TOSHIBA TC83230-0004

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC83230-0004

TC83230-0004: SINGLE-CHIP CMOS LSI FOR CALCULATORS WITH **PRINTERS**

(APPLICABLE PRINTER HEADS: M-72T MANUFACTURED BY EPSON)

The TC83230-0004 LSI is a single-chip CMOS LSI for use in calculators with printers.

It integrates I/O logic circuits necessary to configure a calculator with 10- or 12-digit display, two-memory function, serial printer used to print calculation results, oscillator, and LCD drivers.

Weight: 1.52 g (Typ.)

FEATURES

Operational Features

Print : 13 digits of data. (including

decimal point.) 1 digit of minus sign, operational symbol.

1-color printing (black).

: 10 or 12 digits of data. (including punctuation in each digit.) Display

1 digit of floating minus sign, memory load, error symbol, grand total

memory load, 3 digits of commas.

: Decimal set lock key controls output format. Fixed decimal setting ("0", Decimal output

"1", "2", "3", "4", "6"), full floating decimal, and ADD mode.

Key-input buffer : 12 words

Operation methods: addition and subtraction: by ARITHMETIC operation

multiplication and division: by algebraic operation

Function : four function, repeat multiplication and division, mixed calculation, square

> calculation, percentage calculation, percent discount and add-on calculation, memory calculation, delta percent calculation, add-mode calculation, mark-up/down calculation, total calculation, constant

calculation, tax calculation

Two-key rollover

Leading zero suppression

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

The information contained herein is subject to change without notice.

Protection

- i) In the overflow condition, all key except "C", "C/CE", "CE", "Feed", " \rightarrow " key are inoperative.
- ii) Key chatter protection (at f = 4 MHz)

Auto-clear at power on

Auto-clear functions by connecting a capacitor to the RESET pin.

CONNECTION OF LCD

SEGMENT

COMMON

KEY CONNECTION

Touch Key

Touch Key select

ON Key

PIN CONNECTION QFP80

SPECIFICATION OF CALCULATOR

Operation specifications

1) Operations depending on key types and modes

• Touch key

● Touch key					
KEY NAME	CAL N	MODE	TAX SET MODE (SE	T I/II KEY IS ON)	
MODE SWITCH	TOUCH KEY MODE	LOCK KEY MODE	TOUCH KEY MODE	LOCK KEY MODE	
С	Operates as clear	Operates as clear	Clears input data	Clears input data	
	key	key	Cicais input data	Cicais input data	
CE	Operates as clear	Operates as clear	Clears input data	Clears input data	
	entry key	entry key			
C/CE	Operates as clear	Operates as clear	Clears input data	Clears input data	
	or clear entry key	or clear entry key	•	·	
Numeral	Numeral Key-	Numeral Key-	Inputs numerals	Inputs numerals	
	inputs numerals	inputs numerals			
OFF	Operates as off key	_	Unused	Unused	
	Key-inputs decimal	Key-inputs decimal	Key-inputs decimal	Key-inputs decimal	
•	points	points	points	points	
*,	Operates as total	Operates as total	•	•	
\downarrow	or sub-total key	or sub-total key	Unused	Unused	
+, -	Operates as four-	Operates as four-	Unused	Unused	
×, ÷	function key	function key	Unusea	onusea	
=	Operates as = key	Operates as = key	Unused	Unused	
P / NP	Switches print or		Unused	Unused	
1 / 141	non-print		Ollasca	onuseu	
RND	Switches round-off	_	Unused	Unused	
	and round-up		-		
DEC	Switches decimal	_	Unused	Unused	
0/	points	0 1 0/ 1			
%	Operates as % key	· · · · · · · · · · · · · · · · · · ·	Unused	Unused	
40/	Operates as delta	Operates as delta	l l m a a al	l l m a a al	
Δ%	percentage calculation key	percentage calculation key	Unused	Unused	
	Operates as mark-	Operates as mark-			
MU/D	up/down key	up/down key	Unused	Unused	
	Operates as item	Operates as item		,	
IC/AVE	count key	count key	Unused	Unused	
	Operates as non-	Operates as non-			
# / D	add-print key for	add-print key for	llmaad	المسموط	
# / P	left-justified	left-justified	Unused	Unused	
	printing	printing			
\rightarrow	Operates as right-	Operates as right-	Operates as right-	Operates as right-	
	shift key	shift key	shift key	shift key	
+ / -	Operates as sign	Operates as sign	Unused	Unused	
. ′	change key	change key			

KEY NAME	CAL N	MODE	TAX SET MODE (SE	T I / II KEY IS ON)	
MODE SWITCH	TOUCH KEY MODE	LOCK KEY MODE	TOUCH KEY MODE	LOCK KEY MODE	
M I *, M II * M I \diamondsuit , M II \diamondsuit , M I -, M II -, M I +, M II +	Operates as memory function key	Operates as memory function key	Unused	Unused	
–TAXI/II	Operates as -TAX I / II key	Operates as -TAX I / II key	Unused	Unused	
+ TAX I / II	Operates as +TAX I / II key	Operates as +TAX I / II key	Unused	Unused	
Σ	Operates as Σ key	_	Unused	Unused	
IC MOD	Operates as IC- mode key	_	Unused	Unused	
GT MOD	Operates as GT- mode or non-GT mode key	_	Unused	Unused	
GT	Operates as GT key	Operates as GT key	Unused	Unused	
EXC	Operates as EXC key	Operates as EXC key	Unused	Unused	
√	Operates as √ key	Operates as √ key	Unused	Unused	

