TOSHIBA PHOTOCOUPLER GaAlAs IRED & PHOTO IC

TLP582

MOS FET GATE DRIVER

TRANSISTOR INVERTER

The TOSHIBA TLP582 consists of a GaAlAs light emitting diode and integrated high gain, high speed photodetector.

The detector has a totem pole output circuit that provides source drive and sink drive, and built-in Schmitt trigger.

A fiber is used for light-coupling between LED and detector, and for sufficient separation between input side and output side.

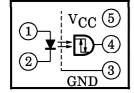
• Input Current : I_F=5mA (MAX.)

• Power Supply Voltage : $V_{CC}=4.5\sim20V$

• Switching Speed : t_{pHL} , $t_{pLH} = 400$ ns (MAX.)

Common Mode Transient Immunity

: ± 5000 V / μ s (MIN.)


• Guaranteed Performance Over Temperature

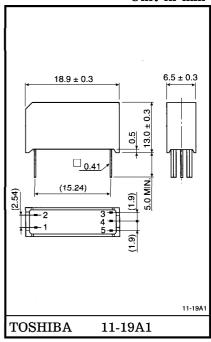
: −25~85°C

• Isolation Voltage : 5000V_{rms} (MIN.)

• UL Recognized : UL1577, File No. E67349

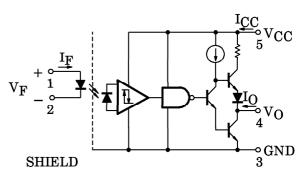
PIN CONFIGURATION (TOP VIEW)

1: LED ANODE


2: LED CATHODE

3: GND

 $4:V_{O}(OUTPUT)$


 $5:V_{CC}$

Unit in mm

Weight: 1.55g

SCHEMATIC

A $0.1\mu F$ bypass capacitor must be connected between pins 3 and 5.

TRUTH TABLE (Positive Logic)

	· • • • • • • • • • • • • • • • • • • •
INPUT	OUTPUT
H	L
L	Н

1

MAXIMUM RATINGS (No Derating Required up to 85°C unless otherwise noted)

	CHARACTERISTIC	SYMBOL	RATING	UNIT
	Foward Current	$I_{\mathbf{F}}$	25	mA
LED	Peak Transient Forward Current (Note 1)	I_{FPT}	1	A
	Reverse Voltage	$V_{\mathbf{R}}$	5	V
	Output Current	IO	40/-25	mA
$^{ m OR}$	Peak Output Current (Note 2)	I_{OP}	80/-50	mA
CT(Output Voltage	v_{O}	-0.5~20	V
DETECTOR	Supply Voltage	v_{CC}	-0.5~20	V
DE	Output Power Dissipation (Note 3)	PO	100	mW
	Total Package Power Dissipation (Note 4)	$P_{\mathbf{T}}$	200	mW
0	perating Temperature Range	$T_{ m opr}$	-40~85	°C
St	orage Temperature Range	$\mathrm{T_{stg}}$	-40~100	°C
Le	ead Solder Temperature (10s)	T _{sol}	260	°C
Is	Isolation Voltage (AC, 1min., R.H.≤60%, Ta=25°C) (Note 5)		5000	V _{rms}

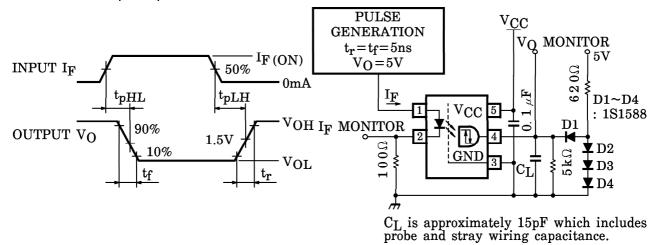
- (Note 1) Pulse Width $\leq 1 \mu s$, 300pps.
- (Note 2) Pulse Width $\leq 5\mu$ s, Duty Ratio ≤ 0.025 .
- (Note 3) Derate 1.8mW/°C above 70°C ambient temperature.
- (Note 4) Derate 3.6mW/°C above 70°C ambient temperature.
- (Note 5) Device considered a two terminal device: pins 1, 2 shorted together, and pins 3, 4 and 5 shorted together.

