

© 2001 by Triscend Corporation. All rights reserved. www.triscend.com

 Triscend Part Number APP305-0022-001

Using the E5 Embedded
DMA Controller

July 2001 AN-22
Abstract

This application note describes how to use the DMA feature of the E5 by working through example
designs.

Contents

Using the E5 Embedded DMA Controller..1
Scope ...2
Overview ..2
Functional Description ...3
Configuring the DMA Channels ...4

Appendix A: Example Design Project – DMA Wires ...8
Before Getting Started ...8
Scope ...8
Design Overview..9
Configuring the DMA Channels ...9
Selecting and Configuring IP Modules...11
Configure I/O Constraints and Memory Interface Unit (MIU)...18
Generate Code for Your Compiler ...20
Bind the Project..21
Application Code..21
Using the BFM with the DMA...27

Appendix B: Example Design Project – DMA Grab ..30
Before Getting Started ...30
Scope ...30
Design Overview..30
Configuring the DMA Channels ...31
Selecting and Configuring IP Modules...35
Application Code..42

 2

 Triscend Part Number APP305-0022-001

Scope
This DMA application note will demonstrate how to use the DMA channels on the E5 device contained
on the Triscend Development Board. Although the information contained in this application note is
valid for all E5 CSoC devices, this document will focus on the E520 because it featured on the E5
development board. The basics of the DMA feature can be found in the E5 Data Sheet. This
application note will cover the following more advanced DMA functions:

�� Software Request Mode

�� Continuous Initialization

�� DMA Reads

�� DMA Writes

It is assumed that the user understands the basics of FastChip, FastChip Device Link Utility, and Keil
Software development tools for software development and debug.

Overview
The E5 features an embedded two-channel DMA controller, which allows the CSL to access memory.
Each channel is autonomous from the 8032 micro-controller, freeing the processor from mundane,
performance-stealing, data transfer tasks. Each channel is designed to transfer a byte of data on each
clock cycle. The following data transfer modes are available:

�� DMA Read � I/O (CSL) to Memory

�� DMA Write � Memory to I/O (CSL)

�� Memory-to-Memory

A device associates itself with a particular channel via the DMA control register (DMA Selector), which
contains a request and acknowledge signal pair. The two DMA channels can be paired to perform
memory-to-memory transfers.

 3

 Triscend Part Number APP305-0022-001

Figure 1: DMA channels shown in FastChip

Functional Description

The E5’s DMA feature is comprised of two independent channels. The operation for each DMA
channel is defined by a set of parameters. From a designer’s point of view, the most important set-up
parameters are:

�� Memory starting address

�� Starting transfer count

�� Direction of transfer

Although each channel has its own set of registers, a designer can configure each DMA channel
without delving into the details of each configuration register. By using FastChip, a designer can easily
configure each DMA channel via the GUI.

The two DMA channels,
DMA_0 and DMA_1, are
dedicated resources of
the E5.

 4

 Triscend Part Number APP305-0022-001

Configuring the DMA Channels

The easiest and most efficient way to configure the DMA channels is via FastChip’s GUI. Figure 2
illustrates the relationship between FastChip and the DMA channels.

Figure 2: Relationship between E5 Dedicated DMA Resource and FastChip

 5

 Triscend Part Number APP305-0022-001

DDMMAA SSeelleeccttoorr MMoodduullee
The DMA Selector is FastChip’s version of the DMA Control Register (please see Figure 2). The DMA
selector offers DMA services to functions within the CSL logic by providing bus-mastering services for
CSL peripherals. The main features of the DMA Selector include:

�� Providing request and acknowledge steering to a specific DMA channel

�� Always one byte wide

�� Exists in either Data or SFR space

�� Accessible via a symbolic address

Figure 3 shows a DMA Selector in FastChip.

Figure 3: A DMA Selector in FastChip

When active, the Req
input requests a DMA
transaction.

The Ack signal is active
when the DMA controller
acknowledges the
transaction request.

Allows a user to specify a
symbolic address that their
application code will use to
reference the memory-
mapped resource. FastChip
equates the symbolic address
to a physical address in the
header file.

Allows a user to select
which DMA channel to
access.

Allows a user to select
between XDATA and SFR
space. Triscend recommends
that XDATA space be used
for normal applications.

 6

 Triscend Part Number APP305-0022-001

DDMMAA CChhaannnneell MMoodduullee

FastChip provides two DMA Channel Controller Modules (DMA_0 and DMA_1), one for each channel.
Figure 4 shows a DMA Channel Controller Module in FastChip.

Figure 4: DMA Channel 0 in FastChip

The DMA Channel Module is composed of four major control sections, each of which is described
below.

Transfer Type

The Transfer Type control allows a user to define the type of DMA transaction for a specified channel.

Transfer Type Data Read From Data Written To

DMA Read � I/O to Memory CSL memory

DMA Write � Memory to I/O memory CSL

Memory-to-Memory memory memory

Table 1: DMA Transfer Types

It is important to remember that a CSL location is accessed via a DMA Selector. A memory location is
any addressable location, however, the DMA controllers operate in a 32-bit physical address space, not
the 16-bit logical space. See the example project (Appendix A) for a software routine to convert 16-bit
logical addresses to 32-bit physical addresses. The example at the end of this app note will address
this issue.

For memory-to-memory transfers, DMA Channel 0 is used to control the transfer and is responsible
for reading the source location whereas Channel 1 is responsible for writing to the destination location.

Transfer Settings
The Transfer Settings area allows a user to define a 24-bit transfer count, a 32-bit start address, set
continuous initialization until reset, and block request mode. Each of these options is explained in
detail in the E5 Data Sheet and in FastChip help. It is important to remember that the 32-bit start
address must be defined in the application code. See Figure 5 for an example.

.

F

A

T
e

•

•

•

In

E
c
In

•

•

•

C

// Must set up the Starting Address registers,

// enable and initialize the channel before starting any transfers.

// DMA Start Address is a 32-bit _physical_ address value stored

// in the following locations

// DMASADR0_0 = Start_Address[7:0]

// DMASADR0_1 = Start_Address[15:8]

// DMASADR0_2 = Start_Address[23:16]

// DMASADR0_3 = Start_Address[31:24]
7

 Triscend Part Number APP305-0022-001

igure 5: Excerpt of C code needed to define the starting address for a DMA transfer

ddress Generation

he Address Generation area allows the user to decide how the DMA source address is modified after
ach transfer in order to set up for the following transfer. There are three possible options:

 Increment after transfer – increments the current address by one byte.

 Decrement after transfer – decrements the current address by one byte.

 Constant address – maintains the current address value for the next transfer.

terrupt Enables

ach DMA channel has its own set of interrupt sources and interrupt enable controls. The user can
hoose the source of an interrupt by clicking on the appropriate choice in the Interrupt Enables area.
terrupts may be generated for the following cases:

 Transfer terminal count – transfer counter reaches 0. This indicates that the desired number of
bytes has been transferred.