Lock key

- LOCK KCy				
KEY NAME	CAL N	MODE	TAX SET MODE (SE	T I/II KEY IS ON)
MODE SWITCH	TOUCH KEY MODE	LOCK KEY MODE	TOUCH KEY MODE	LOCK KEY MODE
0, 1, 2, 3, 4, 6, A, AII	_	Switches decimal points	Unused	Unused
CUT, UP	_	Switches round-off and round-up	Unused	Unused
IC±, IC+	_	Operates as IC ± / IC + key	Unused	Unused
Σ	_	Operates as Σ key	Unused	Unused
GT	_	Switches GT-mode or non-GT mode	Unused	Unused
FEED	Operates as paper feed key	Operates as paper feed key	Operates as paper feed key	Operates as paper feed key
P/NP	_	Switches print or non-print	Unused	Unused

2) Explanation of function

 $[0\sim9]$ Keys in numbers from 0 to 9, 00, and 000. If the number of displays digits [00, 000] exceeds 10 or 12 key entry is invalid.

[·] If this key is pressed after a key operation except data entry, the displays is cleared and entry of [·] is stored in memory. The decimal point is shifted for subsequent data entry. If the [·] key is pressed during data entry, displays does not change.

[+, -] Add or subtract operation data and displays the result. The decimal point is floating except when A mode is specified. Addition or subtraction can be performed repeatedly.

If these key are pressed in multiplication/division mode or in constant calculation mode, add or subtract displays data to addition/subtraction registers, then displays the result. At this time, in the operation mode multiplicand or divisor do not change.

These keys increment or decrement the item counter. In the following operation mode, the operations are executed, and the results are printed and displayed. At that time, addition or subtraction using the addition/subtraction register is not executed.

(1) percent discount/add-on calculation

Percent discount/add-on with constants are calculated as above.

[\Diamond] Prints and displays the intermediate result in addition/subtraction register. In item count mode, prints the contents of the item counter before the calculation result printing.

Contents of data register or stored arithmetic instruction are not changed.

[*] Prints and displays the result in addition/subtraction register. Automatically feeds paper one line. In item count mode, the contents of the item counter are printed before the calculation result printing.

After this key operation, the contents of the addition/subtraction register are cleared. The contents of the item counter are cleared at the first addition/subtraction in next step. The contents of the data register or stored arithmetic instruction are not changed. When GT mode is specified, the result of addition/subtraction is added to the GT memory.

MI				
MI	-,	ΜII	_	

If the arithmetic instruction is not stored or if the mode is constant calculation mode, first prints the displays contents after rounding to the specified number of decimal places, performs addition/subtraction using the data in memory, then stores the result in memory. If the multiplication / division instruction is stored, executes the arithmetic instruction, rounds the result to the specified number of decimal places, prints and displays the result, adds/subtracts with the data in memory, then stores the result to memory.

At that time, the multiplicand or divisor is stored together with the mode, constant calculation mode. When this key is pressed immediately after the [x] or [MI +, MII +, MI -, MII -] key, operation is the same as that for the [=] key; that is, adds/subtracts using data in memory. This key operation increments or decrements the item counter for memory.

 $[MI \diamondsuit, MII \diamondsuit] \dots$

Prints or displays the intermediate result of memory calculation. In item count mode, prints the contents of the item counter for memory before the calculation result printing. Contents of the data register or stored arithmetic instruction are not changed.

[M I *, M II *] . . . Prints and displays the result of memory calculation and automatically feeds paper one line. In item count mode, prints the contents of the item counter for memory before the calculation result printing. After the [M I *, M II *] key operation, the contents of memory and the contents of the item counter for memory are cleared. Contents of the data register or stored arithmetic instruction are not changed.

[x, ÷]

If the multiplication or division instruction is stored in memory, prints the operators, performs the operations and displays the results while simultaneously storing a new arithmetic instruction in memory. The decimal point for the result is floating. If the $[\times]$ or $[\div]$ key is pressed in constant calculation mode, prints the displayed numeric value without performing an operation and stores a new multiplication/division instruction in memory.

[=]

Executes a stored multiplication/division instruction, rounds the result to the specified number of decimal places, prints and displays the result, then automatically feeds the paper one line. Stores the multiplicand or divisor together with constant calculation mode in memory. If an instruction is not stored in memory, no operation is performed and the previous state is held. Pressing the [=] key immediately after the $[\times]$ or $[\div]$ key performs the following operation.

- a × =aa
- a ÷ = · · · · · 1

```
a \times \% = \cdots  aa / 100

a \div \% = \cdots  100
```

% key operation example: percent discount/add-on calculation

immediately after the [x] or $[\div]$ key performs the following operation.

[MU/D] If a multiplication/division instruction is stored in memory, cancels the data.

The decimal point for the result is floating.

