
22-S3-C880A/F880A-102003

USER'S MANUAL

S3C880A/F880A
8-Bit CMOS

Microcontroller
Revision 2

S3C880A/F880A PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

OVERVIEW

The S3C880A/F880A microcontroller has 48-Kbytes of on-chip program memory. This chips have a 336-byte
general-purpose internal register file. The interrupt structure has 9 interrupt sources with 9 interrupt vectors. The
CPU recognizes seven interrupt priority levels.

Using a modular design approach, the following peripherals were integrated with the SAM88LP core to make the
S3C880A/F880A microcontrollers suitable for use in color television and other types of screen display
applications:

— Four programmable I/O ports (26 pins total: 16 general-purpose I/O pins; 10 n-channel,
open-drain output pins)

— Four Channel A/D converter (8-bit resolution)

— Two 14-bit PWM output and four 8-bit PWM output.

— Basic timer (BT) with watchdog timer function

— One 8-bit general-purpose timer/counter (T0)
with interval timer Mode and PWM Output Mode

— One 8-bit timer/counters (TA) with prescalers
and interval timer mode

— On-screen display (OSD) with a wide range
of programmable features, including halftone
control signal output

The S3C880A/F880A is available in a versatile 42-pin SDIP, 44-pin QFP package.

PRODUCT OVERVIEW S3C880A/F880A

1-2

FEATURES

CPU

• SAM88LP CPU core

Memory

• 48-Kbyte internal program and OSD font memory

• 336-byte general-purpose register area

Instruction Set

• 78 instructions

• IDLE and STOP instructions added for power-
down modes

Instruction Execution Time

• 750 ns (minimum) with an 8-MHz CPU clock

Interrupts

• 9 interrupt sources with 9 vectors

• 7 interrupt levels

• Fast interrupt processing for select levels

General I/O

• Four I/O ports (26 pins total)

• Six open-drain pins for up to 6-volt loads

• Four open-drain pins for up to 5-volt loads

8-Bit Basic Timer

• Three select able internal clock frequencies

• Watchdog or oscillation stabilization function

Timer/Counters

• One 8-bit timer/counter (T0) with three internal
clocks or an external clock, and two operating
modes; Interval mode or PWM mode

• One general-purpose 8-bit timer/counters with
interval timer (timer A)

 A/D Converter

• Four analog input pins

• 8-bit resolution

• 25 us conversion time (8-MHz CPU clock)

Pulse Width Modulation Module

• 14-bit PWM with 2-channel output

• 8-bit PWM with 4-channel output

• PWM counter and data capture input pin

• Frequency: 5.859 kHz to 23.437 kHz with a
6-MHz CPU clock

On-Screen Display (OSD)

• Video RAM: 252 × 14 bits

• Character generator ROM: Variable size

 Max:1024 × 18 × 16 bits

 Min: Default 2 font reserved.

 (1024 display characters: fixed: 2, variable: 1022)

• 252 display positions (12 rows × 21 columns)

• 16-dot × 18-dot character resolution

• 16 different character sizes

• 64 character colors

• Fade In/Out

• 64 colors for character and frame background

• Halftone control signal output; select able for
individual characters

• Synchronous polarity selector for H-sync and
V-sync input

• Bordering function

• Smoothing function

• Fringing function

Oscillator Frequency

• 5-MHz to 8-MHz external crystal oscillator
(when OSD block active)

• Maximum 8-MHz CPU clock

Operating Temperature Range

• - 20°C to + 85°C

Operating Voltage Range

• 4.5 V to 5.5 V

Package Type

• 42-pin SDIP, 44-pin QFP

S3C880A/F880A PRODUCT OVERVIEW

1-3

BLOCK DIAGRAM

Main
OSC

L-C OSC

Port 0

P0.0-P0.7

Port I/O and Interrupt
Control

48-Kbyte
ROM

336-Byte
Register

File

SAM88LP CPU

Port 1

SAM88 Bus

XOUT

XIN

OSCOUT

OSCIN

RESET

P1.0-P1.7

INT0-INT3
Test

Timers A

CAPA

Port 2

P2.0-P2.7

Port 3

P3.0-P3.1

PWM
Block

PWM
Counter
and Data
Capture

14-Bit
PWM

8-Bit
PWM

Timer 0
CAPA
T0

8-Bit ADC

ADC0

ADC1

ADC2

ADC3

On-
Screen
Display

H-sync
V-sync

Vred

Vgreen

Vblue

Vblank

OSDHT

PWM0
PWM1
PWM2
PWM3
PWM4
PWM5

Figure 1-1. Block Diagram

PRODUCT OVERVIEW S3C880A/F880A

1-4

PIN ASSIGNMENTS

PWM0/P2.5
PWM1/P2.1
PWM2/P2.2
PWM3/P2.3
PWM4/P2.4
PWM5/P2.0

T0/P2.6
T0CK/P1.7
ADC0/P3.0
ADC1/P3.1
ADC2/P0.6
ADC3/P0.7

TEST
INT0/P1.0
INT1/P1.1
INT2/P1.2
INT3/P1.3

P1.4
P1.5
P1.6

OSDHT/P2.7

S3C880A
S3F880A

(42-SDIP)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

P0.0
P0.1
P0.2
P0.3
P0.4
VSS

CAP.A
P0.5
VDD

RESET
XOUT

XIN

VSS1

OSCOUT

OSCIN

V-sync
H-sync
Vblank
Vred
Vgreen
Vblue

42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22

Figure 1-2. S3C880A/F880A Pin Assignment (42-SDIP)

S3C880A/F880A PRODUCT OVERVIEW

1-5

P
2.

0/
P

W
M

5
P

2.
6/

T
0

P
1.

7/
T

0C
LK

P
3.

0/
A

D
C

0
P

3.
1/

A
D

C
1

P
0.

6/
A

D
C

2
P

0.
7/

A
D

C
3

T
E

S
T

/T
E

S
T

P
1.

0/
IN

T
0

P
1.

1/
IN

T
1

P
1.

2/
IN

T
2

P1.2/INT2
P1.1/INT1
P1.0/INT0
TEST/TEST
P0.7/ADC3
P0.6/ADC2
P3.1/ADC1
P3.0/ADC0
P1.7/T0CLK
P2.6/T0
P2.0/PWM5

V
_s

yn
cI

N
H

_s
yn

cI
N

V
bl

an
k

V
re

d
V

gr
ee

n
V

bl
ue

P
2.

7/
O

S
D

H
T

P
1.

6
P

1.
5

P
1.

4
P

1.
3/

IN
T

3

VSS2/VSS
P0.4
P0.3
P0.2
P0.1
P0.0

P2.5/PWM0
P2.1/PWM1
P2.2/PWM2
P2.3/PWM3
P2.4/PWM4

S3C880A
S3F880A

(44-QFP)

1
2
3
4
5
6
7
8
9
10
11

44 43 42 41 40 39 38 37 36 35 34

33
32
31
30
29
28
27
26
25
24
23

12 13 14 15 16 17 18 19 20 21 22

Figure 1-3. S3C880A/F880A Pin Assignment (44-QFP)

PRODUCT OVERVIEW S3C880A/F880A

1-6

PIN DESCRIPTIONS

Table 1-1. S3C880A/F880A Pin Descriptions

Pin Name Pin
Type

Pin Description Circuit
Type

Pin
Numbers

Share
Pins

P0.0–P0.3 I/O General I/O port (4-bit), configurable for digital
input or n-channel open-drain, push-pull output.
Pins can withstand up to 5-volt loads.

2 39–42 (See pin
description)

P0.4–P0.5 General I/O port (2-bit), configurable for digital
input or push-pull output.

3 38, 35

P0.6–P0.7 General I/O port (2-bit), configurable for digital
input or n-channel open-drain output.
P0.6-P0.7 can withstand up to 5-volt loads.
Multiplexed for alternative use as external inputs
ADC2-ADC3.

6 11–12 ADC2–ADC3

P1.0–P1.3 I/O General I/O port (4-bit), configurable for digital
input or n-channel open-drain output.
P1.0-P1.3 can withstand up to 6-volt loads.
Multiplexed for alternative use as external
interrupt inputs INT0-INT3

7 14–17 INT0–INT3

P1.4–P1.5 General I/O port (2-bit). configurable for digital
input or n-channel open-drain output.
P1.4-P1.5 can withstand up to 6-volt loads. High
current port (10mA).

5 18–19

P1.6–P1.7 General I/O port (2-bit). configurable for digital
input or push-pull output.
Each pin has an alternative function.
P1.7: T0CK (Timer 0 Clock Input)

3 20, 8 T0CK

P2.0–P2.7 I/O General I/O port (8-bit). Input/output mode or n-
channel open-drain, push-pull output mode is
software configurable. Pins can withstand up to
5-volt loads. Each pin has an alternative function.
P2.0: PWM5 (8-bit PWM output)
P2.1: PWM1 (14-bit PWM output)
P2.2: PWM2 (8-bit PWM output)
P2.3: PWM3 (8-bit PWM output)
P2.4: PWM4 (8-bit PWM output)
P2.5: PWM0 (14-bit PWM output)
P2.6: T0 (Timer 0 PWM and Interval output)
P2.7: OSDHT (Halftone signal output)

2 1–7, 21 PWM0–
PWM5

T0, OSDHT

P3.0–P3.1 I/O General I/O port (2-bit), configurable for digital
input or n-channel open-drain output.
P3.0-P3.1 can withstand up to 5-volt loads.
Multiplexed for alternative use as external inputs
ADC0-ADC1.

6 9–10 ADC0–ADC1

S3C880A/F880A PRODUCT OVERVIEW

1-7

Table 1-1. S3C880A/F880A Pin Descriptions (Continued)

Pin Name Pin
Type

Pin Description Circuit
Type

Pin
Numbers

Share
Pins

PWM0 O Output pin for 14-bit PWM circuit 1 1 P2.5

PWM1 O Output pin for 14-bit PWM circuit 2 2 P2.1

PWM2–PWM4 O Output pin for 8-bit PWM circuit 2 3–5 P2.2–P2.4

PWM5 O Output pin for 8-bit PWM circuit 2 6 P2.0

ADC0–ADC1 I Analog inputs for 8-bit A/D converter 6 9,10 P3.0–P3.1

ADC2–ADC3 I Analog inputs for 8-bit A/D converter 6 11,12 P0.6–P0.7

INT0–INT3 I External interrupt input pins 7 14–17 P1.0–P1.3

T0 O Timer 0 output (interval, PWM) 2 7 P2.6

T0CK I Timer 0 clock input 3 8 P1.7

OSDHT O Halftone control signal output for OSD 2 21 P2.7

Vblue, Vgreen
Vred

O Digital blue, green and red signal outputs for
OSD

4 22–24 –

Vblank O Digital video blank signal outputs for OSD 4 25 –

H-sync, V-sync I H-sync, V-sync input for OSD 1 26, 27 –

OSCIN, OSCOUT I, O L-C oscillator pins for OSD clock frequency
generation

– 28, 29 –

XIN, XOUT I, O System clock pins – 31, 32 –

RESET I System reset input pin 8 33 –

TEST – Test Pin (must be connected to VSS). Factory

test mode is activated when 12 V is applied.
– 13 –

VDD, VSS – Power supply pins – 30, 34, 37 –

CAPA I Input for capture A module 1 36 –

PRODUCT OVERVIEW S3C880A/F880A

1-8

PIN CIRCUITS

InputNoise Filter

Figure 1-4. Pin Circuit Type 1 (V-Sync H-Sync, CAPA)

VDD

Data

Output Disable

Input

I/O

Open-Drain

Figure 1-5. Pin Circuit Type 2 (P2.0–P2.7, P0.0–P0.3, PWM0–PWM5, T0, OSDHT)

VDD

Data

Input

Output

VSS

Figure 1-6. Pin Circuit Type 3 (P0.4–P0.5, P1.6–P1.7, T0CK)

S3C880A/F880A PRODUCT OVERVIEW

1-9

VDD

Data Output

VSS

Figure 1-7. Pin Circuit Type 4 (Vblue, Vgreen, Vred, Vblank)

Data

Input

I/O

VSS

Figure 1-8. Pin Circuit Type 5 (P1.4–P1.5)

Data

Input

I/O

VSS

A/D In

NOTE: Circuit type 6 can withstand up to 5 V loads.

Figure 1-9. Pin Circuit Type 6 (P3.0–P3.1, P0.6–P0.7, ADC0–ADC3)

PRODUCT OVERVIEW S3C880A/F880A

1-10

Data

Input

I/O

INT

NOTE: Circuit type 7 can withstand up to 6 V loads.

Noise Filter

VSS

Figure 1-10. Pin Circuit Type 7 (P1.0–P1.3, INT0–INT3)

Noise Filter

VDD

250 KΩ

Figure 1-11. Pin Circuit Type 8 (RESETRESET)

S3C880A/F880A ADDRESS SPACES

2-1

2 ADDRESS SPACES

OVERVIEW

The S3C880A/F880A microcontroller has two kinds of address space:

— Internal program memory (ROM)

— Internal register file

The S3C880A/F880A has an on-chip 48-Kbyte mask-programmable.

There are 336 general-purpose 8-bit data registers in the register file. Seventeen 8-bit registers are used for CPU
and system control. To support peripheral, I/O, and clock functions, there are 33 control registers and 16 data
registers. In addition, there is a 252 × 4-bit area for on-screen display (OSD) video RAM.

ADDRESS SPACES S3C880A/F880A

2-2

PROGRAM MEMORY (ROM)

The S3C880A/F880A has a 48-Kbyte mask-programmable program memory. Program memory stores program
codes , table data or OSD font codes.

As shown in Figure 2-1, the first 256 bytes of the ROM (0H–0FFH) are reserved for interrupt vector addresses.
Unused locations in this range can be used as normal program memory. If the vector address area is used to
store normal program data, care must be taken to avoid overwriting vector addresses stored in these locations.
The ROM address at which program execution starts after a RESET is 0100H.

Interrupt
Vector Area

Program Memory
and Character

Generator Memory

0H

BFFFH

ROM Code Option Area
3CH

40H

100H

Figure 2-1. Program Memory Address Spaces

S3C880A/F880A ADDRESS SPACES

2-3

Table 2-1. Program ROM and Character ROM Area by the Font Figure

Font ROM Program ROM Character ROM

0 ROM size 48-Kbyte 0-Kbyte

ROM address 0-BFFFH 0

256 ROM size 39-Kbyte 9-Kbyte

ROM address 0-9BFFH 9C00H-BFFFH

384 ROM size 34.5-Kbyte 13.5-Kbyte

ROM address 0-89FFH 8A00H-BFFFH

512 ROM size 30-Kbyte 18-Kbyte

ROM address 0-77FFH 7800H-BFFFH

640 ROM size 25.5-Kbyte 22.5-Kbyte

ROM address 0-65FFH 6600H-BFFFH

768 ROM size 21-Kbyte 27-Kbyte

ROM address 0-53FFH 5400H-BFFFH

1024 ROM size 12-Kbyte 36-Kbyte

ROM address 0-2FFFH 3000H-BFFFH

REGISTER ARCHITECTURE

The upper 64 bytes of the S3C880A/F880A internal register file is logically expanded into two 64-byte areas,
called set 1 and set 2. The upper 32-byte area of set 1 is divided into two register banks, called bank 0 and
bank 1. In addition, two register pages are implemented, called page 0 and page 1. The total addressable
register space is thereby expanded from 256 bytes to 654 bytes.

The extension of the physical register space into separately addressable areas (sets, banks, and pages) is
supported by various addressing mode restrictions, the select bank instructions, SB0 and SB1, and the register
page pointer (PP).

Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2-1.

Table 2-2. Register Type Summary

Register Type Number of Bytes

General-purpose registers (including the 16-byte
working register common area)

336

CPU and system control registers 17

Peripheral, I/O, and clock control/data registers 49

On-screen display (OSD) video RAM 252

Total Addressable Bytes 654

ADDRESS SPACES S3C880A/F880A

2-4

BANK 1

FFH

E0H

D0H

C0H

SET 2

General purpose
registers

(indirect address
mode)

C0H

00H

Prime data
registers

(all address
mode)

Page 0

FFH

BFH

SET 2

OSD registers
(indirect
address
mode)

C0H

00H

OSD registers
(all address

mode)

Page 1

FFH

BFH

40H

00H

FFH

3FH
Prime data

register area
(all address

mode)

Page 2

DFH

BANK 0

CFH

FFH

E0H

SET 1

FBH

Not used

System registers

Data register area

Display register area
(Video RAM)

Working registers

System and peripheral
control registers

Figure 2-2. Internal Register File Organization

S3C880A/F880A ADDRESS SPACES

2-5

ROM CODE OPTION (RCOD_OPT)

The address of RCOD_OPT, from 3CH to 3FH, are ROM code option area. By setting the value of RCOD_OPT,
S3C880A/F880A operates optionally. But in S3C880A/F880A, the ROM code option is not available. So
RCOD_OPT area can be used as the normal ROM area in S3C880A/F880A.

LSBMSB

Not used

.7 .6 .5 .4 .3 .2 .1 .0

ROM Address: 3DH

LSBMSB

Not used

.7 .6 .5 .4 .3 .2 .1 .0

ROM Address: 3FH

LSBMSB

ROM Address: 3EH

Not used

LSBMSB

ROM_CODE Option (RCOD_OPT)

ROM Address: 3CH

Not used

.7 .6 .5 .4 .3 .2 .1 .0

.7 .6 .5 .4 .3 .2 .1 .0

Figure 2-3. ROM Code Option (RCOD_OPT)

ADDRESS SPACES S3C880A/F880A

2-6

REGISTER PAGE POINTER (PP)

The SAM88LP architecture supports the logical expansion of the physical 256-byte register file in up to 16
separately addressable register pages. Page addressing is controlled by the register page pointer, PP, DFH. Only
two pages are implemented in the S3C880A/F880A microcontrollers: page 0 and page 2 (00H–3FH) are used as
general-purpose register space and page 1 contains a 252 × 4-bit area for the on-screen display (OSD) video
ROM.

