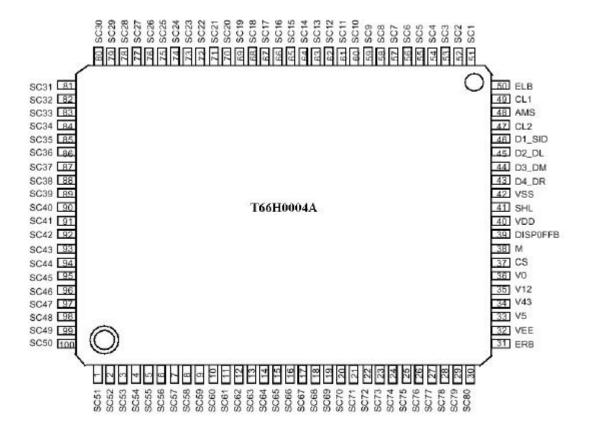


T66H0004A

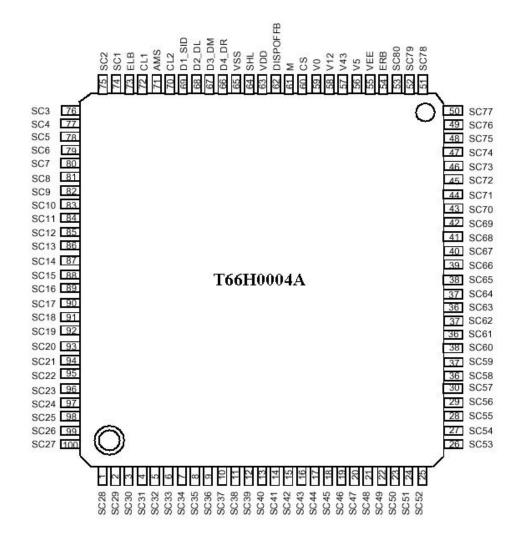
80 output LCD Segment/Common Driver IC

DESCRIPTION

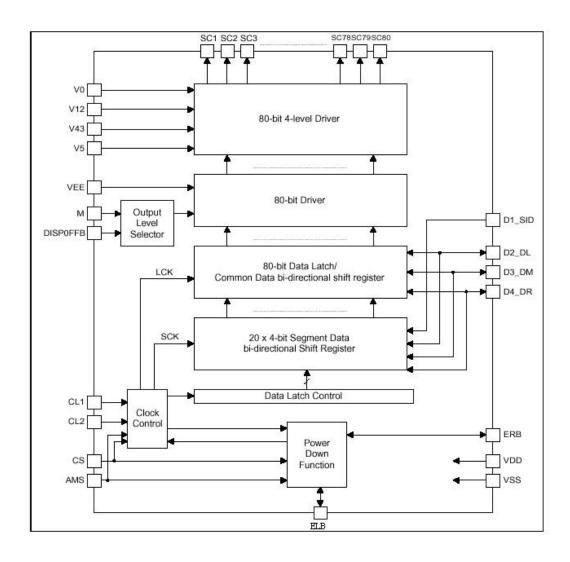
The T66H0004A is an LCD driver LSI which is fabricated by low power CMOS high voltage process technology. In segment driver mode, it can be interfaced in 1-bit serial or 4-bit parallel method by the controller. In common driver mode, dual type mode is applicable. And in segment mode application, the power down function reduces power consumption.


FEATURES

- Power supply voltage:+5V±10%,+3V±10%
- Supply voltage for display:6 to $28V(V_{DD}-V_{EE})$
- 4 bit parallel/1 bit serial data processing (in segment mode)
- Single mode operation/dual mode operation (in common mode)
- Power down function (in segment mode)
- Applicable LCD duty: 1/64 1/256
- High voltage CMOS process
- Bare die , QFP or TQFP available


PACKAGE INFORMATION

QFP 100QFP PACKAGE



TQFP 100QFP PACKAGE

BLOCK DIAGRAM

BLOCK DESCRIPTION

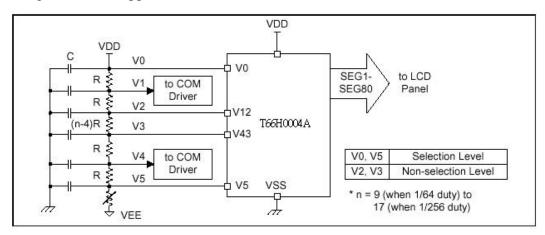
Name	Function	COM/SEG
Clock control	Generates latch clock(LCK), shift clock(SCK) and control clock timing according to the input of CL1, CL2 and control inputs(CS, AMS). In common driver accolication mode, this block generates the shift clock(LCK) for the common data Bi-directional shift register.	COM/SEG
Data latch control	Determines the direction of segment data shift, and input data of each Bi- directional shift register. In 4-bit segment data parallel transfer mode, data is shifted by 4-bit unit. In common driver application mode, data is transferred to the common data shift register directly, which disables this block.	SEG
Power down function	Controls the clock enable state of the current driver according to the input value of enable pin(ELB or ERB). If enable input value is "Low", every clock of the current driver is enabled and the clock control block works. But if enable input is "High", current driver is disabled and the input data value has no effect on the output level. So power consumption can be lowered.	SEG
Output level selector	Controls the output voltage level according to the input control pin (M and DISPOFFB) (refer to PIN DESCRIPTION).	COM/SEG
20x4-bit segment data Bi-directional shift register	Stores output data value by shifting the input values. In 1-bit serial interface mode application, all 80 shift clocks(SCK) are needed to store all the display data. But in 4-bit parallel transfer mode application, only 20 clocks are needed. In common driver application mode, this block does not work.	SEG
80-bit data latch/common data Bi- directional shift register	In segment driver application mode, the data from the 20x4-bit segment data shift register are latched for segment driver output. In single-type common driver application,1-bit input data(from DL or DR pin) is shifted and latched by the direction according to the SHL signal input. In dual-type common application mode,80-bit registers are divided by two blocks and controlled independently(refer to NOTE 3).	COM/SEG
80-bit level shifter	Voltage level shifter block for high voltage part. The inputs of this block are of logical voltage level and the outputs of this block are at high voltage level value. These values are input in to the driver.	SEG
80-bit 4-level driver	Selects the output voltage level according to M and latched data value. If the data value is "High" the driver output is at selected voltage level(V0 or V5), and in the reverse case the driver output value is at the non-selected level (V12 or V43). In segment driver application mode, non-selected output value is V2 or V3. And when in common driver application, this value becomes V1 or V4.	SEG

