

o | Mowes | Prwe | rmee |

Figure B13: Configuring the connections of a Command Register

38
Triscend Part Number APP305-0022-001

WaTriscend

FALED D2 - Command Ragisher w2

Eompsnan Muna [LED 117 | comperant vagh [o -

ASdEH drass Spacs Respones This memory-mapped register
ﬁ 02 % ¥ will reside in the E5’s XData
Address definfon 032 5P space.
% @inw Pastchip in sllscsbe tha e R
I Defire o SEs ..

[1= -y

Give the DMA Selector a
symbolic name. This will be
used in the application code.

o | Mowes | Prwe | rmee |

Figure B14: Configuring the properties of a Command Register

CSI Bus Connections

Data Read

Since we are getting data from the counter, we need a way to place the data on the CSI bus. The Data
Read IP module is used exactly for this purpose. It can be found in the module library tree under CSI
Bus - Data Bus. Figure B15 illustrates the Data Read IP module.

FADatsid - Dats Read

As with all IP modules, you can choose a
name for the module. The component
name is used only for labeling
purposes.

":k“ The input for the Data Read is the
counter’s output — count[7:0].

The enable input is driven by the Ack
output of the DMA Selector named
DMAread because the data only needs to
be transferred after the DMA controller

i | Mowes | P | wIpe | acknowledges the request.

Figure B15: Data Read

39
Triscend Part Number APP305-0022-001

Data Write

The DMA controller (DMAwrite) will automatically place the transferred data onto the CSI bus.
However, we need a way to get the data from the CSI bus and send it to the 8-segment LED. The
Data Write module, the opposite of a Data Read module, is used for this purpose. Figure B16 shows
the Data Write module.

A Datawdy - Daks Wiiks

Give this module a component name. We
have chosen DataWr.

Pick a name for the output net. We have
chosen D1[7:0]. This net will be latched
and connected to output pins, which will be
assigned to the 8-segment LED.

o | Mowes | P | g |

Figure B16: Data Write

Outputs

This project requires 16 output pins to connect to the 2 8-segment LEDS. Drag and drop two output
IP modules into the CSL and configure them as shown in Figures B17 — B19. The IP module can be
found in the module library tree under CSI Bus - |/O.

Output for D1

FADn1 - Dutpat w2

The Component Width is 8 because we
Componan Mame || need 8 pins for the 8-segment LED.

=70 ¥

~ As with the other soft modules, give this
one a name. Since these outputs are for
0 the D1 8-segment LED, we have chosen
D1.

Label the input net. We have chosen
D1[7:0]. This will connect the output of
Data Write to this output module.

o | Mowes | P rew | wimee |

Figure B17: Configuring the connections of an output for D1

For this example project, we would like to latch the data into registers. Please refer to Figure B18 to
learn how to configure the module.

40
Triscend Part Number APP305-0022-001

WaTriscend

Fani

- Dlutpast w_2

Corporan e [The latches need to be clocked by

BusClock.

I coomctons S Froertes

~COuipul Deiva Stmangihe—————————
17 4 i (weakl
™ 12 m& (sirong)

ol Specif an splicl name for the IO 4|

We only want to latch the data after the
DMA Controller for DMA_1 has
acknowledged the request. Therefore the
Ack signal from the DMAwrite module
should act as the clock enable.

o | Moo | P oen | g |

Figure B18: Configuring the properties for D1

Output for D2

FADF - Dutput w2
L The Component Width is 8 because we

SRR wu_u-. need 8 pins for the 8-segment LED.

conpenent e 2

70 ¥ -
As with the other soft modules, give this
one a name. Since these outputs are for
the D2 8-segment LED, we’ve chosen D2.

Label the input net. We have chosen
D27:0]. This will connect the output of
the command register to this output

o o | Mowos | P | wipme | module.

Figure A15: Configuring the connections of an output for D2

We do not need to modify the properties of D2 because no special features are need (such as latching
data).

To complete this example project follow the steps detailed in Appendix A Confiqure I/O Constraints
and Memory Interface Unit (MIU).

41
Triscend Part Number APP305-0022-001

Application Code

The following is the application code for this example project.