As shown in Figure 2-3, when the upper nibble of the PP register is '0000B', the selected destination address is
located on page 0. When the upper nibble value is '0001B', page 1 is the selected destination. The lower nibble
of the page pointer controls the source register page destination addressing: when the lower nibble is '0000B',
page 0 is the selected source register page; when the lower nibble is '0001B', page 1 is the source register page.

After a reset, the page pointer's source value (the lower nibble) and the destination value (the upper nibble) are
always '0000B', automatically selecting page 0 as both the source and the destination. To select page 1 as the
source or destination register page, you must modify the register page pointer values accordingly. Because only
page 0, page 1 and page 2 are used in the S3C880A/F880A implementation, only pointer values '0000B', ‘0001B’
and ‘0010B’' are used.

Register Page Pointer (PP)
DFH, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Destination register page seleciton bits:

0 0 0 0 B
0 0 0 1 B
0 0 1 0 B

1 1 1 1 B

Destination: page 0
Destination: page 1
Destinaton: page 2
Not used for the
S3F880A

Not used for the
S3F880A

.

.

.

.

.

.

Source register page seleciton bits:

0 0 0 0 B
0 0 0 1 B
0 0 1 0 B

1 1 1 1 B

Destination: page 0
Destination: page 1
Destination: page 2
Not used for the
S3F880A

Not used for the
S3F880A

.

.

.

.

.

.

Figure 2-4. Register Page Pointer (PP)

S3C880A/F880A ADDRESS SPACES

2-7

++ PROGRAMMING TIP – Data Operations Between Register Pages

LD PP,#10H ; Destination register page 1, source register page 0
LD 20H,45H ; Register 20H in page 1 ← Content of the register 45H

; in page 0
•
•
•
ADD 30H,40H ; Register 30H in page 1 ← Content of 30H in page 1

; plus (+) the content of 40H in page 0

Page 1

20H

30H

Page 0

40H

45H

++

Figure 2-5. Programming Tip Example for Inter-Page Data Operations

EFFECT OF DIFFERENT INSTRUCTIONS FOR INTER-PAGE DATA OPERATIONS

The source and the destination pages for data operations between pages differ, depending on which instruction
you use. The following programming tip, "Examples of Inter-Page Data Transfer Operations," provides you with a
detailed list of various case.

ADDRESS SPACES S3C880A/F880A

2-8

++ PROGRAMMING TIP – Examples of Inter-Page Data Transfer Operations

Example 1. a) ADC R1,R0 ; R0 – source page
; R1 – destination page

b) ADC R4,@R2 ; R2, 40H – source page
R2 contains 40H ; R4 – destination page

c) ADC R0,#0AAH ; R0 – destination page

d) ADC 40H,42H ; 42H – source page
; 40H – destination page

e) ADC 40H,@42H ; 42H, 60H – source page
42H contains 60H ; 40H – destination page

f) ADC 40H,#02H ; 40H – destination page

NOTE: The above examples also apply to the instructions ADD, SUB, AND, OR, and XOR.

Example 2. a) BAND R0,40H.7 ; 40H – source page
; R0 – destination page

b) BAND 40H.7,R0 ; R0 – source page
; 40H – destination page

NOTE: The above examples also apply to the instructions BOR, BXOR, and LDB.

Example 3. a) BCP R3,44H.7 ; 44H – source page
; R3 – destination page

Example 4. a) BITC R3.7 ; R3 – destination page

NOTE: The above examples also apply to the instructions BITR and BITS.

S3C880A/F880A ADDRESS SPACES

2-9

++ PROGRAMMING TIP – Examples of Inter-Page Data Transfer Operations (continued)

Example 5. a) BTJRF SKIP,R6.7 ; R6 – source page

NOTE: The above example also applies to the instructions BTJRT.

Example 6. a) CALL @60H ; 60H, 61H – source page

Example 7. a) CLR 30H ; 30H – destination page

b) CLR @44H ; 44H – source page
44H contains 40H ; 40H – destination page

NOTE: The above examples also apply to the instructions RL, RLC, and SRA.

Example 8. a) COM 03H ; 03H – destination page

b) COM @44H ; 44H – source page
44H contains 40H ; 40H – destination page

NOTE: The above examples also apply to the instructions DEC, INC, RR, and RRC.

Example 9. a) CP R1,R0 ; R0 – source page
; R1 – destination page

b) CP R2,@R4 ; R4, 40H – source page
R4 contains 40H ; R2 – destination page

c) CP 40H,42H ; 42H – source page
; 40H – destination page

d) CP 40H,@42H ; 42H, 44H – source page
42H contains 44H ; 40H – destination page

e) CP 20H,#0AAH ; 20H – destination page

NOTE: The above examples also apply to the instructions TCM and TM.

ADDRESS SPACES S3C880A/F880A

2-10

++ PROGRAMMING TIP – Examples of Inter-Page Data Transfer Operations (Continued)

Example 10. a) CPIJE R3,@R5,SKIP ; R5, 40H – source page
R5 contains 40H ; R3 – destination page

NOTE: The above example also applies to the instruction CPIJNE.

Example 11. a) DA 00H ; 00H – source page

b) DA @02H ; 02H – source page
02H contains 40H ; 40H – destination page

Example 12. a) DECW 60H ; 60H, 61H – destination page

b) DECW @00H ; 00H, 01H – source page
00H contains 48H ; 48H, 49H – destination page
01H contains 49H

NOTE: The above example also applies to the instruction INCW.

Example 13. a) DIV 60H,40H ; 40H – source page
; 60H, 61H – destination page

b) DIV 60H,@20H ; 20H, 40H – source page
20H contains 40H ; 60H, 61H – destination page

c) DIV 60H,#03H ; 60H, 61H – destination page

NOTE: The above example also applies to the instruction INCW.

Example 14. a) DJNZ R6,LOOP ; R6 – destination page

NOTE: Incase PP = 10H, 11H, this instruction is not valid.

Example 15. a) JP @60H ; 60H, 61H – source page

S3C880A/F880A ADDRESS SPACES

2-11

++ PROGRAMMING TIP – Examples of Inter-Page Data Transfer Operations (Continued)

Example 16. a) LD R0,#0AAH ; R0 – destination page

b) LD R0,40H ; 40H – source page
; R0 – destination page

c) LD 40H,R0 ; R0 – source page
; 40H – destination page

d) LD R0,@R2 ; R2, 50H – source page
R2 contains 50H ; R0 – destination page

e) LD @R4,R2 ; R4, R2 – source page
R4 contains 40H ; 40H – destination page

f) LD 40H,41H ; 41H – source page
; 40H – destination page

g) LD 40H,@42H ; 42H, 44H – source page
42H contains 44H ; 40H – destination page

h) LD 45H,#02H ; 45H – destination page

i) LD @40H,#02H ; 40H – source page
40H contains 44H ; 44H – destination page

j) LD @40H,42H ; 40H, 42H – source page
40H contains 44H ; 44H – destination page

k) LD R5,#04H(R0) ; R0, 04H(2 + offset) – source page
R0 contains 02H ; R5 – destination page

l) LD #04H(R0),R1 ; R0, R1 – source page
R0 contains 02H ; 04H – destination page

ADDRESS SPACES S3C880A/F880A

2-12

++ PROGRAMMING TIP – Examples of Inter-Page Data Transfer Operations (Continued)

Example 17. a) LDC R0,@RR6 ; R6, R7 – source page
; R0 – destination page

b) LDC @RR6,R2 ; R6, R7, R2 – source page
RR6 contains an external memory address

c) LDC R0,#01H(RR6) ; R6, R7 – source page
; R0 – destination page

d) LDC #01H(RR6),R0 ; R0, R6, R7 – source page

e) LDC R0,#1000H(RR6) ; R6, R7 – source page
; R0 – destination page

f) LDC #1000H(RR6),R0 ; R0, R6, R7 – source page

Example 18. a) LDCD R0,@RR6 ; R6, R7 – source page
; R0 – destination page

b) LDCPD @RR6,R0 ; R0, R6, R7 – source page

NOTE: The above examples also apply to the instructions LDCI and LDCPI.

Example 19. a) LDW 40H,20H ; 20H, 21H – source page
; 40H, 41H – destination page

b) LDW 60H,@20H ; 20H, 40H – source page
20H contains 40H ; 60H, 61H – destination page

c) LDW 40H,#02H ; 40H, 41H – destination page

S3C880A/F880A ADDRESS SPACES

2-13

++ PROGRAMMING TIP – Examples of Inter-Page Data Transfer Operations (Concluded)

Example 20. a) MULT 40H,20H ; 20H – source page
; 40H, 41H – destination page

b) MULT 60H,@20H ; 20H, 40H – source page
20H contains 40H ; 60H, 61H – destination page

c) MULT 40H,#02H ; 40H, 41H – destination page

Example 21. a) POP 00H ; 00H – destination page

b) POP @20H ; 20H – source page
20H contains 40H ; 40H – destination page

Example 22. a) POPUD 00H,@20H ; 20H, 40H – source page
20H contains 40H ; 00H – destination page

NOTE: The above example also applies to the instruction POPUI.

Example 23. a) PUSH 00H ; 00H – destination page

b) PUSH @20H ; 20H, 40H – source page
20H contains 40H

Example 24. a) PUSHUD @60H,20H ; 60H, 20H – source page
60H contains 44H ; 44H – destination page

NOTE: The above example also applies to the instruction PUSHUI.

Example 25. a) SWAP 00H ; 00H – destination page

b) SWAP @20H ; 20H – source page
20H contains 40H ; 40H – destination page

ADDRESS SPACES S3C880A/F880A

2-14

REGISTER SET 1

The term set 1 refers to the upper 64 bytes of the register file, locations C0H–FFH. This area can be accessed at
any time, regardless of which page is currently selected. The upper 32-byte area of this 64-byte space is divided
into two 32-byte register banks, called bank 0 and bank 1. You use the select register bank instructions, SB0 or
SB1, to address one bank or the other. A reset operation automatically selects bank 0 addressing.

The lower 32-byte area of set 1 is not banked. This area contains 16 bytes for mapped system registers (D0H–
DFH) and a 16-byte common area (C0H–CFH) for working register addressing.

Registers in set 1 are directly accessible at all times using Register addressing mode. The 16-byte working
register area ,however, can only be accessed using working register addressing. Working register addressing is a
function of Register addressing mode (see Chapter 3, "Addressing Modes," for more information).

REGISTER SET 2

The same 64-byte physical space that is used for the set 1 register locations C0H–FFH is logically duplicated to
add another 64 bytes. This expanded area of the register file is called set 2. The logical division of set 1 and set
2 is maintained by means of addressing mode restrictions: while you can access set 1 using Register addressing
mode only, you should use Register Indirect addressing mode or Indexed addressing mode to access set 2.

For the S3C880A/F880A, the set 2 address range (C0H–FFH) is accessible on page 0 and page 1. Please note,
however, that on page 1, the set 2 locations FCH–FFH are not mapped.

Part of the OSD video RAM is in page 1, set 2 (C0H–FBH), and the other part (00H–BFH) is in the page 1 prime
register area. To avoid programming errors, we recommend using either Register Indirect or Indexed mode to
address the entire 252-byte video RAM area.

PRIME REGISTER SPACE

The lower 192 bytes (00H–BFH) of the S3C880A/F880A 's two 256-byte register pages and the 64 bytes (00H–
3FH) of register page 2 are called prime register area. Prime registers can be accessed using any of the seven
addressing modes. The prime register area on page 0 is immediately addressable after a reset. In order to
address registers on page 1 (in the OSD video RAM), you must first set the register page pointer (PP) to the
appropriate source and destination values.

S3C880A/F880A ADDRESS SPACES

2-15

C0H

00H

Page 0
FFH

Set 2

Prime
Space

C0H

00H

Page 1
FFH

Set 2

Prime
Space

FBH

FFH

FCH

E0H

D0H

C0H

Set 1

Bank 0 Bank 1

Peripheral and I/O

General-purpose

CPU and system control

OSD video RAM

Area not mapped

3FH

00H

Page 2
FFH

Set 2

Prime
Space

Figure 2-6. Set 1, Set 2, and Prime Area Register Map

ADDRESS SPACES S3C880A/F880A

2-16

WORKING REGISTERS

Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.
When 4-bit working register addressing is used, the 256-byte register file is viewed as thirty two 8-byte register
groups or "slices." Each slice consists of eight 8-bit registers. When the two 8-bit register pointers, RP1 and RP0,
are used, two working register slices can be selected at any time to form a 16-byte working register block. Using
the register pointers, you can move this 16-byte register block anywhere in the addressable register file (except
for the set 2 area).

The terms slice and block are used in this manual to help you visualize the size and relative locations of selected
working register spaces:

— One working register slice is 8 bytes (eight 8-bit working registers; R0–R7 or R8–R15)

— One working register block is 16 bytes (sixteen 8-bit working registers; R0–R15)

All the registers in an 8-byte working register slice have the same binary value for their five most significant
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file.
The base addresses for the two selected 8-byte register slices are contained in the register pointers, RP0 and
RP1. After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (C0H–CFH).

Each register pointer points to
one 8-byte slice of the register
space, selecting a total 16-byte
working register block in total.

1 1 1 1 1 X X X

RP1 (Registers R8-R15)

RP0 (Registers R0-R7)

Slice 32

~ ~

CFH
C0H

FFH
F8H
F7H
F0H

FH
8H
7H
0H

Slice 1

10H

Set 1
Only

0 0 0 0 0 X X X

Figure 2-7. 8-Byte Working Register Areas (Slices)

S3C880A/F880A ADDRESS SPACES

2-17

USING THE REGISTER POINTERS

The register pointers, RP0 and RP1, are mapped to the addresses D6H and D7H in set 1. They are used to
select two movable 8-byte working register slices in the register file. After a reset, they point to the working
register common area: RP0 points to the addresses C0H–C7H, and RP1 points to the addresses C8H–CFH. If
you want to change a register pointer value, you should load a new value to RP0 and/or RP1 using an SRP or LD
instruction (see Figures 2-7 and 2-8).

With working register addressing, you can only access those locations that are pointed to by the register pointers.
Please note that you cannot use the register pointers to select the working register area in set 2, C0H–FFH,
because these locations are accessible only using the Indirect Register or Indexed addressing mode.

The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general
programming guideline, we recommend that RP0 point to the "lower" slice and RP1 point to the "upper" slice (see
Figure 2-7). In some cases, it may be necessary to define working register areas in different (non-contiguous)
areas of the register file. In Figure 2-8, RP0 points to the "upper" slice and RP1 to the "lower" slice.

Because a register pointer can point to either of the two 8-byte slices in the working register block, you can
flexibly define the working register area.

++ PROGRAMMING TIP — Setting the Register Pointers

SRP #70H ; RP0 ← 70H, RP1 ← 78H
SRP1 #48H ; RP0 ← no change, RP1 ← 48H
SRP0 #0A0H ; RP0 ← A0H, RP1 ← no change
CLR RP0 ; RP0 ← 00H, RP1 ← no change
LD RP1,#0F8H ; RP0 ← no change, RP1 ← 0F8H

FH (R15)

0H (R0)
8-Byte Slice

16-byte
contiguous
working
register block

Register File
Contains 32
8-Byte Slices

8-Byte Slice

RP0

RP1 8H
7H

0 0 0 0 1 X X X

0 0 0 0 0 X X X

Figure 2-8. Contiguous 16-Byte Working Register Block

ADDRESS SPACES S3C880A/F880A

2-18

8-Byte Slice

16-byte
contiguous
working
register block

Register File
Contains 32
8-Byte Slices

8-Byte Slice

0H (R0)

7H (R15)

F0H (R0)

F7H (R7)

RP1

RP0

1 1 1 1 0 X X X

0 0 0 0 0 X X X

Figure 2-9. Non-Contiguous 16-Byte Working Register Block

++ PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers

Calculate the sum of the registers, 80H–85H, using the register pointer. The register addresses 80H through 85H
contain the values 10H, 11H, 12H, 13H, 14H, and 15 H, respectively:

SRP0 #80H ; RP0 ← 80H
ADD R0,R1 ; R0 ← R0 + R1
ADC R0,R2 ; R0 ← R0 + R2 + C
ADC R0,R3 ; R0 ← R0 + R3 + C
ADC R0,R4 ; R0 ← R0 + R4 + C
ADC R0,R5 ; R0 ← R0 + R5 + C

The sum of these six registers, 6FH, is located in the register R0 (80H). The instruction string used in this
example takes 12 bytes of instruction code and its execution time is 36 cycles. If you do not use the register
pointer to calculate the sum of these registers, you would have to execute the following instruction sequence:

ADD 80H,81H ; 80H ← (80H) + (81H)
ADC 80H,82H ; 80H ← (80H) + (82H) + C
ADC 80H,83H ; 80H ← (80H) + (83H) + C
ADC 80H,84H ; 80H ← (80H) + (84H) + C
ADC 80H,85H ; 80H ← (80H) + (85H) + C

Here, the sum of the six registers is also located in the register 80H. This instruction string, however, takes 15
bytes of instruction code rather than 12 bytes, and the execution time is 50 cycles rather than 36 cycles.

S3C880A/F880A ADDRESS SPACES

2-19

REGISTER ADDRESSING

The SAM8 register architecture provides an efficient method of working register addressing that takes full
advantage of shorter instruction formats to reduce execution time.

Register (R) addressing mode, in which the operand value is the content of a specific register or register pair, can
be used to access any location in the register file except for set 2.

For working register addressing, the register pointers, RP0 and RP1, are used to select a specific register within
a selected 16-byte working register area. To increase the speed of context switches in an application program,
the register pointers can be used to dynamically select different 8-byte "slices" of the register file as the active
working register space.

Registers are addressed either as a single 8-bit register or a paired 16-bit register. In 16-bit register pairs, the
address of the first 8-bit register is always an even number and that of the next register is an odd number. The
most significant byte of the 16-bit data is always stored in the even-numbered register; the least significant byte
is always stored in the next (+ 1) odd-numbered register.