PIN DESCRIPTION

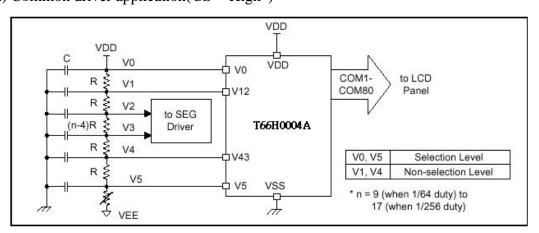
Pin	I/O	Name	Function	Interface
VDD			Logical "High" input port(+5V±10%,+3V±10%)	
Vss		Power supply	0V(GND)	Power
VEE			Logical "Low" for high voltage part	
V0,V12, V43,V5	Ι	LCD driver output voltage level	Bias supply voltage input to drive the LCD. Bias voltage divided by the resistance is usually used as a supply voltage source (refer to NOTE 2).	Power
SC1-SC80	0	LCD driver output	Display data output pin which corresponds to the respective latch contents. One of V0,V12,V34 and V5 is selected as a display driving voltage source according to the combination of the latch data level and M signal(refer to NOTE 1).	LCD
CL2	I	Data shift clock	Clock pulse input for the bi-directional shift register. -In segment driver application mode, the data is shifted to 20x4-bit segment data shift The clock pulse, which was input when the enable bit(ELB/ERB) is in not active condition, is invalid. -In common driver application mode, the data is shifted to 80-bit common data bi-directional shift register by the CL1 clock. Hence, this clock pin is not used (Open or connect this pin to VDD).	Controller
М	I	AC signal for LCD driver output	Alternate signal input pin for LCD driving. Normal frame inversion signal is input in to this pin.	Controller
CL1	Ι	Data latch clock	-In segment driver application mode, this signal is used for latching the shift register contents at the falling edge of this clock pulse. CL1 pulse "High" level initializes power-down function block. -In common driver application mode, CL1 is used as a shifting clock of common output data.	Controller
DISPOFFB	I	Display OFF control	Control input pin to fix the driver output(SC1-SC80) to V0 level, during "Low" value input. LCD becomes non-selected by V0 level output from every output of segment drivers and every output of common drivers.	Controller
CS	I	COM/SEG mode control	When CS="Low",T66H0004A is used as an 80-bit segment driveer. When CS="High",T66H0004A is set to an 80-bit common driver.	VDD/VSS
AMS	Ι	Application mode select	According to the input value of the AMS and the CS pin, application mode of T66H0004A is differs as shown below.	

Preliminary T66H0004A

			CS AMS Application mode COM/SEG 0 0 4-bit parallel interface mode 0 1 1-bit serial interface mode 1 0 Single type application mod 1 1 Dual type application mode
D1_SID, D2_DL, D3_DM, D4_DR	I/O	Display data input/serial input data/left,right data input output	In segment driver application mode, these pins are used as 4-bit data input pin (when 4-bit parallel interface mode: AMS="Low"), or D1_SID is used as serial data input pin and other pins are not used(connect these to VDD)(when 1-bit serial interface mode: AMS="High") -In common driver application mode, the data is shifted from D2_DL(D4_DR) to D4_DR (D2_DL), when in single type interface mode (AMS="Low"). In dual-type application case, the data are shifted from D2_DL and D3_DM(D4_DR and D3_DM) to D4_DR(D2_DL). In each case the direction of the data shift and the connection of data pins are determined by SHL input(refer to NOTE3,NOTE4).
SHL	Input	Shift direction control	When SHL="Low",data is shifted from left to right. When SHL"High",the direction is reversed.(refer to NOTE3)
ELB,ERB	I/O	Enable data input/output	-In segment driver application mode, the internal operation is enabled only when enable input (ELB or ERB) is "Low" (power down function). When several drivers are serially connected, the enable state of each driver is shifted according to the SHL input. Connect these pins as below. Segment Driver ELB ERB L Output (open Input (VSS) H Input (VSS) Output (open) -In common driver application mode, power down function is not used. Open these pins.



