

TNETA1560

ThunderCELL™

SBus SAR

Networking Business Unit 4atm@msg.ti.com

Agenda

- Main Features
- Interfaces
- Architecture
- Data Structures
- Functional Overview
- Registers
- Peripheral Devices

SBus SAR Main Features

- The SBus SAR is an SBus device that provides an asynchronous transfer mode (ATM) Interface.
- Single-chip segmentation and reassembly (SAR) for fullduplex ATM adaptation layer (AAL) processing.

Main Features

- On-chip SBus host interface allows use of host memory for packet segmentation and reassembly
- No local packet memory required
- Packet interface managed by efficient descriptor rings
- 53-byte ATM cells are transparent to the user
- Provides complete encapsulation and termination of AAL5 and limited AAL3/4
- Null AAL provides features for constant-bit-rate services
- Supports 1023 unique virtual circuits (VCs)
- Explicit cell-level interleaving between groups of VCs

Main Features (cont.)

- Interfaces directly to TNETA1500 SONET ATM BiCMOS receiver transmitter (SABRE)
- Full-duplex physical (PHY) layer interface is compliant with the UTOPIA specification
- Supports PHY layer data rates in the range 25.6 to 155.52 Mbits/s
- Support provided to recognize ATM layer operations and maintenance (OAM) cells
- 8-Cell transmit FIFO
- 32-Cell receive FIFO
- No external logic required for host or local buses, ensuring simple design with low external component count

SBus SAR Interfaces

SBus Interface

- SBus interface module (SBIM) is responsible for implementing the details of the SBus protocol
- No external host interface logic required to interconnect to a SBus host
- Behaves both as a SBus DVMA master and slave
- Efficient transfer of 48-byte payload using 32and 16-byte bursts

Control Memory Interface

- Control memory set up in a 16K x 32 configuration
- Cycle time given by the SBus clock
- Simple design for latched SRAM, no external logic is required, all signals are provided:
 - -32-bit data bus
 - -14-bit address bus
 - cm_wr_ signal determines read/write
 - cm_oe_ output enable signal

Local Bus Interface

- All signals are provided to connect the SBus SAR to the EPROM and to the TNETA1500 physical layer.
- No external components are required; all necessary signals are provided by the SBus SAR.
- The lower 16 bits of the SBus address are directly routed to the local bus address bus.
- The SBus SAR ensures that the SBus acknowledgment signal is not asserted until the corresponding local bus transaction is complete.

PHY Layer Interface

- The SBus SAR generates a PHY layer transmit clock at the SBus frequency.
- The receive clock for the PHY interface is also driven by the SAR and is equivalent to the internal clock.
- The SBus SAR generates output data, along with a start-of-cell indicator in the transmit direction.

PHY Layer Control Interface

 The internal SAR clock is driven by an external PHY clock signal. A 19.44-MHz clock is required for 155.52 Mbit/s operation.

SBus SAR Architecture

Transmit Modules

- The transmit host and buffer transaction processor (XBTP) is responsible for host-related transmit functions. It requests 16- and 32-byte transfers from the SBus block.
- The cell actuator determines the next VC to be serviced.
- The transmit adaptation layer processor (XALP) handles all AAL-related functions and ATM header formation.
- The transmit buffer (XMB) is an 8-cell buffer.
- The transmit PHY interface (XPIN) performs wordto-byte unpacking and interacts with the PHY layer using the SBus clock.

Receive Modules

- The receive PHY interface (RPIN) performs byte-to-word packing, filters idle cells, and interacts with the PHY layer using the PHY layer clock.
- The receive buffer (RCB) provides rate synchronization from the PHY layer clock to the SBus clock and holds up to 32 cells.
- The receive ATM adaptation layer processor (RALP) terminates the AAL5 CRC and processes various end-ofpacket (EOP) indicators.
- The RALP block also processes the ATM header and determines which receive DMA is to be used.
- The receive host and buffer transaction processor (RBTP) perform all host-specific receive functions.

SBus Interface Module

- The SBus interface module (SBIN) is responsible for implementing the SBus protocol.
- The XBTP and RBTP are the only modules that require the SAR to be a master on the SBus.
- Hence, the SBus SAR arbitrates requests from these two blocks.
- The SAR is an SBus slave for host accesses to EPROM, PHY registers, SAR registers, and control memory.