 Transfer initialization – indicates a DMA channel has been initialized including the cases when the
continuous initialization until reset mode is used.

 Pending request overflow – indicates that the DMA has greater than 64K unserviced requests.

licking on the View Header button displays the code that is generated by FastChip.

 8

 Triscend Part Number APP305-0022-001

Appendix A: Example Design Project – DMA Wires

Before Getting Started
Before starting this tutorial make sure that you have the following items. Please refer to the Triscend E5
Development Board for information on all the items included with the Triscend E5 Evaluation Kit

�� Latest version of FastChip properly installed on your computer.

�� Keil uVision2 properly installed on your computer.

�� A Triscend E5 Development Board with a download cable.

Scope
This example design project introduces you to the basic operations and the design flow of the Triscend
FastChip development system. It guides you through a sample project using the E5’s DMA controllers.

It will provide an introduction to hardware design with CSoC devices, specifically utilizing the DMA
controller modules and some of their main features.

The audience for this example design project is an intermediate user. First time users may first want to
review the FastChip online tutorial. The tutorial is available by opening FastChip, then making the
menu selection Help ���� Triscend CSoC Learning Center (Tutorial).

In this tutorial you will learn how to:
�� Add IP modules from the FastChip library, including the DMA Selectors.

�� Connect the signals between the IP modules.

�� Set up CSoC dedicated resources.

�� Assign I/O pins

�� Generate header and source file for your C application

�� Bind the project.

�� Download the CSL configuration and the C application image to external Flash memory, via the
CSoC device.

 9

 Triscend Part Number APP305-0022-001

Design Overview
This FastChip example project uses the DMA to emulate a set of wires. Information from a DIP switch
is displayed on an 7-segment LED display. Using the DMA channels, the same information is sent to
the second LED display.

Figure A1: Block Diagram

Configuring the DMA Channels

This project makes use of both DMA channels, DMA_0 and DMA_1. FastChip’s interface to the E5’s
dedicated resources is shown in Figure A2.

Figure A2: Dedicated resources window in FastChip.

CCoonnffiigguurriinngg DDMMAA__00

Click from the dedicated resources window to configure DMA Channel 0. For this project,
DMA_0 needs to be configured for I/O to Memory transfers, because data from the DIP switch needs
to be transferred to a memory mapped register (Holding_Reg).

DMA CTRL 0

ACK

REQ

DMA CTRL 1

ACK

REQ

DMA Read DMA Write

Dip Switch
8.

8.
Holding
Register

D1

D2

 10

 Triscend Part Number APP305-0022-001

For this project, DMA_0 needs to be continuously initialized until reset so that DMA_0 and DMA_1
can feed off each other continuously. This option can be set in the Transfer Settings section (see
Figure A3).

Since the source of the DMA transfer is a single memory-mapped register, we need to keep the starting
address constant. This option can be set in the Address Generation section (see Figure A3).

For this project, DMA_0 should be configured as shown in Figure A3.

Figure A3: Configuring DMA_0

Checking the Generate Code box initiates a header code generation session. All the DMA_0’s
registers will be set appropriately depending on the options selected in the configuration window. It is
important to note that the start address must be defined in the application code.

Enables FastChip to
generate C or assembly
header code for DMA_0.

Select I/O to Memory for
a DMA read transfer.

The DIP switch has 8
positions, therefore the
DMA only needs to
transfer 1 byte.

Select continuous
initialization until reset.

Keep the address
constant.

 11

 Triscend Part Number APP305-0022-001

CCoonnffiigguurriinngg DDMMAA__11

DMA Channel 1 should be configured exactly like DMA_0, except DMA_1 needs to be configured for
Memory to I/O transfers. See Figure A4 to see how to configure DMA_1.

Figure A4: Configuring DMA_1

Selecting and Configuring IP Modules

For this project, six different modules are instantiated directly from the Triscend IP module library. The
following modules will be used in this example project:

�� DMA Selectors – used for interaction between the CSL and the DMA channels.

�� Command Register – used for the holding register.

�� Data Write – write data from the CSI bus’ point of view.

�� Data Read – read data from the CSI bus’ point of view.

�� Inputs – used to input data from the DIP switch.

�� Outputs – used to output data to the 7-segment displays.

DDMMAA SSeelleeccttoorrss
Two DMA Selectors are needed for this project – one for DMA Channel 0 (DMA_0) and the other for
DMA Channel 1 (DMA_1). The modules can be found in the module library tree under CSI Bus ����
Selectors.

Enables FastChip to
generate C or assembly
header code for DMA_0.

Select Memory to I/O for
a DMA write transfer.

The DIP switch has 8
positions, therefore the
DMA only needs to
transfer 1 byte.

Select continuous
initialization until reset.

Keep the address
constant.

 12

 Triscend Part Number APP305-0022-001

Each IP module has a Component Name which can the designer can choose. The Component
Name does not affect the functionality of the design in any way. It is used only to label the
modules. We will name the two selectors DMAread and DMAwrite.

DMAread
Drag and drop the DMA Selector into the CSL window and click the module to access Connections
and Properties dialog boxes. Figure A5 illustrates the Connections dialog box for a DMA Selector.

Figure A5: Configuring the connections of a DMA Selector for DMA_0

After configuring the connections as shown in Figure A5 click on the Properties tab to configure the
DMA Selector’s properties. Figure A6 illustrates the Properties dialog box for a DMA Selector.

Figure A6: Configuring the properties of a DMA Selector for DMA_0

The Req input of this DMA
Selector needs to be connected
to the Ack output of the second
DMA Selector (DMAwrite).

The Ack output of this DMA
Selector needs to be connected
to the Req input of the second
DMA Selector (DMAwrite).

Pick a unique name of the DMA
Selector. We have chosen
DMAread.

This DMA Selector is going to
access DMA Channel 0.

Give the DMA Selector a
symbolic name. This will be
used in the application code.

 13

 Triscend Part Number APP305-0022-001

DMAwrite
Drag and drop another DMA Selector into the CSL window. As before, click the module to access
Connections and Properties dialog boxes. Figure A7 illustrates the Connections dialog box for a
DMA Selector.

Figure A7: Configuring the connections of a DMA Selector for DMA_1

After configuring the connections as shown in Figure A7 click on the Properties tab to configure the
DMA Selector’s properties. Figure A8 illustrates the Properties dialog box for a DMA Selector.

Figure A8: Configuring the properties of a DMA Selector for DMA_1

The DMA portion of this example project has been configured.

CCoommmmaanndd RReeggiisstteerr
We will instantiate a Command Register to act as a memory-mapped holding register for the DMA
transfers. The Command Register can be found in the module library tree under Peripherals ����

The Req input of this DMA
Selector needs to be connected
to the Ack output of the second
DMA Selector (DMAread).

The Ack output of this DMA
Selector needs to be connected
to the Req input of the second
DMA Selector (DMAread).

Pick a unique name of the DMA
Selector. We have chosen
DMAwrite.

This DMA Selector is going to
access DMA Channel 1.