1.012 1. Output Level Control									
M	Latched data	Latched data DISPOFFB -		I(SC1-SC80)					
171	Latched data DISPOF	DISTOFFD	SEG Mode	COM Mode					
L	L	Н	V12(V2)	V12(V1)					
L	H	Н	V0	V5					
Н	L	Н	V43(V3)	V43(V4)					
Н	Н	Н	V5	V0					
X	X	L	V0	V0					


NOTE 1. Output Level Control

NOTE 2. LCD Driving Voltage Application Circuit

(1) Segment driver application(CS="Low")

(2) Common driver application(CS="High")

NOTE 3. Data Shift Direction according to Control Signals

(1) When CS="Low" (Segment driver application)

AMS	SHL	Application mode	Data Direction	Input Pin
L	L	4-Bit Parallel	S S S S S S S S S S S S S S S S S S S	D1_SID, D2_DL, D3_DM,
Н	Н	Data Transfer Mode(SEG)	S S S S S S S S S S S S S S S S S S S	D4_DR
Н	L	1-Bit Serial	S S S S S C C C C C C C C C C C C C C C	D1_SID
H -	Data Transfer Mode (SEG) H		S S S S S S S S S S S S S S S S S S S	טוב_טוט

Preliminary T66H0004A

(2) When CS="High"(

AMS	SHL	Application	Data Direction	Input Pin
L	L H	Single-type Application Mode (COM)	Shift Direction S S S S C C C C C C C C C C C C C C C	D2_DL D4_DR
Н	L	1-Bit Serial Data Transfer	Shift Direction (D2_DL) (D3_DM) (D4_DR) (D	D2_DL, D3_DM
п	Н	Mode (SEG)	S S S C C C C C C C C C C C C C C C C C	D4_DR, D3_DM

NOTE 4. Usage of Data Pins

COM/SEG	Application mode	SHL		Data interface pin			
(CS pin)	(AMS pin)		D1_SID	D2_DL	D3_DM	D4_DR	
SEG	4-bit parallel interface mode(AMS="Low")	X	D1(input)	D2(input2)	D3(input3)	D4(input4)	
(CS="Low")	1-bit serial interface mode (AMS="High")	X	X SID(input)		Connect to VDD		
	Single-type application	L	Onan	DL(input)	Onan	DR(output)	
COM	mode(AMS="Low")	Н	Open	DL(output)	Open	DR(input)	
(CS="High")	Dual-type application	L	Open	DL(input1)	DM(input2)	DR(output2)	
	mode (AMS="high")	Н	Open	DL(output2)	DM(input2)	DR(input1)	

MAXIMUM ABSOLUTE LIMIT

Characteristic	Symbol	Value	Unit
Power supply voltage	VDD	-0.3 to +7.0	
Driver supply voltage	Vlcd	0 to +30	V
Input voltage	Vin	-0.3 to	·
Input voltage	VIII	VDD+0.3	
Operating temperature	Topr	-30 to +85	
Storage temperature	Tstg	-55 to +150	

^{*}NOTE: Voltage greater than above may do damage to the circuit.

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

(1) Segment Driver Application

(Vss = 0V, Ta = -30 to +85)

Characteristic	Symbol	Test Condition		Min.	Тур.	Max.	Unit
Operating Voltage	V_{DD}	-	2.7	-	5.5		
1	V_{LCD}	$V_{IN} = V_{DD} - V_{EF}$		6	-	28	V
Input voltage (1)	V_{IH}	-		$0.8V_{ m DD}$	-	$V_{ m DD}$	· V
	V_{IL}	1		0	-	$0.2 V_{\scriptscriptstyle DD}$	
Output voltage (2)	V_{OH}	$I_{OH} = -0.4 \text{mA}$		$V_{\rm DD}$ -0.4	-	-	V
	V_{OL}	$I_{OL} = 0.4 \text{mA}$		-	-	0.4	
Input leakage current 1 (1)	$I_{\rm IL1}$	$V_{IN} = V_{DD}$ to Vs	s	-10	-	10	,, A
Input leakage current 2 (3)	$I_{\rm IL2}$	$V_{IN} = V_{DD}$ to V_{EI}	$V_{IN} = V_{DD}$ to V_{EE}		-	25	uA
On resistance (4)	R _{on}	$I_{ON} = 100uA$		1	2	4	K
	I_{STBY}	F _{CL1} =32 KHz M=Vss	Vss pin	-	ı	100	uA
Supply current (5)			$V_{DD} = 5V$	-	-	5	
2 app 3 amount (c)	I_{DD}	$F_{CL1} = 32KHz$		-	-	2	mA
	$I_{\rm EE}$	$F_{M} = 80Hz$	$V_{\rm DD} = 5V$	-	-	500	uA

NOTES:

- 1. Applied to Cl1,CL2,ELB,ERB,D1_SID-D4_DR,SHL,DISPOFFB,M,CS,AMS pin
- 2. ELB,ERB pin
- 3. V0,V12,V43,V5 pin

