TOSHIBA CCD LINEAR IMAGE SENSOR CCD (Charge Coupled Device)

TCD2700C

The TCD2700C is a high sensitive and low dark current 7500 elements \times 3 line CCD color image sensor.

The sensor is designed for color scanner.

The device contains a row of 7500 elements \times 3 line photodiodes which provide a 24 lines / mm across a A3 size paper. The device is operated by 5 V pulse, and 12 V power supply.

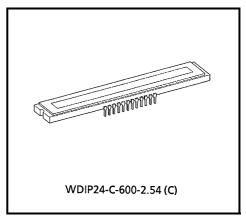
FEATURES

• Number of Image Sensing Elements

 $: 7500 \text{ elements} \times 3 \text{ line}$

• Image Sensing Element Size

: $8\mu m$ by $8\mu m$ on $8\mu m$ centers

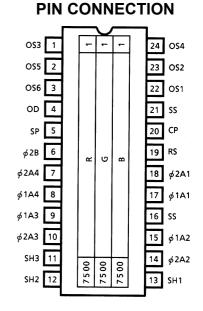

• Photo Sensing Region : High sensitive pn photodiode

• Clock : 2 phase (5 V)

Distance Between Photodiode Array : 64μm (8 Lines)

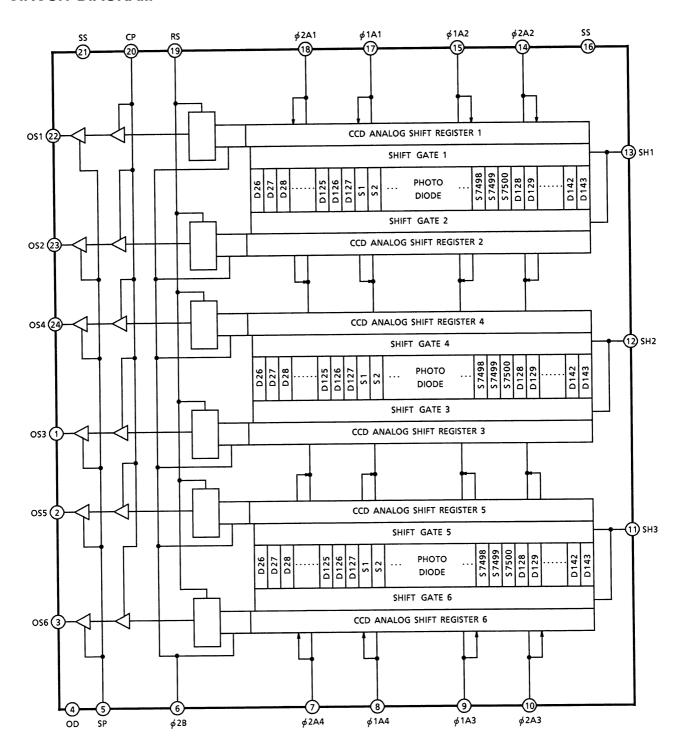
Internal Circuit : Sample and Hold circuit, Clamp circuit

Package : 24 pin DIPColor Filter : Red, Green, Blue



Weight: 17.1g (Typ.)

MAXIMUM RATINGS (Note 1)


CHARACTERISTIC	SYMBOL	RATING	UNIT
Clock Pulse Voltage	V_{ϕ}		
Shift Pulse Voltage	V _{SH}		
Reset Pulse Voltage	V _{RS}	-0.3~8	V
Clamp Pulse Voltage	V _{CP}		
Sample and Hold pulse Voltage	V _{SP}		
Power Supply Voltage	V _{OD}	-0.3~15	V
Operating Temperature	T _{opr}	0~60	°C
Storage Temperature	T _{stg}	-25~85	°C

Note 1: All voltage are with respect to SS terminals (Ground).

(TOP VIEW)

CIRCUIT DIAGRAM

PIN NAMES

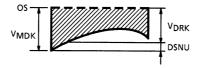
PIN No.	SYMBOL	NAME	PIN No.	SYMBOL	NAME
1	OS3	Signal Output 3 (Green)	13	SH1	Shift Gate 1
2	OS5	Signal Output 5 (Red)	14	_φ 2A2	Clock 2 (Phase 2)
3	OS6	Signal Output 6 (Red)	15	_φ 1A2	Clock 2 (Phase 1)
4	OD	Power	16	SS	Ground
5	SP	Sample and Hold Gate	17	φ1A1	Clock 1 (Phase 1)
6	_φ 2B	Final Stage Clock (phase 2)	18	_φ 2A1	Clock 1 (Phase 2)
7	_φ 2A4	Clock 4 (Phase 2)	19	RS	Reset Gate
8	_φ 1A4	Clock 4 (Phase 1)	20	СР	Clamp Gate
9	_φ 1A3	Clock 3 (Phase 1)	21	SS	Ground
10	_φ 2A3	Clock 3 (Phase 2)	22	OS1	Signal Output 1 (Blue)
11	SH3	Shift Gate 3	23	OS2	Signal Output 2 (Blue)
12	SH2	Shift Gate 2	24	OS4	Signal Output 4 (Green)