Give the DMA Selector a
symbolic name. This will be
used in the application code.

 14

 Triscend Part Number APP305-0022-001

Control. As with the DMA Selectors, drag and drop a Command Register into the CSL window and
configure the Command Register as shown in Figures A9 and A10.

Figure A9: Configuring the connections of a Command Register

Figure A10: Configuring the properties of a Command Register

Component width should be 8
since we are doing byte-wide
transfers.

Label the Q output of the
Command Register.
CmdReg_A[7:0] is the default
name.

Give this IP module a name.
We have chosen Holding _Reg.

This memory-mapped register
will reside in the E5’s XData
space.

Give the DMA Selector a
symbolic name. This will be
used in the application code.

 15

 Triscend Part Number APP305-0022-001

CCSSII BBuuss CCoonnnneeccttiioonnss

Data Read

Since we are getting data from the DIP switch, we need a way to place the data on the CSI bus. The
Data Read IP module is used exactly for this purpose. It can be found in the module library tree under
CSI Bus ���� Data Bus. Figure A11 illustrates the Data Read IP module.

Figure A11: Data Read

Data Write
The DMA controller (DMAwrite) will automatically place the transferred data onto the CSI bus.
However, we need a way to get the data from the CSI bus and send it to the 8-segment LED. The
Data Write module, the opposite of a Data Read module, is used for this purpose. Figure A12 shows
the Data Write module.

Figure A12: Data Write

As with all IP modules, you can choose a
name for the module. The component
name is used only for labeling
purposes.

The input for the Data Read is the DIP
switch.

The enable input is driven by the Ack
output of the DMA Selector named
DMAread because the data only needs to
be transferd after the DMA controller
acknowledges the request.

Give this module a component name.
We’ve chosen DataWr.

Pick a name for the output net. We’ve
chosen DataWr[7:0]. This net will be
connected to output pins, which will be
assigned to the 8-segment LED.

 16

 Triscend Part Number APP305-0022-001

IInnppuuttss
For this project we need to instantiate 8 input pins. Drag and drop one input IP module into the CSL
and configure it as shown in Figure A13. The IP module can be found in the module library tree under
CSI Bus ���� I/O.

Figure A13: Configuring the connections of an input.

The properties of an input IP module can also be configured, however, for this example project we
have left them at their default settings.

OOuuttppuuttss
This project requires 16 output pins to connect to the two 7-segment LED displays. Drag and drop two
output IP modules into the CSL and configure them as shown in Figures A14 – A16. The IP module
can be found in the module library tree under CSI Bus ���� I/O.

Output for D1

Figure A14: Configuring the connections of an output for D1

Label the output net. We have chosen
switch[7:0]. This will connect this input
to the Data Read IP module

As with the other IP modules, give this one
a name. Since these inputs are from a DIP
switch, we have chosen DipSwitch.

The Component Width is 8 because we
need 8 pins for the DIP switch.

The Component Width is 8 because we
need 8 pins for the 8-segment LED.

As with the other IP modules, give this one
a name. Since these outputs are for the
D1 7-segment LED, we’ve chosen D1.

Label the input net. We have chosen
CmdReg_A[7:0]. This will connect the
output of the Holding Register to this
output module.

 17

 Triscend Part Number APP305-0022-001

For the D1 input, the Properties do not need to be configured. Leave them at their default settings.

Output for D2

Figure A15: Configuring the connections of an output for D2

For this example project, we would like to latch the data into registers. Configuring the properties of the
output IP module can do this as shown in Figure A16.

Figure A16: Configuring the properties for D2

The Component Width is 8 because we
need 8 pins for the 8-segment LED.

As with the other IP modules, give this one
a name. Since these outputs are for the
D2 7-segment LED, we’ve chosen D2.

Label the input net. We have chosen
DataWr7:0]. This will connect the output
of DataWr to this output module.

The latches need to be clocked by
BusClock.

We only want to latch the data after the
DMA Controller for DMA_1 has
acknowledged the request. Therefore the
Ack signal from the DMAwrite module
should act as the clock enable.

 18

 Triscend Part Number APP305-0022-001

Configure I/O Constraints and Memory Interface Unit (MIU)
In order for the example project to function properly, the input and output pads need to be assigned to
specific package pins. The FastChip I/O Editor provides an intuitive interface to assign I/O pads to the
package pin. Select I/O Editor from the Constraints menu. Once the I/O window comes up, click

 to expand the window.

Figure A17: FastChip’s I/O Editior with all pads assigned

You can view all unassigned I/O pads from the Available I/O Pads area on the left. To assign a pad to a
package pin, simply drag the pad into the chip package image window and drop it onto the desired
package pin. If you make an error, you can move the pad by dragging and dropping it onto another pin.
Assign all pads to their respective package pins according to the following table. Click OK after you
finished assigning pads.

 19

 Triscend Part Number APP305-0022-001

Module Pad Name Pin Number

D1.0 65

D1.1 94

D1.2 85

D1.3 82

D1.4 79

D1.5 57

D1.6 55

D1

D1.7 89

D2.0 44

D2.1 50

D2.2 34

D2.3 33

D2.4 31

D2.5 41

D2.6 35

D2

D2.7 36

DipSwitch.7 12

DipSwitch.6 16

DipSwitch.5 17

DipSwitch.4 32

DipSwitch.3 42

DipSwitch.2 43

DipSwitch.1 48

DIP SWITCH

DipSwitch.0 49

Table A1: I/O Pin Assignment

CCoonnffiigguurriinngg tthhee MMIIUU
For this example we are going to use the E5 development board Flash memory to configure the CSoC
device. To perform this we need to assign the external memory I/O pins to the device. Click on MIU in
the I/O Editor window, shown in Figure A17. Select the external 512Kx8-bit external memory, as shown

 20

 Triscend Part Number APP305-0022-001

in Figure A18. Note, alternatively the CSoC can be configured directly from the download cable. In this
case no external memory I/O pins need to be assigned

Figure A18: Configuring the MIU

Generate Code for Your Compiler

FastChip can generate C or assembly source code with declarations for the addressable registers in
the configurable logic, such as the symbolic address Holding_Reg in the Holding_Reg command
register IP module.

In addition, you can instruct FastChip to generate initialization functions for the dedicated resources.
Some of the dedicated resource dialog boxes allow you to specify the desired startup state of the
dedicated resources. You can selectively enable the Generate Code option to instruct FastChip to
include functions for setting up the special function registers (SFR) associated with that dedicated
resource in the generated source code.

At this time, no other Dedicated Resources need to be configured, and you can disable the Generate
Code options in them to reduce the already modest code size of the generated source code.

Click to invoke the Generate Code dialog box.

Figure A19: Generate Code window

If the Put all code (registers and initialization routines) in a single file option is selected, FastChip
generates only one file:

Choose the 512K x 8-bit
external memory.

Select language for generated header
code.

It is a good idea to place the .h file in the
same directory as the rest of the project,
including the application code.