4.
$$V_{LCD} = V_{DD} - V_{EE}$$
, $V0 = V_{DD} = 5V$, $V5 = V_{EE} = -23V$

$$V12 = V_{\rm DD} \ -2/n(V_{\rm LCD}), V43 = V_{\rm EE} \ +2/n(V_{\rm LCD}), n = 17(1/256 \ duty, 1/17 \ bias)$$

5. V0=
$$V_{DD}$$
,V12=1.71V(V_{DD} =5V) or -0.06V(V_{DD} =3V)

$$V43\text{=-}19.71V(V_{DD}\text{=-}5V) \text{ or } -19.94V(V_{DD}\text{=-}3V), V5\text{=-}V_{EE}\text{=-}23V, no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface mode} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit parallel interface} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) \text{ 4-bit pa$$

$$Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, DISPOFFB = V_{DD}, M = Vss, display \ data \ pattern = 0000 \\ Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, DISPOFFB = V_{DD}, M = Vss, display \ data \ pattern = 0000 \\ Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, DISPOFFB = V_{DD}, M = Vss, display \ data \ pattern = 0000 \\ Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, DISPOFFB = V_{DD}, M = Vss, display \ data \ pattern = 0000 \\ Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, DISPOFFB = V_{DD}, M = Vss, display \ data \ pattern = 0000 \\ Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, DISPOFFB = V_{DD}, M = Vss, display \ data \ pattern = 0000 \\ Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, DISPOFFB = V_{DD}, M = Vss, display \ data \ pattern = 0000 \\ Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, DISPOFFB = V_{DD}, M = Vss, display \ data \ pattern = 0000 \\ Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, DISPOFFB = V_{DD}, M = Vss, display \ data \ pattern = 0000 \\ Istby: V_{DD} = 5V, f_{CL2} = 5.12 \\ MHz, SHL = Vss, display \ data \ d$$

$$I_{DD}$$
: V_{DD} =3V, f_{CL2} =4MHz,display data pattern=0101

$$V_{\mathrm{DD}} = 5 \mathrm{V}$$
, $f_{\mathrm{CL2}} = 5.12 \mathrm{MHz}$, display data pattern=0101

$$I_{\text{EE}}$$
: V_{DD} =5V, $f_{\text{CL}2}$ =5.12MHz,display data pattern=0101, V_{EE} pin

ELECTRICAL CHARACTERISTICS

(2) Common Driver Application

(Vss = 0V, Ta = -30 to +85)

Characteristic	Symbol	Test Condition	n	Min.	Тур.	Max.	Unit
Operating Voltage	V_{DD}	-		2.7	-	5.5	
Operating voltage	V_{LCD}	$V_{\rm IN} = V_{\rm DD} - V_{\rm EI}$	3	6	-	28	V
Innut valtage (1)	V_{IH}	-		$0.8 V_{DD}$	-	$V_{ m DD}$	·
Input voltage (1)	$V_{\scriptscriptstyle \rm I\!L}$	-		0	ı	$0.2 V_{DD}$	
Output voltage (3)	V_{OH}	$I_{OH} = -0.4 \text{mA}$		V _{DD} -0.4	-	-	V
Output voltage (3)	V_{OL}	$I_{OL} = 0.4 \text{mA}$		-	-	0.4	v
Input leakage current 1 (1)	I_{IL1}	$V_{IN} = V_{DD}$ to V_{S}	$V_{IN} = V_{DD}$ to Vss		ı	10	
Input leakage current 2 (2)	I_{IL2}	$V_{IN}=0$ $V_{DD}=5V(PUI)$	LL UP)	-50	-125	-250	uA
Input leakage current 3 (4)	I_{IL3}	$V_{\rm IN} = V_{\rm DD}$ to $V_{\rm P}$	EΕ	-25	ı	25	
On resistance (5)	R_{ON}	$I_{ON} = 100uA$	$I_{ON} = 100uA$		2	4	K
	$I_{\scriptscriptstyle STRY}$	$F_{CL}=32KHz$	Vss pin	-	-	100	
Cumply augment(6)	T I	$F_{CLI}=32KHz$	$V_{DD} = 5V$	-	-	200	
Supply current(6)	I_{DD}	F_{CL1} =32KHz F_{M} =80Hz	$V_{DD} = 3V$	-	-	120	
		I'M-0011Z	$V_{DD} = 5V$	-	-	150	

NOTES:

- 1. Applied to CL1,D2_DL(SHL=LOW),D4_DR(SHL=HIGH),SHL,DISPOFFB,M,CS,AMS pin
- 2. Pull-up input pins:CL2,D1_SID,D3_DM(AMS=HIGH),ELB(SHL=LOW),ERB(SHL=HIGH)
- 3. D2_DL(SHL=HIGH),D4_DR(SHL=LOW) pin
- 4. V0,V12,V43,V5 pin
- 5. $V_{LCD} = V_{DD} V_{EE}$, $V0 = V_{DD} = 5V$, $V5 = V_{EE} = -23V$

$$V12 = V_{DD} - 1/n(V_{LCD}), V43 = V_{EE} + 1/n(V_{LCD}), n = 17(1/256 \text{ duty}, 1/17 \text{ bias})$$

6. $V0=V_{DD},V12=3.35V(V_{DD}=5V) \text{ or } 1.47V(V_{DD}=3V),$

$$V43 = -21.35 V(V_{\rm DD} = 5 V) \text{ or } -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, \text{no-load condition} \\ (1/256 \text{ duty}, 1/17 \text{ bias}) = -21.47 V(V_{\rm DD} = 3 V), V5 = V_{\rm EE} = -23 V, V5 = V_{\rm EE$$

Single-type mode operation: AMS = Vss, SHL = Vss, DISPOFFB = $V_{\rm DD}$

D1_SID=D3_DM=VDD,D4_DR=OPEN,ELB+ERB+OPEN,

 I_{STBY} : $V_{DD} = 5V, M = Vss, D2_DL = Vss$

 I_{DD} : f_{M} =80Hz,D2_DL= V_{DD}

 $V_{\rm DD}$ =3V,display data pattern=10000000 ...,01000000 ...,00100000 ...,000100000 ...

