TOSHIBA TSA3101G

TOSHIBA AC SWITCH OPTICALLY ISOLATED AC SWITCH

TSA3

R.M.S. On-State Current

 $: I_{T(RMS)} = 0.2 \sim 3A$

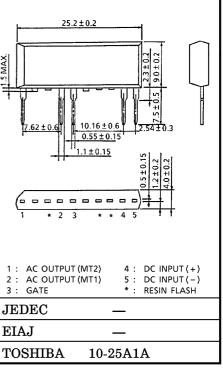
Repetitive Peak Off-State Voltage

 $: V_{DRM} = 400, 600V$

Isolation Voltage between Input to Output: 3000VAC (t=1min.)

Thickness of Inner Insulation Material

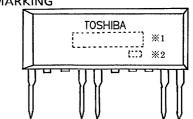
: 0.8mm (min.)


Creepage Distances, Clearances for Insulation between Input and Output Side

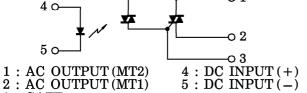
: 6mm (min.)

TTL drive is Available

MAXIMUM RATINGS (Ta = 25°C)


CHARACTERISTIC		SYMBOL	RATING	UNIT	
	Forward Current	I _F (IN)	50	mA	
INPUT	Forward Current Derating (Ta\ge 53°C)	ΔI _F /°C	-0.7	mA/°C	
	Peak Forward Current (100 μs pulse, 100 pps)	I_{FP}	1	A	
	Reverse Voltage	$V_{\mathbf{R}}$	5	V	
	Repetitive Peak Off-State Voltage	$v_{ m DRM}$	400	V	
UT	Nominal AC Line Voltage (Note 1)	v_{AC}	80~125	V	
UTP	R.M.S On-State Current (Sine Waveform, R.M.S.)	I _T (RMS)	0.2~3	A	
ΩO	Peak One Cycle Surge On-State	Imass	80 (50Hz)	A	
	Current (Non-Repetitive)	ITSM	88 (60Hz)		
	I ² t Limit Value	${f I}^2{f t}$	32	A^2 s	
Operating Frequency Range		f	45~65	Hz	
Ope	erating Temperature Range	$T_{ m opr}$	-40~100	°C	
Sto	rage Temperature Range	$\mathrm{T_{stg}}$	-40~100	°C	
	ation Voltage out to Output) (Note 2)	$\mathrm{BV}_{\mathbf{s}}$	3000	V	

Unit in mm


Weight: 2g (TYP.)

MARKING

EQUIVALENT CIRCUIT

3: GATE

NUMBER		SYMBOL	MARK			
※ 1	TYPE	TSA3101G	TYPE	TSA3101G		
*2			7B : Fe	nuary 1997 bruary 1997 cember 1997		

(The cutted pins near by Pin No.1 & No.3 is connecting in electrically with output terminal)

Note 1: When the voltage larger than applied AC voltage is applied to the device such as 2

phase motor and others, please derating for this maximum rating value. Note 2: TEST CONDITION...AC, t=60s, $RH \le 60\%$

Note 3: Soldering of printed wiring board should be used under 260°C and 10s.

o 1

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

	CHARACT	ERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
UT	Forward Vo	oltage	$V_{\mathbf{F}}$	$I_{\rm F} = 10 {\rm mA}$	1.0	1.15	1.3	V
NP	Reverse Cu	rrent	$I_{\mathbf{R}}$	$V_R = 5V$	_		10	μ A
I	Capacitance	e	$\mathrm{c_{T}}$	$V_T = 0V$, $f = 1MHz$	1	20	_	pF
	Peak Off-St	ate Current	$I_{ m DRM}$	$V_{ m DRM} = Rated$	ı	_	10	μ A
	Peak On-St	ate Voltage	$V_{ extbf{TM}}$	$I_{TM} = 12A$	_		1.5	V
	Holding Cu	rrent	$I_{ m H}$	V _D =6V, Beginning Current=1A	1	_	25	mA
PUT	Critical Rat Off-State V	te of Rise of oltage	dv / dt	$V_{ m DRM} = Rated$	_	2000	_	V/μs
OUT	Critical Rat	te of Rise of ng Voltage	(dv / dt)c	$V_{D} = 400V - di / dt = 30A / ms$	_	30	_	V/μs
	Thermal	Junction to Lead	$R_{ ext{th}(j-\ell)}$	AC	_	_	20	°C/W
	Resistance	Junction to Ambient	R _{th(j-a)}	AC	_	_	85	°C/W

COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Current	I_{FT}	$V_D=6V, R_L=20\Omega$	_		10	mA
Capacitance (Input to output)	c_{S}	$V_S=0V, f=1MHz$	1	0.5	_	pF
Isolation Resistance	$R_{\mathbf{S}}$	V=500V, RH≦60%	10^{9}	_	_	Ω
Turn-off Time	${ m t_{off}}$	OUTPUT : Sine Waveform	_	_	3/4	cycle

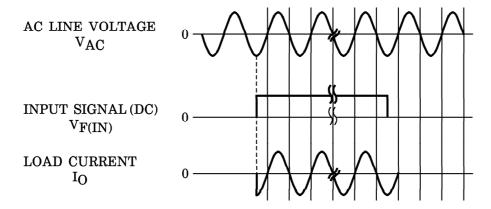
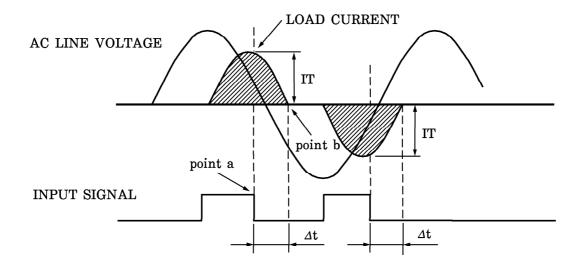
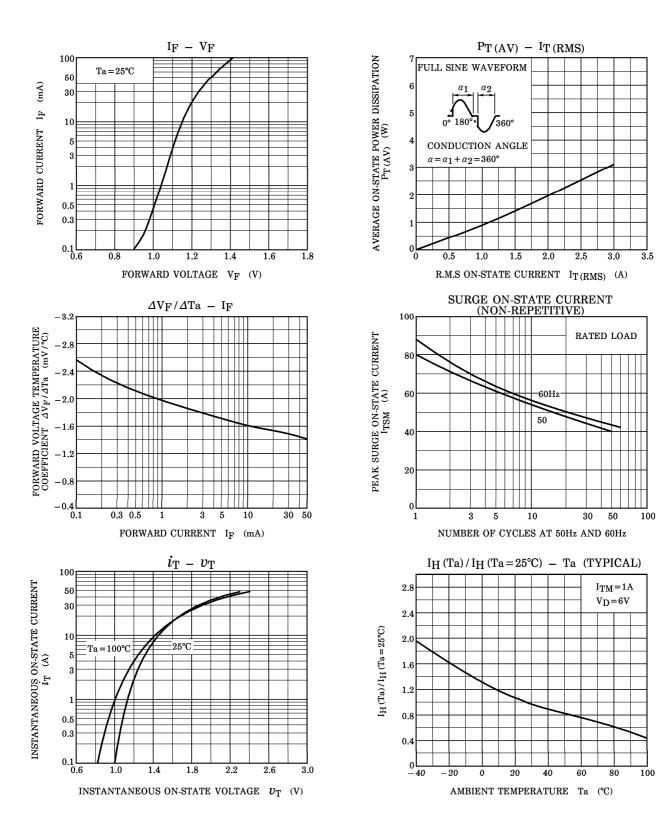
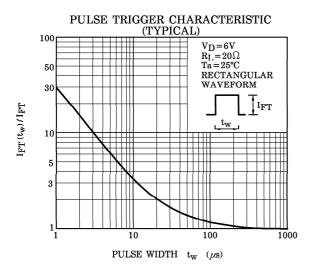
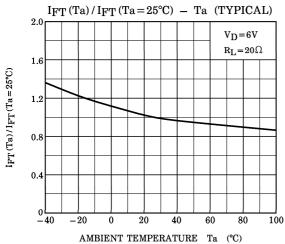



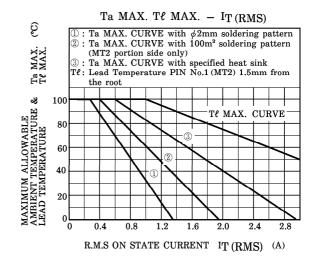
Fig.1 SWITCHING WAVEFORM

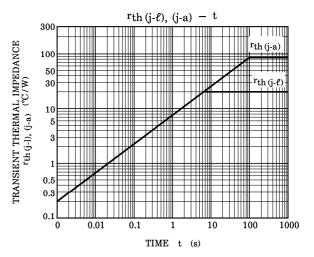

<REMARK>

PHASE CONTROL APPLICATION


In case of using in phase control application. Δt must be at least 1ms (Δt : The time starting from the end of INPUT SIGNAL "point a" to the point at which load current become ZERO "point b"). And, Load current "IT" at "point a" must be at least double the maximum Holding Current (IH) specification in each operating temperature.




3 2001-06-01



4 2001-06-01

5 2001-06-01

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.