Control Memory Interface and Arbitration

- The control memory interface and arbitration (CMIA) block imposes a strict priority mechanism for servicing requests from the various blocks, as follows:
 - RALP
 - XALP
 - Cell actuator
 - RBTP
 - SBTP
 - SBIN
 - Each access is a one-word access

SBus SAR Data Structures

Transmit Receive SAR Control **BWG Table** Memory (max. 4800 entries) **VCI DMA States BWG DMA States** (255 states) (1024 states) Free-Buffer Ring (small) **TX Descriptor Rings** (256 entries) (255 rings, each ring = 256 entries) Free-Buffer Ring (big) (256 entries) Host **Memory TX Completion Ring RX Completion Ring** (256 entries) (256 entries) **Data Buffers Data Buffers** (48-byte cell payload) (48-byte cell payload)

NSTRUMENTS

Host Memory Data Structures

Transmit Receive SAR Control **BWG Table Memory** (max. 4800 entries) **VCI DMA States BWG DMA States** (255 states) (1024 states) Free-Buffer Ring (small) **TX Descriptor Rings** (256 entries) (255 rings, Free-Buffer Ring (big) each ring = 256 entries) (256 entries) Host Memory **TX Completion Ring RX Completion Ring** (256 entries) (256 entries) **Data Buffers Data Buffers** (48-byte cell payload) (48-byte cell payload)

TX Descriptor Rings

TX Descriptors

- Efficient data structures for optimum performance
- OWN bit is MSB
- Start-of-chain, end-of-chain indications
- 64K-byte buffers supported

0		
0	ENTRY	DESCRIPTION
0		
0	Word 0	Control field, packet length, buffer length
o	Word 1	Start-of-buffer pointer – 32 bits
	Word 2	4-byte ATM header
	Word 3	AAL5 Tail – control and length fields
		1

TX Descriptors

- Descriptor word 1, start-of-buffer pointer 32 bits
- Buffers can be chained in host memory

TX Data Buffers

Flexible transmit data buffer structures provide for efficient software.

TX Completion Rings

- Single transmit completion ring
- 256 entries
- Indicates transmission complete
- Single descriptor for each packet sent

ENTRY	DESCRIPTION							
Word 0 Word 1 Word 2	Own (31)	Unused (30:8) Reserved Reserved	BWG index (7:0)					
Word 3		Reserved						

RX Free-Buffer Rings

- Two free receive buffer rings
- Each ring has 256 entries
- Use of each ring is application-specific
- Example: use one as large and one as small buffer ring

ENTRY	DESCRIPTION									
Word 0	Own (31)	Unused (30:28)	Start-of-buffer pointer (27:0)							
Word 1		Reserved								
Word 2		Reserved								
Word 3		Reserved								

RX Free Buffer Rings Example

- Example: use of large/small buffer rings
- Small buffer-ring points to 48-byte buffers for constant-bit rate services
- Large buffer ring points to 8k-byte buffers for TCP/IP-based applications
- VCs set up for CBR applications use small buffer ring
- VCs set up for TCP/IP applications use large buffer ring

RX Free-Buffer Rings

RX Free-Buffer Descriptor Ring

- Descriptor word 0, start-of-buffer pointer.
- Buffers located in host memory, same size for each ring.

RX Data Buffers

 Buffer lengths must all be equal for a given ring and are configurable at initialization time.

RX Completion Ring

- Single receive completion ring
- 256 entries
- Indicates packet reception complete
- Single descriptor for each packet received

0	ENTRY	DESCRIPTION
0	Word 0 Word 1 Word 2 Word 3	Control field, EFCN cells received, packet length Start-of-buffer pointer – 28 bits 4-byte ATM header Reserved

RX Completion Ring

- Descriptor word 1, start-of-buffer pointer
- Received packets must fit in single buffer for reception.