Select this option to put all the header
code in a single .h file. The file will be
named <project_name>.h.

 21

 Triscend Part Number APP305-0022-001

DMAwires.h <project_name>.h
This file contains necessary macro definitions and all the external address declarations for IP modules.
It also contains prototypes for the dedicated resources init functions. This file also contains necessary
macro definitions, address declarations for IP modules, and function definitions of the dedicated
resources init functions.

For the E5 CSoC, if the project name is more than 8 characters long, the file name is truncated. This is
because some of the 3rd party vendor software only support 8.3 notation file names.

Important
Subsequent generate sessions will overwrite the previous <project_name>.h files with no warning.
Make sure that you do not have any other files in the project directory with this name prior to
performing a Generate.

Bind the Project

In order to realize the logic in your FastChip project on the CSoC silicon, the design content will need to
be processed into configuration information for the configurable system logic on the silicon. This
process is called Bind. This process is analogous to the compile-link-load process when compiling a
program or the map-place-route process for creating a gate array or FPGA.

Click . Accept the default selection of minimum bind effort and click OK.

Bind is a computational-intensive process. FastChip applies several complex computing algorithms to
optimize your design and to fit it into the CSL. Typical bind processing for a project like DMAwires
takes three to five minutes on computers meeting the minimum system requirement. The status bar on
the wait dialog box shows you how Bind is progressing.

The final result from Bind is an initialization file called <project_name>.csl. You will use this file later to
combine it with your software application image to download to the CSoC.

Application Code
The following is the application code for this example project. The header file, DMAwires.h, has been
included as a comment for your reference.

// Include header file created by FastChip

#include "DMAwires.h"

// Header file for routines that convert an 8032 logical

// address to a 32-bit physical address

#include "dmap.h"

void main() {

unsigned char Update;

// Call initialization routines created by FastChip. These functions

 22

 Triscend Part Number APP305-0022-001

// set up the dedicated resources, including the DMA Controller.

// The initialization routines do not setup the Start Address for the

// DMA transfer, nor do they enable or initialize the channels.

DMAwires_INIT ();

// Write an arbitrary value to the 'Holding_Register', which connects to LED D2.

// If LED D2 equals this value later, then we are not able to transfer data using

// the DMA controller.

Holding_Reg = 0x00;

/* --- */

/* SET UP DMA CHANNEL 0 */

/* --- */

* This section is a copy of the DMA 0 setup code created automatically by

* FastChip. This code is executed as part of the DMAwired_INIT() routine.

*

* // DMACTRL0_0 (Address 0xff27)

* // +-----+-----+-----+------+-----+-----+-----+-----+

* // | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | BIT LOCATIONS

* // +=====+=====+=====+======+=====+=====+=====+=====+

* // | W/R-| PAIR|BLOCK|SFTREQ| CONT| INIT| EN | CLR | BIT NAMES

* // +=====+=====+=====+======+=====+=====+=====+=====+

* // | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | REGISTER VALUE

* // +-----+-----+-----+------+-----+-----+-----+-----+

*

* // DMACTRL0_1 (Address 0xff28)

* // +-----+-----+-----+-----+-----+------+-----+-----+

* // | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | BIT LOCATIONS

* // +=====+=====+=====+=====+=====+======+=====+=====+

* // | | | | | |CRC_EN|ADRM1|ADRM0| BIT NAMES

* // +=====+=====+=====+=====+=====+======+=====+=====+

* // | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | REGISTER VALUE

* // +-----+-----+-----+-----+-----+------+-----+-----+

*

* // DMAEINT0 (Address 0xff29)

* // +-----+-----+-----+-----+-----+------+-------+-----+

* // | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | BIT LOCATIONS

* // +=====+=====+=====+=====+=====+======+=======+=====+

 23

 Triscend Part Number APP305-0022-001

* // | | | | | |OVR_EN|INIT_EN|TC_EN| BIT NAMES

* // +=====+=====+=====+=====+=====+======+=======+=====+

* // | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | REGISTER VALUE

* // +-----+-----+-----+-----+-----+------+-------+-----+

*

* // Set up the DMA Channel 0 control register

* // ---

* DMACTRL0_0 = 0x01; // Clear DMA channel 0 control register

* DMACTRL0_1 = 0x01; // Set high-byte settings in control register

* DMACTRL0_0 = 0x08; // Set low-byte settings in control register

*

*

* // Set up the transfer count

* // -------------------------

* // NOTE: TRANSFER_COUNT = (BYTE_COUNT - 1)

* DMASCNT0_0 = 0x00; // Move transfer cnt low-byte of DMA 0 tansfer cnt reg

* DMASCNT0_1 = 0x00; // Move transfer cnt mid-byte of DMA 0 transfer cnt reg

* DMASCNT0_2 = 0x00; // Move transfer cnt high-byte of DMA 0 transfer cnt reg

*

* // Enable the DMA Channel 0 interrupts

* // -----------------------------------

* DMAINT0 = 0x07; // Clear DMA channel 0 interrupt flags by writing ones to bit

* DMAEINT0 = 0x00; // Enable DMA channel 0 interrupts

*

* // NOTE: Must still set up the Starting Address registers and

* // ==== enable and initialize the channel before starting any transfers.

* // DMA Start Address is a 32-bit _physical_ address value stored in the following

* // locations

* // DMASADR0_0 = Start_Address[7:0]

* // DMASADR0_1 = Start_Address[15:8]

* // DMASADR0_2 = Start_Address[23:16]

* // DMASADR0_3 = Start_Address[31:24]

*

***/

// Convert the 8032's 16-bit logic address pointing to the XDATA

// RAM buffer into a 32-bit physical address required by the

// DMA controller. Using this method allows this code to

// operate regardless of the initialization method used.

//

 24

 Triscend Part Number APP305-0022-001

// Put logical address in special variables LADDR_1 and LADDR0,

// as shown below.

LADDR_1 = (unsigned char)((unsigned short)&Holding_Reg >> 8);

LADDR_0 = (unsigned char)((unsigned short)&Holding_Reg & 0xff);

// Call the special routine that converts the 16-bit logical

// address to a 32-bit physical address. The 32-bit address is

// provided in variables PADDR_3 through PADDR_0.

xdata_logical_to_physical();

// Setup DMA0's start address register

DMASADR0_0 = PADDR_0;

DMASADR0_1 = PADDR_1;

DMASADR0_2 = PADDR_2;

DMASADR0_3 = PADDR_3;

// Enable the DMA channel 0 and initialize the transfer

DMACTRL0_0 |= 0x06;

// Enable DMA_READ control register to access DMA channel 0

// NOTE: Upper and lower nibbles MUST be identical.

DMAread = 0x11;

/* --- */

/* SET UP DMA CHANNEL 1 */

/* --- */

* This section is a copy of the DMA 0 setup code created automatically by

* FastChip. This code is executed as part of the DMAwired_INIT() routine.