MU/D key operation example :

```
aMU/Db = \cdots a/(1 - (b/100)) - a
                                           (Prints profit)
                     a/(1 - (b/100))
                                            (Mark-up)
       c = \cdots a/(1 - (c/100)) - a
                                           (Prints profit)
                     a/(1 - (c/100))
                                            (Mark-up)
aMU/Db + / - = \cdots a/(1 + (b/100)) - a
                                           (Prints profit)
                     a/(1 + (b/100))
                                            (Mark-down)
       c + / - = \cdots a/(1 + (c/100)) - a
                                           (Prints profit)
                     a/(1 + (c/100))
                                           (Mark-down)
```

 $[\Delta\%]$ If a multiplication/division instruction is memorized, cancels the data. Δ %key operation example : $a\Delta\%$ b = $\cdots\cdots$ b - a (Prints difference) (b – a)/|a| c =c - a (Change delta percent) (c – a)/|a| (Prints difference) $a\Delta\%$ b + / - = ······ - (b + a) (Change delta percent) -(b + a)/|a| (Prints difference) $c + / - = \cdots - (c + a)$ (Change delta percent) -(c + a)/|a| (Prints difference) [+/-] Inverts sign of the displayed number at key entry. [→] Shifts the contents of the displays to the right by one digit at key entry. For an estimation calculation error, cancels the error. [GT ♥] Calls the contents of GT memory. If the key is pressed once, calls the contents of GT memory, but does not change current state. If the key is pressed twice, calls the contents of GT memory and clears them. [C] Cancels all arithmetic instructions and errors, clears the contents of all the registers except the memory register, and prints 0.C. [CE] If pressed at key entry, clears only the contents of the displays; does not change the stored arithmetic instruction or the contents of the data register. Invalid if pressed after one of the following keys: $[C][\times][\div][+][-][=][\%]$ $[\Delta\%][MI +, MII +][MI -, MII -][MI \diamondsuit, MII \diamondsuit][MI *, MII *][MU/D][IC/D][IC/D][MI +, MII +][MI -, MII -][MI -,$ AVE]. The result of pressing the [CE] key after the [#/P] key depends on the state before the keys were pressed. Selects item count mode. [IC +] · · · · · · · · [IC ±] IC + ······Counts up by the [+] or [-] key. IC ± ······ Counts up by the [+] key, down by the [-] key. $[\Sigma]$ If an operation is performed by the [=] or [%] key in auto accumulation calculation mode, adds the operation result to the addition/subtraction register and increments the item counter. [GT] In grand total mode, adds the total register to the GT register by the [*] key. [C/CE] If pressed at key entry, operates same as the [CE] key.

If pressed after one of the following keys, operates same as the [C] key: [C/CE] [x] [÷] [+] [−] [=] [%] [Δ%] [M I +, MII +] [M I −, MII −] [M I ⋄, MII ⋄]

[M I *, MII *] [MU/D] [IC/AVE].

The result of pressing the [C/CE] key after the [+/-] or the [#/P] key

The result of pressing the [C/CE] key after the [+/-] or the [#/P] key depends on the state before the keys were pressed.

[#/P] If pressed after the numerical key entry, prints the contents of the key entry data register together with the # symbol, but does not change the current state. If the key is pressed after a key except the numerical keys or [+/-] key, does not change the contents of the displays or the current state. If the key is pressed in clock mode, automatically prints the displayed date and time.

+ TAX I / II _ _ . . Calculate included tax operation or excluded tax operation. But, only prints and does not express the tax. Prints or displays the result-value. (Result-value adjusts decimal-point (TAB) Setting.) Feeds the paper one line after prints.

TAX I key operation example : (TAX = 3%)

a [+TAX I] .. a (3/100) (Prints TAX)
... a + (a (3/100)) (Included TAX)
a [-TAXII] .. a/(1 + 3/100) - a (Prints TAX)
... a/(1 + 3/100) (excluded TAX)

If pressed at key entry after number key entry, calculate the tax as a result of calculation.

When multiplication / division instruction is stored in memory.

[P/NP] Switches between PRINT and NON-PRINT mode. At reset, NON-PRINT mode is set. Switches mode in each time when the [P/NP] key is pressed : $P \rightarrow NP \rightarrow P$ $\rightarrow NP$. In PRINT mode, displays "print mode". Valid only when the $[\overline{T}/L]$ lock key is off.

[RND] Switches between round-up, round-off and half-adjust. At reset, half-adjust is set. Switches the mode in each time when the [RND] key is pressed: $5/4 \rightarrow \downarrow \rightarrow \uparrow \rightarrow 5/4 \rightarrow \downarrow \rightarrow \uparrow$. Displays round-up/round-off. Valid only when the $[\overline{T}/L]$ lock key is off.

[EXC] If an multiplication or division instruction is not stored in memory, it is invalid.

Constant calculation of multiplication or division instruction exchange for the value of displays, and displays it.

[GT MOD] Exchange GT-mode. (Initial setting isn't support GT-mode.)

GT mode cycles not-support and support. And display GT-mode flag.

Only touch key mode is valid.

[IC MOD] Exchange IC-mode. (Initial setting isn't support IC-mode.)

IC-mode cycles not-support, IC+ and IC±-mode. And display IC-mode flag. Any touch key mode is valid.

Operates root-instruction and displays result-value with print. (Result-value adjusts decimal-point (TAB) setting.)

After prints feeds the paper one line. If the value is minus, change to the plus value and operate root-instruction. Then produce an estimate calculation-error.

value and operate root-instruction. Then produce an estimate calculation-error. But keep the arithmetic instruction and date-register.

[IC/AVE] Prints or displays the item counter, when IC/AVE key continuously pressed twice just after pressed [*] key and [\diamondsuit] key,

After first, prints or displays the item counter.

The second, the calculation of the mean number are executed, prints or displays the operation result.

After calculation of the mean number, item counter are cleared.