Control Memory Data Structures

Transmit Receive

SAR Control **BWG Table** Memory (max. 4800 entries) **VCI DMA States BWG DMA states** (255 states) (1024 states) Free-Buffer Ring (small) **TX Descriptor Rings** (256 entries) (255 rings, Free-Buffer Ring (big) each ring = 256 entries) (256 entries) Host Memory **TX Completion Ring RX Completion Ring** (256 entries) (256 entries) **Data Buffers Data Buffers** (48-byte cell payload) (48-byte cell payload)

BWG Table

- The bandwidth group (BWG) control table provides for special bit rate control.
- The BWG table is programmable, with a maximum of 4800 entries.
- Each entry consists of an 8-bit BWG index.

Bit 31			I	Bit 0
123	12	16	0	⋖ —— Send idle if 0
25	18	3	255	
		o o		BWG Index (0-255) given by 8-bit entry
8	18	211	9	Table size: 1200 words

BWG Table Mechanism

- Each entry must be assigned to a bandwidth group by inserting a BWG index into each entry.
- BWG index indicates which transmit descriptor ring should be processed.
- BWG index zero indicates idle cells should be sent.

NSTRUMENTS

BWG Table Mechanism

- Used to allocate a bandwidth to a bandwidth group.
- 155 Mbit/s / 4800 provides for a granularity of 32 kbit/s.
- Bandwidth available to application is approx. 135.63
 Mbit/s*. (155.52 less SONET and ATM overhead)
- 136 Mbit/s / 4800 provides for a granularity of 28,250bit/s*.

Bit 31			В	Sit O
123	12	16	0	Send Idle if 0
25	18	3	255	
		•		BWG index (0-255) given by 8-bit entry
8	18	211	9	Table size: 1200 words

^{*} Figures calculated assuming null AAL; i.e., no AAL overhead is included.

BWG Table Example

- Application 1 requires 0.32Mbit/s and uses BWG 1
- Application 2 requires 64 kbit/s and uses BWG 2
- Application 3 requires 10 Mbit/s and uses BWG 3

Write 1 (for BWG 1) in BWG table 12 times. (12 x 28250 > 0.32Mbit/s)

Write 2 (for BWG 2) in BWG table 3 times. (3 x 28250 > 64kbit/s)

Write 3 (for BWG 3) in BWG table 254 times. (254 x 28250 > 10Mbit/s)

			_								. /	/		
1	1	1	1	1	1	1	1	1	1	1	1	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	•	•	•	•	3	3	3
3	3	3	3	3	3	3	3	3	3	3	•	•	•	•

BWG DMA States

- 255 BWG DMA entries, eight words in size, for each of the transmit DMA channels.
- Used as a work area for the DMA state machine.
- Highlight indicates entry copied from transmit descriptor.
- Word 3 is the only host programmable entry.

Control field, packet length, buffer length	Dynamic
Current buffer pointer – 32 bits	Dynamic
4-byte ATM header	Dynamic
Static bits – BWG on/off	Static
BWG data ring pointer, descriptor pointer	Dynamic
BWG cell counter place holder – not implemented	Dynamic
Partial 32-bit packet CRC	Dynamic
AAL5 tail – control and length fields	Static
	Current buffer pointer – 32 bits 4-byte ATM header Static bits – BWG on/off BWG data ring pointer, descriptor pointer BWG cell counter place holder – not implemented Partial 32-bit packet CRC

VCI DMA States

- 1024 VCI DMA entries, eight words in size, for each of the receive DMA channels
- Used as a work area for the DMA state machine
- Highlight indicates entry copied from receive free ring
- Word 3 is only host-programmable entry

ENTRY	DESCRIPTION	STATIC/ DYNAMIC
Word 0 Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7	Control, status, EFCN cell count, current packet length Current buffer pointer - 28 bits Start-of-buffer pointer - 28 bits Control, packet length Reserved AAL5 partial CRC - 32 bits Reserved Reserved	Dynamic Dynamic Static Static Dynamic

VCI DMA States Configuration

- VC_ON: Enables packet reassembly processing
- Buffer type: Small or big
- Null AAL indication: Configure VC for null AAL
- AAL3/4 indication: Configure VC for AAL 3/4
- AAL packet length: Length of receive free buffers

SBus SAR Functional Overview

- Packet interface
- AAL5 processing
- AAL3/4 processing
- Null AAL processing
- OAM processing
- Address mapping
- Transmit operation
- Receive operation

Packet Interface

- SBus SAR uses host memory to store 48-byte payload units constituting a packet for both transmit and receive.
- The device initiates the transfer of these 48byte payload units.
- Each packet queued for transmission can be distributed across multiple buffers.
- Each packet received from ATM is placed in a single receive buffer in host memory.