*

* // DMACTRL1_0 (Address 0xff3b)

* // +-----+-----+-----+------+-----+-----+-----+-----+

* // | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | BIT LOCATIONS

* // +=====+=====+=====+======+=====+=====+=====+=====+

* // | W/R-| PAIR|BLOCK|SFTREQ| CONT| INIT| EN | CLR | BIT NAMES

* // +=====+=====+=====+======+=====+=====+=====+=====+

* // | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | REGISTER VALUE

* // +-----+-----+-----+------+-----+-----+-----+-----+

*

 25

 Triscend Part Number APP305-0022-001

* // DMACTRL1_1 (Address 0xff3c)

* // +-----+-----+-----+-----+-----+------+-----+-----+

* // | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | BIT LOCATIONS

* // +=====+=====+=====+=====+=====+======+=====+=====+

* // | | | | | |CRC_EN|ADRM1|ADRM0| BIT NAMES

* // +=====+=====+=====+=====+=====+======+=====+=====+

* // | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | REGISTER VALUE

* // +-----+-----+-----+-----+-----+------+-----+-----+

*

* // DMAEINT1 (Address 0xff3d)

* // +-----+-----+-----+-----+-----+------+-------+-----+

* // | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | BIT LOCATIONS

* // +=====+=====+=====+=====+=====+======+=======+=====+

* // | | | | | |OVR_EN|INIT_EN|TC_EN| BIT NAMES

* // +=====+=====+=====+=====+=====+======+=======+=====+

* // | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | REGISTER VALUE

* // +-----+-----+-----+-----+-----+------+-------+-----+

*

* // Set up the DMA Channel 1 control register

* // ---

* DMACTRL1_0 = 0x01; // Clear DMA channel 1 control register

* DMACTRL1_1 = 0x01; // Set high-byte settings in control register

* DMACTRL1_0 = 0x88; // Set low-byte settings in control register

*

* // Set up the transfer count

* // -------------------------

* // NOTE: TRANSFER_COUNT = (BYTE_COUNT - 1)

* DMASCNT1_0 = 0x00; // Move transfer cnt low-byte of DMA 1 transfer cnt reg

* DMASCNT1_1 = 0x00; // Move transfer cnt mid-byte of DMA 1 transfer cnt reg

* DMASCNT1_2 = 0x00; // Move transfer cnt high-byte of DMA 1 transfer cnt reg

*

* // Enable the DMA Channel 1 interrupts

* // -----------------------------------

* DMAINT1 = 0x07; // Clear DMA_1 interrupt flags by writing ones to bit

* DMAEINT1 = 0x00; // Enable DMA channel 1 interrupts

*

* // NOTE: Must still set up the Starting Address registers and

* // ==== enable and initialize the channel before starting any transfers.

* // DMA Start Address is a 32-bit _physical_ addr value stored in the following

* // locations:

 26

 Triscend Part Number APP305-0022-001

* // DMASADR1_0 = Start_Address[7:0]

* // DMASADR1_1 = Start_Address[15:8]

* // DMASADR1_2 = Start_Address[23:16]

* // DMASADR1_3 = Start_Address[31:24]

*

* // DMA Channel 1 grabs value from 'Holding_Register' and displays it on LED D1.

* // Load the start address of DMA Channel 1.

* DMASADR1_3 = 0x88;

* DMASADR1_2 = 0x10;

* DMASADR1_1 = 0xef;

* DMASADR1_0 = 0xfc;
*** */

// Setup DMA0's start address register

// Since the start address for DMA_1 is also the 'Holding Register', the starting

// address for DMA_1 will be the same as the starting address for DMA_0. If they

// had different starting adddresses, then you would have to use the same routine

// that was used for DMA_0.

DMASADR1_0 = PADDR_0;

DMASADR1_1 = PADDR_1;

DMASADR1_2 = PADDR_2;

DMASADR1_3 = PADDR_3;

// Enable the DMA channel 1 and intialize the transfer

DMACTRL1_0 |= 0x06;

// Enable DMA_WRITE control register to access DMA Channel 1

DMAwrite = 0x33;

// Start the fun by performing a software DMA request on DMA Channel 0

DMACTRL0_0 |= 0x10;

// An embedded system program never ends

while (1) {

Update++;

}

 27

 Triscend Part Number APP305-0022-001

Using the BFM with the DMA
This section describes how to use the DMA functionality of the Bus Functional Model. For a thorough
description of the BFM please refer to Application Note AN32. Code for the testbench.v file follows.

`timescale 1ns/10ps

/**

*

* Triscend Corporation

*

* Fast Chip 2.0 Project

*

**

*

*

* Module: CSL RTL Testbench

*

*

* Description:

*

* This is the testbench for interfacing your CSL design

* to the Bus Functional Model, for the purposes of testing

* it before needing to download it onto the hardware.

*

***/

// (Optional) To globally initialize flip-flops and latches:

// 1. compile TriscendV.v with the TRDEF_GLOBAL flag defined

// (+define+TRDEF_GLOBAL command line option can be used)

// 2. uncomment the `define below or compile with +define+TRDEF_GLOBAL

// 3. compile TriscendGlobal.v

// 4. specify top-level modules as: testbench, TRGLOBAL

`define TRDEF_GLOBAL

`define BUS_CLOCK_PERIOD 20

`define VERBOSE 1

module testbench ();

Setting Verbose to 1 will give more
information during simulation which will
help during the debugging process.

 28

 Triscend Part Number APP305-0022-001

// CSIBUS Declaration

wire [127:0] CSIBUS;

// Sideband for interrupts

wire [127:0] SIDEBAND;

// include the file with task declarations and logic

`include "saddressmap.v"

`include "bfm_tasks.v"

// my declarations

wire [7:0] led1;

wire [7:0] led2;

reg [7:0] cnt;

integer adr0, adr1;

// Your csl model is instantiated here

// `include "csl.v"

DMAwires csl (.CSIBUS (CSIBUS), .\DipSwitch. (8'h55), .\D1. (led1), .\D2. (led2));

// put task calls and testbench logic below here

initial

begin

@(posedge bfm_brstN);

bfm_idle(5);

// reset and set up DMA channels 0 and 1

dma_reset (0);

dma_reset (1);

dma_setup (0, 0, 32'h0010_effd, 16'h0001, 2'b00);

dma_setup (1, 32'h0010_effd, 0, 16'h0001, 2'b00);

// enable DMAread and DMAwrite. DMAread access DMA channel 0

// and DMAwrite accesses DMA channel1

cpu_write8 (`DMAread, 8'h11);

cpu_write8 (`DMAwrite, 8'h33);

// find the base address for DMA0 and DMA1

adr0 = bfm_dma_base_address(0);

adr1 = bfm_dma_base_address(1);

Normally the csl model is instantiated in a
file called csl.v. For this example we’ve
instantiated the csl model directly in
testbench.v.

Simulates the input from the DIP switch.
In this example we’ve used the value
0x55 (01100110) as the input.

Sets up the basic DMA transfer
parameters – source address, destination
address, transfer byte count, transaction
size – for a specified channel. For I/O ����
memory transactions ignore the source
address. For memory ���� I/O transactions
ignore the destination address.