MSB

Rn

LSB

Rn+1

n = Even address

Figure 2-9. 16-Bit Register Pairs

ADDRESS SPACES S3C880A/F880A

2-20

FFH

D0H

FFH

C0H

Set 2

CFH

D7H RP1

D6H RP0

Register
Pointers

C0H
BFH

00H

Special-Purpose
Registers

General-Purpose
Registers

All
Addressing

Modes

Page 0, 1

Indirect
Register,
Indexed

Addressing
Modes

Page 0, 1

Register Addressing Only

Can be Pointed by Register Pointer

Each register pointer (RP) can independently point to
one of the twenty 8-byte "slices" of the register file
(other than set 2). After a reset, RP0 points to
locations C0H-C7H and RP1 to locations C8H-CFH
(the common working register area).

Bank 1

Prime
Registers

Control
Registers

System
Registers

Set 1

Bank 0

Figure 2-11. Register File Addressing

S3C880A/F880A ADDRESS SPACES

2-21

COMMON WORKING REGISTER AREA (C0H–CFH)

After a reset, the register pointers, RP0 and RP1, automatically point to two 8-byte register slices in set 1,
locations C0H–CFH, as the active 16-byte working register block:

RP0 → C0H–C7H
RP1 → C8H–CFH

This 16-byte address range is a common area. That is, locations in this area can be accessed using working
register addressing only.

1 1 0 0 0 0 0 0

1 1 0 0 1 0 0 0

RP0 =

RP1 =

Register pointers RP0 and RP1 point
to the common working register area
(COH-CFH) after a reset.

C0H

00H

Page 0
FFH

Set 2

Prime
Area

BFH

~ ~

Set 1

FFH
FCH

E0H

CFH
C0H

DFH Set 2

C0H

00H

Page 1
FFH

Prime
Area

BFH

~

Not used
FBH

~

00H

Page 2
FFH

Prime
Area

3FH

~Not used~

Figure 2-12. Common Working Register Area

ADDRESS SPACES S3C880A/F880A

2-22

++ PROGRAMMING TIP – Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations C0H–CFH,
using working register addressing mode only.

Examples: 1. LD 0C2H,40H ; Invalid addressing mode!

Use working register addressing instead:

SRP #0C0H
LD R2,40H ; R2 (C2H) ← the value in location 40H

2. ADD 0C3H,#45H ; Invalid addressing mode!

Use working register addressing instead:

SRP #0C0H
ADD R3,#45H ; R3 (C3H) ← R3 + 45H

4-BIT WORKING REGISTER ADDRESSING

Each register pointer defines a movable 8-byte slice of working register space. The address information stored in
a register pointer serves as an addressing "window" that enables instructions to access working registers very
efficiently using short 4-bit addresses. When an instruction addresses a location in the selected working register
area, the address bits are concatenated in the following way to form a complete 8-bit address:

— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0; "1" selects RP1);

— The five high-order bits in the register pointer select an 8-byte slice of the register space;

— The three low-order bits of the 4-bit address select one of the eight registers in the slice.

As shown in Figure 2-12, the net effect of this operation is that the five high-order bits from the register pointer
are concatenated with the three low-order bits from the instruction address to form a complete address. As long
as the address stored in the register pointer remains unchanged, the three bits from the address will always point
to an address in the same 8-byte register slice.

Figure 2-13 shows a typical example of 4-bit working register addressing: the high-order bit of the instruction 'INC
R6' is "0", which selects RP0. The five high-order bits stored in RP0 (01110B) are concatenated with the three
low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).

S3C880A/F880A ADDRESS SPACES

2-23

Together they create an
8-bit register address

Register pointer
provides five
high-order bits

Address OPCODE

Selects
RP0 or RP1

RP1

RP0

4-bit address
procides three
low-order bits

Figure 2-13. 4-Bit Working Register Addressing

Register
address
(76H)

RP0

0 1 1 1 0 0 0 0

0 1 1 1 0 1 1 0

R6

0 1 1 0 1 1 1 0

Selects RP0

Instruction:
'INC R6'

OPCODE

RP1

0 1 1 1 1 0 0 0

Figure 2-14. 4-Bit Working Register Addressing Example

ADDRESS SPACES S3C880A/F880A

2-24

8-BIT WORKING REGISTER ADDRESSING

You can also use 8-bit working register addressing to access registers in a selected working register area. In
order to initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the
value 1100B. This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit
working register addressing.

As shown in Figure 2-14, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit
addressing: bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address, and
the three low-order bits of the complete address are provided by the original instruction.

Figure 2-15 shows an example of 8-bit working register addressing: the four high-order bits of the instruction
address (1100B) specify 8-bit working register addressing. The fourth bit ("1") selects RP1 and the five high-order
bits in RP1 (10100B) become the five high-order bits of the register address. The three low-order bits of the
register address (011) are provided by the three low-order bits of the 8-bit instruction address. Together, the five
address bits from RP1 and the three address bits from the instruction comprise the complete register address,
R163 (10100011B).

8-bit physical address

Register pointer
provides five
high-order bits

Address

Selects
RP0 or RP1

RP1

RP0

Three low-
order bits

8-bit logical
address

These address
bits indicate 8-bit
working register
addressing

1 1 0 0

Figure 2-15. 8-Bit Working Register Addressing

S3C880A/F880A ADDRESS SPACES

2-25

8-bit address
form instruction
'LD R11, R2'

RP0

0 1 1 0 0 0 0 0

1 1 0 0 1 0 1 1

Selects RP1

R11
Register
address
(0ABH)

RP1

1 0 1 0 1 0 0 0

1 0 1 0 1 0 1 1

Specifies working
register addressing

Figure 2-16. 8-Bit Working Register Addressing Example

ADDRESS SPACES S3C880A/F880A

2-26

SYSTEM AND USER STACKS

The S3C8-series microcontrollers use the system stack for subroutine calls and returns, interrupt processing, and
data storage. The PUSH and POP instructions support system stack operations. Stack operations in the internal
register file and in external data memory are supported by hardware. (The S3C880A/F880A do not support an
external memory access.) Bit 1 in the external memory timing register EMT selects an internal or external stack
area. The 16-bit stack pointer register (SPH, SPL) is used to access an externally defined system stack. An 8-bit
stack pointer (SPL) is sufficient for internal stack addressing.

Stack Operations

Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are
saved to stack by a CALL instruction and restored by an RET instruction. When an interrupt occurs, the contents
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to
their original locations. The stack address is always decremented before a push operation and incremented after
a pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown
in Figure 2-16.

Low Address

High Address

Stack contects
after a call
instruction

Stack contects
after an
interrupt

Top of
stack Flags

PCH

PCL
PCL

PCH
Top of
stack

Figure 2-17. Stack Operations

User-Defined Stacks

You can freely define stacks in the internal register file as data storage locations. The instructions, PUSHUI,
PUSHUD, POPUI, and POPUD, support user-defined stack operations.

Stack Pointers (SPL, SPH)

The register locations D8H and D9H contain the 16-bit stack pointer (SP) value. The most significant byte of a
16-bit stack address is stored in the SPH register (D8H) and the least significant byte is stored in the SPL register
(D9H). Because an external memory interface is not implemented for the S3C880A/F880A microcontrollers, a
single 8-bit stack pointer (SPL) is sufficient to address stack locations in the internal register file.

After a reset, the stack pointer value is undetermined. The SPL register must then be initialized to an 8-bit value
in the range 00H–FFH, page 0.

You can use the SPH register as a general-purpose data register. Please note that when you do so, data stored
in SPH may be overwritten if an overflow or underflow of the SPL register occurs during normal stack operations.
To prevent this, you can initialize the SPL value to FFH instead of 00H.

S3C880A/F880A ADDRESS SPACES

2-27

++ PROGRAMMING TIP – Standard Stack Operations Using PUSH and POP

The following sample code shows how to perform stack operations in the internal register file using PUSH and
POP instructions:

LD SPL,#0FFH ; SPL ← FFH (Normally, the SPL is set to 0FFH by the
• ; initialization routine)
•
•
PUSH PP ; Stack address 0FEH ← PP
PUSH RP0 ; Stack address 0FDH ← RP0
PUSH RP1 ; Stack address 0FCH ← RP1
PUSH R3 ; Stack address 0FBH ← R3
•
•
•
POP R3 ; R3 ← Stack address 0FBH
POP RP1 ; RP1 ← Stack address 0FCH
POP RP0 ; RP0 ← Stack address 0FDH
POP PP ; PP ← Stack address 0FEH

ADDRESS SPACES S3C880A/F880A

2-28

NOTES

S3C880A/F880A ADDRESSING MODES

3-1

3 ADDRESSING MODES

OVERVIEW

Instructions that are stored in program memory are fetched for execution using the program counter. Instructions
indicate the operation to be performed and the data to be operated on. Addressing mode is used to determine the
location of the data operand. The operands specified in SAM87 instructions may be condition codes, immediate
data, or a location in the register file, program memory, or data memory.

The SAM87 instruction set supports seven explicit addressing modes. Not all of these addressing modes are
available for each instruction. The addressing modes and their symbols are as follows:

— Register (R)

— Indirect Register (IR)

— Indexed (X)

— Direct Address (DA)

— Indirect Address (IA)

— Relative Address (RA)

— Immediate (IM)

ADDRESSING MODES S3C880A/F880A

3-2

REGISTER ADDRESSING MODE (R)

In Register addressing mode, the operand is the content of a specified register or register pair (see Figure 3-1).
Working register addressing differs from Register addressing as it uses a register pointer to specify an 8-byte
working register space in the register file and an 8-bit register within that space (see Figure 3-2).

dst

Value used in
Instruction Execution

OPCODE

OPERAND

8-bit Register
File Address

Point to One
Register in

Register FileOne-Operand
Instruction
(Example)

Sample Instruction:

DEC CNTR ; Where CNTR is the label of an 8-bit register address

Program Memory Register File

Figure 3-1. Register Addressing

dst

OPCODE

4-bit
Working Register

Point to the
Working Register

(1 of 8)Two-Operand
Instruction
(Example)

Sample Instruction:

ADD R1, R2 ; Where R1 and R2 are registers in the curruntly
 selected working register area.

Program Memory

Register File

src
3 LSBs

RP0 or RP1

Selected
RP points
to start
of working
register
block

OPERAND

MSB Point to
RP0 ot RP1

Figure 3-2. Working Register Addressing

S3C880A/F880A ADDRESSING MODES

3-3

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of
the operand. Depending on the instruction used, the actual address may point to a register in the register file,
program memory (ROM), or an external memory space (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to
indirectly address another memory location. You cannot, however, access the locations C0H–FFH in set 1 using
Indirect Register addressing mode.

dst

Address of Operand
used by Instruction

OPCODE

ADDRESS

8-bit Register
File Address

Point to One
Register in Register

FileOne-Operand
Instruction
(Example)

Sample Instruction:

RL @SHIFT ; Where SHIFT is the label of an 8-bit register address

Program Memory Register File

Value used in
Instruction Execution

OPERAND

Figure 3-3. Indirect Register Addressing to Register File

ADDRESSING MODES S3C880A/F880A

3-4

INDIRECT REGISTER ADDRESSING MODE (Continued)

dst

OPCODE

Pair
Points to

Register Pair

Example
Instruction

References
Program
Memory

Sample Instructions:

CALL @RR2
JP @RR2

Program Memory

Register File

Value used in
Instruction

OPERAND

Register

Program Memory

16-Bit
Address
Points to
Program
Memory

Figure 3-4. Indirect Register Addressing to Program Memory

S3C880A/F880A ADDRESSING MODES

3-5

INDIRECT REGISTER ADDRESSING MODE (Continued)

dst

OPCODE ADDRESS

4-Bit
Working
Register
Address

Point to the
Working Register

(1 of 8)

Sample Instruction:

OR R3, @R6

Program Memory

Register File

src
3 LSBs

Value used in
Instruction

OPERAND

Selected
RP Points to
Start of
Working Register
Block

RP0 or RP1

MSB Points to
RP0 or RP1

~ ~

~ ~

Figure 3-5. Indirect Working Register Addressing to Register File

ADDRESSING MODES S3C880A/F880A

3-6

INDIRECT REGISTER ADDRESSING MODE (Concluded)

dst

OPCODE

4-bit Working
Register Address

Sample Instructions:

LCD R5,@RR6 ; Program memory access
LDE R3,@RR14 ; External data memory access
LDE @RR4, R8 ; External data memory access

Program Memory

Register File

src

Value used in
Instruction OPERAND

Example Instruction
References either

Program Memory or
Data Memory

Program Memory
or

Data Memory

Next 2-bit Point
 to Working

Register Pair
(1 of 4)

LSB Selects

REGISTER
PAIR

16-Bit Address
Points to
Program Memory
or Data Memory

RP0 or RP1

MSB Points to
RP0 or RP1

Selected
RP points to
Start of
Working Register
Block

Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

S3C880A/F880A ADDRESSING MODES

3-7

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during the instruction execution in order to
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access
locations in the internal register file or in external memory. You cannot, however, access the locations C0H–FFH
in set 1 using Indexed addressing mode.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range
– 128 to + 127. This applies to external memory accesses only (see Figure 3-8).

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained
in a working register. For external memory accesses, the base address is stored in the working register pair
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address
(see Figure 3-9).

The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for
external data memory, when implemented.

dst/src

OPCODE

Two-Operand
Instruction

Example
Point to One of the
Working Register

(1 of 8)

Sample Instruction:

LD R0, #BASE[R1] ; Where BASE is an 8-bit immediate value

Program Memory

Register File

x
3 LSBs

Value used in
Instruction

OPERAND

INDEX

Base Address

RP0 or RP1

Selected RP
Points to Start of
Working Register
Block

~ ~

~ ~
+

Figure 3-7. Indexed Addressing to Register File

ADDRESSING MODES S3C880A/F880A

3-8

INDEXED ADDRESSING MODE (Continued)

Register File

OPERAND

Program Memory
or

Data Memory

Point to Working
Register Pair

(1 of 4)

LSB Selects

16-Bit Address
Added to Offset

RP0 or RP1

MSB Points to
RP0 or RP1

Selected RP
Points to Start of
Working Register
Block

dst/src

OPCODE

Program Memory

x
OFFSET

4-bit Working
Register Address

Sample Instructions:

LDC R4, #04H[RR2] ; The values in the program address (RR2 + 04H)
 are loaded into register R4.

LDE R4,#04H[RR2] ; Identical operation to LDC example, except that
 external program memory is accessed.

NEXT 2 BITS
REGISTER

PAIR

Value used in
Instruction

8-Bits 16-Bits

16-Bits

+

~ ~

Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

S3C880A/F880A ADDRESSING MODES

3-9

INDEXED ADDRESSING MODE (Concluded)

Register File

OPERAND

Program Memory
or

Data Memory

Point to Working
Register Pair

LSB Selects

16-Bit Address
Added to Offset

RP0 or RP1

MSB Points to
RP0 or RP1

Selected RP
Points to Start of
Working Register
Block

Sample Instructions:

LDC R4, #1000H[RR2] ; The values in the program address (RR2 + 1000H)
 are loaded into register R4.

LDE R4,#1000H[RR2] ; Identical operation to LDC example, except that
 external program memory is accessed.

NEXT 2 BITS
REGISTER

FAIR

Value used in
Instruction

8-Bits 16-Bits

16-Bits

dst/src

OPCODE

Program Memory

src
OFFSET

4-bit Working
Register Address

OFFSET

+

~ ~

Figure 3-9. Indexed Addressing to Program or Data Memory

ADDRESSING MODES S3C880A/F880A

3-10

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC
whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or the destination address for
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

Sample Instructions:

LDC R5,1234H ; The values in the program address (1234H)
 are loaded into register R5.

LDE R5,1234H ; Identical operation to LDC example, except that
 external program memory is accessed.

dst/src

OPCODE

Program Memory

"0" or "1"

Lower Address Byte

LSB Selects Program
Memory or Data Memory:
"0" = Program Memory
"1" = Data Memory

Memory
Address
Used

Upper Address Byte

Program or
Data Memory

Figure 3-10. Direct Addressing for Load Instructions

S3C880A/F880A ADDRESSING MODES

3-11

DIRECT ADDRESS MODE (Continued)

OPCODE

Program Memory

Lower Address Byte

Memory
Address
Used

Upper Address Byte

Sample Instructions:

JP C,JOB1 ; Where JOB1 is a 16-bit immediate address
CALL DISPLAY ; Where DISPLAY is a 16-bit immediate address

Next OPCODE

Figure 3-11. Direct Addressing for Call and Jump Instructions

ADDRESSING MODES S3C880A/F880A

3-12

INDIRECT ADDRESS MODE (IA)

In Indirect Address (IA) mode, the instruction specifies an address located in the lower 256 bytes of the program
memory. The selected pair of memory locations contains the actual address of the next instruction to be
executed. Only the CALL instruction can use Indirect Address mode.

As Indirect Address mode assumes that the operand is located in the lower 256 bytes of the program memory,
only an 8-bit address is provided in the instruction; the upper bytes of the destination address are assumed to be
all zeros.

Current
Instruction

Program Memory
Locations 0-255

Program Memory

OPCODE

dst

Lower Address Byte

Upper Address Byte

Next Instruction

LSB Must be Zero

Sample Instruction:

CALL #40H ; The 16-bit value in program memory addresses
 40H and 41H is the subroutine start address.

Figure 3-12. Indirect Addressing

S3C880A/F880A ADDRESSING MODES

3-13

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a two's-complement signed displacement between – 128 and + 127 is specified
in the instruction. The displacement value is then added to the current PC value. The result is the address of the
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction
immediately following the current instruction.

Several program control instructions use Relative Address mode to perform conditional jumps. The instructions
that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.

OPCODE

Program Memory

Displacement

Program Memory
Address Used

Sample Instructions:

JR ULT,$+OFFSET ; Where OFFSET is a value in the range +127 to -128

Next OPCODE

+
Signed
Displacement Value

Current Instruction

Current
PC Value

Figure 3-13. Relative Addressing

ADDRESSING MODES S3C880A/F880A

3-14

IMMEDIATE MODE (IM)

In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the
operand field itself. The operand may be one byte or one word in length, depending on the instruction used.
Immediate addressing mode is useful for loading constant values into registers.