/'l Header file generated by FastChip

#i ncl ude "dnagrab. h"

/'l Header file for routines that convert an 8032 | ogi cal
/1 address to a 32-bit physical address
#i ncl ude "dnmap. h"

/1 The size of the buffer created in XDATA RAMis
/'l configurable. Set BUFFERSI ZE as desired.
#def i ne BUFFERSI ZE 256

| * ===
| DECLARE VARI ABLES

T e,
/1l Create a buffer in XDATA RAM and a pointer to it

unsi gned char xdata MBuff er [BUFFERSI ZE] ;

unsi gned char xdata * xdata Buffer_Ptr;

/1l The 'captured_flag', when non-zero, indicates that

/1 valid data is captured in MyBuffer. 0 = No data captured in buffer

/1 Oxff = Data captured

unsi gned char data captured_flag = 0;

R e T T N S ffTTTTTCrrrrrrres
| ROUTI NES
T T e,

/***

** MAI'N ROUTI NE *E

***/

void main(void) {

/1 Execute the initialization file created by Fast Chip.

/1 This sets up any dedi cated resources, including the

42
Triscend Part Number APP305-0022-001

WaTriscend

/1 the DVA controller.
DVAgrab_I NI T();

/1 DVA O is configured for block request node, increnenting

/| addresses, no auto-initialize, CRC checking, 256 byte transfer.

/] Convert the 8032's 16-bit |ogic address pointing to the XDATA
/1 RAM buffer into a 32-bit physical address required by the

/1 DVA controller. Using this nethod allows this code to

/'l operate regardl ess of the initialization nethod used.

11

/1 Put |ogical address in special variables LADDR 1 and LADDRO,
/1 as shown bel ow.

LADDR 1 = (unsigned char) ((unsigned short)&WBuffer >> 8);
LADDR 0 = (unsigned char)((unsigned short)&WBuffer & Oxff);

/1 Then, call the special routine that converts the 16-bit | ogical
/1 address to a 32-bit physical address. The 32-bit address is
/1 provided in variables PADDR 3 down to PADDR_O.

xdat a_l ogi cal _to_physical ();

/] Setup DVAO's start address register

DVASADRO_O = PADDR 0;
DVASADRO_1 = PADDR 1;
DVASADRO_2 = PADDR 2;
DVASADRO_3 = PADDR 3;

/1 Load DMAQ's length count. Note, the value |loaded is the buffer

/] size mnus 1.

DMASCNTO 0 = ((BUFFERSI ZE-1) & Oxff);
DMASCNTO 1 = (((BUFFERSI ZE- 1) >>8) & Oxff);
DMASCNTO 2 = (((BUFFERSI ZE- 1) >>16) & Oxff);

/1 Enable the DVMA channel 0 and initialize the transfer
DMACTRLO_O | = 0x06;

/1 Enabl e ' DMAcounter' control register to access DVA channel O
/1 NOTE: Upper and | ower nibbles MJST be identical.
DVA Counter = 0x11;

43
Triscend Part Number APP305-0022-001

/1 DVA 1 is configured for single transfer request node,

/1 increnenting addresses, no auto-initialize, 265 byte

/1 transfer

/1 Setup DVA 1's start address register to the sane | ocation used
/1 by DVA O,

DVASADRL_0
DVASADRL_1
DVASADRL_2
DVASADRL_3

as shown earlier.
PADDR O;
PADDR 1;
PADDR _2;
PADDR_3;

/1 Load DVA_1's |ength count

DVASCNT1_0
DVASCNT1 1
DVASCNT1_2

((BUFFERSI ZE-1) & Oxff);
(((BUFFERSI ZE- 1) >>8) & Oxff);
(((BUFFERSI ZE- 1) >>16) & Oxff);

/1 Enable the DVA channel 1 and initialize the transfer
DMACTRL1_0 | = 0x06;

/1 Enable DMAwite control register to access DVA Channel 1

DVA Wite =

0x33;

/1 Start the fun by perfornming a software DVA request on DVA Channel
DMACTRLO_O | = 0x10;

/1 Set Buffer_Ptr to the address of the first

/1 buffer.

This is used during verification. |f everything

/1 operates correctly, then LED D2 equals LED D1 on the Triscend E5

/| Devel oprment Board.
Buf fer _Ptr = &WBuffer;

while (1) {

/1 An enbedded program never ends

/1 The 8032 MCU is fully functional while the DVA

/1 controller is operating. Add your own function
/1 here.