Packet Interface Transmit

1. Packet in host memory

Packet Interface Receive

2. Received packet stored in a single receive buffer in host memory

1. SAR writes packet to host 48 bytes at a time.

Received Packet

AAL5 Processing

- In-depth support ATM adaptation layer 5 (AAL5)
- AAL5 encapsulation in the transmit direction
 - SAR computes and adds AAL5 protocol trailer
 - SAR segments AAL5 packet into 48-byte ATM payloads and adds ATM cell header
- AAL5 termination in the receive direction
- SAR computes and checks AAL5 CRC
- SAR places entire AAL5 packet in host memory
- Interrupt given for end of packet (AAL5)

AAL5 Encapsulation

AAL5 Termination

AAL5 Protocol Data Unit (PDU) in Host Memory

AAL3/4 Processing

Networked With TI

- In the transmit direction, AAL5 processing is turned off, in the transmit-buffer descriptors, for AAL3/4 traffic.
- All AAL3/4 data packet processing is performed on the host in software.
- AAL5 processing is disabled on those VCIs configured for using AAL3/4.
- The AAL3/4 end-of-message (EOM) indicator is recognized by the SAR, initiating an interrupt.

Structure of AAL 3/4 PDU

ST: Stream Delimiter SN: Sequence No.

MID: Multiplex ID

LI: Length ID

CRC: Checksum

Null AAL Processing

- In the transmit direction, AAL 5 processing is turned off, in the transmit-buffer descriptors for null AAL traffic.
- Null AAL processing is configured for receive direction in the VCI bandwidth group DMA block.
- This bandwidth group is also configured to issue an interrupt after a set number of cells have been received.
- Constant-bit-rate (CBR) services could be implemented using the null AAL feature.

Null AAL Processing Constant-Bit-Rate Example

- Set up a transmit channel for sending out CBR data in single ATM cells (48-byte payload). Use null AAL.
- Set up a receive channel for receiving CBR data in single ATM cells using null AAL (packet count equals one cell).
- With these features, AAL1 emulation can be implemented in software.

Header Payload

SN Field SNP Field 4 Bits PDU Payload (47 Octets)

Structure of AAL 1 PDU

OAM Processing

- The SBus SAR recognizes all operations and maintenance (OAM) flows; cells are added to the receive complete ring.
- VP-level OAM cells are received on VCI 3 and 4 DMA channels (VCI 3 and 4 need to be configured as Null AAL channels).
- VC-level OAM cells are diverted to receive DMA channel 0.

NO.	ITEM	VCI	PTI
1	VP level: link-associated OAM cell	3	
2	VP level: end-to-end OAM cell	4	
3	VC level: link-associated OAM cell	Any	4
4	VC level: end-to-end OAM cell	Any	5

Address Mapping

- The lower 10 bits of the VCI field are used to encode the 1023 possible VCIs that are supported by this device.
- The upper-order bits of the VCI and the VPI field are programmable on a per-VC basis for transmit.
- The GFC field is always zero.
- The upper-order bits on the VCI, the VPI field, and the GFC field are ignored on all cells that are received.

The ATM UNI Cell Header

GFC: Generic flow control

VPI: Virtual path identifier

VCI: Virtual channel identifier

PTI: Payload type identifier

CLP: Cell loss priority

HEC: Header error control

Address Mapping (cont.)

- Note that if bits in these fields are set, then:
 - Such cells would only be passed to the SAR if the HEC field is correct.
 - Hence, the upper-order bits are correct and the cell was intentionally routed to the SAR, or...
 - The cell was misrouted, the probability of which is small. (Such an event would be detected by a CRC failure at the AAL5 or AAL3/4 layer).
- Hence, the SAR takes advantage of this and supports any VPI/VCI combination as long as the lower 10 bits of the VCI are unique.

- Host application places data in host memory.
- Host protocol software adds protocol layers.
- Host SAR driver builds descriptors in ring n.
- SAR driver passes control to SAR when OWN bits are set. Set OWN bits in zipper-up fashion.