(The Operand value is in the instruction)

OPCODE

Sample Instruction:

LD R0,#0AAH

Program Memory

OPERAND

Figure 3-14. Immediate Addressing

S3C880A/F880A CONTROL REGISTERS

4-1

4 CONTROL REGISTERS

OVERVIEW

In this chapter, detailed descriptions of the S3C880A/F880A control registers are presented in an easy-to-read
format. These descriptions will help familiarize you with the mapped locations in the register file. You can also
use them as a quick-reference source when writing application programs.

System and peripheral registers are summarized in Tables 4-1, 4-2, and 4-3. Figure 4-1 illustrates the important
features of the standard register description format.

Control register descriptions are arranged in alphabetical order according to register mnemonic. More information
about control registers is presented in the context of the various peripheral hardware descriptions in Part II of this
manual.

CONTROL REGISTERS S3C880A/F880A

4-2

Table 4-1. Set 1 Registers

Register Name Mnemonic Decimal Hex R/W

Timer 0 counter T0CNT 208 D0H R

Timer 0 data register T0DATA 209 D1H R/W

Timer 0 control register T0CON 210 D2H R/W

Basic timer control register BTCON 211 D3H R/W

Clock control register CLKCON 212 D4H R/W

System flags register FLAGS 213 D5H R/W

Register pointer 0 RP0 214 D6H R/W

Register pointer 1 RP1 215 D7H R/W

Stack pointer (high byte) SPH 216 D8H R/W

Stack pointer (low byte) SPL 217 D9H R/W

Instruction pointer (high byte) IPH 218 DAH R/W

Instruction pointer (low byte) IPL 219 DBH R/W

Interrupt request register IRQ 220 DCH R

Interrupt mask register IMR 221 DDH R/W

System mode register SYM 222 DEH R/W

Register page pointer PP 223 DFH R/W

Table 4-2. Set 1, Bank 0 Registers

Register Name Mnemonic Decimal Hex R/W

Port 0 data register P0 224 E0H R/W

Port 1 data register P1 225 E1H R/W

Port 2 data register P2 226 E2H R/W

Port 3 data register P3 227 E3H R/W

Port 0 control register (high byte) P0CONH 228 E4H R/W

Port 0 control register (low byte) P0CONL 229 E5H R/W

Port 1 control register (high byte) P1CONH 230 E6H R/W

Port 1 control register (low byte) P1CONL 231 E7H R/W

Port 2 control register (high byte) P2CONH 232 E8H R/W

Port 2 control register (low byte) P2CONL 233 E9H R/W

Location EAH in set 1, bank 0, are not mapped.

Port 3 control register (low byte) P3CONL 235 EBH R/W

Locations ECH - EEH in set 1, bank 0, are not mapped.

PLL control register (note) PLLCON 236 EFH R/W

NOTE: PLL control register, PLLCON, is a system register for factory test. So user should not access this register.

S3C880A/F880A CONTROL REGISTERS

4-3

Table 4-2. Set 1, Bank 0 Registers (Continued)

Register Name Mnemonic Decimal Hex R/W

Timer A data register TADATA 240 F0H R/W

Location F1H in set 1, bank 0, are not mapped.

STOP control register STCON 238 F3H R/W

Timer A control register TACON 242 F2H R/W

PWM0 data register (main byte) PWM0 244 F4H R/W

PWM0 data register (extension byte) PWM0EX 245 F5H R/W

PWM1 data register (main byte) PWM1 246 F6H R/W

PWM1 data register (extension byte) PWM1EX 247 F7H R/W

PWM control register PWMCON 248 F8H R/W

Capture A data register CAPA 249 F9H R

A/D converter control register ADCON 250 FAH R/W (2)

A/D conversion data register ADDATA 251 FBH R

Test control register TSTC 252 FCH R/W (1)

Basic timer counter BTCNT 253 FDH R

External memory timing register EMT 254 FEH R/W

Interrupt priority register IPR 255 FFH R/W

NOTE: Test control register, TSTC, is a system register for factory test. So user should not access this register.

CONTROL REGISTERS S3C880A/F880A

4-4

Table 4-3. Set 1, Bank 1 Registers

Register Name Mnemonic Decimal Hex R/W

OSD fringe/border control register 1 OSDFRG1 224 E0H R/W

OSD fringe/border control register 2 OSDFRG2 225 E1H R/W

OSD smooth control register 1 OSDSMH1 226 E2H R/W

OSD smooth control register 2 OSDSMH2 227 E3H R/W

OSD space color control register OSDCOL 236 E4H R/W

OSD field control register OSDFLD 237 E5H R/W

OSD palette color mode R 1 OSDPLTR1 230 E6H R/W

OSD palette color mode R 2 OSDPLTR2 231 E7H R/W

OSD palette color mode G 1 OSDPLTG1 232 E8H R/W

OSD palette color mode G 2 OSDPLTG2 233 E9H R/W

OSD palette color mode B 1 OSDPLTB1 234 EAH R/W

OSD palette color mode B 2 OSDPLTB2 235 EBH R/W

Locations ECH–EFH in set 1, bank 1, are not mapped.

OSD character size control register CHACON 240 F0H R/W

OSD fade control register FADECON 241 F1H R/W

OSD row position control register ROWCON 242 F2H R/W

OSD column position control register CLMCON 243 F3H R/W

OSD background color control register COLCON 244 F4H R/W

On-screen display control register DSPCON 245 F5H R/W

Halftone signal control register HTCON 246 F6H R/W

V-SYNC blank control register VSBCON 251 F7H R/W

PWM2 Data register PWM2 247 F8H R/W

PWM3 Data register PWM3 248 F9H R/W

PWM4 Data register PWM4 249 FAH R/W

PWM5 Data register PWM5 250 FBH R/W

OSD Color Buffer COLBUF 252 FCH R/W

Locations FDH–FFH in set 1, bank 1, are not mapped.

S3C880A/F880A CONTROL REGISTERS

4-5

FLAGS — System Flags Register D5H Set 1

Bit Identifier

RESETRESET Value

Read/Write
Addressing Mode

.7

.6

Carry Flag (C)

0

1

Operation does not generate a carry or borrow condition

Operation generates a carry-out or a borrow condition in high-order bit 7

Register
mnemonic Full register name

Register address
(hexadecimal)

Bit number:
MSB = Bit 7
LSB = Bit 0

R
W

R/W
'–'

=
=
=
=

Read-only
Write-only
Read/write
Not used

Bit number(s) that is/are appended to
the register name for bit addressing

Description of the
effect of specific
bit settings

Name of an
individual
bit or bit function

Addressing mode or
modes you can use to
modify register values

Register addressing mode only

.7 .6 .5 .4 .3 .2 .1 .0

x x x x x x 0 0

R/W R/W R/W R/W R/W R/W R/W R/W

Not used
Undetermined value
Logic zero
Logic one

'–'
'x'
'0'
'1'

=
=
=
=

RESET value notation:

Register location
in the internal
register file

Zero Flag (Z)

0

1

Operation result is a non-zero value

Operation result is zero

Sign Flag (S)

0

1

Operation generates a positive number (MSB = "0")

Operation generates a negative number (MSB = "1")

.5

Figure 4-1. Register Description Format

CONTROL REGISTERS S3C880A/F880A

4-6

ADCON — A/D Converter Control Register FAH Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – 0 0 x 0 0 0

Read/Write – – R/W R/W R R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.6 Not used for the S3C880A/F880A

.5–.4 A/D Converter Input Pin Selection Bits

0 0 ADC0 (P3.0)

0 1 ADC1 (P3.1)

1 0 ADC2 (P0.6)

1 1 ADC3 (P0.7)

.3 End-of-Conversion Status Bit (Read Only)

0 A/D conversion is in progress

1 A/D conversion complete

.2 and .1 Clock Source Selection Bits

0 0 fosc/16 (fosc < 8 MHz)

0 1 fosc/8 (fosc < 8 MHz)

1 0 fosc/14(fosc < 8 MHz)

1 1 fosc/2 (fosc < 8 MHz)

.0 Conversion Start Bit

0 No meaning

0 A/D conversion start

S3C880A/F880A CONTROL REGISTERS

4-7

BTCON — Basic Timer Control Register D3H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.4 Watchdog Timer Function Disable Code (for Reset)

1 0 1 0 Disable watchdog timer function

Others Enable watchdog timer function

.3 and .2 Basic Timer Input Clock Selection Bits

0 0 fOSC/4096

0 1 fOSC/1024

1 0 fOSC/128

1 1 Invalid selection

.1 Basic Timer Counter Clear Bit (note)

0 No effect

1 Clear the basic timer counter value

.0 Clock Divider Clear Bit for Basic Timer and Timer 0 (note)

0 No effect

1 Clear both dividers

NOTE: When you write a "1" to bit 0 or bit 1, the corresponding divider or counter value is cleared to '00H'. The
corresponding BTCON bit is then automatically reset by hardware to "0".

CONTROL REGISTERS S3C880A/F880A

4-8

CHACON — OSD Character Size Control Register F0H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 and .6 Vertical Character Size Selection Bits

0 0 Select 'x1' vertical character size

0 1 Select 'x2' vertical character size

1 0 Select 'x3' vertical character size

1 1 Select 'x4' vertical character size

.5 and .4 Horizontal Character Size Selection Bits

0 0 Select 'x1' horizontal character size

0 1 Select 'x2' horizontal character size

1 0 Select 'x3' horizontal character size

1 1 Select 'x4' horizontal character size

.3–.0 Fade Row Address Selection for Rows 0–11 in On-Screen Display

0 0 0 0 Row 0 selected

0 0 0 1 Row 1 selected

0 0 1 0 Row 2 selected

0 0 1 1 Row 3 selected

0 1 0 0 Row 4 selected

0 1 0 1 Row 5 selected

0 1 1 0 Row 6 selected

0 1 1 1 Row 7 selected

1 0 0 0 Row 8 selected

1 0 0 1 Row 9 selected

1 0 1 0 Row 10 selected

1 0 1 1 Row 11 selected

Others Invalid selection

S3C880A/F880A CONTROL REGISTERS

4-9

CLKCON — System Clock Control Register D4H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Oscillator IRQ Wake-up Function Enable Bit

0 Enable IRQ for main system oscillator wake-up in power-down mode

1 Disable IRQ for main system oscillator wake-up in power-down mode

.6 and .5 Main Oscillator Stop Control Bits

0 0 No effect

0 1 No effect

1 0 Stop main oscillator

1 1 No effect

.4 and .3 CPU Clock (System Clock) Selection Bits (1)

0 0 Divide by 16 (fOSC/16)

0 1 Divide by 8 (fOSC/8)

1 0 Divide by 2 (fOSC/2)

1 1 Non-divided clock (fOSC)

.2–.0 Subsystem Clock Selection Bits (2)

1 0 1 Invalid selection for S3C880A/F880A

 Others Select main system clock (MCLK)

NOTES:
1. After a reset, the slowest clock (divide by 16) is selected as the system clock. To select faster clock speeds, load the

appropriate values to CLKCON.3 and CLKCON.4.
2. These selection bits are required only for systems that have a main clock and a subsystem clock. The S3C880A/F880A

microcontrollers have only a main oscillator (and an L-C oscillator for the OSD module). For this reason, the setting
'101B' is invalid.

CONTROL REGISTERS S3C880A/F880A

4-10

CLMCON — OSD Column Control Register F3H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.3 Left Margin Display Position Control Bits (16 + 4 x LMG value of 0–31 dots)

0 0 0 0 0 Left margin = 16 dot clocks

0 0 0 0 1 Left margin = 16 + 4 × 1 dot clock

• • • • • •

1 1 1 1 1 Left margin = 16 + 4 × 31 dot clocks

.2–.0 Inter-Column Spacing Control Selection (0–7 dots)

0 0 0 No inter-column spacing

0 0 1 Inter-column spacing = 1 dot

• • • • • •

1 1 1 Inter-column spacing = 7 dots

NOTE: To set left margin and inter-column spacing, separate decimal values must be calculated, converted to their binary
equivalents, and then written to the CLMCON register.

S3C880A/F880A CONTROL REGISTERS

4-11

COLBUF — OSD Character Color Buffer FCH Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – x x x x x

Read/Write – – – R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.6 Not used for the S3C880A/F880A

.5 Video RAM Bit-9 Enable Bit

0 Disable VRAM bit-9

1 Enable VAM bit-9

.4 Video RAM Bit-8 Enable Bit

0 Disable VRAM bit-8

1 Enable VRAM bit-8

.3 H/T and BGRND Enable Bit

0 Disable H/T and BRGND

1 Enable H/T and BRGND

.2–.0 Character Color Selection Bits

.2 .1 .0 OSDCOL.0 = 0 OSDCOL.0 = 1

0 0 0 Black Color mode 0

0 0 1 Blue Color mode 1

0 1 0 Green Color mode 2

0 1 1 Cyan Color mode 3

1 0 0 Red Color mode 4

1 0 1 Magenta Color mode 5

1 1 0 Yellow Color mode 6

1 1 1 White Color mode 7

CONTROL REGISTERS S3C880A/F880A

4-12

COLCON — OSD Background Color Control Register F4H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Frame Background Color Enable Bit

0 Disable frame background color (no background color is displayed)

1 Enable frame background color

.6–.4 Frame Background Color Selection Bits (when .7 = "1")

.6 .5 .4 OSDCOL.0 = 0 OSDCOL.0 = 1

0 0 0 Black Color mode 0

0 0 1 Blue Color mode 1

0 1 0 Green Color mode 2

0 1 1 Cyan Color mode 3

1 0 0 Red Color mode 4

1 0 1 Magenta Color mode 5

1 1 0 Yellow Color mode 6

1 1 1 White Color mode 7

.3 Character Background Color Enable Bit

0 Disable character background color (no background color is displayed)

1 Enable character background color display

.2–.0 Character Background Color Selection Bits (when .3 = "1")

.2 .1 .0 OSDCOL.0 = 0 OSDCOL.0 = 1

0 0 0 Black Color mode 0

0 0 1 Blue Color mode 1

0 1 0 Green Color mode 2

0 1 1 Cyan Color mode 3

1 0 0 Red Color mode 4

1 0 1 Magenta Color mode 5

1 1 0 Yellow Color mode 6

1 1 1 White Color mode 7

S3C880A/F880A CONTROL REGISTERS

4-13

DSPCON — On-Screen Display Control Register F5H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R R R R R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.4 OSD Row Counter (Read-only)

0 0 0 0 Row 0

0 0 0 1 Row 1

0 0 1 0 Row 2

0 0 1 1 Row 3

0 1 0 0 Row 4

0 1 0 1 Row 5

0 1 1 0 Row 6

0 1 1 1 Row 7

1 0 0 0 Row 8

1 0 0 1 Row 9

1 0 1 0 Row 10

1 0 1 1 Row 11

Others 1100-1111 are not used

.3 Clock Edge Selection for H/V-Sync Polarity

0 Rising edge

1 Falling edge

.2–.1 Halftone or Background Color Selection Bits

0 0 Character background color

0 1 Not used

1 0 Halftone output

1 1 Character halftone and background color

.0 Display Enable Bit

0 Disable OSD (turn off L-C OSC)

1 Enable OSD (turn on L-C OSC)

CONTROL REGISTERS S3C880A/F880A

4-14

EMT — External Memory Timing Register FEH Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 –

Read/Write R/W R/W R/W R/W R/W R/W R/W –

Addressing Mode Register addressing mode only

.7 External WAITWAIT Input Function Enable Bit

0 Disable WAIT input function for external device (normal operating mode)

1 Enable WAIT input function for external device

.6 Slow Memory Timing Enable Bit

0 Disable slow memory timing

1 Enable slow memory timing

.5 and .4 Program Memory Automatic Wait Control Bits

0 0 No wait (normal operation)

0 1 Wait one cycle

1 0 Wait two cycles

1 1 Wait three cycles

.3 and .2 Data Memory Automatic Wait Control Bits

0 0 No wait (normal operation)

0 1 Wait one cycle

1 0 Wait two cycles

1 1 Wait three cycles

.1 Stack Area Selection Bit

0 Select internal register file area

1 Select external data memory area

.0 Not used for the S3C880A/F880A

NOTE: Because an external interface is not implemented for the S3C880A/F880A, the EMT values should
always be "0".

S3C880A/F880A CONTROL REGISTERS

4-15

FADECON — OSD Fade Control Register F1H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – 0 0 0 0 0 0 0

Read/Write – R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Not used for the S3C880A/F880A

.6 Fade Function Enable Bit

0 Fade disable

1 Fade enable

.5 Fade Direction Selection Bit

0 Fade before matrix

1 Fade after matrix

.4–.0 Halftone or Background Color Selection Bits (1)

0 0 0 0 0 Line 0

0 0 0 0 1 Line 1

.
1 0 0 0 0 Line 16

1 0 0 0 1 Line 17

1 0 0 1 0 Inter-row space Line 1 (1H)

1 0 0 1 1 Inter-row space Line 2 (1H)

1 0 1 0 0 Inter-row space Line 3 (1H)

1 0 1 0 1 Inter-row space Line 4 (1H)

1 0 1 1 0 Inter-row space Line 5 (1H)

1 0 1 1 1 Inter-row space Line 6 (1H)

1 1 0 0 0 Inter-row space Line 7 (1H)

1 1 0 0 1 Not used

.
1 1 1 1 1 Not used

NOTE: There are two choices of fade direction: before (FADECON.5="0") and after (FADECON.5="1"). When you select
fade before, the character matrix is faded starting with current line +1 (not including current line). When you
select fade after, the character matrix is faded starting with current line.