44

Triscend Part Number APP305-0022-001

| ocation in the XDATA RAM

WaTriscend

/***

** WATCHDOG | NTERRUPT SERVI CE ROUTI NE **

***/

void WDT_I SR(void) interrupt 12 {

if

(captured_flag) {

/1 Display current value frombuffer located in
/1 internal XDATA RAM for verification purposes.
LED D2 = *Buffer_Ptr++;

/'l Transfer one byte from XDATA RAM usi ng DVA 1.
/1 Set a software DVA request.
DVACTRL1_O | = 0x10;

}

/1 Clear watchdog timer interrupt flag (WDIF). This
/1 is a protected bit. Open the Tined Acces (TA)

/1 register by witing OxAA foll owed by 0x55.

TA = OxAA

TA = 0x55;

WDl F = O;

/***

** DVA CONTROLLER I NTERRUPT SERVI CE ROUTI NE **

***/

void DVA_|I SR(void) interrupt 7 {

/*

If DMA O is finished capturing data, set the
"capture_flag' and re-initialize DVA 1. dear

the DVA O term nal count interrupt when done.

If DVA 1 is finished displaying data, clear the
"capture_flag', re-initialize DVA 0, then set

a software DVA request to capture nore data using
DVMA 0. Clear the DVA 1 term nal count interrupt

when done. */

45
Triscend Part Number APP305-0022-001

/1 DVA 1 Conplete: Check TC bit in DVAL status register
if (DVAINT1 & 0x01) ({

/1 Clear captured flag
captured_flag = 0;

/1 Re-initialize DVA O transfer and set software request
DVACTRLO_O | = 0x14;

/1 Clear TC bit by witing a '1" to the bit location
DVAI NT1 | = 0x01;
/1 DVA O Conplete: Check TC bit in DVAO status register

if (DMAINTO & Ox01) {

/1l Reset Buffer_Ptr, used for verification purposes
Buffer_Ptr = &WBuffer;

/!l Re-initialize DVA 1 transfer
DMACTRL1_0 | = 0x04;

/1 Data is captured in MyBuffer, set 'captured_flag'
captured_flag = Oxff;

/1l Clear TC bit by witing a '1" to the bit location
DMAI NTO | = 0x01;

46
Triscend Part Number APP305-0022-001

WaTriscend

Revision History

Revision

Date

Comment

1.0

25-JUN-2001

Initial release

WaTriscend

Triscend Corporation

301 North Whisman Road
Mountain View, CA 94043-3969
USA

Tel: 1-650-968-8668
Fax: 1-650-934-9393

Support: Support Center @ri scend. com
Web: www. t ri scend. cont sal essupport

47
Triscend Part Number APP305-0022-001

	Scope
	Overview
	
	
	
	
	
	
	Figure 1: DMA channels shown in FastChip

	Functional Description
	Configuring the DMA Channels
	
	
	
	
	
	
	Figure 2: Relationship between E5 Dedicated DMA Resource and FastChip

	DMA Selector Module
	
	
	
	
	
	Figure 3: A DMA Selector in FastChip

	DMA Channel Module
	
	
	
	
	
	Figure 4: DMA Channel 0 in FastChip

	Transfer Type
	
	
	
	
	Table 1: DMA Transfer Types

	Transfer Settings
	
	
	
	
	Figure 5: Excerpt of C code needed to define the starting address for a DMA transfer

	Address Generation
	Interrupt Enables

	Before Getting Started
	Scope
	
	
	In this tutorial you will learn how to:

	Design Overview
	Configuring the DMA Channels
	Configuring DMA_0
	Configuring DMA_1

	Selecting and Configuring IP Modules
	DMA Selectors
	DMAread
	DMAwrite

	Command Register
	CSI Bus Connections
	Data Read
	Data Write

	Inputs
	Outputs
	Output for D1
	Output for D2

	Configure I/O Constraints and Memory Interface Unit (MIU)
	Configuring the MIU€

	Generate Code for Your Compiler
	Bind the Project
	Application Code
	Using the BFM with the DMA
	Before Getting Started
	Scope
	
	
	In this tutorial you will learn how to:

	Design Overview
	Configuring the DMA Channels
	Configuring DMA_0
	Configuring DMA_1
	Configuring the Watchdog Timer (WDT)

	Selecting and Configuring IP Modules
	DMA Selectors
	DMA_Counter
	DMA_Write

	Counter
	Command Register
	CSI Bus Connections
	Data Read
	Data Write

	Outputs
	Output for D1
	Output for D2

	Application Code