 $V_{\rm DD}$ =5V.displat data pattern=10000000 ...,01000000 ...,00100000 ...,00010000 ...,...

 I_{EE} : f_M =80Hz,D2_DL= V_{DD}

Taiwan Memory Technology, Inc. reserves the right to change products or specifications without notic Publication Date: FEB., 2001

AC CHARACTERRISTICS

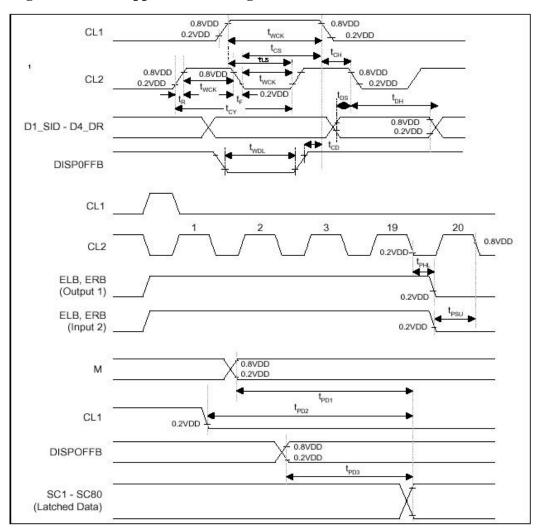
(1) Segment Driver Application

(Vss = 0V, Ta = -30 to +85)

Characteristic	G	The A. Constitution	(1) V	DD=5V	±10%	(2) VI	DD=3V	±10%	TT . *4
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Clock cycle time	tcy	Duty=50%	125	-	-	250	-	-	
Clock pulse width	twck	-	45	-	-	95	-	-	
Clock rise/fall time	$t_{\rm R}/t_{\rm F}$	-	-	-	-	-	-	30	
Data set-up time	$t_{ m DS}$	-	30	-	-	65	-	-	
Data hold time	t_{DH}	-	30	-	-	65	-	-	
Clock set-up time	tcs	-	80	-	-	120	-	-	ns
Clock hold time	tch	-	80	-	-	120	-	-	
Propagation delay	4.1.1	ELB Output			60			125	
time	tphl	ERB Output	-	-	60	-	-	125	
ELD EDD set un time	4	ELB Input	30			65			
ELB,ERB set-up time	tpsu	ERB Input	30	30	_	65	_	_	
DISPOFFB low pulse width	$t_{\scriptscriptstyle WDL}$	-	1.2	-	-	1.2	-	-	us
DISPOFFB clear time	tcd	-	100	-	-	100	-		ns
M-OUT propagation delay time	tpd1		ı	ı	1.0	ı	ı	1.2	
CL1-OUT propagation delay time	tpd2	CL=15pF	1	ı	1.0	ı	ı	1.2	us
DISPOFFB-OUT propagation delay time	tpd3		-	-	1.0	-	-	1.2	
Latch pulse rise to Shift clock rise time	t_{LS}		80	-	-	120	-	-	ns

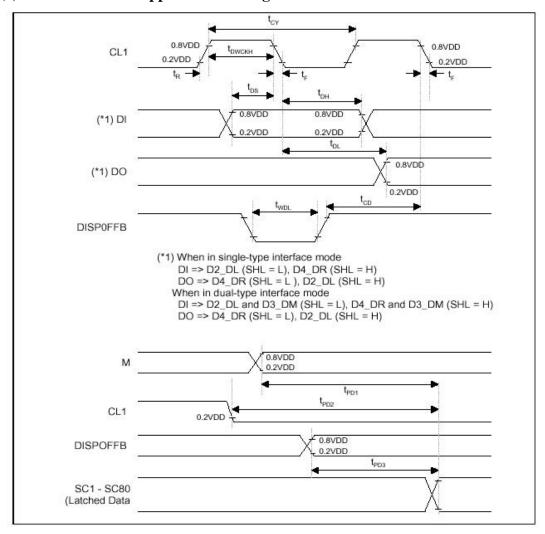
AC CHARACTERISTICS

(2) Common Driver Application


(Vss = 0V, Ta=-30 to +85)

