TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device)

TCD132D

The TCD132D is a 1024-elements linear image sensor which includes CCD drive circuit and signal processing circuit. The CCD drive circuit consists of the pulse generator and the CCD driver; therefore it is posible to get easy drive by applying simple pulses (ϕ_{M} , ϕ_{CCD} and SH).

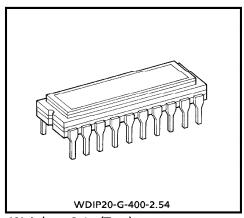
The signal processing circuit which consists of the clamp circuit and S/H circuit and pre-amplifier.

• Number of Image Sensing Elements: 1024

• Image Sensing Element Size : $14\mu m$ by $14\mu m$ on $14\mu m$

centers

Photo Sensing Region : Low dark current pn photodiode

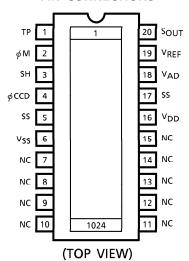

Clock : 3 Input pulses 5V

Internal Circuit : Clamp circuit (for optical black level reference)

Sample & hold circuit

Pre-amplifier

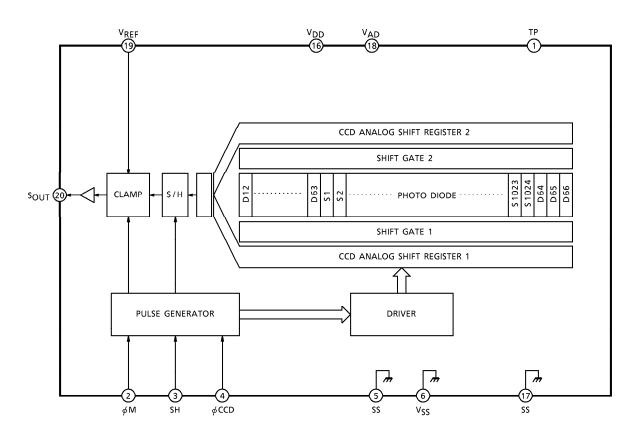
• Package : 22 pin cerdip


Weight: 3.1g (Typ.)

MAXIMUM RATINGS (Note 1)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Master Clock Voltage	V∮M		V
CCD Clock Voltage	V∳CCD		٧
Shift Pulse Voltage	v_{SH}		V
Reference Voltage	V _{REF}	- 0.3~15	V
Power Supply Voltage (Analog)	V _{AD}	-0.5~15	٧
Power Supply Voltage (Digital)	V _{DD}		V
Operating Temperature	T _{opr}	- 25~60	°C
Storage Temperature	T _{stg}	-40∼100	°C

(Note 1) All voltage are with respect to SS and V_{SS} terminals (Ground).


PIN CONNECTIONS

961001EBA2

● TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

CIRCUIT DIAGRAM

PIN NAMES

φM	Master Clock
φccd	CCD Clock
SH	Shift Pulse
V _{REF}	Reference Voltage Input
SOUT	Signal Output
V_{AD}	Power (Analog)
V_{DD}	Power (Digital)
SS	Ground (Analog)
V _{SS}	Ground (Digital)
TP	Test Input
NC	Non Connection

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

OPTICAL / ELECTRICAL CHARACTERISTICS

(Ta = 25°C, $V_{AD} = V_{DD} = 12V$, $V_{\phi M} = V_{\phi CCD} = V_{SH} = 5V$ (PULSE), $V_{REF} = 5.0V$, $f_{\phi CCD} = 0.5$ MHz, t_{INT} (INTEGRATION TIME) = 10ms, LIGHT SOURCE = DAYLGIHT FLUORESCENT LAMP, LOAD RESISTANCE = 100k Ω)

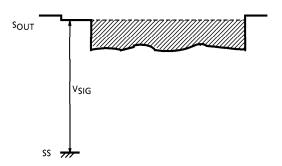
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Sensitivity	R	9	12	15	V / lx·s	(Note 2)
Photo Response Non Uniformity	PRNU	_	_	10	%	(Note 3)
Saturation Output Voltage	V _{SAT}	2	3	_	V	(Note 4)
Saturation Exposure	SE	0.13	0.25		lx∙s	(Note 5)
Dark Signal Non Uniformity	DSNU	_	_	15	mV	(Note 6)
Analog Current Dissipation	I _{AD}	_	12	20	mA	
Digital Current Dissipation	I _{DD}	_	4	10	mA	
Input Current of V _{REF}	I _{REF}	_	0.1	1	mA	
Total Transfer Efficiency	TTE	92	_		%	
Output Impedance	ZO	_	1	2	kΩ	
Clamp Error Voltage	V _{ERR}		100	200	V	(Note 7)

(Note 2) Sensitivity for 2856K W-lamp is 25V/lx·s (Typ.)

(Note 3) Measured at 50% of SE (Typ.)