The even if IC-value is a negative, the calculation of the mean number.

Example			
a (-)		(∗) →	Displays or prints addition
b (-)	Addition to total		substraction register.
c (+)			Displays the item counter
	register	$(IC / AVE) \rightarrow$	Displays or prints
d (-) 丿			(a – b – c + d) / – 2

[DEC]	 Switches the decimal point. At reset, floating point (F) is set. Switches the
	mode in each time when the [DEC] key is pressed as follows: $F \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow$
	$3 \rightarrow 4 \rightarrow 6 \rightarrow A \rightarrow A II \rightarrow F \rightarrow 0 \rightarrow 1$. Displays the specified decimal point or add
	mode. Valid only when the $[\overline{T}/L]$ lock key is off.

3) Explanation of lock keys

ſ	O. 1	1. 2	. 31	Sets th	ne specified	decimal	point	If no	specification	, floating is set.
- 1.	v,	., -,	, ,	 JC 13 11	ic specifica	accilliai	POIII.	11 110	JPCCIIICG (IOII)	, mouning is set.

[4, 6, A, AII] When processing floating point data, the operation result is zero-shifted. When A mode is specified, key-entered data are multiplied by 1/100 only when the key-entered numerical value is used for addition/subtraction or memory addition/subtraction. If the [·] key is pressed during data entry, A mode is invalid. The operation result is treated the same as the specified decimal point, 2. When AII mode is specified, key-entered data are multiplied by 1/100 only when the key-entered numerical value is used for multiplication/division by [=] key. If the [·] key is pressed during data entry, AII mode is invalid. The operation result is treated the same as the specified decimal point, 2.

[CUT, UP] Rounds-off in CUT mode; rounds-up in UP mode; when no specification is made, half-adjusts. When a decimal point is specified, the digit (s) in the subsequent decimal place is (are) half-adjusted, rounded-off, or rounded-up (??). If floating point is specified, the value of the least significant digits which cannot be displayed is rounded off.

 $[P/\overline{NP}]$ Switches between print and non print mode. When $[P/\overline{NP}]$ lock key is off, disables all printing except [PF] or [#/P] key.

When mode changes from non-print to print, feeds the paper one line.

[IC+] Selects item count mode.

IC + ······Counts up by the [+] or [-] key.
IC ± ······Counts up by the [+] key, down by the [-] key.

 $[\Sigma]$ If an operation is performed by the [=] or [%] key in auto accumulation calculation mode, adds the operation result to the addition/subtraction register and increments the item counter.

[GT] \dots In grand total mode, adds the total register to the GT register by the [*] key.

 $[\overline{T}/L]$ When the $[\overline{T}/L]$ lock key is off, the [P/NP], $[\Sigma]$, [GT MOD], [IC MOD], [RND], and [DEC] keys are valid. When the $[\overline{T}/L]$ key is on, the [NP], $[\Sigma]$, [GT], [IC +], $[IC \pm]$, [CUT], [UP], and [0, 1, 2, 3, 4, 6, A, AII] lock keys are valid.

	SET I SET II	When the [SET I / SET II] lock key is on, prints and express the stored tax rate. When the [SET I / SET II] lock key is off, store the expression data to the new tax rate. The result of tax rate is only floating-point, and not concent the decimal-point at this function.
	[FEED]	Feed paper.
	[TMR]	When the [TMR] lock key is on, auto power-off functions. (After approx. 6 minutes.)
	[10/12]	Selects 10 digits display and printer when the $[\overline{10}/12]$ lock key is off; Selects 12 digits display and printer when the $[\overline{10}/12]$ lock key is on.
4)	ON, OFF key	
	[ON]	If pressed in HOLD mode, cancels HOLD. At that time, cancels all arithmetic instructions and errors. The contents of the memory register and the TAX RATE before HOLD mode are retained; all other registers are cleared. While the [ON] key is pressed, the [OFF] key is invalid.
	[OFF]	Forcibly enters HOLD mode (CPU sleep mode).

OPERATION EXAMPLE

					KEY					PRINT				DISPLAY
	4/5		Σ			10 / 12	B/\overline{BR}	TOUC		PKINI				DISPLAT
F	4/5	0FF	0FF	0FF	CAL	12	BR	POWER	ON					
										<pf></pf>				
												С		
										<pf></pf>				0.
									1+	1.		+		1.
									2-	2.		-	R	-1.
									\Diamond	-1•		\Diamond	R	-1.
									*	-1•		*	R	
										<pf></pf>				-1.
								IC/A	VE	2.				2.
F	4/5	IC+	0FF	0FF	CAL	12	BR	IC/A		-0.5	÷	×	R	-0.5
								IC/A		0.				0.
									1+	1.		+		1.
									2-	2.		-	R	-1.
									\Diamond	002 · · · · · · · · · · · · · · · · · ·				
										-1•		\Diamond	R	-1.
								IC/A	VE	2.				2.
								IC/A		-0.5	÷	*	R	-0.5
								IC/A		2.				2.
								,	*	002 · · · · · · · · · · · · · · · · · ·				
										-1•		*	R	
										<pf></pf>				-1.
								IC/A	VE	2.				2.
								IC/A		-0.5	÷	*	R	-0.5
								IC/A		0.				0.
F	4/5	0FF	0FF	0FF	CAL	12	BR		3×	3.		×		3.
								,	4÷	4.		÷		12.
									=	4.		=		
										3∙		*		
										<pf></pf>				3.
								!	5×	5.		×		5.
								1	6%	6.		%		
										0.3		*		
										<pf></pf>				0.3
									+	5.3	+	%		
										<pf></pf>				5.3
] ;	2÷	2.		÷		2.
									3%	3.		%		
										66 • 666666666		*		
										<pf></pf>				66.66666666
								2 MU	/D	2.	G	М		2.
									3=	3∙		%		