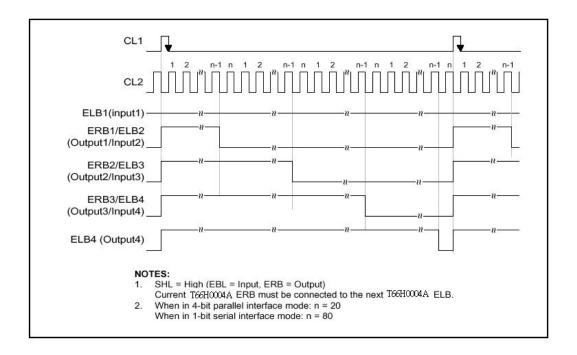
Clara and a state	Gl1	To a Condition	(1) V	DD=5V	±10%	(2) VI	DD=3V	±10%	TI . *4
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Clock cycle time	tcy	Duty=50%	250	ı	-	500	-	-	
Clock pulse width	twck	-	45	-	-	95	-	-	
Clock rise/fall time	tR/tF	-	-	-	50	-	-	50	ns
Data set-up time	tDS	-	30	-	-	65	-	-	
Data hold time	tDH	-	30	-	-	65	-	-	
DISPOFFB low pulse width	twdl	-	1.2	ı	-	1.2	-	-	us
DISPOFFB clear time	tcd	-	100	-	-	100	-		ns
Output delay time	tdl		-	1	200	-	-	250	
M-OUT propagation delay time	tpd1		1	1	1.0	1	1	1.2	
CL1-OUT propagation delay time	tpd2	CL=15pF		1	1.0	1	ı	1.2	us
DISPOFFB-OUT propagation delay time	tpd3		-	-	1.0	-	-	1.2	

AC CHARACTERISTICS


(3) Segment Driver Application Timing

AC CHARACTERISTICS

(4) Common Driver Application Timing

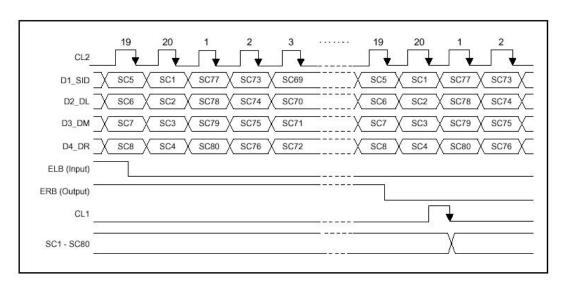


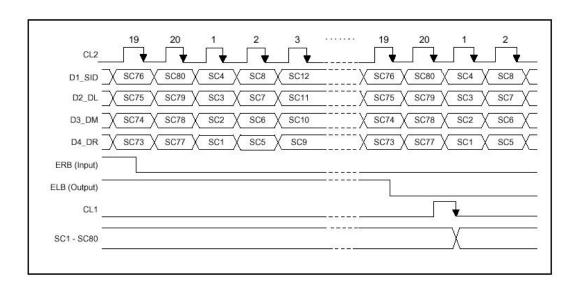
POWER DOWN FUNCTION

In the case of cascade connection of segment mode drivers, T66H0004A has a "power down function" In order to reducd the power consumption.

SHL	Enable input	Enable output	Current driver status	The other drivers status
L	ERB	ELB	While ERB="Low",current driver is enabled.	Disabled
Н	ELB	ERB	While ELB="Low",current driver is enabled	Disabled

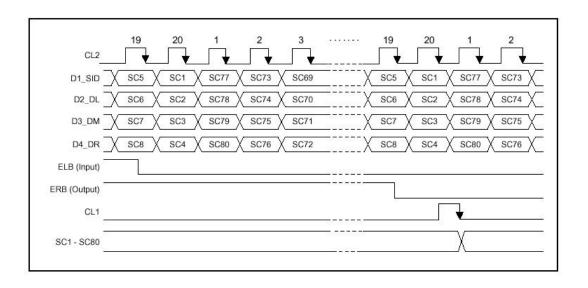
^{*} In the case of common driver application, power down function dose not work.

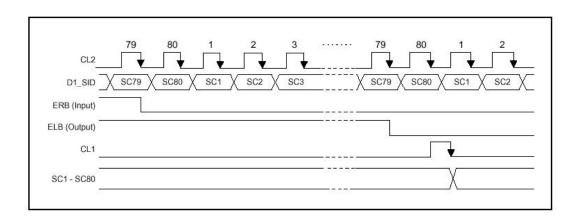



OPERATION TIMING DIAGRAM

(1) 4-bit Parallel Mode Interface Segment Driver

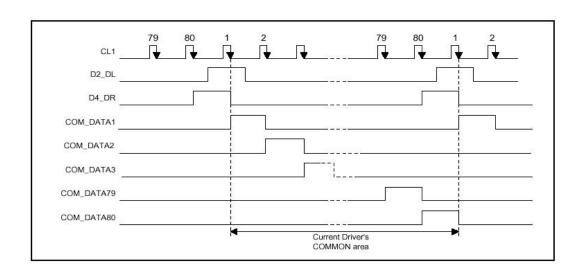
• When SHL ="Low"

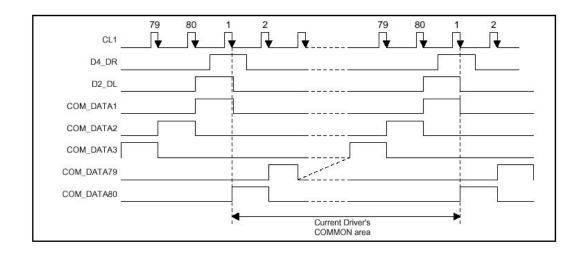

● When SHL="High"