CONTROL REGISTERS S3C880A/F880A

4-16

FLAGS — System Flags Register D5H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value x x x x x x 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Carry Flag (C)

0 Operation does not generate a carry or borrow condition

1 Operation generates a carry-out or borrow into high-order bit-7

.6 Zero Flag (Z)

0 Operation result is a non-zero value

1 Operation result is zero

.5 Sign Flag (S)

0 Operation generates a positive number (MSB = "0")

1 Operation generates a negative number (MSB = "1")

.4 Overflow Flag (V)

0 Operation result is ≤ + 127 or ≥ – 128

1 Operation result is > + 127 or < – 128

.3 Decimal Adjust Flag (D)

0 Add operation has completed

1 Subtraction operation has completed

.2 Half-Carry Flag (H)

0 No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction

1 Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3

.1 Fast Interrupt Status Flag (FIS)

0 Cleared automatically during an interrupt return (IRET)

1 Automatically set to logic one during a fast interrupt service routine

.0 Bank Address Selection Flag (BA)

0 Bank 0 is selected (using the SB0 instruction)

1 Bank 1 is selected (using the SB1 instruction)

S3C880A/F880A CONTROL REGISTERS

4-17

HTCON — Halftone Signal Control Register F6H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Halftone Output Polarity Selection Bit (HT Only)

0 Active high (normal halftone output is Low level)

1 Active low (normal halftone output is High level)

.6 RGB Output Polarity Selection Bit

0 Active high (normal RGB polarity is Low level)

1 Active low (normal RGB polarity is High level)

.5 OSD ROW Interrupt Enable Bit

0 Disable the OSD ROW interrupt

1 Enable the OSD ROW interrupt

.4 OSD ROW Interrupt Pending Bit

0 No interrupt is pending (when read); clear pending bit (when write)

1 Interrupt is pending (when read); no effect (when write)

.3 Halftone Function Enable Bit

0 Disable the halftone control signal

1 Enable the halftone control signal

.2 Halftone Option Selection Bit

0 Halftone output for character periods only (as selected by video RAM bit-13)

1 Halftone output for all frame periods (regardless of video RAM bit-13 setting)

.1 V-Sync Interrupt Enable Bit

0 Disable the V-sync interrupt

1 Enable the V-sync interrupt

.0 V-Sync Interrupt Pending Bit

0 No OSD ROW interrupt is pending (when read)

0 Clear pending bit (when write)

1 OSD ROW interrupt is pending (when read)

1 No effect (when write)

CONTROL REGISTERS S3C880A/F880A

4-18

IMR — Interrupt Mask Register DDH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value x x – x x x x x

Read/Write R/W R/W – R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Interrupt Priority Level 7 (IRQ7) Enable Bit; V-Sync

0 Disable IRQ7 interrupt

1 Enable IRQ7 interrupt

.6 Interrupt Priority Level 6 (IRQ6) Enable Bit; Timer A

0 Disable IRQ6 interrupt

1 Enable IRQ6 interrupt

.5 Not used for S3C880A/F880A

.4 Interrupt Priority Level 4 (IRQ4) Enable Bit; P1.2 and P1.3 External Interrupt

0 Disable IRQ4 interrupt

1 Enable IRQ4 interrupt

.3 Interrupt Priority Level 3 (IRQ3) Enable Bit; CAPA

0 Disable IRQ3 interrupt

1 Enable IRQ3 interrupt

.2 Interrupt Priority Level 2 (IRQ2) Enable Bit; OSD ROW Interrupt

0 Disable IRQ2 interrupt

1 Enable IRQ2 interrupt

.1 Interrupt Priority Level 1 (IRQ1) Enable Bit; P1.0 and P1.1 External Interrupt

0 Disable IRQ1 interrupt

1 Enable IRQ1 interrupt

.0 Interrupt Priority Level 0 (IRQ0) Enable Bit; T0INT (Match)

0 Disable IRQ0 interrupt

1 Enable IRQ0 interrupt

S3C880A/F880A CONTROL REGISTERS

4-19

IPH — Instruction Pointer (High Byte) DAH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value x x x x x x x x

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.0 Instruction Pointer Address (High Byte)

The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction
pointer address (IP15–IP8). The lower byte of the IP address is located in the IPL
register (DBH).

IPL — Instruction Pointer (Low Byte) DBH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value x x x x x x x x

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 – .0 Instruction Pointer Address (Low Byte)

The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction
pointer address (IP7–IP0). The upper byte of the IP address is located in the IPH
register (DAH).

CONTROL REGISTERS S3C880A/F880A

4-20

IPR — Interrupt Priority Register FFH Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value x x – x x x x x

Read/Write R/W R/W – R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7, .4, and .1 Priority Control Bits for Interrupt Groups A, B, and C (1)

0 0 0 Group priority undefined

0 0 1 B > C > A

0 1 0 A > B > C

0 1 1 B > A > C

1 0 0 C > A > B

1 0 1 C > B > A

1 1 0 A > C > B

1 1 1 Group priority undefined

.6 Interrupt Group C Priority Control Bit

0 IRQ6 > IRQ7

1 IRQ7 > IRQ6

.5 Not used for the S3C880A/F880A (2)

.3 Interrupt Sub Group B Priority Control Bit

0 IRQ3 > IRQ4

1 IRQ4 > IRQ3

.2 Interrupt Group B Priority Control Bit

0 IRQ2 > (IRQ3, IRQ4)

1 (IRQ3, IRQ4) > IRQ2

.0 Interrupt Group A Priority Control Bit

0 IRQ0 > IRQ1

1 IRQ1 > IRQ0

NOTES:
1. Interrupt group A is IRQ0 and IRQ1; interrupt group B is IRQ2, IRQ3, and IRQ4; interrupt group C is IRQ6 and IRQ7.
2. Interrupt level IRQ5 is not used in the S3C880A/F880A interrupt structure. For this reason, IPR.5 is not used.

S3C880A/F880A CONTROL REGISTERS

4-21

IRQ — Interrupt Request Register DCH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 – 0 0 0 0 0

Read/Write R R – R R R R R

Addressing Mode Register addressing mode only

.7 Interrupt Level 7 (IRQ7) Request Pending Bit; V-Sync

0 No IRQ7 interrupt pending

1 IRQ7 interrupt is pending

.6 Interrupt Level 6 (IRQ6) Request Pending Bit; Timer A

0 No IRQ6 interrupt pending

1 IRQ6 interrupt is pending

.5 Not used for the S3C880A/F880A

.4 Interrupt Level 4 (IRQ4) Request Pending Bit; P1.2 and P1.3 External Interrupt

0 No IRQ4 interrupt pending

1 IRQ4 interrupt is pending

.3 Interrupt Level 3 (IRQ3) Request Pending Bit; CAPA

0 No IRQ3 interrupt pending

1 IRQ3 interrupt is pending

.2 Interrupt Level 2 (IRQ2) Request Pending Bit; OSD ROW Interrupt

0 No IRQ2 interrupt pending

1 IRQ2 interrupt is pending

.1 Interrupt Level 1 (IRQ1) Request Pending Bit; P1.0 and P1.1 External Interrupt

0 No IRQ1 interrupt pending

1 IRQ1 interrupt is pending

.0 Interrupt Level 0 (IRQ0) Request Pending Bit; T0INT (Match)

0 No IRQ0 interrupt pending

1 IRQ0 interrupt is pending

NOTE: Interrupt level request pending bits can be polled by software to detect an interrupt request pending condition on
any of the seven valid interrupt levels (IRQ0–IRQ4, IRQ6, and IRQ7). Interrupt pending bits are read-only
addressable.

CONTROL REGISTERS S3C880A/F880A

4-22

OSDCOL — OSD Space Color Control Register E4H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – 0 0 0 0 0

Read/Write – – – R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–,5 Not used for the S3C880A/F880A

.4 Inter Character Smoothing Control Bit (note)

0 Disable inter character smoothing

1 Enable inter character smoothing

.3 Fringe Dot Size Selection Bit

0 1 dot

1 1/2 dot

.2 Inter-row Space Half Tone

0 Depend on character background half tone

1 Depend on frame background half tone

.1 Inter-row Space Color

0 Depend on character background color

1 Depend on frame background color

.0 RGB Output Selection Bit

0 Digital RGB output (disable palette color mode)

1 Analog RGB output (enable palette color mode)

NOTE: In 1-dot fringe mode (OSDCOL.3 = “0”) , Inter-character smooth function is disabled.

S3C880A/F880A CONTROL REGISTERS

4-23

OSDFLD — OSD Field Control Register E5H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – x 0 0 1 1 0

Read/Write – – R R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–,6 Not used for the S3C880A/F880A

.5 Field Data (Read Only)

0 Even field

1 Odd field

.4 H-sync Detect Position Select Bit

0 Detect H-sync before V-sync

1 Detect H-sync after V-sync

.3–.0 Even Field Range

0 0 0 0 Not used

0 0 0 1 fCPU/16 × 1

0 0 1 0 fCPU /16 × 2

0 0 1 1 fCPU /16 × 3

0 1 0 0 fCPU /16 × 4

0 1 0 1 fCPU /16 × 5

0 1 1 0 fCPU /16 × 6 (Reset value)

0 1 1 1 fCPU /16 × 7

1 0 0 0 fCPU /16 × 8

1 0 0 1 fCPU /16 × 9

1 0 1 0 fCPU /16 × 10

1 0 1 1 fCPU /16 × 11

1 1 0 0 fCPU /16 × 12

1 1 0 1 fCPU /16 × 13

1 1 1 0 fCPU /16 × 14

1 1 1 1 fCPU /16 × 15

CONTROL REGISTERS S3C880A/F880A

4-24

OSDFRG1 — OSD Fringe/Border Control Register 1 E0H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.0 Fringe/Border Function Enable Bit

0 Disable Fringe/Border function at row n (n = 0–7)

1 Enable Fringe/Border function at row n (n = 0–7)

NOTE: Row n is respectively correspond with bit n (n = 0–7).

S3C880A/F880A CONTROL REGISTERS

4-25

OSDFRG2 — OSD Fringe/Border Control Register 2 E1H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Fringe or Border Selection Bit

0 Border function select

1 Fringe function select

.6–.4 Fringe/Border Color Selection Bits (.6: Red, .5: Green, .4: Blue)

.6 .5 .4 OSDCOL.0 = 0 OSDCOL.0 = 1

0 0 0 Black Color mode 0

0 0 1 Blue Color mode 1

0 1 0 Green Color mode 2

0 1 1 Cyan Color mode 3

1 0 0 Red Color mode 4

1 0 1 Magenta Color mode 5

1 1 0 Yellow Color mode 6

1 1 1 White Color mode 7

.3–.0 Fringe/Border Function Enable Bits

0 Disable Fringe/Border function at row n (n = 8–11)

1 Enable Fringe/Border function at row n (n = 8–11)

NOTE: Row 8, row 9, row 10, row 11 are correspond with bit 0, bit 1, bit 2, bit3, respectively.

CONTROL REGISTERS S3C880A/F880A

4-26

OSDPLTB1 — OSD Palette Color Mode Register B1 EAH Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 1 1 0 0 1 1 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.6 OSD Mode 3 Blue Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.5–.4 OSD Mode 2 Blue Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.3–.2 OSD Mode 1 Blue Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.1–.0 OSD Mode 1 Blue Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

S3C880A/F880A CONTROL REGISTERS

4-27

OSDPLTB2 — OSD Palette Color Mode Register B2 EBH Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 1 1 0 0 1 1 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.6 OSD Mode 7 Blue Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.5–.4 OSD Mode 6 Blue Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.3–.2 OSD Mode 5 Blue Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.1–.0 OSD Mode 4 Blue Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

CONTROL REGISTERS S3C880A/F880A

4-28

OSDPLTG1 — OSD Palette Color Mode Register G1 E8H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 1 1 1 1 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.6 OSD Mode 3 Green Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.5–.4 OSD Mode 2 Green Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.3–.2 OSD Mode 1 Green Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.1–.0 OSD Mode 1 Green Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

S3C880A/F880A CONTROL REGISTERS

4-29

OSDPLTG2 — OSD Palette Color Mode Register G2 E9H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 1 1 1 1 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.6 OSD Mode 7 Green Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.5–.4 OSD Mode 6 Green Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.3–.2 OSD Mode 5 Green Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.1–.0 OSD Mode 4 Green Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

CONTROL REGISTERS S3C880A/F880A

4-30

OSDPLTR1 — OSD Palette Color Mode Register R1 E6H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.6 OSD Mode 3 Red Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.5–.4 OSD Mode 2 Red Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.3–.2 OSD Mode 1 Red Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.1–.0 OSD Mode 1 Red Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

S3C880A/F880A CONTROL REGISTERS

4-31

OSDPLTR2 — OSD Palette Color Mode Register R2 E7H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 1 1 1 1 1 1 1 1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.6 OSD Mode 7 Red Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.5–.4 OSD Mode 6 Red Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.3–.2 OSD Mode 5 Red Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

.1–.0 OSD Mode 4 Red Level

0 0 Disable

0 1 33 %

1 0 66 %

1 1 100 %

CONTROL REGISTERS S3C880A/F880A

4-32

OSDSMH1 — OSD Smooth Control Register 1 E2H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Row 7 Smooth Function Enable Bit

0 Disable smooth function at Row 7

1 Enable smooth function at Row 7

.6 Row 6 Smooth Function Enable Bit

0 Disable smooth function at Row 6

1 Enable smooth function at Row 6

.5 Row 5 Smooth Function Enable Bit

0 Disable smooth function at Row 5

1 Enable smooth function at Row 5

.4 Row 4 Smooth Function Enable Bit

0 Disable smooth function at Row 4

1 Enable smooth function at Row 4

.3 Row 3 Smooth Function Enable Bit

0 Disable smooth function at Row 3

1 Enable smooth function at Row 3

.2 Row 2 Smooth Function Enable Bit

0 Disable smooth function at Row 2

1 Enable smooth function at Row 2

.1 Row 1 Smooth Function Enable Bit

0 Disable smooth function at Row 1

1 Enable smooth function at Row 1

.0 Row 0 Smooth Function Enable Bit

0 Disable smooth function at Row 0

1 Enable smooth function at Row 0

S3C880A/F880A CONTROL REGISTERS

4-33

OSDSMH2 — OSD Smooth Control Register 2 E3H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – 0 0 0 0

Read/Write – – – – R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–,4 Not used for the S3C880A/F880A

.3 Row 11 Smooth Function Enable Bit

0 Disable smooth function at Row 11

1 Enable smooth function at Row 11

.2 Row 10 Smooth Function Enable Bit

0 Disable smooth function at Row 10

1 Enable smooth function at Row 10

.1 Row 9 Smooth Function Enable Bit

0 Disable smooth function at Row 9

1 Enable smooth function at Row 9

.0 Row 8 Smooth Function Enable Bit

0 Disable smooth function at Row 8

1 Enable smooth function at Row 8

CONTROL REGISTERS S3C880A/F880A

4-34

P0CONH — Port 0 Control Register (High Byte) E4H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 1 1 1 1 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 and .6 Port 0.7 Configuration Bits

0 0 Input mode

0 1 ADC Input mode

1 0 Open-drain output mode

1 1 Open-drain output mode

.5 and .4 Port 0.6 Configuration Bits

0 0 Input mode

0 1 ADC Input mode

1 0 Open-drain output mode

1 1 Open-drain output mode

.3 and .2 Port 0.5 Configuration Bits

0 0 Input mode

0 1 Input mode

1 0 Push-pull output mode

1 1 Push-pull output mode

.1 and .0 Port 0.4 Configuration Bits

0 0 Input mode

0 1 Input mode

1 0 Push-pull output mode

1 1 Push-pull output mode

S3C880A/F880A CONTROL REGISTERS

4-35

P0CONL — Port 0 Control Register (Low Byte) E5H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 and .6 Port 0.3 Configuration Bits

0 0 Input mode

0 1 Input mode

1 0 N-channel open-drain output mode (5 V load)

1 1 Push-pull output mode

.5 and .4 Port 0.2 Configuration Bits

0 0 Input mode

0 1 Input mode

1 0 N-channel open-drain output mode (5 V load)

1 1 Push-pull output mode

.3 and .2 Port 0.1 Configuration Bits

0 0 Input mode

0 1 Input mode

1 0 N-channel open-drain output mode (5 V load)

1 1 Push-pull output mode

.1 and .0 Port 0.0 Configuration Bits

0 0 Input mode

0 1 Input mode

1 0 N-channel open-drain output mode (5 V load)

1 1 Push-pull output mode

CONTROL REGISTERS S3C880A/F880A

4-36

P1CONH — Port 1 Control Register (High Byte) E6H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 1 1 1 1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 and .6 Port 1.7/T0CK Configuration Bits

0 0 Input mode

0 1 Timer 0 clock Input mode

1 0 Push-pull output mode

1 1 Push-pull output mode

.5 and .4 Port 1.6 Configuration Bits

0 0 Input mode

0 1 Input mode

1 0 Push-pull output mode

1 1 Push-pull output mode

.3 and .2 Port 1.5 Configuration Bits

0 0 Input mode

0 1 Input mode

1 0 N-channel open-drain mode (6-volt load capacity)

1 1 N-channel open-drain mode (6-volt load capacity)

.1 and .0 Port 1.4 Configuration Bits

0 0 Input mode

0 1 Input mode

1 0 N-channel open-drain mode (6-volt load capacity)

1 1 N-channel open-drain mode (6-volt load capacity)

S3C880A/F880A CONTROL REGISTERS

4-37

P1CONL — Port 1 Control Register (Low Byte) E7H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 1 1 1 1 1 1 1 1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 and .6 Port 1.3/INT3 Configuration Bits

0 0 Input mode; interrupt disabled

0 1 Input mode; interrupt on rising edge

1 0 Input mode; interrupt on falling edge

1 1 N-channel open-drain output mode (6-volt load capacity)

.5 and .4 Port 1.2/INT2 Configuration Bits

0 0 Input mode; interrupt disabled

0 1 Input mode; interrupt on rising edge

1 0 Input mode; interrupt on falling edge

1 1 N-channel open-drain output mode (6-volt load capacity)

.3 and .2 Port 1.1/INT1 Configuration Bits

0 0 Input mode; interrupt disabled

0 1 Input mode; interrupt on rising edge

1 0 Input mode; interrupt on falling edge

1 1 N-channel open-drain output mode (6-volt load capacity)