(Note) : <PF> ··· Paper feed

					KEY									DIGD! 437
ТАВ	4/5	IC.	Σ	GT		10 / 12	B/BR	TOUCH	PRINT					DISPLAY
									0.0618556701	Δ	%			
									2.0618556701		*			
									<pf></pf>					2.0618556701
								2∆%	2.	Δ				2.
								3=	3∙		=			
									1.	Δ	*			
									50•	Δ	%			
									<pf></pf>					50.
F	4/!	0FF	Σ	0FF	CAL	12	B∕ BR	3×	3∙		×			3.
	·						.	4÷	4.		÷			12.
								=	4.		=			
									3.		+			3.
									<pf></pf>					
								5×	5•		×			5.
								6%	6.		%			
									0.3		+			0.3
									<pf></pf>					
								+	5•3	+	%			5.3
									<pf></pf>					
								2÷	2.		÷			2.
								3%	3∙		%			_,
									66 • 6666666666		+			
									<pf></pf>		•			66.666666666
								2 MU/D	2.	G	М			2.
								3=	3.	ŭ	%			
								J	0.0618556701	Δ				
									2.0618556701	_	+			
									<pf></pf>		•			2.0618556701
								2∆%	2.		Δ			2.
1								3=	3.		=			۷.
1								J -	1.	Δ	*			
									50•	Δ	^ +			
1									<pf></pf>		•			50.
1								*	122.028522336		*			50.
1								ক	<pf></pf>		*			122.02852236
F	1/1	off	Σ	СТ	CAL	12	B/BR	2+	2.		+		GT	2.
[4/:	, off	4	a i	CAL	12	D/DK	2+ 3+	3.		+		GT	2. 5.
1									5·	r	+		القا	э.
1								*		G	т		CT	F
1								2	<pf></pf>			_	GT	5.
1								3-	3.		-	1	GT	-3.
1								4-	4.		-		GT	-7.
								5-	5∙		-	R	GT	-12.

					KEY				DD1117				DIGD! 437
TAB	4/5	IC	Σ	GT		10 / 12	B/BR	TOUCH	PRINT				DISPLAY
								*	-12•	G +	R		
									<pf></pf>			GT	-12.
								GT	-7•	$G \diamondsuit$	1	GT	-7.
								GT	-7•	G *	R		
									<pf></pf>				-7.
F	4/5	OFF	Σ	0FF	CAL	12	B/BR	M I +	1				
									-7•	M +	R	ΜI	-7.
								5				ΜI	5.
								M∏+	2				
									5•	M +		M I M I	5.
								$M\: I \diamondsuit$	1				
									-7•	$M \diamondsuit$	R	M I M I	-7.
								M I *	1				
									-7•	M *	R		
									<pf></pf>			MΠ	-7.
								M∏♦	2				
									5•	$M \diamondsuit$		МΠ	5.
								M ∏ *	22				
									5•	M *			
									<pf></pf>				5.
								#/P	5•	\Diamond			5.
								2 #/P	#2••••	·			2.
								#/P	2•	\Diamond			2.
								0÷	0•	÷			0.
								=	0.	=			0.
									0.	*		E	0.
									<pf></pf>			-	
								С	0.	С			
								ŭ	<pf></pf>	ŭ			0.
F	CUT	OFF	OFF	OFF	SET I	12	B/BR		1				••
			. .				-, -,		0.	%			
									<pf></pf>	70			0.
								3	7117				3.
F	CIIT	NFF	NFF	NFF	۲Δ۱	12	R/RR	5	11				J•
	CUI	J1 1	O1 1	011	UAL	14	5/5K		3.	%			
									<pf></pf>	/0			0.
								С	0.	С			0.
								C	۰۰ <pf></pf>	C			0.
_	CUT	UEE	OEE.	OFF	CET T	10	D /DD		\YF/ 1				υ.
F	CUI	UFF	UFF	UFF	SET I	12	B/BR		1	o/			
									3·	%			2
									<pf></pf>				3.

					KEY	,					
ТАВ	4/5	IC	Σ	GT		10 / 12	B/BR	TOUCH	PRINT		DISPLAY
F	CUT				CAL	12	B/BR				0.
F					SET II	12	B/BR		2		
							.		0.	%	
									<pf></pf>		0.
								5			5.
F	CUT	0FF	0FF	0FF	CAL	12	B/BR		2		
									5.	%	
									<pf></pf>		0.
F	CUT	OFF	0FF	0FF	$SET \mathbb{I}$	12	B/BR		2		
									5•	%	5.
F	CUT	OFF	0FF	0FF	CAL	12	B/BR				0.
								156 0			1,560.
								+TAX I	1		
									1,560.		
									46.8	Δ	
									1,606.8	*	
									<pf></pf>		1,606.8
								1560			1,560.
								+TAX ${\mathbb I}$	2		
									1,560.		
									78∙	Δ	
									1,638.	*	1,638.
									<pf></pf>		
F	CUT	0FF	0FF	0FF	CAL	12	B/BR	+TAX I	1		
									1,638.	\Diamond	
									49 • 14	Δ	
									1,687·14	*	1,687.14
									<pf></pf>		
								1560			1,560.
								×	1,560.	×	1,560.
1					_	_		78900			78,900.
F	4/5	OFF	0FF	OFF	CAL	12	B/BR	+TAX I	1		
									78,900	=	
									123,084,000	\Diamond	
									3,692,520	Δ	
									126,776,520	*	444
									<pf></pf>		126,776,520.
								=			126,776,520.
								5	_		126,776,520.
								X	5•	×	5.
								+TAX I	_		5.
L								=	5•	=	