RECOMMENDED OPERATING CONDITIONS

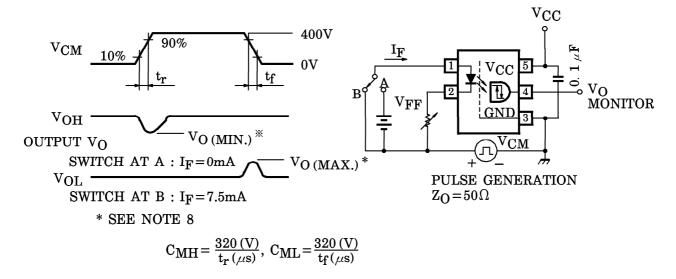
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input Current, ON	I _{F (ON)}	7	8	20	mA
Input Voltage, OFF	V _{F (OFF)}	0		0.8	V
Supply Voltage	v_{CC}	4.5	_	20	V
Operating Temperature	$T_{ m opr}$	-25	_	85	°C

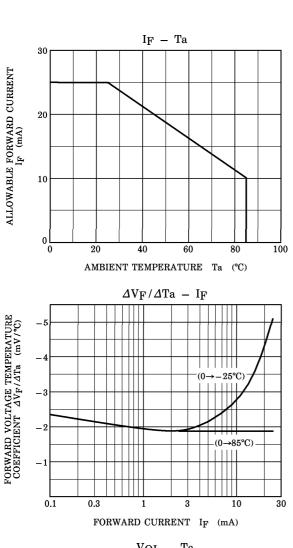
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $Ta = -25 \sim 85^{\circ}C$, $V_{CC} = 4.5 \sim 20V$)

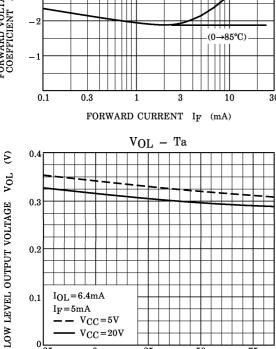
CHARACTERISTIC	SYMBOL	TEST C	MIN.	TYP.*	MAX.	UNIT		
Input Forward Voltage	$ m V_{ m F}$	I _F =5mA, Ta=25°C				1.35	1.85	V
Temperature Coefficient of Forward Voltage	∆V _F /∆Ta	I _F =5mA				-2		mV/°C
Input Reverse Current	${ m I}_{ m R}$	$V_R=3V$, Ta=	=25°C		1	_	100	μ A
Input Capacitance	C_{T}	$V_{\mathbf{F}}=0, \ \mathbf{f}=1\mathbf{M}$	Hz, T	a=25°C	-	170	_	pF
Output Leakage Current	Т.	$V_{\mathbf{F}} = 0V$		$V_O = 5.5V$	1	_	100	
$(V_O>V_{CC})$	ІОНН	$V_{\rm CC} = 4.5 V$		$V_O = 20V$	1	0.01	500	μ A
Logic Low Output Voltage	v_{OL}	$I_{OL}=6.4$ mA,	$I_{\mathbf{F}} = 5$	mA	l	0.4	0.5	V
Logic High Output Voltage	v_{OH}	$I_{ m OH}$ = -2.6 m.	A, V _F	=0.8V	2.4	3.3	-	V
	I_{CCL}	I _F =7.5mA		$V_{\rm CC}$ =5.5 V	1	4.0	6.0	mA
Logic Low Supply Current				$V_{CC} = 20V$		4.6	7.5	
	ICCH	$V_{\mathbf{F}} = 0V$		$V_{\rm CC} = 5.5 V$	I	4.2	6.0	mA
Logic High Supply Current				$V_{\rm CC} = 20V$	I	4.7	7.5	
Logic Low Short Circuit	T	v _C		$V_{\rm CC} = 5.5 V$	25	55	-	
Output Current (Note 6)	IOSL	$I_{\rm F} = 7.5 \text{mA}$	V _O =	$V_{CC} = 20V$	40	80	_	mA
Logic High Short Circuit	T = 0:	$V_{\mathbf{F}} = 0V$		$V_{\rm CC} = 5.5 \mathrm{V}$	-10	-25	_	
Output Current (Note 6)	IOSH	$V_O = GND$		$V_{\rm CC} = 20V$	– 25	-60	_	mA
Input Current Logic Low Output	${ m I_{FL}}$	$I_{O} = 6.4 \text{mA}, V_{O} < 0.4 \text{V}$			-	_	5	mA
Input Voltage Logic High Output	$v_{ m FH}$	$I_{O} = -2.6 \text{mA}, V_{O} > 2.4 \text{V}$			0.8	_	_	v
Input Current Hysteresis	$I_{ m HYS}$	$V_{CC}=5V$			-	0.05		mA
Resistance (Input-Output)	$R_{\mathbf{S}}$	$V_S = 500V, R.$ $Ta = 25^{\circ}C$.H.≦6	60% (Note 5)	5×10 ¹⁰	1014	_	Ω
Capacitance (Input-Output)	c_{S}	$V_S = 0, f = 1M$	Hz, T	a=25°C (Note 5)	_	0.15	0.3	pF