(2) 1-bit Serial Mode Interface Segment Driver

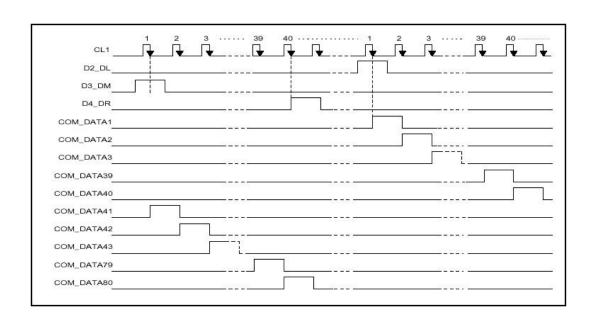
• When SHL="Low"

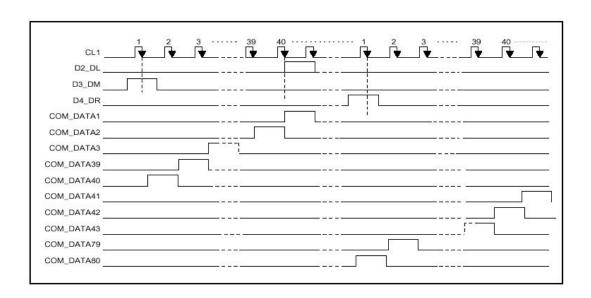

• When SHL="High"



(3) Single-type Interface Mode Common Driver

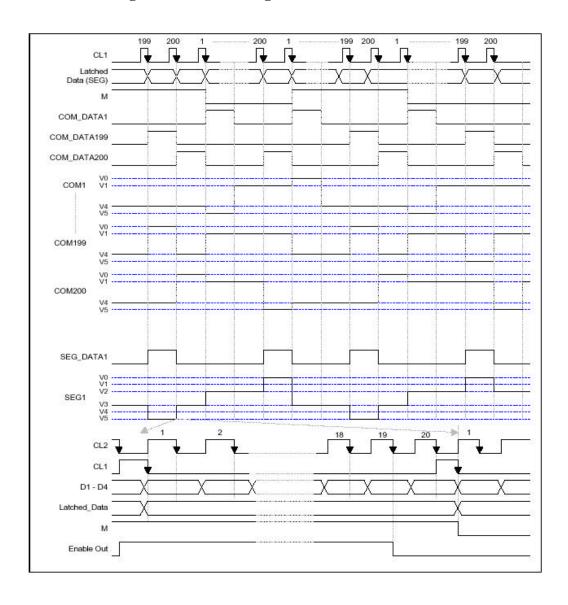
• When SHL="Low"


• When SHL="High"



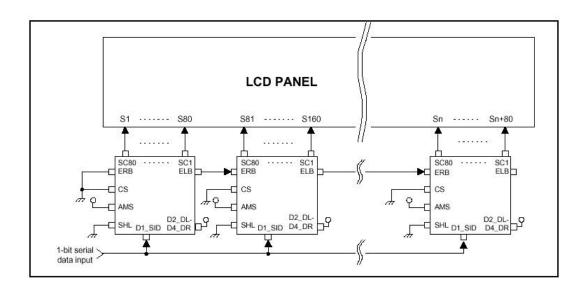
(4) DUAL-type Interface Mode Common Driver

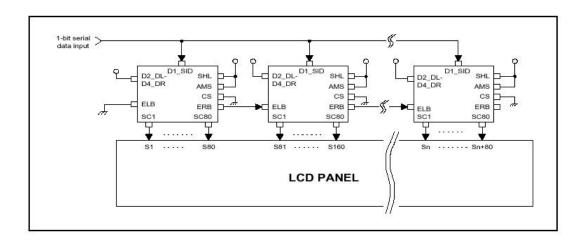
• When SHL="Low"



• When SHL="High"

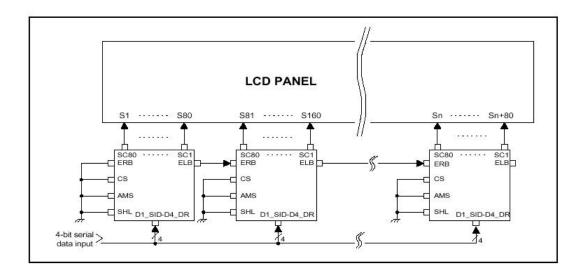
(5) Common/Segment driver Timing(1/200 DUTY)

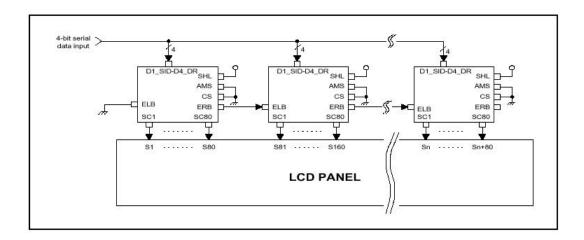



APPLICATION INFORMATION

1-bit Serial Interface Mode(80 output Segment Driver)