Definition of PRNU : PRNU = $\frac{\Delta \chi}{\overline{\chi}}$ × 100 (%)

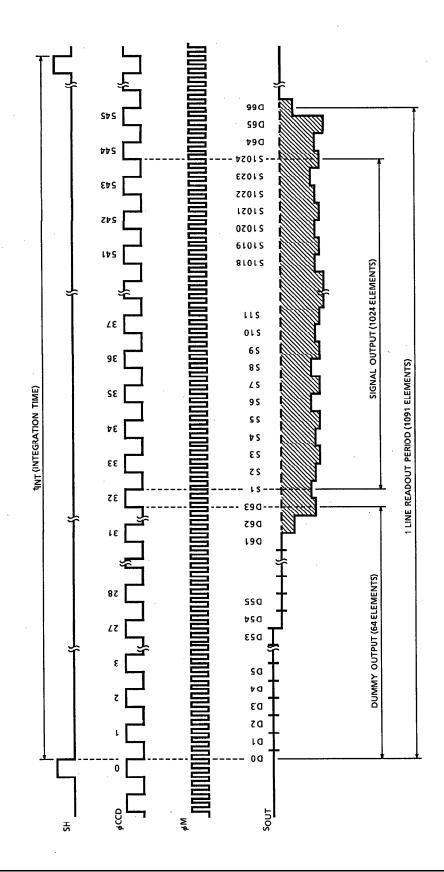
Where $\overline{\chi}$ is average of total signal outputs and $\Delta \chi$ is the maximum deviation from $\overline{\chi}$ under uniform illumination.


(Note 4) V_{SAT} is defined as minimum saturation output voltage of all effective pixels.

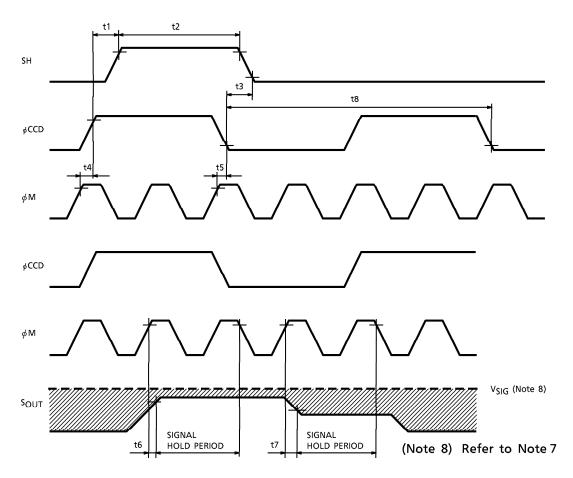
(Note 5) Definition of SE : SE = $\frac{V_{SAT}}{R}$ (Ix·s)

(Note 6) Definition of DSNU: DSNU = MAX - MIN (mV)

(Note 7) Definition of V_{ERR} : $V_{ERR} = |V_{REF} - V_{SIG}|$ Where V_{SIG} is defined below.

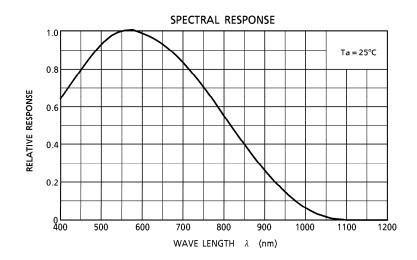

OPERATING CONDITION

CHARACTERISTIC		SYMBOL	MIN.	TYP.	MAX.	UNIT
Master Clock Voltage	"H" Level	V _∳ M	4.5	5.0	5.5	V
	"L" Level		0	0.5	0.8	
ICCD Clack Valtage	"H" Level	$V_{\phi}CCD$	4.5	5.0	5.5	V
	"L" Level		0	0.5	0.8	
Shift Dulsa Valtaga	"H"Level	Vari	4.5	5.0	5.5	٧
Shift Pulse Voltage	"L" Level	V_{SH}	0	0.5	0.8	V
Reference Voltage		V_{REF}	4.5	5.0	5.5	V
Power Supply Voltage (Analog)		V_{AD}	11	12	13	V
Power Supply Voltage ((Driver)		V_{DD}	11	12	13	V
Test Input Voltage		V _{TP}	0	0	0.8	٧

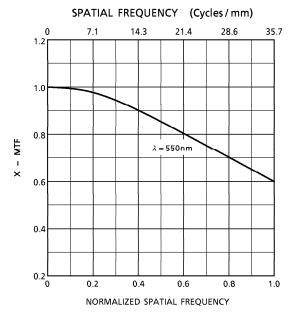

CLOCK CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Master Clock Frequency	f _{øM}	0.4	2	4	MHz
Data Rate	fDATA	0.2	1	2	MHz
CCD Clock Frequency	$f_{\phi}CCD$	0.1	0.5	1.0	MHz
Master Clock Capacitance	C _{øM}	_	_	10	pF
CCD Clock Capacitance	$C_{\phi}CCD$	_	_	10	pF
Shift Pulse Capacitance	C _{SH}	_	-	10	pF