					KEY				DDINIT			DICDLAY
ТАВ	4/5	IC	Σ	GT		10 / 12	B/\overline{BR}	TOUCH	PRINT			DISPLAY
									25•	*		
									<pf></pf>			25.
								+TAX I	1			
									25•	\Diamond		
									0.75	Δ		
									25•75	*		25.75
									<pf></pf>			
								=				25.75
								С	0•	С		0.
									<pf></pf>			
2	CUT	0FF	0FF	0FF	CAL	12	B/BR	1560				1,560.
								+	1,560.00			1,560.00
								1100				1,100.
								+	1,100.00			2,660.00
								+TAX Ⅱ	2			
									2 ,66 0·00	\Diamond		
									133.00	Δ		
									2,793.00	*		
									<pf></pf>			2,793.00
F	CUT	0FF	0FF	0FF	CAL	12	B/BR	+TAX I	1			
									2,793.00			
									83•79	Δ		
									2,87679	*		
									<pf></pf>			2,876.79
								98000000				
								0000				980,000,000,000.
								+TAX I	1			
									980,000,000,000			
									29,400,000,000	Δ		
									1 000 4000000			
									1.00940000000	*		1 000 4000000
								•	<pf></pf>	•		E 1.00940000000
								С	0.	С		0.
1								1560	<pf></pf>			1 560
								1560				1,560.
								+/- +TAX I	1			-1,560.
								+1AX 1	1 560		₋	
									-1,560· -46·8	4	R	
									-46.8 -1,606.8	Δ	R R	
									-1,606.8 <pf></pf>	*	"	-1,606.8
1								1560	\rr>			
								1300				1,560.

					KEY				DDINIT			DICDI AV
TAB	4/5	IC	Σ	GT	MOD	10 / 12	B/BR	TOUCH	PRINT			DISPLAY
								-TAX I	1			
									1,560.			
									-45 • 43689321	Δ	R	
									1,514.56310679	*		
									<pf></pf>			1,514.56310679
								-TAX I	1			
									1,514.56310679	\Diamond		
									-44 • 11348855	Δ	R	
									1,470.44961824	*	'`	
									<pf></pf>			1,470.44961824
F	CUT	NFF	ΩFF	ΛFF	SET I	12	B/BR		1			1,470.44301024
l '	001	011	011	011	JL1 1	12	D/ DIX		3.	%		3.
									<pf></pf>	/0		J•
								С	\PT>			
۱ ـ	CUT	٥٢٢	٥٥٥	055	CAL	10	D (DD	C	11			0.
F	CUI	UFF	UFF	UFF	CAL	12	B/BR			0/		
									0.	%		0.
l _									<pf></pf>			
F	CUT	OFF	OFF	OFF	SET I	12	B/BR		1			
									0.	%		
									<pf></pf>			0.
								1234				1234.
F	CUT	0FF	0FF	0FF	CAL	12	B/BR		1			
									1,234.	%		0.
									<pf></pf>			
F	CUT	OFF	OFF	0FF	SET II	12	B∕ BR		2			
									5•	%		
									<pf></pf>			5.
								С				0.
F	CUT	0FF	0FF	0FF	CAL	12	B∕ BR		2			
							·		0.	%		
									<pf></pf>			0.
								98000000				
								0000				
								+TAX I	1			
F	CUT	OFF	0FF	0FF	CAL	12	B/BR	11/1/1	980,000,000,000			
l '	COI	011	011	011	CAL	12	D/ DIX		300,000,000,000			
									0.			
									<pf></pf>	*		- ^
								_		^		E 0.
								С	0.	С		
								_	<pf></pf>			0.
								2				2.
								×	2•	x		2.

					KEY	,			DDINT		DICDLAY
TAB	4/5	IC	Σ	GT	MOD	10 / 12	B/BR	TOUCH	PRINT		DISPLAY
								3			3.
								×	3.	×	6.
								EXC			3.
								×	6.	×	18.
								EXC			6.
								x	18•	×	108.
								EXC			18.
								×	108•	×	1,944.
								=	108•	=	
									209,952	*	209,952.
Α	CUT	0FF	0FF	OFF	CAL	12	B/BR	123			123.
								+	1.23	+	1.23
								456			456.
								+	4.56	+	5.79
								\Diamond	5•79	\Diamond	5.79
								*	5•79	*	5.79
ΑП	CUT	0FF	0FF	0FF	CAL	12	B/BR	789			789.
								x	789・	×	789.
								100			100.
								=	1.00	=	
									789 • 00	*	
									<pf></pf>		789.00
(Doi	n't d	o it	.)					123			123.
								+	123.00	+	123.00
								456			456.
								+	456.00	+	579.00
								*	579 • 00		579.00