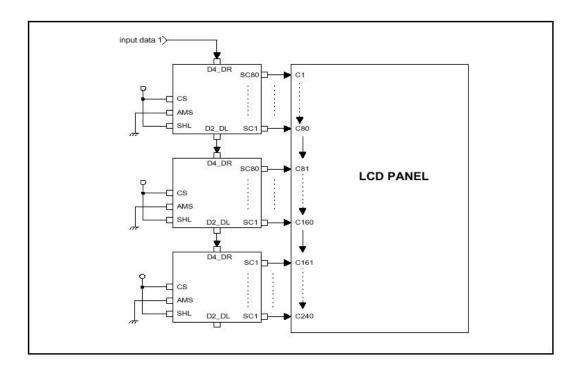
(a) Lower View (SHL = L, AMS = H)


(b)Upper View(SHL = H, AMS = H)

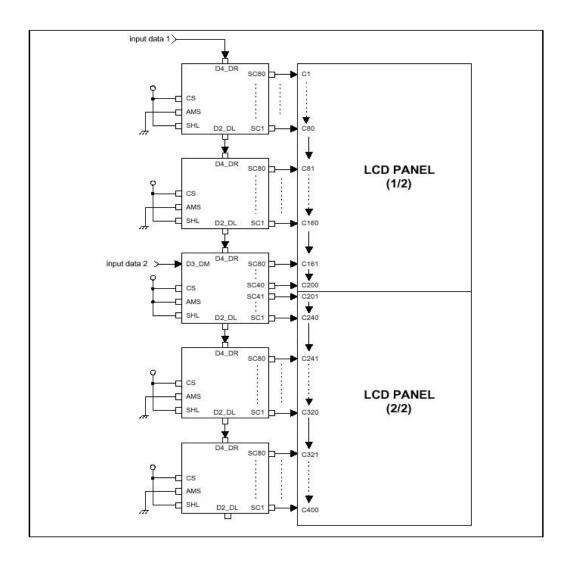


4-bit Parallel Interface Mode(80 output Segment Driver)

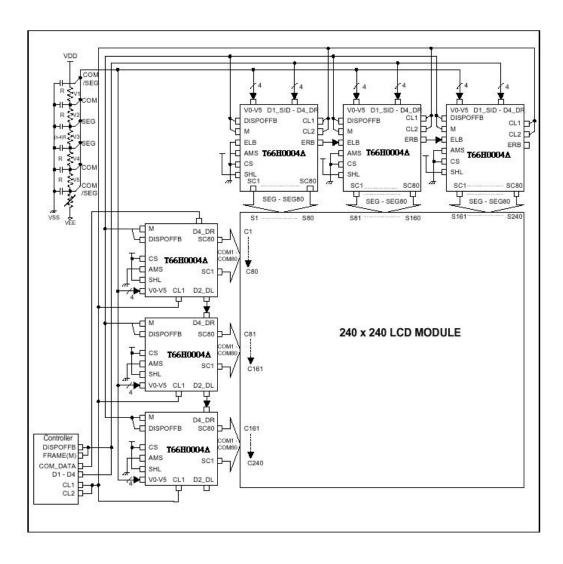
(a) Lower View(SHL = L, AMS = L)



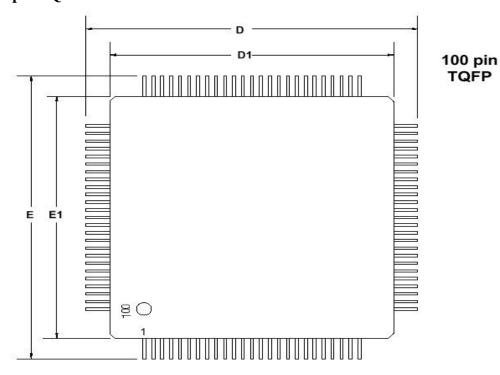
(b) Upper View (SHL = H, AMS = L)

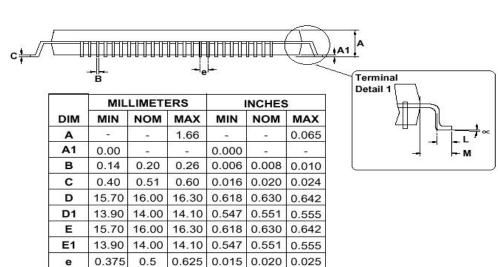


Single-type Interface Mode (80 output Common Driver)


Dual-type Interface Mode (40 output Common Driver)

NOTE: Using this application mode (dual-type common mode), the duty ratio can be reduced to half. In case, 1/200 duty can be used to drive the 400 common LCD panel.


APPLICATION CIRCUIT EXAMPLE



PACKAGE DIMENSION (Unit:mm)

100 pin TQFP

0.51

1.00 BSC

0.70

12°

0.012

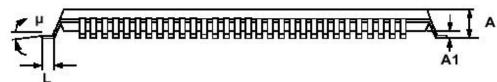
L

M

0.30

0.020

0.039 BSC


0.028

12°

100 pin QFP

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α		0.134		3.400
A1	0.010	0.014	0.250	0.350
В	0.009	0.015	0.220	0.380
D	0.667	0.687	16.950	17.450
D1	0.547	0.555	13.900	14.100
E	0.904	0.923	22.950	23.450
E1	0.783	0.791	19.900	20.100
e*	0.022	0.030	0.550	0.750
μ	0.000°	7.000°	0.000°	7.000°
L	0.018	0.030	0.450	0.750

^{*} Nominal pin pitch is 0.65 mm