TOSHIBA BIPOLAR DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

### TD6116P, TD6118P, TD6120P TD6122P, TD6124P, TD6126P

#### 1.2GHz PRESCALER

The TD6116P~6126P prescalers integrate a high-sensitivity prescaler of the max. input frequency, 1.2GHz into the following:

Dividing ratio : 1/64, 1/128, 1/256

Output level : TTL, ECL Package : SIP7 pin

An optimum prescaler therefore is possible according to use

#### **FEATURES**

- High input sensitivity :
  - -20dBmW (50 $\Omega$ ) (Min.) 0.1 $\sim$ 0.2GHz
  - $-27dBmW (50\Omega) (Min.) 0.2~1GHz$
  - 17dBmW (50 $\Omega$ ) (Min.) 1~1.2GHz
- Low power consumption :

 $I_{CC} = 28mA \text{ (Typ.)}, V_{CC} = 5V, ECL$ 

## 30mA (Typ.), $V_{CC} = 5V$ , TTL

# TD6124P/26P Weight: 0.72g (Typ.)

TD6116P/18P TD6120P/22P

#### **BLOCK DIAGRAM**





000707EBA2

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
  The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products described in this document shall be made at the customer's own risk.
  The products described in this document are subject to the foreign exchange and foreign trade laws.
  The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other r

#### 1.2GHz PRESCALER

| MAX.<br>FREQUENCY | INPUT SENSITIVITY       | TYPE NAME | FUNCTION | OUTPUT | BLOCK<br>DIAGRAM |
|-------------------|-------------------------|-----------|----------|--------|------------------|
| 1.2GHz            | 0.1 – 0.2GHz            | TD6116P   | 1 / 64   | TTL    | 2                |
|                   | – 20dBmW (50Ω)          | TD6118P   | 1 / 64   | ECL    | 1                |
|                   | 0.2 – 1GHz              | TD6120P   | 1 / 128  | TTL    | 2                |
|                   | – 27dBmW (50 $\Omega$ ) | TD6122P   | 1 / 128  | ECL    | 1                |
|                   | 1 – 1.2GHz              | TD6124P   | 1 / 256  | TTL    | 2                |
|                   | – 17dBmW (50 $\Omega$ ) | TD6126P   | 1 / 256  | ECL    | 1                |

#### **MAXIMUM RATINGS** (Ta = 25°C)

| CHARACTERISTIC        | SYMBOL                | RATING          | UNIT             |
|-----------------------|-----------------------|-----------------|------------------|
| Supply Voltage        | Vcc                   | 6.5             | ٧                |
| Input Pin Voltage     | V <sub>in</sub>       | 2.0             | V <sub>p-p</sub> |
| Power Dissipation     | P <sub>D</sub> (Note) | 625             | mW               |
| Operating Temperature | T <sub>opr</sub>      | <b>− 20~75</b>  | °C               |
| Storing Temperature   | T <sub>stg</sub>      | <b>- 55∼150</b> | °C               |

(Note) In case of using at above 25°C, decrease 5mW per 1°C.

#### **RECOMMENDED SUPPLY VOLTAGE**

| PIN No. | PIN NAME        | MIN. | TYP. | MAX. | UNIT |
|---------|-----------------|------|------|------|------|
| 7       | V <sub>CC</sub> | 4.5  | 5.0  | 5.5  | ٧    |

| CHARACTERISTIC                   |          | SYMBOL           | TEST<br>CIR-<br>CUIT        | TEST CONDITION       | MIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TYP.        | MAX. | UNIT |               |
|----------------------------------|----------|------------------|-----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|------|---------------|
| Supply Current ECL Type TTL Type |          | lcc              | lcc 1                       | V <sub>CC</sub> = 5V | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28          | 38   | mA   |               |
|                                  |          | TTL Type         | יככ                         | '                    | \(\(\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cup_{\cip}}\cup_{\cipy}}}}}}}\cup_{\cipp}\cipp}\cup_{\cipp}\cup_{\cipp}\cipp}\cipp}\cipp}\cip}\cipp}\cip}\ci | 18          | 30   | 40   | '''^          |
| Input Sensitivity                |          |                  | V <sub>in1</sub>            | 1                    | f <sub>in1</sub> = 0.1~0.2GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 20        | _    | 3    | dBmW<br>(50Ω) |
|                                  |          |                  | V <sub>in2</sub>            |                      | $f_{in2} = 0.2 \sim 1 \text{GHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>– 27</b> |      | 3    |               |
|                                  |          | V <sub>in3</sub> | f <sub>in3</sub> = 1~1.2GHz |                      | – 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 3    |      |               |
| Output                           | ECL Type | Output           | ٧o                          | 1                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _           | 1.0  | _    |               |
|                                  |          | High Level       | Voн                         |                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _           | 4.3  | _    | <b>\</b>      |
|                                  |          | Low Level        | Vol                         |                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _           | 3.3  | _    | <b>&gt;</b>   |
| Level                            | TTL Type | Output           | Vo                          | 1                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —           | 2.0  | _    |               |
|                                  |          | High Level       | VOH                         |                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2         | 3.0  | _    | V             |
|                                  |          | Low Level        | V <sub>OL</sub>             |                      | Output current = -5mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _           | _    | 0.5  | V             |

**TEST CIRCUIT 1** DC, AC characteristics



(Note) Handle with care as this product is weak at surge voltage.

#### **INPUT SENSITIVITY** characteristics



#### **PACKAGE DIMENSIONS**

SIP7-P-2.54A Unit: mm





Weight: 0.72g (Typ.)