OPTICAL / ELECTRICAL CHARACTERISTICS

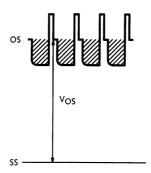
(Ta = 25°C, V_{OD} = 12 V, V_{ϕ} = V_{SH} = V_{RS} = V_{CP} = 5 V (PULSE), f_{ϕ} = 1 MHz, LOAD RESISTANCE = 100 k Ω , t_{INT} (INTEGRATION TIME) = 10 ms, LIGHT SOURCE = A LIGHT SOURCE + CM500S FILTER (t = 1.0 mm))

CHARACTERISTIC		SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
	Red	R _R	3.7	5.3	6.9		
Sensitivity	Green	R _G	5.3	7.7	10.1	V / Ix·s	(Note 2)
	Blue	R _B	2.0	2.9	3.8		
Photo Response Non Uniformity		PRNU (1)	_	10	20	%	(Note 3)
		PRNU (3)	_	3	12	mV	(Note 4)
Saturation Output Voltage		V _{SAT}	1.5	2.0	_	V	(Note 5)
Saturation Exposure		SE	0.15	0.26	_	lx⋅s	(Note 6)
Dark Signal Voltage		V_{DRK}	_	2.5	5	mV	(Note 7)
Dark Signal Non Uniformity		DSNU	_	8	12	mV	(Note 8)
DC Power Dissipation		PD	_	800	1200	mW	(Note 8)
Total Transfer Efficiency		TTE	92	_	_	%	
Output Impedance		Z _o	_	0.2	0.5	kΩ	
DC Signal Output Voltage		Vos	3.0	6.0	8.0	V	(Note 9)
Random Noise		$N_{D\sigma}$	_	1.3	_	mV	(Note 10)

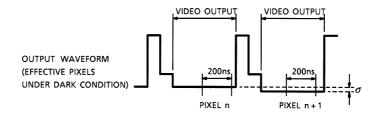
- Note 2: Sensitivity is defined for each color of signal outputs average when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.
- Note 3: PRNU (1) is defined for each color on a single chip by the expressions below when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.


$$PRNU(1) = \frac{\Delta \chi}{\overline{\chi}} \times 100 (\%)$$

Where $\bar{\chi}$ is average of total signal outputs and $\Delta\chi$ is the maximum deviation from $\bar{\chi}$.


- Note 4: PRNU (3) is defined as maximum voltage with next pixel, where measured 5% of SE (Typ.).
- Note 5: V_{SAT} is defined as minimum Saturation Output voltage of all effective pixels.

Note 6: Definition of SE :
$$SE = \frac{VSAT}{RG}$$


- Note 7: VDRK is defined as average dark signal voltage of all effective pixels.
- Note 8: DSNU is defined as different voltage between VDRK and VMDK, when VMDK is maximum dark voltage.

Note 9: DC Signal Output Voltage is defined as follows:

Note 10: Random noise is defined as the standard deviation (sigma) of the output level difference between two adjacent effective pixels under no illumination (i.e. dark condition) calculated by the following procedure.

- 1) Two adjacent pixels (pixel n and n + 1) in one reading are fixed as measurement points.
- 2) Each of the output levels at video output periods averaged over 200 nanosecond period to get Vn and Vn + 1.
- 3) Vn + 1 is subtracted from Vn to get ΔV .

$$\Delta V = Vn - Vn + 1$$

4) The standard deviation of ΔV is calculated after procedure 2) and 3) are repeated 30 times (30 readings).

$$\overline{\Delta V} = \frac{1}{30} \sum_{i=1}^{30} \left| \Delta V i \right| \quad \sigma = \sqrt{\frac{1}{30} \sum_{i=1}^{30} \left(\! \Delta V i \! \right| - \overline{\Delta V} \right)^2}$$

5) Procedure 2), 3) and 4) are repeated 10 times to get 10 sigma values.