 29

 Triscend Part Number APP305-0022-001

cnt=0;

while (cnt<4)

begin

// initialize an I/O to memory DMA transfer

dma_io2mem_init (0);

cpu_write8 (adr0, 8'h56); // issue a SW request

// initialize a memory to I/O DMA transfer

dma_mem2io_init (1);

cpu_write8 (adr1, 8'h16); // issue a SW request

// wait for DMA interrupts

dma_wait (0, 1);

dma_wait (1, 1);

// if everything works properly LED1 and LED2 should equal the DipSwitch

$display ("LED1 = %h", led1);

$display ("LED2 = %h", led2);

cnt = cnt+1;

end

$finish;

end

endmodule // testbench

 30

 Triscend Part Number APP305-0022-001

Appendix B: Example Design Project – DMA Grab

Before Getting Started
Before starting this tutorial make sure that you have the following items. Please refer to the Triscend E5
Development Board for information on all the items included with the Triscend E5 Evaluation Kit

�� The latest version of FastChip properly installed on your computer.

�� Keil uVision2 properly installed on your computer.

�� A Triscend E5 Evaluation Board with a download cable.

Scope
This example design project introduces you to the basic operations and the design flow of the Triscend
FastChip development system. It guides you through a sample project using the E5’s DMA controllers.

It will provide an introduction to hardware design with CSoC devices, specifically utilizing the DMA
controller modules and some of their main features.

The audience for this example design project is an intermediate user. First time users may first want to
review the FastChip online tutorial. The tutorial is available by opening FastChip, then making the
menu selection Help ���� Triscend CSoC Learning Center (Tutorial).

In this tutorial you will learn how to:
�� Add IP modules from the FastChip library, including the DMA Selectors.

�� Connect the signals between the IP modules.

�� Set up CSoC dedicated resources.

Design Overview
This FastChip example project uses the DMA to transfer data from a counter to the LED displays.
Information from a counter is displayed on an 7-segment LED. Using the DMAs the CSoC sends the

same information to the second LED display. When everything works properly, the two LEDs will
match.

Figure B1: Block Di

Configuring th

This project make
dedicated resourc

Figure B2: Dedicate

CCoonnffiigguurriinngg DDMM
For this project, D
to be configured f
(see Figure B3).

Since the source
after transfer. Thi

Unlike the project
Specifically, we w
in the Interrupt E

 e

DMA CTRL 0
agram

e DMA Cha

s use of both D
es is shown in

d resources wind

AA__00
MA_0 needs to
or block reque

of the DMA tran
s option can be

described in A
ill enable an int
nables section

K
AC
REQ
31

nnels

MA channels, DMA_0 and
Figure B2.

ow in FastChip.

 be configured for I/O to Me
st mode. This option can b

sfer is a 256-byte buffer, w
 set in the Address Gener

ppendix A, this example pro
errupt when the Transfer C
 (see Figure B3).
DMA CTRL 1
Triscend Par

DMA_1. FastC

mory transfers
e set in the Tra

e need to incre
ation section (s

ject will make u
ounter reache
ACK
REQ
DMA Read
 DMA Writ
 Counter
t Number APP305-0022

hip’s interface to th

. In addition, DMA_
nsfer Settings sec

ment the starting ad
ee Figure B3).

se of the Interrupt
s 0. This option ca
8.
8.
-0

e

E
n

D1
D2
01

 E5’s

0 needs
tion

dress

nables.
 be set

 32

 Triscend Part Number APP305-0022-001

For this project, DMA_0 should be configured as shown in Figure B3.

Figure B3: Configuring DMA_0

Checking the Generate Code box initiates a header code generation session. All the DMA_0’s
registers will be set appropriately depending on the options selected in the configuration window. It is
important to note that the start address must be defined in the application code.

Enables FastChip to
generate C or assembly
header code for DMA_0.

Select I/O to Memory for
a DMA read transfer.

Transfer size = size of
buffer = 256 bytes.

Select Block request
mode.

Increment the address
after transfer.

Enable an interrupt when
the transfer counter
reaches 0

 33

 Triscend Part Number APP305-0022-001

CCoonnffiigguurriinngg DDMMAA__11

DMA Channel 1 should be configured similar to DMA_0. DMA_1 needs to be configured for Memory
to I/O transfers and must be set to single request mode (i.e. not block request mode). See Figure A4
to see how to configure DMA_1.

Figure B4: Configuring DMA_1

CCoonnffiigguurriinngg tthhee WWaattcchhddoogg TTiimmeerr ((WWDDTT))
The WDT is used by the application code to initiate software requests for DMA_1. For this project,
configure the WDT as shown in Figure B5. The WDT can be found in the Dedicated Resources section
of FastChip as shown in Figure B2.

Enables FastChip to
generate C or assembly
header code for DMA_0.

Select Memory to I/O for
a DMA write transfer.

Transfer size = size of
buffer = 256 bytes.

Increment the address
after transfer.

Enable an interrupt when
the transfer counter
reaches 0.

 34

 Triscend Part Number APP305-0022-001

Figure B5 Configuring the Watch Dog Timer (WDT)

In order for the watchdog timer interrupt to be recognized, all the E5’s interrupt system must be
enabled. This can be accomplished by configuring the Interrupt Controller Unit (ICU) in the
Dedicated Resources window of FastChip (Figure B2).

Figure B6: Configuring the ICU

Enable the watchdog
timer interrupt.

Selecting Enable all
interrupts enables the
E5 interrupt system.

 35

 Triscend Part Number APP305-0022-001

Selecting and Configuring IP Modules

For this project, five different modules are instantiated directly from the Triscend IP module library. The
following modules will be used in this example project:

�� DMA Selectors – used for interaction between the CSL and the DMA channels.

�� Command Register – used for the holding register.

�� Data Write – write data from the CSI bus’ point of view.

�� Data Read – read data from the CSI bus’ point of view.

�� Outputs – used to output data to the 7-segment displays.

DDMMAA SSeelleeccttoorrss
Two DMA Selectors are need for this project – one for DMA Channel 0 (DMA_0) and the other for DMA
Channel 1 (DMA_1). The modules can be found in the module library tree under CSI Bus ����
Selectors.

Each IP module has a Component Name which can the designer can choose. The Component
Name does not affect the functionality of the design in any way. It is used only to label the
modules. We will name the two selectors DMA_Counter and DMA_Write.

DMA_Counter
Drag and drop the DMA Selector into the CSL window and click the module to access Connections
and Properties dialog boxes. Figure B7 illustrates the Connections dialog box for a DMA Selector.

Figure B7: Configuring the connections of a DMA Selector for DMA_0

After configuring the connections as shown in Figure B7 click on the Properties tab to configure the
DMA Selector’s properties. Figure B8 illustrates the Properties dialog box for a DMA Selector.

The Req input of this DMA
Selector should to be connected
to gnd because this DMA
transfer will be initiated by a
software request.