MAXIMUM RATINGS $(V_{SS} = 0 V)$

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage 1	V_{DD}	-0.3~6	V
Supply Voltage (LCD Drive)	V_{LC}	$-0.3 \sim V_{DD} + 0.3$	>
Input Voltage	VIN	-0.3~V _{DD} + 0.3	V
Output Voltage	Vout	-0.3~V _{DD} + 0.3	V
Output Current	IOUT	3.2	mA
Power Dissipation	PD	600	mW
Soldering Temperature	T _{sld}	260 (10 s)	°C
Storage Temperature	T _{stg}	- 55~125	°C
Operating Temperature	T _{opr}	0~40	°C

ELECTRICAL CHARACTERISTICS Recommended operating conditions ($V_{SS} = 0 \text{ V}, T_{opr} = 0 \sim 40^{\circ}\text{C}$)

PARAMETER	SYMBOL	TEST CIR- CUIT	CONDITION	MIN	MAX	UNIT
Operating Temperature	T _{opr}	_	_	0	40	°C
			— NORMAL			
Supply Voltage	V_{DD}	_	SLOW	4.5	5.5	
		_	HOLD	2.0		
High-Level Input Voltage (Non-Schmitt Circuit)	V _{IH1}			V _{DD} × 0.7	V _{DD}	
High-Level Input Voltage (Schmitt Circuit)	V _{IH2}	_	$V_{DD} \ge 4.5 V$	V _{DD} × 0.75	V _{DD}	
High-Level Input Voltage	V _{IH3}		V _{DD} < 4.5 V	V _{DD} × 0.9	V _{DD}	V
Low-Level Input Voltage (Non-Schmitt Circuit)	V _{IL1}		$V_{DD} \ge 4.5 V$	0	V _{DD} × 0.3	
Low-Level Input Voltage (Schmitt Circuit)	V _{IL2}		ν _υ υ = 4.3 ν	0	V _{DD} × 0.25	
Low-Level Input Voltage	V _{IL3}	_	V _{DD} < 4.5 V	0	V _{DD} × 0.1	

DC electrical characteristics ($V_{SS} = 0 \text{ V}, T_{opr} = 0 \sim 40 ^{\circ}\text{C}$)

		торі тапа					
SYMBOL	TEST CIR- CUIT	TERMINAL	CONDITION	MIN	TYP.	MAX	UNIT
V _{HS}	_	Hysteresis Input	_	_	0.7	_	٧
l _{IN1}		KO port, TEST, RESET, HOLD	V _{DD} = 5.5 V			+ 2	
I _{IN2}	_	Open Drain R port, P port	$V_{IN} = 5.5/0 V$	_	_	<u> </u>	μ A
R _{IN1}	l	KO port TEST with Input Resistor	V _{DD} = 5.5 V	30	70	150	kΩ
R _{IN2}	_	RESET, HOLD	$V_{\text{IM}} = 3.370 \text{ V}$	100	220	450	
lLO1	_	Sink Open Drain R port	V _{DD} = 5.5 V V _{OUT} = 5.5 V	_	_	±2	_
lLO2	_	Source Open Drain R port, P port	$V_{DD} = 5.5 V$ $V_{OUT} = -1.5 V$	_	_	- 2	μ A
VOH	_	Source Open Drain R port, P port	$V_{DD} = 5.5 V$ $I_{OH} = -1.6 \text{ mA}$	2.4	_	_	V
VOL	_	Sink Open Drain R port	$V_{DD} = 5.5 V$	_	_	0.4	V
ROUT		R port, P port	V _{DD} = 5.5 V V _{IN} = 5.5 V	30	70	150	kΩ
Ros	_	SEG				25	kΩ
		COM	$V_{DD} = 5 V$		_	33	K77
			V _{DD} - V _{LC}	3.8	4.0		
	_	SEG / COM	= 3 V	3.3	3.5	3.7	V
				2.8	3.0	3.2	
lDD	_	_	$V_{DD} = 5.5 V$, $V_{LC} = V_{SS}$ $f_{C} = 4 MHz$	_	3	6	mA
IDDH	_	_	$V_{DD} = 5.5 V$	_	0.5	10	μ A
	VHS IIN1 IIN2 RIN1 RIN2 ILO1 ILO2 VOH VOL ROUT ROS ROC VO2/3 VO1/2 VO1/3 IDD	SYMBOL CIR-CUIT VHS — IN1 — IN2 — RIN1 — RIN2 — ILO1 — ILO2 — VOH — VOL — ROS — ROC — VO2/3 VO1/2 VO1/3 IDD —	SYMBOL CIRCUIT VHS — Hysteresis Input IN1 — KO port, TEST, RESET, HOLD IN2 — Open Drain R port, P port KO port TEST with Input Resistor RIN1 — KO port TEST with Input Resistor RIN2 — RESET, HOLD ILO1 — Sink Open Drain R port, P port VOH — Source Open Drain R port, P port VOL — Sink Open Drain R port, P port VOL — Sink Open Drain R port, P port ROS — SINK Open Drain R port, P port ROUT — R port, P port ROS — SEG ROC — COM VO2/3 VO1/2 VO1/3 IDD — —	SYMBOL CIRCUIT VHS — Hysteresis Input — IN1 — KO port, TEST, RESET, HOLD IN2 — Open Drain R port, P port RIN1 — KO port TEST with Input Resistor RIN2 — RESET, HOLD ILO1 — Sink Open Drain R port, P port VDD = 5.5 V VIN = 5.5/0 V VIN = 5.5/0 V VIN = 5.5/0 V VIN = 5.5 V	SYMBOL TEST CUIT TERMINAL CONDITION MIN	SYMBOL TEST CUIT TERMINAL CONDITION MIN TYP. VHS — Hysteresis Input — — 0.7 IIN1 — KO port, TEST, RESET, HOLD VDD = 5.5 V VIN = 5.5 / 0 V — IIN2 — Open Drain R port, P port VDD = 5.5 V VIN = 5.5 / 0 V — RIN1 — RESET, HOLD 100 220 ILO1 — Sink Open Drain R port, P port VDD = 5.5 V VOUT = 5.5 V VOUT = 5.5 V VOUT = 5.5 V — ILO2 — Source Open Drain R port, P port VDD = 5.5 V VOUT = -1.6 mA — VOH — Source Open Drain R port, P port VDD = 5.5 V VOUT = -1.6 mA — VOL — Sink Open Drain R port, P port VDD = 5.5 V VOUT = -1.6 mA — ROUT — R port, P port VDD = 5.5 V VOUT = -1.6 mA — ROUT — R port, P port VDD = 5.5 V VOUT = -1.6 mA — ROS — SEG — — ROS — SEG — —	SYMBOL TEST CUIT TERMINAL CONDITION MIN TYP. MAX VHS — Hysteresis Input — — 0.7 — IIN1 — KO port, TEST, RESET, HOLD VDD = 5.5 V VIN = 5.5 / 0 V — — ±2 RIN1 — KO port TEST with Input Resistor VDD = 5.5 V VIN = 5.5 / 0 V 30 70 150 RIN2 — RESET, HOLD VDD = 5.5 V VIN = 5.5 / 0 V — — 2 ILO1 — Sink Open Drain R port VDD = 5.5 V VOUT = 5.5 V — — 2 ILO2 — Source Open Drain R port, P port VDD = 5.5 V VOUT = -1.5 V — — — -2 VOH — Source Open Drain R port, P port VDD = 5.5 V VOUT = -1.6 mA 2.4 — — VOL — Sink Open Drain R port VDD = 5.5 V VOUT = -1.6 mA — — — 0.4 ROUT — R port, P port VDD = 5.5 V VOUT = -1.6 mA — — — —