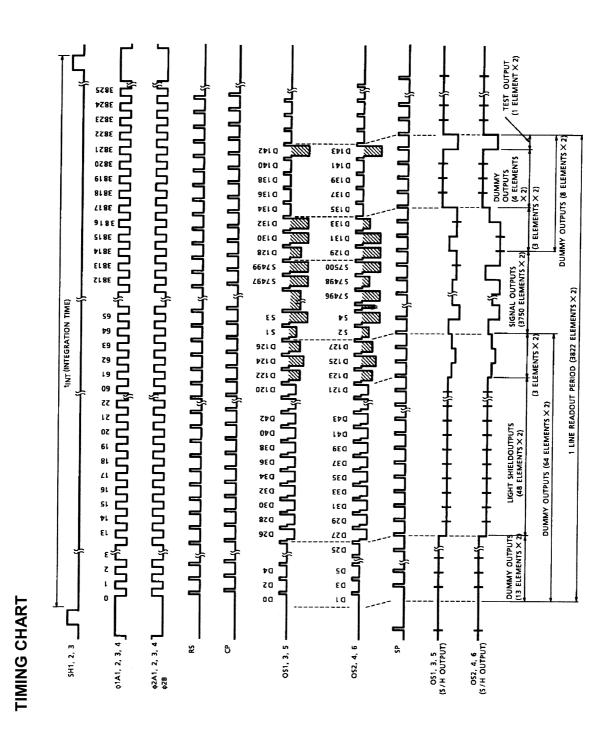
$$\overline{\sigma} = \frac{1}{10} \sum_{j=1}^{30} \sigma_j$$

6) $\bar{\sigma}$ value calculated using the above procedure is observed $\sqrt{2}$ times larger than that measured relative to the ground level. So we specify the random noise as follows.

Random noise =
$$\frac{1}{\sqrt{2}} \overline{\sigma}$$

2001-05-14

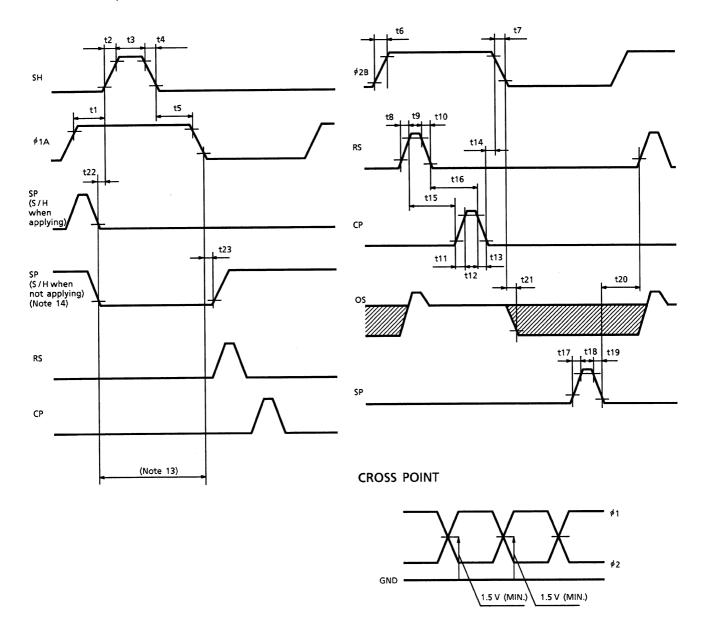
OPERATING CONDITION


CHARACTERISTIC		SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
Clock Pulse Voltage	"H" Level	\/ A	4.5	5.0	5.5	V	
Clock Fulse Voltage	"L" Level	$V_{\phi}A$	0	_	0.5	V	
Final Stage Clock Pulse Voltage	"H" Level	- V _φ B	4.5	5.0	5.5	V	
I mai Stage Clock Fulse Voltage	"L" Level		0	_	0.5	v	
Shift Pulse Voltage	"H" Level	V _{SH}	V _φ A"H"-0.5	V _φ A"H"	V _φ A"H"	V	(Note 11)
Still Fulse Voltage	"L" Level		0	_	0.5		
Reset Pulse Voltage	"H" Level		4.5	5.0	5.5	V	
Reset Fulse Voltage	"L" Level	V_{RS}	0	_	0.5	v	
Clamp Pulse Voltage	"H" Level		4.5	5.0	5.5	V	
Clamp Fulse Voltage	"L" Level	V _{CP}	0	_	0.5	7 V	
Sample and Hold Pulse Voltage	"H" Level		4.5	5.0	5.5	V	
Sample and Hold Fulse Voltage	"L" Level	V_SP	0	_	0.5	v	
Power Supply Voltage		V _{OD}	11.4	12.0	13.0	V	

Note 11: $V_{\phi}A$ "H" means the high level voltage of $V_{\phi}A$ when SH pulse is high level.