- The SBus SAR cycles through the BWG table.
- A single cell is sent for each entry.
- Entries contain indexes that reference transmit descriptor rings and transmit DMA blocks.
- An index of zero indicates null ATM cells should be generated and transmitted by the SAR (VPI,VCI = 0).

With TI

- The SAR cycles through the BWG table. It looks at word 3 for each entry within the BWG state table. If the BWG is turned on, the SAR processes a packet of data.
- The SAR loads the first descriptor into the BWG DMA state table (register 5).
- Four 32-bit words are loaded as illustrated.
- The SAR then reads a single cell payload (48 bytes) from the first TX data buffer.

- The PCI SAR returns to the BWG Table.
- The SAR processes the next entry in the ring; for our example, it will process
 descriptor ring 5 again. If a packet is currently being processed, a single cell
 is transmitted.
- If the ring is empty (OWN bit not set), the SAR sends an IDLE cell and returns to the BWG table to find the next BWG index.
- Eventually, the SAR loops around the BWG table and returns to the entry that points to descriptor ring 5.

- The BWG DMA state 5 contents indicate a packet currently is being processed.
- The SAR then reads another cell payload from the first TX data buffer.

- If a data packet contains many buffers, the buffers do not have to contain a multiple of 48 bytes. The SAR finishes processing the previous buffer and starts processing the next buffer.
- The SAR cycles through the BWG table and transmits all the buffers within a packet.

Once the entire packet has been transmitted:

- OWN bits are cleared for all descriptors for that packet.
- A completion ring entry is posted.
- An interrupt is generated to the host.

- The SAR then processes the next BWG. The SAR again checks to see if the BWG is turned on.
- The 48 bytes are transmitted and the SAR updates the DMA states table.

- Host SAR driver allocates free buffers in host memory.
- SAR driver builds descriptors in free-buffer rings.
- SAR driver passes buffers to SAR when OWN bits are set.

 10-bit VCI from incoming cells is used to index into the receive DMA block.

- The receive DMA entry for this particular VCI indicates which free buffer ring is to be used and if the VCI is "on."
- Word 0 indicates if a packet currently is being processed.

 Upon receiving the next 48 bytes (VCI=N), the SAR examines the receive DMA table and determines if a buffer is currently being processed. If a buffer is being processed, the SAR writes the data into host memory and updates the receive DMA control table.

- The SAR then processes the next received cell.
- This cell has a different VCI from the previous cell.
- The descriptor is loaded for the next free buffer.
- The payload is then loaded.

Once the entire packet is received:

- A completion ring entry is posted
- An interrupt is generated to the host

Control Memory

SBus SAR Registers

OFFSET-8 BIT (hex)	DESCRIPTION	READ/WRITE
00 04 08 0C 14 18 20 24	Software reset Status register Interrupt mask register Configuration register BWG table size register TX/RX FIFO maximum depth register Clear transmit freeze command Clear receive freeze command	Write only Read only Read/write Read/write Read/write Read/write Write only Write only

SBus SAR Peripheral Devices

- Access to the SBus SARs peripheral devices is through the address map illustrated below.
- No external logic is required to connect external EPROM, PHY (chip select signals, etc., are provided by the SAR).

ADDRESS – 24 BITS (hex)	DESCRIPTION	ADDRESS BITS	READ/WRITE
000000-00FFFF	EPROM addresses PHY layer register addresses Control memory addresses	16	Read only
400000-40FFFF		16	Read/write
C00000-C03FFF		14	Read/write

SBus SAR, SABRE Interconnect

TNETA1560 Tools

- 32-bit PCI evaluation module
 - With TNETA1560 and TNETA1500 SONET device
 - Capability to exercise both the TNETA1560 and TNETA1500
- SUN™ SOLARIS™ 2.x-based software utility
 - Transmit and receive ATM data
 - Monitor incoming traffic
 - Try different configurations
 - Test error and alarm conditions
- Software drivers (third-party software)
 - Provides solutions
 - Improves time-to-market
- Application note (1560/1500 interface)

Summary

- Samples available now
- Production 8/15/95
- Evaluation board and software available now