^{*} All typical values are at Ta=25°C, $V_{CC}=5V$, IF (ON)=7.5mA unless otherwise specified.

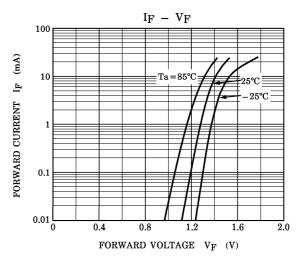
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT TEST CONDITION		MIN.	TYP.*	MAX.	UNIT
Propagation Delay Time to Logic High Output (Note 7)	$^{ m t_{pLH}}$		$I_{\mathbf{F}} = 7.5 \rightarrow 0 \text{mA}$	_	250	400	ns
Propagation Delay Time to Logic Low Output (Note 7)	$^{ m t_{pHL}}$	1	$I_{ m F}\!=\!0\!\! ightarrow\!7.5{ m mA}$	-	270	400	ns
Output Rise Time (10-90%)	t_r	1	$I_{\mathrm{F}} = 7.5 \rightarrow 0 \mathrm{mA},$ $V_{\mathrm{CC}} = 5 \mathrm{V}$	_	35	75	ns
Output Fall Time (90-10%)	t_f		$I_{\mathrm{F}} = 0 \rightarrow 7.5 \mathrm{mA},$ $V_{\mathrm{CC}} = 5 \mathrm{V}$	-	20	75	ns
Common Mode Transient Immunity at Logic High Output (Note 8)	$c_{ m MH}$	2	I _F =0mA, V _{CM} =400V V _{O (Min.)} =2V	5	10	ı	kV / μs
Common Mode Transient Immunity at Logic Low Output (Note 8)	$\mathrm{c_{ML}}$	2	I _F =7.5mA, V _{CM} =400V V _{O (Max.)} =0.8V	-5	-10	_	kV / μs

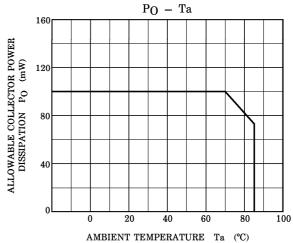

^{*} All typical values are at Ta=25°C, V_{CC}=5V

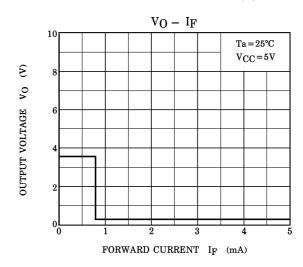

- (Note 6) Duration of output short circuit time should not exceed 10ms.
- (Note 7) The t_{pLH} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.5V point on the leading edge of the output pulse. The t_{pHL} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.5V point on the trailing edge of the output pulse.
- (Note 8) C_{ML} is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($V_O < 0.8V$). C_{MH} is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ($V_O < 2.0V$).
- (Note 9) A ceramic capacitor $(0.1\mu\mathrm{F})$ should be connected from pin 3 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length between capacitor and coupler should not exceed 1cm.


TEST CIRCUIT 1 : t_{pLH} , t_{pHL} , t_{r} and t_{f}

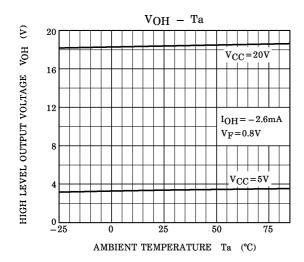
TEST CIRCUIT 2 : Common Mode Transient Immunity

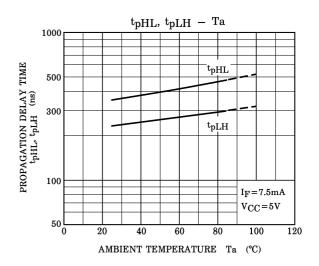





AMBIENT TEMPERATURE Ta (°C)

75


0L -25



6 2001-06-01

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.