CLOCK CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
Clock Pulse Frequency	f_{ϕ}	_	1	20	MHz	
Reset Pulse Frequency	f _{RS}	_	1	20	MHz	
Clamp Pulse Frequency	f _{CP}	_	1	20	MHz	
Sample and Hold Pulse Frequency	f _{SP}	_	1	7.5	MHz	
Clock Capacitance (Note 12)	$C_{\phi}A$	_	350	-	pF	
Final Stage Clock Capacitance	$C_{\phi}B$	_	50	1	pF	
Reset Gate Capacitance	C _{RS}	_	50	_	pF	
Shift Gate Capacitance	C _{SH}	_	50	_	pF	
Clamp Gate Capacitance	C _{CP}	_	50	_	pF	
Sample and Hold Gate Capacitance	C _{SP}	_	50	_	pF	


Note 12: V_{OD} = 12 V

7

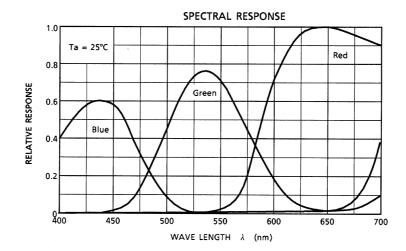
2001-05-14

TIMING REQUIREMENTS

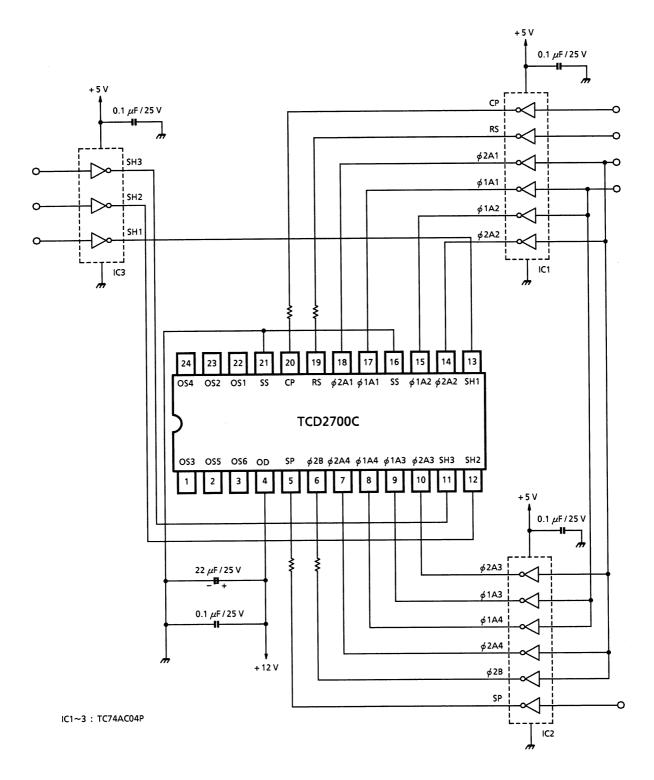
Note 13: Each SP, RS and CP pins put to Low level during this period.

Note 14: When you do not use a sample and hold circuit, put SP pin to High level except note 13 case.

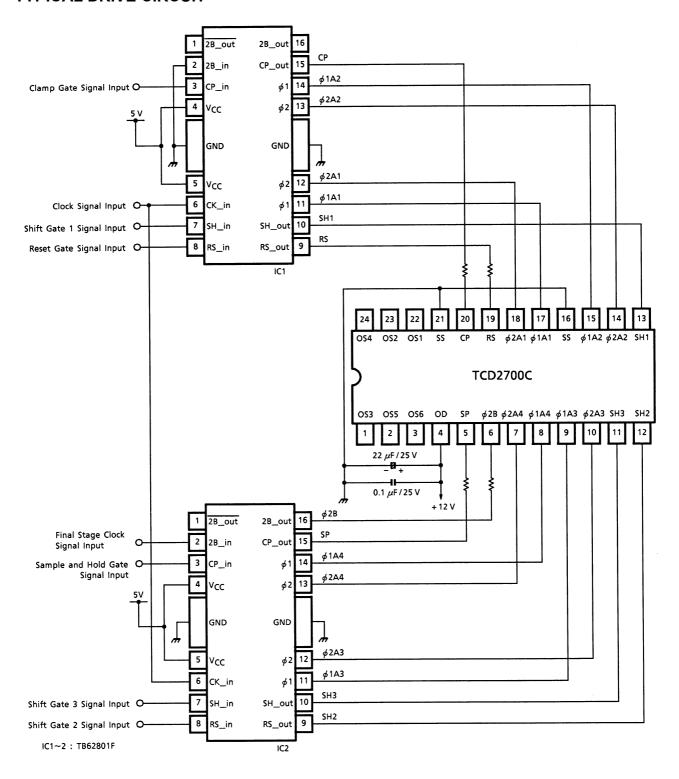
TCD2700C


TIMING REQUIREMENTS (Cont.)