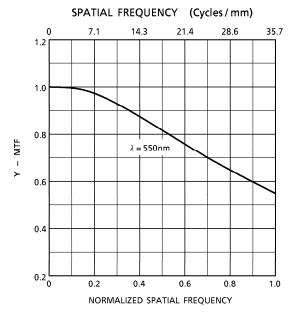
TIMING CHART

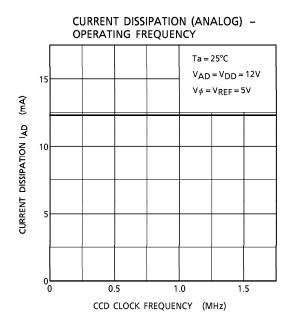


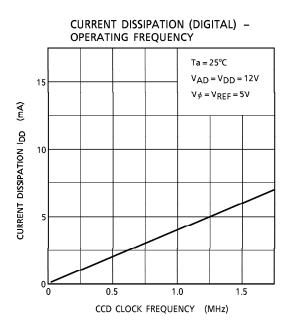
TIMING REQUIREMENTS

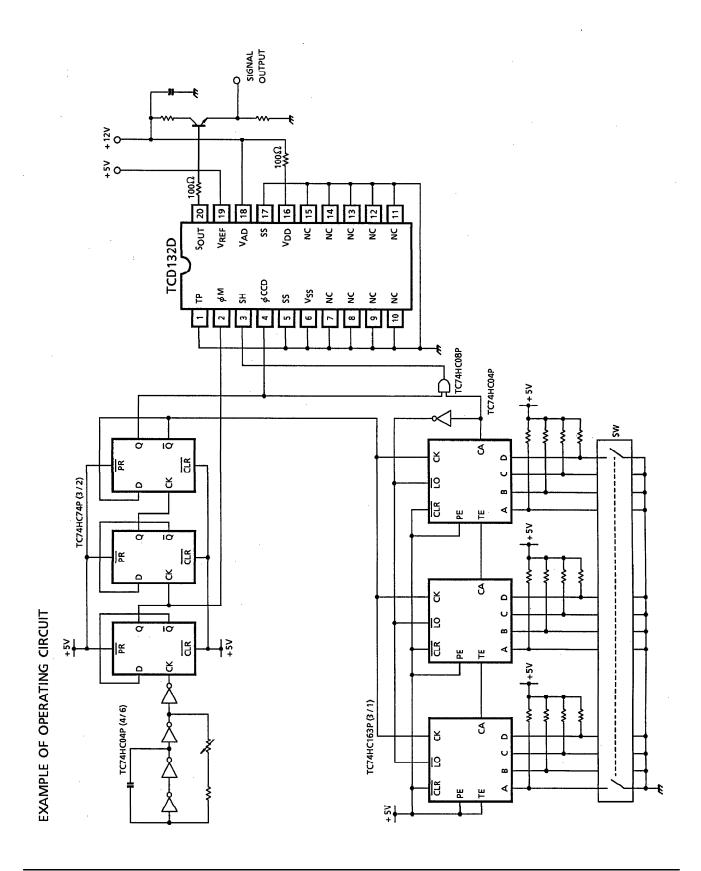


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Pulse Timing of SH and ϕ_{CCD}	t1, t3	0	20	60	ns
SH Pulse Width	t2	250	_	t8/2	ns
Pulse Timing of ϕ_{M} and ϕ_{CCD}	t4, t5	0	20	60	ns
Aperture Delay	t6, t7	_	80	120	ns
ϕ_{CCD} Period	t8	1	2	10	μ s


TYPICAL PERFORMANCE CURVES


MODULATION TRANSFER FUNCTION OF X-DIRECTION




MODULATION TRANSFER FUNCTION OF Y-DIRECTION

TYPICAL PERFORMANCE CURVES (Cont'd)

CAUTION

1. Window Glass

The dust and stain on the glass window of the package degrade optical performance of CCD sensor.

Keep the glass window clean by saturating a cotton swab in alcohol and lightly wiping the surface, and allow the glass to dry, by blowing with filtered dry N₂.

Care should be taken to avoid mechanical or thermal shock because the glass window is easily to damage.

2. Electrostatic Breakdown

Store in shorting clip or in conductive foam to avoid electrostatic breakdown.

3. Incident Light

CCD sensor is sensitive to infrared light.

Note that infrared light component degrades resolution and PRNU of CCD sensor.

4. Lead Frame Forming

Since this package is not stout against mechanical stress, you should not reform the lead frame. We recommend to use a IC-inserter when you assemble to PCB.

OUTLINE DRAWING

WDIP20-G-400 (B)

7.1±0.8 (Note 1) 14.3(14 \(\mu \times 1024 \)

20

11

26.0±0.5

26.0±0.5

1.57TYP

1.57TYP

1.57TYP

1.31±0.1

(Note 1) No. 1 SENSOR ELEMENT (S1) TO EDGE OF PACKAGE.

(Note 2) TOP OF CHIP TO BOTTOM OF PACKAGE.

(Note 3) GLASS THICKNES (n = 1.5)

Weight: 3.1g (Typ.)