The Ack output of this DMA
Selector drives the data read
CSI bus connection.

Pick a unique name of the DMA
Selector. We have chosen
DMAread.

 36

 Triscend Part Number APP305-0022-001

Figure B8: Configuring the properties of a DMA Selector for DMA_0

DMA_Write
Drag and drop another DMA Selector into the CSL window. As before, click the module to access
Connections and Properties dialog boxes. Figure B9 illustrates the Connections dialog box for a
DMA Selector.

Figure B9: Configuring the connections of a DMA Selector for DMA_1

After configuring the connections as shown in Figure B9 click on the Properties tab to configure the
DMA Selector’s properties. Figure B10 illustrates the Properties dialog box for a DMA Selector.

This DMA Selector is going to
access DMA Channel 0.

Give the DMA Selector a
symbolic name. This will be
used in the application code.

The Ack output of this DMA
Selector is used to enable the
latch of the output of DMA_1.

Pick a unique name of the DMA
Selector. We have chosen
DMAwrite.

The Req input of this DMA
Selector should to be connected
to gnd because this DMA
transfer will be initiated by a
software request.

 37

 Triscend Part Number APP305-0022-001

Figure B10: Configuring the properties of a DMA Selector for DMA_1

The DMA portion of this example project has been configured.

CCoouunntteerr
A counter will serve as the data source for this example project. Configure the counter as shown in
Figures B11 and B12.

Figure B11: Configuring the Counter module

After configuring the connections of the counter, we will need to set the properties as shown in Figure
B12.

This DMA Selector is going to
access DMA Channel 1.

Give the DMA Selector a
symbolic name. This will be
used in the application code.

Pick a unique name of the DMA
Selector. We’ve chosen
Counter.

We’re using at 8-bit counter for
this design.

Pick a name for the output. This
net will be connected to the CSI
bus so that the DMA can take
over the transfer.

This counter uses BusClock as
the clock source.

 38

 Triscend Part Number APP305-0022-001

Figure B12: Setting the Properties of the Counter module

CCoommmmaanndd RReeggiisstteerr
We will instantiate a Command Register to act as a memory-mapped holding register verifying the
DMA transfers. The Command Register can be found in the module library tree under Peripherals ����
Control. As with the DMA Selectors, drag and drop a Command Register into the CSL window and
configure the Command Register as shown in Figures B13 and B14.

Figure B13: Configuring the connections of a Command Register

Component width should be 8.

Label the Q output of the
Command Register.

Give this IP module a name.
We have chosen LED_D2.

The counter should count up.

 39

 Triscend Part Number APP305-0022-001

Figure B14: Configuring the properties of a Command Register

CCSSII BBuuss CCoonnnneeccttiioonnss

Data Read
Since we are getting data from the counter, we need a way to place the data on the CSI bus. The Data
Read IP module is used exactly for this purpose. It can be found in the module library tree under CSI
Bus ���� Data Bus. Figure B15 illustrates the Data Read IP module.

Figure B15: Data Read

This memory-mapped register
will reside in the E5’s XData
space.

Give the DMA Selector a
symbolic name. This will be
used in the application code.

As with all IP modules, you can choose a
name for the module. The component
name is used only for labeling
purposes.

The input for the Data Read is the
counter’s output – count[7:0].

The enable input is driven by the Ack
output of the DMA Selector named
DMAread because the data only needs to
be transferred after the DMA controller
acknowledges the request.

 40

 Triscend Part Number APP305-0022-001

Data Write
The DMA controller (DMAwrite) will automatically place the transferred data onto the CSI bus.
However, we need a way to get the data from the CSI bus and send it to the 8-segment LED. The
Data Write module, the opposite of a Data Read module, is used for this purpose. Figure B16 shows
the Data Write module.

Figure B16: Data Write

OOuuttppuuttss
This project requires 16 output pins to connect to the 2 8-segment LEDS. Drag and drop two output
IP modules into the CSL and configure them as shown in Figures B17 – B19. The IP module can be
found in the module library tree under CSI Bus ���� I/O.

Output for D1

Figure B17: Configuring the connections of an output for D1

For this example project, we would like to latch the data into registers. Please refer to Figure B18 to
learn how to configure the module.

Give this module a component name. We
have chosen DataWr.

Pick a name for the output net. We have
chosen D1[7:0]. This net will be latched
and connected to output pins, which will be
assigned to the 8-segment LED.

The Component Width is 8 because we
need 8 pins for the 8-segment LED.

As with the other soft modules, give this
one a name. Since these outputs are for
the D1 8-segment LED, we have chosen
D1.

Label the input net. We have chosen
D1[7:0]. This will connect the output of
Data Write to this output module.

 41

 Triscend Part Number APP305-0022-001

Figure B18: Configuring the properties for D1

Output for D2

Figure A15: Configuring the connections of an output for D2

We do not need to modify the properties of D2 because no special features are need (such as latching
data).

To complete this example project follow the steps detailed in Appendix A Configure I/O Constraints
and Memory Interface Unit (MIU).

The Component Width is 8 because we
need 8 pins for the 8-segment LED.

As with the other soft modules, give this
one a name. Since these outputs are for
the D2 8-segment LED, we’ve chosen D2.

Label the input net. We have chosen
D27:0]. This will connect the output of
the command register to this output
module.

The latches need to be clocked by
BusClock.

We only want to latch the data after the
DMA Controller for DMA_1 has
acknowledged the request. Therefore the
Ack signal from the DMAwrite module
should act as the clock enable.

 42

 Triscend Part Number APP305-0022-001

Application Code
The following is the application code for this example project.

// Header file generated by FastChip

#include "dmagrab.h"

// Header file for routines that convert an 8032 logical

// address to a 32-bit physical address

#include "dmap.h"

/*===

| CONSTANTS

==*/

// The size of the buffer created in XDATA RAM is

// configurable. Set BUFFERSIZE as desired.

#define BUFFERSIZE 256

/*===

| DECLARE VARIABLES

==*/

// Create a buffer in XDATA RAM and a pointer to it

unsigned char xdata MyBuffer[BUFFERSIZE];

unsigned char xdata * xdata Buffer_Ptr;

// The 'captured_flag', when non-zero, indicates that

// valid data is captured in MyBuffer. 0 = No data captured in buffer

// 0xff = Data captured

unsigned char data captured_flag = 0;

/*===

| ROUTINES

==*/

/***

** MAIN ROUTINE **

***/

void main(void) {

// Execute the initialization file created by FastChip.

// This sets up any dedicated resources, including the

 43

 Triscend Part Number APP305-0022-001

// the DMA controller.

DMAgrab_INIT();

// DMA 0 is configured for block request mode, incrementing

// addresses, no auto-initialize, CRC checking, 256 byte transfer.

// Convert the 8032's 16-bit logic address pointing to the XDATA

// RAM buffer into a 32-bit physical address required by the

// DMA controller. Using this method allows this code to

// operate regardless of the initialization method used.