CHARACTERISTIC	SYMBOL	MIN	TYP. (Note 15)	MAX	UNIT
Pulce Timing of SH and 1A	t1	60	1000	_	20
Pulse Timing of SH and $_\phi$ 1A	t5	200	1000	_	ns
SH Pulse Rise Time, Fall Time	t2, t4	0	50	_	ns
SH Pulse Width	t3	1000	2000	_	ns
$_{\phi}$ 1, $_{\phi}$ 2 Pulse Rise Time, Fall Time	t6, t7	0	50	_	ns
RS Pulse Rise Time, Fall Time	t8, t10	0	20	_	ns
RS Pulse Width	t9	10	100	_	ns
CP Pulse Rise Time, Fall Time	t11, t13	0	20	_	ns
CP Pulse Width	t12	10	100	_	ns
Pulse Timing of $_\phi 2B$ and CP	t14	5	40	_	ns
Pulse Timing of RS and CP	t15	0	100	_	- ns
ruise filling of K5 and Gr	t16	10	100	_	
SP Pulse Rise Time, Fall Time	t17, t19	0	20	_	ns
SP Pulse Width	t18	50	100	_	ns
Pulse Timing of RS and SP	t20	0	20	_	ns
Video Data Delay Time (Note 16)	t21	_	15	_	ns
Pulce Timing of SP and SH	t22	50	_	_	
Pulse Timing of SP and SH	t23	0	_	_	ns


Note 15: TYP. is the case of f_{RS} = 1MHz. Note 16: Load Resistance is 100 k Ω .

9 2001-05-14


TYPICAL SPECTRAL RESPONSE

TYPICAL DRIVE CIRCUIT

TYPICAL DRIVE CIRCUIT

PRECAUTIONS FOR USE OF CCD IMAGE SENSOR

1. Static Electricity

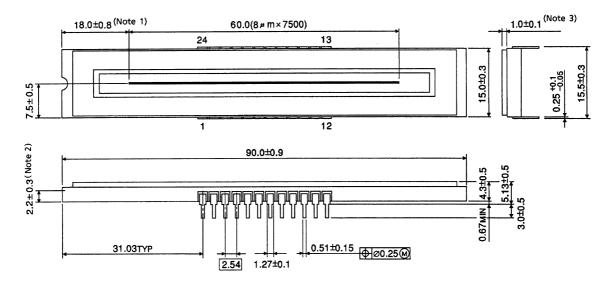
CCD Image Sensor is protected against static electricity, but inferior puncture mode device due to static electricity is sometimes detected. In handling the device, it is necessary to execute the following static electricity preventive measures, in order to prevent the trouble rate increase of the manufacturing system due to static electricity.

- a. Prevent the generation of static electricity due to friction by making the work with bare hands or by putting on cotton gloves and non-charging working clothes.
- b. Discharge the static electricity by providing earth plate or earth wire on the floor, door or stand of the work room.
- c. Ground the tools such as soldering iron, radio cutting plier or pincette.
 - It is not necessarily required to execute all precaution items for static electricity.
 - It is all right to mitigate the precautions by confirming that the trouble rate within the prescribed range.

2. Window Glass

As the dust and station on the glass window of the package will cause black flow on the picture, never fail to clean the glass surface before using. (Blow compressed vapor, and wipe off the dust, and dirt with soft cloth or paper slightly moistened with alcohol).

Fully take care for the handling of the device as the window glass will break or a strong friction is given to the window glass surface.


3. Incident Light

CCD image sensor has sensitivity in a wide range zone of light wave length, but its characteristics will sometimes widely change when used with long wave length input light outside the visual light zone.

PACKAGE DIMENSIONS

WDIP24-C-600-2.54 (C)

Unit in mm

14

Note 1: No. 1 SENSOR ELEMENT (S1) TO EDGE OF PACKAGE.

Note 2: TOP OF CHIP TO BOTTOM OF PACKAGE.

Note 3: GLASS THICKNES (n = 1.5)

Weight: 17.1g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.