.1 and .0 Port 1.0/INT0 Configuration Bits

0 0 Input mode; interrupt disabled

0 1 Input mode; interrupt on rising edge

1 0 Input mode; interrupt on falling edge

1 1 N-channel open-drain output mode (6-volt load capacity)

CONTROL REGISTERS S3C880A/F880A

4-38

P2CONH — Port 2 Control Register (High Byte) E8H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 and .6 Port 2.7/OSDHT Configuration Bits

0 0 Input mode

0 1 N-channel open-drain output mode (5-volt load capacity)

1 0 Push-pull output mode

1 1 OSD half-tone output mode (push-pull circuit type)

.5 and .4 Port 2.6/T0 Configuration Bits

0 0 Input mode

0 1 N-channel open-drain output mode (5-volt load capacity)

1 0 Push-pull output mode

1 1 Timer 0 output mode (interval or PWM; N-channel open-drain type)

.3 and .2 Port 2.5/PWM0 Configuration Bits

0 0 Input mode

0 1 N-channel open-drain output mode (5-volt load capacity)

1 0 Push-pull output mode

1 1 PWM0 output mode (push-pull circuit type)

.1 and .0 Port 2.4/PWM4 Configuration Bits

0 0 Input mode

0 1 N-channel open-drain output mode (5-volt load capacity)

1 0 Push-pull output mode

1 1 PWM4 output mode (N-channel open-drain type)

S3C880A/F880A CONTROL REGISTERS

4-39

P2CONL — Port 2 Control Register (Low Byte) E9H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 and .6 Port 2.3/PWM3 Configuration Bits

0 0 Normal input mode

0 1 Normal input mode

1 0 PWM3 output mode; N-channel, open-drain output mode
With 5-volt load capacity

1 1 Push-pull output mode

.5 and .4 Port 2.2/PWM2 Configuration Bits

0 0 Normal input mode

0 1 Normal input mode

1 0 PWM2 output mode; N-channel, open-drain output mode
With 5-volt load capacity

1 1 Push-pull output mode

.3 and .2 Port 2.1/PWM1 Configuration Bits

0 0 Normal input mode

0 1 Normal input mode

1 0 PWM1 output mode; N-channel, open-drain output mode
With 5-volt load capacity

1 1 Push-pull output mode

.1 and .0 Port 2.0/PWM5 Configuration Bits

0 0 Normal input mode

0 1 Normal input mode

1 0 PWM5 output mode; N-channel, open-drain output mode
With 5-volt load capacity

1 1 Push-pull output mode

CONTROL REGISTERS S3C880A/F880A

4-40

P3CONL — Port 3 Control Register (Low Byte) EBH Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – – 1 1 1 1

Read/Write – – – – R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 – .4 No effect

.3 and .2 Port 3.1/ADC1 Configuration Bits

0 0 Input mode

0 1 ADC input mode

1 0 Input mode

1 1 N-channel, open-drain output mode with 5-volt load capacity

.1 and .0 Port 3.0/ADC0 Configuration Bits

0 0 Input mode

0 1 ADC input mode

1 0 Input mode

1 1 N-channel, open-drain output mode with 5-volt load capacity

S3C880A/F880A CONTROL REGISTERS

4-41

PP — Register Page Pointer DFH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.4 Destination Register Page Selection Bits

0 0 0 0 Destination: page 0

0 0 0 1 Destination: page 1

0 0 1 0 Destination: page 2

0 0 1 1 Not used for the S3C880A/F880A

• • • "

1 1 1 1 Not used for the S3C880A/F880A

.3–.0 Source Register Page Selection Bits

0 0 0 0 Source: page 0

0 0 0 1 Source: page 1

0 0 1 0 Source: page 2

0 0 1 1 Not used for the S3C880A/F880A

• • • "

1 1 1 1 Not used for the S3C880A/F880A

CONTROL REGISTERS S3C880A/F880A

4-42

PWMCON — PWM Control Register F8H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 – 0 0

Read/Write R/W R/W R/W R/W R/W – R/W R/W

Addressing Mode Register addressing mode only

.4, .7, and .6 3-Bit Prescaler Value for PWM Counter Input Clock

0 0 0 Non-divided input clock

0 0 1 Divided-by-two input clock

0 1 0 Divided-by-three input clock

0 1 1 Divided-by-four input clock

1 0 0 Divided-by-five input clock

1 0 1 Divided-by-six input clock

1 1 0 Divided-by-seven input clock

1 1 1 Divided-by-eight input clock

.5 PWM Counter Enable Bit

0 Stop PWM counter operation

1 Start (or resume) PWM counter operation

.3 Capture A Interrupt Enable Bit

0 Disable capture A interrupt

1 Enable capture A interrupt

.2 Not used for the S3C880A/F880A

.1 and .0 Capture A Module Control Bits

0 0 Disable capture A module

0 1 Capture on falling edges only

1 0 Capture on rising edges only

1 1 Capture on both rising and falling edges

S3C880A/F880A CONTROL REGISTERS

4-43

ROWCON — OSD Row Position Control Register F2H Set 1, Bank 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.3 Top Margin Display Position Control Value (4 x TMG value of 0–31 dots)

0 0 0 0 0 Top margin position = 0H

0 0 0 0 1 Top margin position = 4H

• • • • • •

1 1 1 1 1 Top margin position = 124H

.2–.0 Inter-Row Spacing Control Value (0–7H)

0 0 0 No inter-row spacing

0 0 1 Inter-row spacing = 1H

• • • • • •

1 1 1 Inter-row spacing = 7H

NOTE: To set top margin and inter-row spacing, separate decimal values must be calculated, converted to their binary
equivalents, and then written to the ROWCON register.

CONTROL REGISTERS S3C880A/F880A

4-44

RP0 — Register Pointer 0 D6H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 1 1 0 0 0 – – –

Read/Write R/W R/W R/W R/W R/W – – –

Addressing Mode Register addressing mode only

.7–.3 Register Pointer 0 Address Value

Register pointer 0 can independently point to one of the twenty four 8-byte working
register areas in the register file. Using the register pointers RP0 and RP1, you can
select two 8-byte register slices at one time as active working register space. After a
reset, RP0 points to the address C0H in the register set 1, selecting the 8-byte
working register slice C0H–C7H.

.2–.0 Not used for the S3C880A/F880A

RP1 — Register Pointer 1 D7H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 1 1 0 0 1 – – –

Read/Write R/W R/W R/W R/W R/W – – –

Addressing Mode Register addressing mode only

.7–.3 Register Pointer 1 Address Value

Register pointer 1 can independently point to one of the twenty four 8-byte working
register areas in the register file. Using the register pointers RP0 and RP1, you can
select two 8-byte register slices at one time as active working register space. After a
reset, RP1 points to the address C8H in the register set 1, selecting the 8-byte
working register slice C8H–CFH.

.2–.0 Not used for the S3C880A/F880A

S3C880A/F880A CONTROL REGISTERS

4-45

SPH — Stack Pointer (High Byte) D8H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value x x x x x x x x

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.0 Stack Pointer Address (High Byte)

The high-byte stack pointer value is the upper 8 bits of the 16-bit stack pointer
address (SP15–SP8). The lower byte of the stack pointer value is located in the
register SPL (D9H). The SP value is undefined after a reset.

SPL — Stack Pointer (Low Byte) D9H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value x x x x x x x x

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.0 Stack Pointer Address (Low Byte)

The low-byte stack pointer value is the lower 8 bits of the 16-bit stack pointer
address (SP7–SP0). The upper byte of the stack pointer value is located in the
register SPH (D8H). The SP value is undefined after a reset.

CONTROL REGISTERS S3C880A/F880A

4-46

STCON — Stop Control Register F3H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7–.0 Stop Condition Enable Bits

Other set value Stop Condition Disable (Stop instruction is not available)

10100101 Stop Condition Enable (Stop instruction is available)

NOTE: When the Stop control register, STCON, is set by '10100101B', Stop instruction is available.
The other value except '10100101B' make Stop instruction not available. When Stop condition is disabled,
using "stop" instruction make state reset. Once Stop instruction is executed in state of STOP instruction available,
the state is changed to Stop instruction not available.

S3C880A/F880A CONTROL REGISTERS

4-47

SYM — System Mode Register DEH Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 – – x x x 0 0

Read/Write R/W – – R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 Tri-State External Interface Control Bit (1)

0 Normal operation (disable tri-state operation)

1 Set external interface lines to high impedance (enable tri-state operation)

.6–.5 Not used for the S3C880A/F880A

.4–.2 Fast Interrupt Level Selection Bits

0 0 0 Level 0 (IRQ0)

0 0 1 Level 1 (IRQ1)

0 1 0 Level 2 (IRQ2)

0 1 1 Level 3 (IRQ3)

1 0 0 Level 4 (IRQ4)

1 0 1 Not used for S3C880A/F880A

1 1 0 Level 6 (IRQ6)

1 1 1 Level 7 (IRQ7)

.1 Fast Interrupt Enable Bit

0 Disable fast interrupt processing

1 Enable fast interrupt processing

.0 Global Interrupt Enable Bit (2)

0 Disable global interrupt processing

1 Enable global interrupt processing

NOTES:
1. Because the S3C880A/F880A microcontrollers do not have an external interface, bit 7 should always be "0".
2. After a reset, the initialization routine must enable global interrupt processing by executing an EI instruction (and not by

writing a "1" to SYM.0).

CONTROL REGISTERS S3C880A/F880A

4-48

TACON — Timer A Control Register F2H Set 1, Bank 0

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 0 0 –

Read/Write R/W R/W R/W R/W R/W R/W R/W –

Addressing Mode Register addressing mode only

.7–.4 4-Bit Prescaler for Timer A Clock Input

0 0 0 0 Divide input by 1 (non-divided)

0 0 0 1 Divide input by 2

• • • • • •

1 1 1 1 Divide input by 16

.3 Timer A Clock Source Selection Bit

0 CPU clock divided by 1000

1 Non-divided CPU clock

.2 Timer A Interrupt Enable Bit

0 Disable interrupt

1 Enable interrupt

.1 Timer A Interrupt Pending Bit

0 No interrupt pending (when read)

0 Clear pending bit (when write)

1 Interrupt is pending (when read)

1 No effect (when write)

.0 Not used for the S3C880A/F880A

S3C880A/F880A CONTROL REGISTERS

4-49

T0CON — Timer 0 Control Register D2H Set 1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value 0 0 0 0 0 – 0 0

Read/Write R/W R/W R/W R/W R/W – R/W R/W

Addressing Mode Register addressing mode only

.7 and .6 T0 Input Clock Selection Bits

0 0 fOSC/4096

0 1 fOSC/256

1 0 fOSC/8

1 1 External clock (T0CLK)

.5 and .4 T0 Operating Mode Selection Bits

0 0 Interval mode

0 1 PWM mode

1 0 PWM mode

1 1 PWM mode

.3 T0 Counter Clear Bit

0 No effect

1 Clear the T0 counter (when write)

.2 No effect

.1 T0 Interrupt Enable Bit

0 Disable T0 interrupt

1 Enable T0 interrupt

.0 T0 Interrupt Pending Bit

0 No timer 0 interrupt pending (when read)

0 Clear timer 0 pending bit (when write)

1 Timer 0 interrupt is pending (when read)

1 No effect (when write)

CONTROL REGISTERS S3C880A/F880A

4-50

VSBCON — V-SYNC Blank Control Register F7H Set 1, Bank1

Bit Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESETRESET Value – – – 0 1 0 0 1

Read/Write – – – R/W R/W R/W R/W R/W

Addressing Mode Register addressing mode only

.7 and .5 Not used for the S3C880A/F880A

.4–.0 V-SYNC Blank Time Control Bits:

0 0 0 0 0 9 Horizontal Sync

• • • ′′

0 1 0 0 1 9 Horizontal Sync

0 1 0 1 0 10 Horizontal Sync

0 1 0 1 1 11 Horizontal Sync

• • • • • •

1 1 1 1 1 31 Horizontal Sync

S3C880A/F880A INTERRUPT STRUCTURE

5-1

5 INTERRUPT STRUCTURE

OVERVIEW

The SAM87 interrupt structure has three basic components: levels, vectors, and sources. The CPU recognizes 8
interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has more than one
vector address, the vector priorities are established in hardware. Each vector can have one or more interrupt
sources.

Levels

Levels provide the highest-level method of interrupt priority assignment and recognition. All peripherals and I/O
blocks can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are
eight interrupt levels: IRQ0–IRQ7. Each interrupt level directly corresponds to an interrupt request number
(IRQn). The total number of interrupt levels used in the interrupt structure varies from device to device. For the
S3C880A/F880A microcontrollers, seven levels are recognized: IRQ0–IRQ4, IRQ6, and IRQ7.

The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are
simply identifiers for the interrupt levels that are recognized by the CPU (IRQ0–IRQ7). The relative priority of
different interrupt levels is determined by settings in the interrupt priority register, IPR. Interrupt logic controlled
by the IPR settings lets you define additional priority relationship for specific interrupt levels.

Vectors

Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all.
The maximum number of vectors that can be supported for a given level is 128. (The actual number of vectors
used for the S3C8-series microcontrollers is always much smaller.) If an interrupt level has more than one vector
address, the vector priorities are set in hardware. The S3C880A/F880A have 9 vectors, one corresponding to
each of the 9 possible sources.

Sources

A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow, for
example. Each vector can have several interrupt sources. In the S3C880A/F880A interrupt structure, each
source has its own vector address. When a service routine starts, the respective pending bit is either cleared
automatically by hardware or "manually" by the program software. The characteristics of the source's pending
mechanism determine which method is used to clear its pending bit.

INTERRUPT TYPES

The three components of the SAM87 interrupt structure described above — levels, vectors, and sources — are
combined to determine the interrupt structure of an individual device and to make full use of its available
interrupt logic. There are three possible combinations of interrupt structure components, called interrupt types 1,
2, and 3. The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):

Type 1: One level (IRQn) + one vector (V1) + one source (S1)

Type 2: One level (IRQn) + one vector (V1) + multiple sources (S1 – Sn)

Type 3: One level (IRQn) + multiple vectors (V1 – Vn) + multiple sources (S1 – Sn , Sn+1 – Sn+m)

In the S3C880A/F880A interrupt structure, only interrupt types 1 and 3 are implemented.

INTERRUPT STRUCTURE S3C880A/F880A

5-2

VECTORS SOURCESLEVELS

S1

V1 S2Type 2: IRQn

S3

Sn

V1 S1

V2 S2Type 3: IRQn

V3 S3

V1 S1Type 1: IRQn

Vn

Sn + 1

Sn

Sn + 2

Sn + m

NOTES:
1. The number of Sn and Vn value is expandable.
2. In the S3F880A implementation,
 only interrupt types 1 and 3 are used.

Figure 5-1. S3C8-Series Interrupt Types

S3C880A/F880A INTERRUPT STRUCTURE

The S3C880A/F880A microcontrollers have 9 standard interrupt sources. Nine different vector addresses are
used to support these interrupt sources. Seven of the eight available levels are used for the interrupt structure:
IRQ0–IRQ4, IRQ6, and IRQ7. The device-specific interrupt structure is shown in Figure 5-2.

When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt
with the lowest vector address is usually processed first. (The relative priorities of multiple interrupts within a
single level are hardwired.)

When an interrupt request is granted, interrupt processing starts: subsequent interrupts are disabled and the
program counter value and status flags are pushed to stack. The starting address of the service routine is fetched
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the
service routine is executed.

S3C880A/F880A INTERRUPT STRUCTURE

5-3

0

NOTES:
1. The interrupt level IRQ5 is not used in the S3F880A interrupt structure.
2. For interrupt levels with two or more vectors, the lowest vector address usually has the highest
 priority. For example, C0H has higher priority (0) than C2H (1) within the level IRQ1.
 These priorities (see numbers) are hardwired.
3. The interrupt names in the 'Identifier' column are used in this documentation to refer to specific
 interrupts, as distinguished from the interrupt source name or the pin at which an external
 interrupt request arrives.

VECTORS SOURCESLEVELS

C0H P1.0 external interrupt
IRQ1

C2H P1.1 external interrupt

RESET

H/W

H/W

OSD ROW interruptIRQ2 C4H

02H Capture A (8-bit)IRQ3 H/W

Timer 0 interrupt (match)IRQ0 FCH

C6H P1.2 external interrupt
IRQ4

C8H P1.3 external interrupt

H/W

H/W

Timer AIRQ6 BEH

D4H V-syncIRQ7 S/W

IDENTIFIER

T0INT

P10INT

CAPA

P12INT

P13INT

VSYNC

P11INT

ROWINT

TAINT

S/W

S/W

S/W

1

0

1

Figure 5-2. S3C880A/F880A Interrupt Structure

INTERRUPT STRUCTURE S3C880A/F880A

5-4

INTERRUPT VECTOR ADDRESSES

Interrupt vector addresses for the S3C880A/F880A are stored in the first 256 bytes of the ROM. The reset
address is 0100H. Vectors for all interrupt levels are stored in the vector address area (0H–FFH). Unused ROM
in the range 00H–FFH can be used as program memory locations. You must be careful, however, not to
overwrite interrupt vector addresses stored in this area.

45,151

0

(Decimal)

256
255

Interrupt Vector
Address Area

Addressable
Program Memory

(ROM) Area

100H
FFH

BFFFH
(for S3F880A)

(HEX)

RESET Address

Figure 5-3. ROM Vector Address Area

S3C880A/F880A INTERRUPT STRUCTURE

5-5

Table 5-1. S3C880A/F880A Interrupt Vectors

Vector Address Interrupt Source Request Reset/Clear

Decimal
Value

Hex
Value

Interrupt
Level

Priority in
Level

H/W S/W

252 FCH Timer 0 (match) IRQ0 – √

212 D4H V-sync IRQ7 – √

200 C8H P1.3 external interrupt IRQ4 1 √

198 C6H P1.2 external interrupt 0 √

196 C4H OSD ROW interrupt IRQ2 – √

194 C2H P1.1 external interrupt IRQ1 1 √

192 C0H P1.0 external interrupt 0 √

190 BEH Timer A IRQ6 – √

2 02H Capture A (8-bit) IRQ3 – √

NOTES:
1. Interrupt priorities are identified in inverse order: '0' is the highest priority, '1' is the next highest, and so on.
2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority

over one with a higher vector address. (The priorities within a level are hardwired) For example, in the interrupt level
IRQ1, the higher-priority interrupt vector is the P1.0 external interrupt, vector C0H; the lower-priority interrupt within that
level is the P1.1 external interrupt, vector C2H.

