TOSHIBA TC7W34FU/FK

TENTATIVE

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7W34FU, TC7W34FK

(UNDER DEVELOPMENT)

TRIPLE NON-INVERT BUFFER

The TC7W34FU is high speed CMOS BUFFER fabricated with silicon gate CMOS technology.

The internal circuit is composed of 2 stage including buffer output, which enable high noise immunity and stable output.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES

MARKING

TC7W34FU

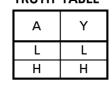
7 W 3 4

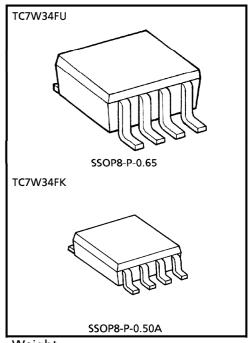
- High Speedtpd = 6ns (Typ.) at V_{CC} = 5V
- Low Power Dissipation $\cdots I_{CC} = 1\mu A$ (Max.) at Ta = 25°C
- High Noise Immunity ··········· V_{NIH} = V_{NIL} = 28% V_{CC} (Min.)

TC7W34FK

пппп

34

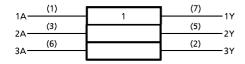

- Output Drive Capability 10 LSTTL Loads
- Symmetrical Output Impedance… |IOH| = IOL = 4mA (Min.)
- Balanced Propagation Delays ······ t_{pLH} ≒t_{pHL}


Type Name

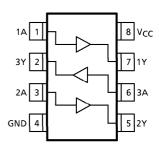
LOT No.

Wide Operating Voltage Range… V_{CC} (opr) = 2~6V

TRUTH TABLE



Weight SSOP8-P-0.65 : 0.02g (Typ.) SSOP8-P-0.50A : 0.01g (Typ.)


MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	V _{CC}	-0.5~7	V
DC Input Voltage	VIN	-0.5~V _{CC} +0.5	٧
DC Output Voltage	VOUT	-0.5~V _{CC} +0.5	V
Input Diode Current	lικ	± 20	mA
Output Diode Current	loк	± 20	mA
DC Output Current	lout	± 25	mA
DC V _{CC} / Ground Current	lcc	± 25	mA
Power Dissipation	PD	300	mW
Storage Temperature	T _{stg}	-65∼150	°C
Lead Temperature (10 s)	TL	260	°C

LOGIC DIAGRAM

PIN ASSIGNMENT (TOP VIEW)

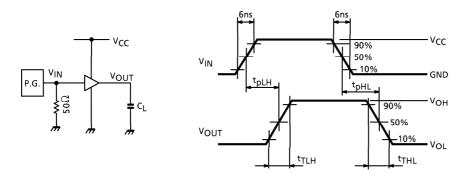
RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	Vout	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40∼8 5	°C
		$0\sim1000 (V_{CC}=2.0V)$	
Input Rise and Fall Time	t _r , t _f	$0\sim500 \ (V_{CC}=4.5V)$	ns
		$0\sim400 \ (V_{CC}=6.0V)$	

DC ELECTRICAL CHARACTERISTICS

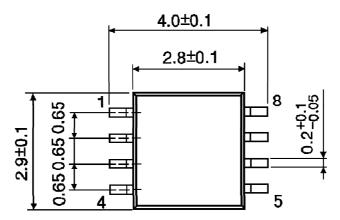
CILA DA CTEDICTIC	CVMDOL	TEST COMPLETION			Ta = 25°C			$Ta = -40 \sim 85^{\circ}C$		LINUT
CHARACTERISTIC SYMBOL		TEST CONDITION		Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High-Level				2.0	1.5	_		1.5	_	
Input Voltage	VIH			4.5	3.15	_		3.15		V
Impat Voltage					4.2	_		4.2	_	
Low-Level				2.0		_	0.5	_	0.5	
Input Voltage	V _{IL}			4.5		_	1.35		1.35	V
linput voitage				6.0	1	_	1.8	_	1.8	
		V _{IN} = V _{IH}	I _{OH} = -20μA	2.0	1.9	2.0		1.9	_	V
High Loyal	Voн			4.5	4.4	4.5		4.4		
High-Level Output Voltage				6.0	5.9	6.0		5.9		
			$I_{OH} = -4mA$	4.5	4.18	4.31		4.13		
			$I_{OH} = -5.2$ mA	6.0	5.68	5.80		5.63		
		V _{IN} = V _{IL}	I _{OL} = 20μA	2.0	1	0.0	0.1	_	0.1	\ \ \
Low-Level Output Voltage				4.5		0.0	0.1	—	0.1	
	VOL			6.0	_	0.0	0.1	-	0.1	
			$I_{OL} = 4mA$	4.5		0.17	0.26	_	0.33	
			$I_{OL} = 5.2 \text{mA}$	6.0	1	0.18	0.26	_	0.33	
Input Leakage Current	IIN	V _{IN} = V _{CC} or GND		6.0		_	± 0.1	_	± 1.0	μΑ
Quiescent Supply Current	lcc	V _{IN} = V _{CC} or GND		6.0	l	_	1.0	_	10.0	μΑ

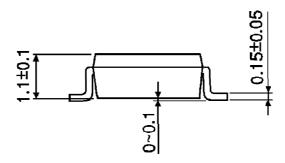
AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, $V_{CC} = 5V$, Ta = 25°C)


CHARACTERISTIC	SYMBOL	TEST CONDITION	Ta = 25°C			UNIT
CHARACTERISTIC	STIVIBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	t _{TLH} t _{THL}		I	4	8	ns
Propagation Delay Time	^t pLH ^t pHL			6	12	ns

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

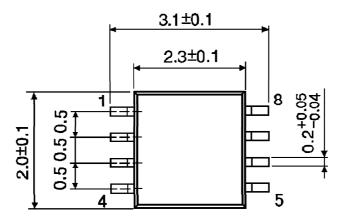
CHADACTERISTIC	SYMBOL TEST CONDITION			Ta = 25°C			Ta = -4	UNIT	
CHARACTERISTIC	STIVIBUL	TEST CONDITION		MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
Output Transition t _{TLH} t _{THL}	4	<u> </u>	2.0	_	30	75	_	95	ns
	1		4.5	_	8	15	_	19	
	THL		6.0	_	7	13	_	16	
1	4		2.0	_	27	75	_	95	ns
	tpLH	_	4.5	_	9	15	_	19	
	t _{pHL}		6.0	_	8	13	_	16	
Input Capacitance	CIN	_		_	5	10	_	10	рF
Power Dissipation Capacitance	C _{PD}	(Note 1)			20	_	_	_	pF

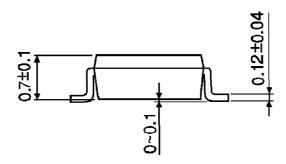

(Note 1): CPD is defined as the value of the internal equivalent capacitance of IC which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation hereunder.
ICC (opr) = CPD · VCC · fIN + ICC / 3 (per gate)


SWITCHING CHARACTERISTICS TEST CIRCUIT

PACKAGE DIMENSIONS

SSOP8-P-0.65 Unit: mm





Weight: 0.02g (Typ.)

PACKAGE DIMENSIONS

SSOP8-P-0.50A Unit: mm

Weight: 0.01g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.