(Note 1) : Typ. values are guaranteed at T_{opr} = 25°C, V_{DD} = 5 V.

(Note 2) : I_{IN1} : excepts a current through a internal Pull up/down Resistor.

(Note 3) : ROS, ROC : Shows On-Resistor at level switching.

(Note 4) : $V_{O2/3}$: Shows 2/3 Level Output Voltage at which 1/4 or 1/3 duty LCD

drive.

(Note 5) : $V_{O1/2}$: Shows 1/2 Level Output Voltage at which 1/2 duty or static LCD

drive.

(Note 6) : $V_{O1/3}$: Shows 1/3 Level Output Voltage at which 1/4 or 1/3 duty LCD

drive.

(Note 7) : I_{DD} , I_{DDH} : Current consumption at $V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$

should be under that KO port is open and R port Voltage Level is

valid.

OSCILLATION CIRCUIT ($V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \sim 5.5 \text{ V}, T_{opr} = 0 \sim 40 ^{\circ}\text{C}$)

RECOMMENDED CIRCUIT	CONDITION	MIN	TYP.	MAX	UNIT
 	V_{DD} = 5.0 V C = 100 pF R = 1 k Ω ± 2%	2.4	4.0	5.6	MHz

AC electrical characteristics (V_{SS} = 0 V, V_{DD} = $4.5\sim6.0$ V, T_{opr} = $0\sim40^{\circ}$ C)

PARAMETER	SYMBOL	TEST CIR- CUIT	CONDITION	MIN	TYP.	MAX	UNIT
Instruction Cycle Time	tov	_	NORMAL	1.9	_	20	
Instruction Cycle Time	tCY	_	SLOW	235	_	267	μ s
High-Level Clock Pulse Width	^t WCH	_	External Clock Operation	80			200
Low-Level Clock Pulse Width	^t WCL	_	External clock operation	30			ns
Shift Data Hold Time	^t SDH		_	0.5tcy - 300	l	I	ns
High Speed Timer/Counter Input Frequency	fHT	_	_	_	_	f _c	MHz

WAVEFORMS FOR DISPLAY

THE PROPOSAL OF OUTER CIRCUIT FOR TAX RATE HOLDING WITH BACK-UP BATTERY.

(Note) : $V_1 = +3 \text{ V}$: battery supply $V_2 = +5 \text{ V}$: DC supply

 $\overline{\text{HOLD}}$ pin is pulled down in the LSI, but normally pulled up to V_{DD} . $\overline{\text{RESET}}$ pin is pulled up to V_{DD} .

- ① Setting POWER SW to ON, V_2 is supplied to V_{DD} pin, and also to \overline{HOLD} pin. Then calculator operates normally.
- $\$ Setting POWER SW from ON to OFF, V₁ is supplied to V_{DD} pin and V_{SS} is supplied to $\overline{\text{HOLD}}$ pin. Under this connection, TAX RATE is held.

(Note): V_1 (battery) should be supplied to the circuit after V_2 (DC) supply, because of prevention from exhaustion of battery and abnormal operation.

PACKAGE DIMENSIONS

Weight: 1.52 g (Typ.)