INTERRUPT STRUCTURE S3C880A/F880A

5-6

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)

The Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are serviced as they
occur, and according to established priorities. The system initialization routine that is executed following a reset
must always contain an EI instruction (assuming one or more interrupts are used in the application).

During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable
interrupt processing. The EI and DI instructions change the value of bit 0 in the SYM register. Although you can
manipulate SYM.0 directly to enable or disable interrupts, we recommend that you use the EI and DI instructions
instead.

SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS

In addition to the control registers for specific interrupt sources, four system-level control registers control
interrupt processing:

— Each interrupt level is enabled or disabled (masked) by bit settings in the interrupt mask register (IMR).

— Relative priorities of interrupt levels are controlled by the interrupt priority register (IPR).

— The interrupt request register (IRQ) contains interrupt pending flags for each level.

— The system mode register (SYM) dynamically enables or disables global interrupt processing. SYM settings
also enable fast interrupts and control external interface, if implemented.

Table 5-2. Interrupt Control Register Overview

Control Register ID R/W Function Description

System mode register SYM R/W Global interrupt processing enable and disable, fast interrupt
processing.

Interrupt mask register IMR R/W Bit settings in the IMR register enable and disable interrupt
processing for each of the seven recognized interrupt levels,
IRQ0–IRQ4, IRQ6, and IRQ7.

Interrupt priority register IPR R/W Controls the relative processing priorities of the interrupt
levels. For the S3C880A/F880A, the seven levels are
organized into three groups: A, B, and C. Group A includes
IRQ0 and IRQ1, group B is IRQ2, IRQ3, and IRQ4, and group
C is IRQ6 and IRQ7.

Interrupt request register IRQ R This register contains a request pending bit for each interrupt
level.

S3C880A/F880A INTERRUPT STRUCTURE

5-7

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can therefore be controlled in two ways: either globally, or by specific interrupt level and
source. The system-level control points in the interrupt structure are therefore:

— Global interrupt enable and disable (by EI and DI instructions or by direct manipulation of SYM.0)

— Interrupt level enable and disable settings (IMR register)

— Interrupt level priority settings (IPR register)

— Interrupt source enable and disable settings in the corresponding peripheral control register(s)

NOTE

When writing an interrupt service routine, be sure that it properly manages the register pointer values
(RP0 and RP1).

Interrupt Mask
Register

Interrupt Priority
Register

Global Interrupt Control (EI,
DI or SYM.0 manipulation)

Vector
Interrupt
Cycle

Source
Interrupt

Source
Interrupts

Enable

Interrupt Request Register
(Read-only)

S

R

Q

RESET

"EI" Instruction
Execution Interrupt Pending

Register Polling Cycle

NOTE: In the S3F880A microcontrollers, only seven
interrupt levels (IRQ0-IRQ4, IRQ6, and IRQ7) are
recognized by the CPU.

Figure 5-4. Interrupt Function Diagram

INTERRUPT STRUCTURE S3C880A/F880A

5-8

PERIPHERAL INTERRUPT CONTROL REGISTERS

For each interrupt source there is a corresponding peripheral control register (or registers) that controls the
interrupts generated by the peripheral. These registers and their locations are listed in Table 5-3.

Table 5-3. Interrupt Source Control Registers

Interrupt Source Interrupt Level Control Register Register Location

Timer 0 (match) IRQ0 T0CON Set 1, D2H

P1.0 external interrupt IRQ1 P1CONL Set 1, bank 0, E7H

P1.1 external interrupt

OSD ROW interrupt IRQ2 HTCON Set 1, bank 1, E6H

Capture A (8-bit) IRQ3 PWMCON Set 1, bank 0, F8H

P1.2 external interrupt IRQ4 P1CONL Set 1, bank 0, E7H

P1.3 external interrupt

Timer A IRQ6 TACON Set 1, bank 0, F2H

V-sync IRQ7 HTCON Set 1, bank 1, F6H

S3C880A/F880A INTERRUPT STRUCTURE

5-9

SYSTEM MODE REGISTER (SYM)

The system mode register, SYM (DEH, set 1), is used to enable and disable interrupt processing and control fast
interrupt processing.

SYM.0 is the enable and disable bit for global interrupt processing. SYM.1–SYM.4 control fast interrupt
processing: SYM.1 is the enable bit; SYM.2–SYM.4 are the fast interrupt level selection bits. SYM.7 is the enable
bit for the tri-state external memory interface (not implemented in the S3C880A/F880A). A reset clears SYM.0,
SYM.1, and SYM.7 to "0"; other bit values are undetermined.

The instructions EI and DI enable and disable global interrupt processing, respectively, by modifying the bit 0
value of the SYM register. An Enable Interrupt (EI) instruction must be included in the initialization routine, which
follows a reset operation, in order to enable interrupt processing. Although you can manipulate SYM.0 directly to
enable and disable interrupts during the normal operation, we recommend using the EI and DI instructions for
this purpose.

System Mode Register (SYM)
DFH, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Fast interrupt level
selection bits:

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

IRQ0
IRQ1
IRQ2
IRQ3
IRQ4
Not used
IRQ6
IRQ7

Global interrupt enable bit:
0 = Disable all interrupts
1 = Enable all interrupts

Fast interrupt enable bit:
0 = Disable fast interrupts
1 = Enable fast interrupts

Not usedExternal interface tri-state
enable bit:
0 = Normal operation
 (Tri-state disabled)
1 = High inpendence
 (Tri-state disabled)

NOTE: The external interface is
not implemented for
the S3F880A microcontroller.

Figure 5-5. System Mode Register (SYM)

INTERRUPT STRUCTURE S3C880A/F880A

5-10

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register (IMR) is used to enable or disable interrupt processing for each of the seven interrupt
levels used in the S3C880A/F880A interrupt structure, IRQ0–IRQ4, IRQ6, and IRQ7. After a reset, all the IMR
register values are undetermined.

Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit
of an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a
level's IMR bit to "1", interrupt processing for the level is enabled (not masked).

The IMR register is mapped to the register location DDH in set 1. Bit values can be read and written by
instructions using Register addressing mode.

Interrupt Mask Register (IMR)
DDH, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

IRQ1

IRQ3
IRQ4

Not
usedIRQ6

IRQ7

IRQ0

Interrupt level enable bits:
0 = Disable interrupt level
1 = Enable interrupt level

IRQ2

Figure 5-6. Interrupt Mask Register (IMR)

S3C880A/F880A INTERRUPT STRUCTURE

5-11

INTERRUPT PRIORITY REGISTER (IPR)

The interrupt priority register, IPR, is used to set the relative priorities of the seven interrupt levels used in the
S3C880A/F880A interrupt structure. The IPR register is mapped to the register location FFH in set 1, bank 0.
After a reset, the IPR register values are undetermined. If more than one interrupt source is active, the source
with the highest priority level is serviced first. If both sources belong to the same interrupt level, the source with
the lowest vector address usually has priority. (This priority is hardwired.)

In order to define the relative priorities of interrupt levels, they are organized into groups and subgroups by the
interrupt logic. Three interrupt groups are defined for the IPR logic (see Figure 5-7). These groups and subgroups
are used only for IPR register priority definitions:

Group A IRQ0, IRQ1

Group B IRQ2, IRQ3, and IRQ4

Group C IRQ6, IRQ7

Bits 7, 4, and 1 of the IPR register control the relative priority of interrupt groups A, B, and C. For example, the
setting '001B' would select the group relationship B > C > A, and '101B' would select C > B > A. The functions of
other IPR bit settings are as follows:

— IPR.0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.

— IPR.2 controls interrupt group B.

— Interrupt group B has a subgroup to provide an additional priority relationship among interrupt levels 2, 3,
and 4. IPR.3 defines possible subgroup B relationship.

— IPR.6 controls the relative priorities of group C interrupts.

Interrupt Priority Register (IPR)
FEH, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Group A
0 = IRQ0 > IRQ1
1 = IRQ1 > IRQ0

Subgroup B
0 = IRQ3 > IRQ4
1 = IRQ4 > IRQ3

Not used

Group C
0 = IRQ6 > IRQ7
1 = IRQ7 > IRQ6

Group B
0 = IRQ2 > (IRQ3, IRQ4)
1 = (IRQ3, IRQ4) > IRQ2

Group priority:

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

= Undefined
= B > C > A
= A > B > C
= B > A > C
= C > A > B
= C > B > A
= A > C > B
= Undefined

D7 D4 D1

Figure 5-7. Interrupt Priority Register (IPR)

INTERRUPT STRUCTURE S3C880A/F880A

5-12

INTERRUPT REQUEST REGISTER (IRQ)

Bit values in the interrupt request register, IRQ, are polled to determine interrupt request status for the seven
interrupt levels in the S3C880A/F880A interrupt structure (IRQ0–IRQ4, IRQ6, and IRQ7). Each bit corresponds
to the interrupt level of the same number: bit 0 to IRQ0, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt
is requested and a "1" indicates that an interrupt is requested for that level.

The IRQ register is mapped to the register location DCH in set 1. IRQ bit values are read-only addressable using
Register addressing mode. You can read (test) the contents of the IRQ register at any time using bit or byte
addressing to determine the current interrupt request status of specific interrupt levels. After a reset, the IRQ
register is cleared to 00H.

IRQ register values can be polled even if a DI instruction has been executed. If an interrupt occurs while the
interrupt structure is disabled, it will not be serviced. But the interrupt request can still be detected by polling IRQ
values. This can be useful in order to determine which events occurred while the interrupt structure was disabled.

Interrupt Request Register (IRQ)
DCH, Set 1, Read-only

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

IRQ1
IRQ2

IRQ3
IRQ4

Not used for the S3F880A.
IRQ6

IRQ7

IRQ0

Interrupt level request pending bits:
0 = Interrupt level is not pending
1 = Interrupt level is pending

Figure 5-8. Interrupt Request Register (IRQ)

S3C880A/F880A INTERRUPT STRUCTURE

5-13

INTERRUPT PENDING FUNCTION TYPES

Overview

There are two types of interrupt pending bits: one is the type that automatically cleared by hardware after the
interrupt service routine is acknowledged and executed; the other is the one that must be cleared by the
application program's interrupt service routine.

Each interrupt level has a corresponding interrupt request bit in the IRQ register that the CPU polls for interrupt
requests.

Pending Bits Cleared Automatically by Hardware

For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding
pending bit to "1" when a request occurs. It then issues an IRQ pulse to tell the CPU that an interrupt is waiting to
be serviced. The CPU acknowledges the interrupt source, executes the service routine, and clears the pending
bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written by software.

In the S3C880A/F880A interrupt structure, the P1.0, P1.1, P1.2 and P1.3 external interrupts, and the capture A
interrupt belong to this category of interrupts whose pending conditions are cleared automatically by hardware.

Pending Bits Cleared by the Service Routine

The second type of pending bit must be cleared by program software. The service routine must clear the
appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be written
to the pending bit location in the corresponding mode or control register.

Pending conditions for the timer 0 match interrupt, the timer A interrupt, the OSD row interrupt and the V-sync
interrupt must be cleared by the application's service routines.

INTERRUPT STRUCTURE S3C880A/F880A

5-14

INTERRUPT SOURCE POLLING SEQUENCE

The interrupt request polling and servicing sequence is as follows:

1. A source generates an interrupt request by setting the interrupt request bit to "1".

2. The CPU polling procedure identifies a pending condition for that source.

3. The CPU checks the source's interrupt level.

4. The CPU generates an interrupt acknowledge signal.

5. Interrupt logic determines the interrupt's vector address.

6. The service routine starts and the source's pending flag is cleared to "0" (either by hardware or by software).

7. The CPU continues polling for interrupt requests.

INTERRUPT SERVICE ROUTINES

Before an interrupt request is serviced, the following conditions must be met:

— Interrupt processing must be enabled (EI, SYM.0 = "1")

— Interrupt level must be enabled (IMR register)

— Interrupt level must have the highest priority if more than one level is currently requesting service

— Interrupt must be enabled at the interrupt's source (peripheral control register)

If all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The
CPU then initiates an interrupt machine cycle that completes the following processing sequence:

1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.

2. Save the program counter and status flags to stack.

3. Branch to the interrupt vector to fetch the service routine's address.

4. Pass control to the interrupt service routine.

When the interrupt service routine is completed, an Interrupt Return instruction (IRET) occurs. The IRET restores
the PC and status flags and sets SYM.0 to "1", allowing the CPU to process the next interrupt request.

S3C880A/F880A INTERRUPT STRUCTURE

5-15

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM contains the addresses of the interrupt service routine that corresponds to
each level in the interrupt structure. Vectored interrupt processing follows this sequence:

1. Push the program counter's low-byte value to stack.

2. Push the program counter's high-byte value to stack.

3. Push the FLAGS register values to stack.

4. Fetch the service routine's high-byte address from the vector address.

5. Fetch the service routine's low-byte address from the vector address.

6. Branch to the service routine specified by the 16-bit vector address.

NOTE

A 16-bit vector address always begins at an even-numbered ROM location from 00H–FFH.

NESTING OF VECTORED INTERRUPTS

You can nest a higher priority interrupt request while a lower priority request is being serviced. To do this, you
must follow these steps:

1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).

2. Load the IMR register with a new mask to enable the higher priority interrupt only.

3. Execute an EI instruction to enable interrupt processing (a higher priority interrupt will be processed if it
occurs).

4. When the lower-priority interrupt service routine ends, return the IMR to its original value by restoring the
previous mask from the stack (POP IMR).

5. Execute an IRET.

Depending on the application, you may be able to simplify this procedure to some extent.

INSTRUCTION POINTER (IP)

The instruction pointer (IP) is used by all the S3C8-series microcontrollers to control optional high-speed interrupt
processing called fast interrupts. The IP consists of the register pair, DAH and DBH. The IP register names are
IPH (high byte, IP15–IP8) and IPL (low byte, IP7–IP0).

INTERRUPT STRUCTURE S3C880A/F880A

5-16

FAST INTERRUPT PROCESSING

The feature called fast interrupt processing lets designated interrupts be completed in approximately six clock
cycles instead of the usual 22 clock cycles. Bit 1 of the system mode register, SYM.1, enables fast interrupt
processing while SYM.2–SYM.4 are used to select a specific level for fast processing.

Two other system registers support fast interrupts:

— The instruction pointer (IP) holds the starting address of the service routine (and is later used to swap the
program counter values), and

— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated
register called FLAGS' (FLAGS prime).

NOTE

For the S3C880A/F880A microcontrollers, the service routine for any one of the seven interrupt levels
(IRQ0–IRQ4, IRQ6, or IRQ7) can be designated as a fast interrupt.

Procedure for Initiating Fast Interrupts

To initiate fast interrupt processing, follow these steps:

1. Load the start address of the service routine into the instruction pointer.

2. Load the level number into the fast interrupt select field.

3. Write a "1" to the fast interrupt enable bit in the SYM register.

Fast Interrupt Service Routine

When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:

1. The contents of the instruction pointer and the PC are swapped.

2. The FLAGS register values are written to the dedicated FLAGS' register.

3. The fast interrupt status bit in the FLAGS register is set.

4. The interrupt is serviced.

5. Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction
pointer and PC values are swapped back.

6. The content of FLAGS' (FLAGS prime) is copied automatically back into the FLAGS register.

7. The fast interrupt status bit in FLAGS is cleared automatically.

Programming Guidelines

Remember that the only way to enable or disable a fast interrupt is to set or clear the fast interrupt enable bit in
the SYM register (SYM.1), respectively. Executing an EI or DI instruction affects only normal interrupt
processing.

Also, if you use fast interrupts, remember to load the IP with a new start address when the fast interrupt service
routine ends. (Please refer to the programming tip on page 5–17 for an example.)

S3C880A/F880A INTERRUPT STRUCTURE

5-17

++ PROGRAMMING TIP — Programming Level IRQ0 as a Fast Interrupt

This example shows you how to program fast interrupt processing for a select interrupt level — in this case, for
the timer 0 (capture) interrupt, INT0:

•
•
•
LD T0CON,#52H

; Enable T0 interrupt
; Select fOSC/256 as T0 clock source

LDW IPH,#T0_INT ; IPH ← high byte of interrupt service routine
; IPL ← low byte of interrupt service routine

LD SYM,#02H ; Enable fast interrupt processing
; Select IRQ0 for fast service

EI ; Enable interrupts
•
•
•

FAST_RET: ; IP ← Address of T0_INT (again)
T0_INT:

•
•
•
(Fast service routine executes)
•
•
•
LD T0CON,#52H ; Clear T0INT interrupt pending bit
JP T,FAST_RET

INTERRUPT STRUCTURE S3C880A/F880A

5-18

NOTES

S3C880A/F880A SAM8 INSTRUCTION SET

6-1

6 SAM8 INSTRUCTION SET

OVERVIEW

The SAM8 instruction set is designed to support a large register file. It includes a full complement of 8-bit
arithmetic and logic operations, including multiplying and dividing. There are 78 instructions. No special I/O
instructions are necessary because I/O control and data registers are mapped directly into the register file.
Decimal adjustment is included in binary-coded decimal (BCD) operations. 16-bit word data can be incremented
and decremented. Flexible instructions for bit addressing, rotate, and shift operations complete the powerful data
manipulation capabilities of the SAM8 instruction set.

DATA TYPES

The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can
be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least
significant (right-most) bit.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range 0–255 or the 4-bit address of a working register is
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory
addresses. For detailed information about register addressing, please refer to Chapter 2, "Address Spaces."