//

// Put logical address in special variables LADDR_1 and LADDR0,

// as shown below.

LADDR_1 = (unsigned char)((unsigned short)&MyBuffer >> 8);

LADDR_0 = (unsigned char)((unsigned short)&MyBuffer & 0xff);

// Then, call the special routine that converts the 16-bit logical

// address to a 32-bit physical address. The 32-bit address is

// provided in variables PADDR_3 down to PADDR_0.

xdata_logical_to_physical();

// Setup DMA0's start address register

DMASADR0_0 = PADDR_0;

DMASADR0_1 = PADDR_1;

DMASADR0_2 = PADDR_2;

DMASADR0_3 = PADDR_3;

// Load DMA0's length count. Note, the value loaded is the buffer

// size minus 1.

DMASCNT0_0 = ((BUFFERSIZE-1) & 0xff);

DMASCNT0_1 = (((BUFFERSIZE-1)>>8) & 0xff);

DMASCNT0_2 = (((BUFFERSIZE-1)>>16) & 0xff);

// Enable the DMA channel 0 and initialize the transfer

DMACTRL0_0 |= 0x06;

// Enable 'DMAcounter' control register to access DMA channel 0

// NOTE: Upper and lower nibbles MUST be identical.

DMA_Counter = 0x11;

 44

 Triscend Part Number APP305-0022-001

// DMA_1 is configured for single transfer request mode,

// incrementing addresses, no auto-initialize, 265 byte

// transfer.

// Setup DMA_1's start address register to the same location used

// by DMA_0, as shown earlier.

DMASADR1_0 = PADDR_0;

DMASADR1_1 = PADDR_1;

DMASADR1_2 = PADDR_2;

DMASADR1_3 = PADDR_3;

// Load DMA_1's length count

DMASCNT1_0 = ((BUFFERSIZE-1) & 0xff);

DMASCNT1_1 = (((BUFFERSIZE-1)>>8) & 0xff);

DMASCNT1_2 = (((BUFFERSIZE-1)>>16) & 0xff);

// Enable the DMA channel 1 and initialize the transfer

DMACTRL1_0 |= 0x06;

// Enable DMAwrite control register to access DMA Channel 1

DMA_Write = 0x33;

// Start the fun by performing a software DMA request on DMA Channel 0

DMACTRL0_0 |= 0x10;

// Set Buffer_Ptr to the address of the first location in the XDATA RAM

// buffer. This is used during verification. If everything

// operates correctly, then LED D2 equals LED D1 on the Triscend E5

// Development Board.

Buffer_Ptr = &MyBuffer;

while (1) {

// An embedded program never ends

// The 8032 MCU is fully functional while the DMA

// controller is operating. Add your own function

// here.

}

}

 45

 Triscend Part Number APP305-0022-001

/***

** WATCHDOG INTERRUPT SERVICE ROUTINE **

***/

void WDT_ISR(void) interrupt 12 {

if (captured_flag) {

// Display current value from buffer located in

// internal XDATA RAM, for verification purposes.

LED_D2 = *Buffer_Ptr++;

// Transfer one byte from XDATA RAM using DMA_1.

// Set a software DMA request.

DMACTRL1_0 |= 0x10;

}

// Clear watchdog timer interrupt flag (WDIF). This

// is a protected bit. Open the Timed Acces (TA)

// register by writing 0xAA followed by 0x55.

TA = 0xAA;

TA = 0x55;

WDIF = 0;

}

/***

** DMA CONTROLLER INTERRUPT SERVICE ROUTINE **

***/

void DMA_ISR(void) interrupt 7 {

/* If DMA 0 is finished capturing data, set the

'capture_flag' and re-initialize DMA 1. Clear

the DMA 0 terminal count interrupt when done.

If DMA 1 is finished displaying data, clear the

'capture_flag', re-initialize DMA 0, then set

a software DMA request to capture more data using

DMA 0. Clear the DMA 1 terminal count interrupt

when done. */

 46

 Triscend Part Number APP305-0022-001

// DMA 1 Complete: Check TC bit in DMA1 status register

if (DMAINT1 & 0x01) {

// Clear captured flag

captured_flag = 0;

// Re-initialize DMA 0 transfer and set software request

DMACTRL0_0 |= 0x14;

// Clear TC bit by writing a '1' to the bit location

DMAINT1 |= 0x01;

}

// DMA 0 Complete: Check TC bit in DMA0 status register

if (DMAINT0 & 0x01) {

// Reset Buffer_Ptr, used for verification purposes

Buffer_Ptr = &MyBuffer;

// Re-initialize DMA 1 transfer

DMACTRL1_0 |= 0x04;

// Data is captured in MyBuffer, set 'captured_flag'

captured_flag = 0xff;

// Clear TC bit by writing a '1' to the bit location

DMAINT0 |= 0x01;

}

}

 47

 Triscend Part Number APP305-0022-001

Revision History
Revision Date Comment

1.0 25-JUN-2001 Initial release

 Triscend Corporation
301 North Whisman Road
Mountain View, CA 94043-3969
USA

Tel: 1-650-968-8668
Fax: 1-650-934-9393

Support: SupportCenter@triscend.com
Web: www.triscend.com/salessupport

	Scope
	Overview
	
	
	
	
	
	
	Figure 1: DMA channels shown in FastChip

	Functional Description
	Configuring the DMA Channels
	
	
	
	
	
	
	Figure 2: Relationship between E5 Dedicated DMA Resource and FastChip

	DMA Selector Module
	
	
	
	
	
	Figure 3: A DMA Selector in FastChip

	DMA Channel Module
	
	
	
	
	
	Figure 4: DMA Channel 0 in FastChip

	Transfer Type
	
	
	
	
	Table 1: DMA Transfer Types

	Transfer Settings
	
	
	
	
	Figure 5: Excerpt of C code needed to define the starting address for a DMA transfer

	Address Generation
	Interrupt Enables

	Before Getting Started
	Scope
	
	
	In this tutorial you will learn how to:

	Design Overview
	Configuring the DMA Channels
	Configuring DMA_0
	Configuring DMA_1

	Selecting and Configuring IP Modules
	DMA Selectors
	DMAread
	DMAwrite

	Command Register
	CSI Bus Connections
	Data Read
	Data Write

	Inputs
	Outputs
	Output for D1
	Output for D2

	Configure I/O Constraints and Memory Interface Unit (MIU)
	Configuring the MIU€

	Generate Code for Your Compiler
	Bind the Project
	Application Code
	Using the BFM with the DMA
	Before Getting Started
	Scope
	
	
	In this tutorial you will learn how to:

	Design Overview
	Configuring the DMA Channels
	Configuring DMA_0
	Configuring DMA_1
	Configuring the Watchdog Timer (WDT)

	Selecting and Configuring IP Modules
	DMA Selectors
	DMA_Counter
	DMA_Write

	Counter
	Command Register
	CSI Bus Connections
	Data Read
	Data Write

	Outputs
	Output for D1
	Output for D2

	Application Code