ADDRESSING MODES

There are seven addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA),
Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to chapter 3,
"Addressing Modes."

SAM8 INSTRUCTION SET S3C880A/F880A

6-2

Table 6-1. Instruction Group Summary

Mnemonic Operands Instruction

Load Instructions

CLR dst Clear

LD dst,src Load

LDB dst,src Load bit

LDE dst,src Load external data memory

LDC dst,src Load program memory

LDED dst,src Load external data memory and decrement

LDCD dst,src Load program memory and decrement

LDEI dst,src Load external data memory and increment

LDCI dst,src Load program memory and increment

LDEPD dst,src Load external data memory with pre-decrement

LDCPD dst,src Load program memory with pre-decrement

LDEPI dst,src Load external data memory with pre-increment

LDCPI dst,src Load program memory with pre-increment

LDW dst,src Load word

POP dst Pop from stack

POPUD dst,src Pop user stack (decrementing)

POPUI dst,src Pop user stack (incrementing)

PUSH src Push to stack

PUSHUD dst,src Push user stack (decrementing)

PUSHUI dst,src Push user stack (incrementing)

S3C880A/F880A SAM8 INSTRUCTION SET

6-3

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Arithmetic Instructions

ADC dst,src Add with carry

ADD dst,src Add

CP dst,src Compare

DA dst Decimal adjust

DEC dst Decrement

DECW dst Decrement word

DIV dst,src Divide

INC dst Increment

INCW dst Increment word

MULT dst,src Multiply

SBC dst,src Subtract with carry

SUB dst,src Subtract

Logic Instructions

AND dst,src Logical AND

COM dst Complement

OR dst,src Logical OR

XOR dst,src Logical exclusive OR

SAM8 INSTRUCTION SET S3C880A/F880A

6-4

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Program Control Instructions

BTJRF dst,src Bit test and jump relative on false

BTJRT dst,src Bit test and jump relative on true

CALL dst Call procedure

CPIJE dst,src Compare, increment and jump on equal

CPIJNE dst,src Compare, increment and jump on non-equal

DJNZ r,dst Decrement register and jump on non-zero

ENTER Enter

EXIT Exit

IRET Interrupt return

JP cc,dst Jump on condition code

JP dst Jump unconditional

JR cc,dst Jump relative on condition code

NEXT Next

RET Return

WFI Wait for interrupt

Bit Manipulation Instructions

BAND dst,src Bit AND

BCP dst,src Bit compare

BITC dst Bit complement

BITR dst Bit reset

BITS dst Bit set

BOR dst,src Bit OR

BXOR dst,src Bit XOR

TCM dst,src Test complement under mask

TM dst,src Test under mask

S3C880A/F880A SAM8 INSTRUCTION SET

6-5

Table 6-1. Instruction Group Summary (Concluded)

Mnemonic Operands Instruction

Rotate and Shift Instructions

RL dst Rotate left

RLC dst Rotate left through carry

RR dst Rotate right

RRC dst Rotate right through carry

SRA dst Shift right arithmetic

SWAP dst Swap nibbles

CPU Control Instructions

CCF Complement carry flag

DI Disable interrupts

EI Enable interrupts

IDLE Enter Idle mode

NOP No operation

RCF Reset carry flag

SB0 Set bank 0

SB1 Set bank 1

SCF Set carry flag

SRP src Set register pointers

SRP0 src Set register pointer 0

SRP1 src Set register pointer 1

STOP Enter Stop mode

SAM8 INSTRUCTION SET S3C880A/F880A

6-6

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits that describe the current status of the CPU operations. Four of
these bits, FLAGS.4 – FLAGS.7, can be tested and used with conditional jump instructions; two others FLAGS.2
and FLAGS.3 are used for BCD arithmetic. The FLAGS register also contains a bit to indicate the status of fast
interrupt processing (FLAGS.1) and a bank address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is
being addressed.

FLAGS is located in the system control register area of set 1 (D5H). FLAGS register can be set or reset by
instructions as long as its outcome does not affect the flags, such as, Load instruction. Logical and Arithmetic
instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For example, the AND
instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND instruction. If the AND
instruction uses the Flags register as the destination, then simultaneously, two writes will occur to the Flags
register, producing an unpredictable result.

System Flags Register (FLAGS)
D5H, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Bank address
status flag (BA)

First interrupt
status flag (FIS)

Half-carry flag (H)

Decimal adjust flag (D)Overflow (V)

Sign flag (S)

Zero flag (Z)

Carry flag (C)

Figure 6-1. System Flags Register (FLAGS)

S3C880A/F880A SAM8 INSTRUCTION SET

6-7

FLAG DESCRIPTIONS

C Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the
specified register. Program instructions can set, clear, or complement the carry flag.

Z Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is
logic zero.

S Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the
result. A logic zero indicates a positive number and a logic one indicates a negative number.

V Overflow Flag (FLAGS.4)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than
– 128. It is also cleared to "0" following logic operations.

D Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by
programmers, and cannot be used as a test condition.

H Half-Carry Flag (FLAGS.2)

The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a
program.

FIS Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET
instruction is executed.

BA Bank Address Flag (FLAGS.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently
selected, bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SB0
instruction and is set to "1" (select bank 1) when you execute the SB1 instruction.

SAM8 INSTRUCTION SET S3C880A/F880A

6-8

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag Description

C Carry flag

Z Zero flag

S Sign flag

V Overflow flag

D Decimal-adjust flag

H Half-carry flag

0 Cleared to logic zero

1 Set to logic one

* Set or cleared according to operation

– Value is unaffected

x Value is undefined

Table 6-3. Instruction Set Symbols

Symbol Description

dst Destination operand

src Source operand

@ Indirect register address prefix

PC Program counter

IP Instruction pointer

FLAGS Flags register (D5H)

RP Register pointer

Immediate operand or register address prefix

H Hexadecimal number suffix

D Decimal number suffix

B Binary number suffix

opc Opcode

S3C880A/F880A SAM8 INSTRUCTION SET

6-9

Table 6-4. Instruction Notation Conventions

Notation Description Actual Operand Range

cc Condition code See list of condition codes in Table 6-6.

r Working register only Rn (n = 0–15)

rb Bit (b) of working register Rn.b (n = 0–15, b = 0–7)

r0 Bit 0 (LSB) of working register Rn (n = 0–15)

rr Working register pair RRp (p = 0, 2, 4, ..., 14)

R Register or working register reg or Rn (reg = 0–255, n = 0–15)

Rb Bit 'b' of register or working register reg.b (reg = 0–255, b = 0–7)

RR Register pair or working register pair reg or RRp (reg = 0–254, even number only, where
p = 0, 2, ..., 14)

IA Indirect addressing mode addr (addr = 0–254, even number only)

Ir Indirect working register only @Rn (n = 0–15)

IR Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)

Irr Indirect working register pair only @RRp (p = 0, 2, ..., 14)

IRR Indirect register pair or indirect working
register pair

@RRp or @reg (reg = 0–254, even only, where
p = 0, 2, ..., 14)

X Indexed addressing mode #reg[Rn] (reg = 0–255, n = 0–15)

XS Indexed (short offset) addressing mode #addr[RRp] (addr = range –128 to +127, where
p = 0, 2, ..., 14)

XL Indexed (long offset) addressing mode #addr [RRp] (addr = range 0–65535, where
p = 0, 2, ..., 14)

DA Direct addressing mode addr (addr = range 0–65535)

RA Relative addressing mode addr (addr = number in the range +127 to –128 that is
an offset relative to the address of the next instruction)

IM Immediate addressing mode #data (data = 0–255)

IML Immediate (long) addressing mode #data (data = range 0–65535)

SAM8 INSTRUCTION SET S3C880A/F880A

6-10

Table 6-5. Opcode Quick Reference

OPCODE MAP

LOWER NIBBLE (HEX)

— 0 1 2 3 4 5 6 7

U 0 DEC
R1

DEC
IR1

ADD
r1,r2

ADD
r1,Ir2

ADD
R2,R1

ADD
IR2,R1

ADD
R1,IM

BOR
r0–Rb

P 1 RLC
R1

RLC
IR1

ADC
r1,r2

ADC
r1,Ir2

ADC
R2,R1

ADC
IR2,R1

ADC
R1,IM

BCP
r1.b, R2

P 2 INC
R1

INC
IR1

SUB
r1,r2

SUB
r1,Ir2

SUB
R2,R1

SUB
IR2,R1

SUB
R1,IM

BXOR
r0–Rb

E 3 JP
IRR1

SRP/0/1
IM

SBC
r1,r2

SBC
r1,Ir2

SBC
R2,R1

SBC
IR2,R1

SBC
R1,IM

BTJR
r2.b, RA

R 4 DA
R1

DA
IR1

OR
r1,r2

OR
r1,Ir2

OR
R2,R1

OR
IR2,R1

OR
R1,IM

LDB
r0–Rb

5 POP
R1

POP
IR1

AND
r1,r2

AND
r1,Ir2

AND
R2,R1

AND
IR2,R1

AND
R1,IM

BITC
r1.b

N 6 COM
R1

COM
IR1

TCM
r1,r2

TCM
r1,Ir2

TCM
R2,R1

TCM
IR2,R1

TCM
R1,IM

BAND
r0–Rb

I 7 PUSH
R2

PUSH
IR2

TM
r1,r2

TM
r1,Ir2

TM
R2,R1

TM
IR2,R1

TM
R1,IM

BIT
r1.b

B 8 DECW
RR1

DECW
IR1

PUSHUD
IR1,R2

PUSHUI
IR1,R2

MULT
R2,RR1

MULT
IR2,RR1

MULT
IM,RR1

LD
r1, x, r2

B 9 RL
R1

RL
IR1

POPUD
IR2,R1

POPUI
IR2,R1

DIV
R2,RR1

DIV
IR2,RR1

DIV
IM,RR1

LD
r2, x, r1

L A INCW
RR1

INCW
IR1

CP
r1,r2

CP
r1,Ir2

CP
R2,R1

CP
IR2,R1

CP
R1,IM

LDC
r1, Irr2,

xL

E B CLR
R1

CLR
IR1

XOR
r1,r2

XOR
r1,Ir2

XOR
R2,R1

XOR
IR2,R1

XOR
R1,IM

LDC
r2, Irr2,

xL

C RRC
R1

RRC
IR1

CPIJE
Ir,r2,RA

LDC
r1,Irr2

LDW
RR2,RR1

LDW
IR2,RR1

LDW
RR1,IML

LD
r1, Ir2

H D SRA
R1

SRA
IR1

CPIJNE
Irr,r2,RA

LDC
r2,Irr1

CALL
IA1

LD
IR1,IM

LD
Ir1, r2

E E RR
R1

RR
IR1

LDCD
r1,Irr2

LDCI
r1,Irr2

LD
R2,R1

LD
IR2,R1

LD
R1,IM

LDC
r1, Irr2, xs

X F SWAP
R1

SWAP
IR1

LDCPD
r2,Irr1

LDCPI
r2,Irr1

CALL
IRR1

LD
R2,IR1

CALL
DA1

LDC
r2, Irr1, xs

S3C880A/F880A SAM8 INSTRUCTION SET

6-11

Table 6-5. Opcode Quick Reference (Continued)

OPCODE MAP

LOWER NIBBLE (HEX)

— 8 9 A B C D E F

U 0 LD
r1,R2

LD
r2,R1

DJNZ
r1,RA

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

NEXT

P 1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ENTER

P 2 EXIT

E 3 WFI

R 4 SB0

5 SB1

N 6 IDLE

I 7 ↓ ↓ ↓ ↓ ↓ ↓ ↓ STOP

B 8 DI

B 9 EI

L A RET

E B IRET

C RCF

H D ↓ ↓ ↓ ↓ ↓ ↓ ↓ SCF

E E CCF

X F LD
r1,R2

LD
r2,R1

DJNZ
r1,RA

JR
cc,RA

LD
r1,IM

JP
cc,DA

INC
r1

NOP

SAM8 INSTRUCTION SET S3C880A/F880A

6-12

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump
instructions.

Table 6-6. Condition Codes

Binary Mnemonic Description Flags Set

0000 F Always false –

1000 T Always true –

0111 (1)
C Carry C = 1

1111 (1) NC No carry C = 0

0110 (1) Z Zero Z = 1

1110 (1) NZ Not zero Z = 0

1101 PL Plus S = 0

0101 MI Minus S = 1

0100 OV Overflow V = 1

1100 NOV No overflow V = 0

0110 (1) EQ Equal Z = 1

1110 (1) NE Not equal Z = 0

1001 GE Greater than or equal (S XOR V) = 0

0001 LT Less than (S XOR V) = 1

1010 GT Greater than (Z OR (S XOR V)) = 0

0010 LE Less than or equal (Z OR (S XOR V)) = 1

1111 (1) UGE Unsigned greater than or equal C = 0

0111 (1) ULT Unsigned less than C = 1

1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1

0011 ULE Unsigned less than or equal (C OR Z) = 1

NOTES:
1. It indicates condition codes that are related to two different mnemonics but which test the same flag. For

example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;
after a CP instruction, however, EQ would probably be used.

2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

S3C880A/F880A SAM8 INSTRUCTION SET

6-13

INSTRUCTION DESCRIPTIONS

This chapter contains detailed information and programming examples for each instruction in the SAM8
instruction set. Information is arranged in a consistent format for improved readability and fast referencing. The
following information is included in each instruction description:

— Instruction name (mnemonic)

— Full instruction name

— Source/destination format of the instruction operand

— Shorthand notation of the instruction's operation

— Textual description of the instruction's effect

— Specific flag settings affected by the instruction

— Detailed description of the instruction's format, execution time, and addressing mode(s)

— Programming example(s) explaining how to use the instruction

SAM8 INSTRUCTION SET S3C880A/F880A

6-14

ADC — Add with Carry

ADC dst,src

Operation: dst ← dst + src + c

The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected. Two's-
complement addition is performed. In multiple precision arithmetic, this instruction permits the
carry from the addition of low-order operands to be carried into the addition of high-order
operands.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result

is of the opposite sign; cleared otherwise.
D: Always cleared to "0".
H: Set if there is a carry from the most significant bit of the low-order four bits of the result;

cleared otherwise.
Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 12 r r

13 r lr

opc src dst 3 10 14 R R

15 R IR

opc dst src 3 10 16 R IM

Examples: Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and
register 03H = 0AH:

ADC R1,R2 → R1 = 14H, R2 = 03H

ADC R1,@R2 → R1 = 1BH, R2 = 03H

ADC 01H,02H → Register 01H = 24H, register 02H = 03H

ADC 01H,@02H → Register 01H = 2BH, register 02H = 03H

ADC 01H,#11H → Register 01H = 32H

In the first example, the destination register R1 contains the value 10H, the carry flag is set to
"1", and the source working register R2 contains the value 03H. The statement "ADC R1,R2"
adds 03H and the carry flag value ("1") to the destination value 10H, leaving 14H in the register
R1.

S3C880A/F880A SAM8 INSTRUCTION SET

6-15

ADD — Add

ADD dst,src

Operation: dst ← dst + src

The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. Two's-complement addition is performed.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the

result is of the opposite sign; cleared otherwise.
D: Always cleared to "0".
H: Set if a carry from the low-order nibble occurred.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 02 r r

03 r lr

opc src dst 3 10 04 R R

05 R IR

opc dst src 3 10 06 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

ADD R1,R2 → R1 = 15H, R2 = 03H

ADD R1,@R2 → R1 = 1CH, R2 = 03H

ADD 01H,02H → Register 01H = 24H, register 02H = 03H

ADD 01H,@02H → Register 01H = 2BH, register 02H = 03H

ADD 01H,#25H → Register 01H = 46H

In the first example, the destination working register R1 contains 12H and the source working
register R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H
in the register R1.

SAM8 INSTRUCTION SET S3C880A/F880A

6-16

AND — Logical AND

AND dst,src

Operation: dst ← dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the
source are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 52 r r

53 r lr

opc src dst 3 10 54 R R

55 R IR

opc dst src 3 10 56 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

AND R1,R2 → R1 = 02H, R2 = 03H

AND R1,@R2 → R1 = 02H, R2 = 03H

AND 01H,02H → Register 01H = 01H, register 02H = 03H

AND 01H,@02H → Register 01H = 00H, register 02H = 03H

AND 01H,#25H → Register 01H = 21H

In the first example, the destination working register R1 contains the value 12H and the source
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source
operand 03H with the destination operand value 12H, leaving the value 02H in the register R1.

S3C880A/F880A SAM8 INSTRUCTION SET

6-17

BAND – Bit AND

BAND dst,src.b

BAND dst.b,src

Operation: dst(0) ← dst(0) AND src(b)

or

dst(b) ← dst(b) AND src(0)

The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of
the destination (or source). The resultant bit is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 67 r0 Rb

opc src | b | 1 dst 3 10 67 Rb r0

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four
bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H and register 01H = 05H:

BAND R1,01H.1 → R1 = 05H, register 01H = 05H

BAND 01H.1,R1 → Register 01H = 05H, R1 = 07H

In the first example, the source register 01H contains the value 05H (00000101B) and the
destination working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1"
ANDs the bit 1 value of the source register ("0") with the bit 0 value of the register R1
(destination), leaving the value 0525H (00000101B) in the register R1.

SAM8 INSTRUCTION SET S3C880A/F880A

6-18

BCP – Bit Compare

BCP dst,src.b

Operation: dst(0) – src(b)

The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both
operands are unaffected by the comparison.

Flags: C: Unaffected.
Z: Set if the two bits are the same; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 17 r0 Rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H and register 01H = 01H:

BCP R1,01H.1 → R1 = 07H, register 01H = 01H

If the destination working register R1 contains the value 07H (00000111B) and the source
register 01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit
one of the source register (01H) and bit zero of the destination register (R1). Because the bit
values are not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).

S3C880A/F880A SAM8 INSTRUCTION SET

6-19

BITC – Bit Complement

BITC dst.b

Operation: dst(b) ← NOT dst(b)

This instruction complements the specified bit within the destination without affecting any other
bit in the destination.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst | b | 0 2 8 57 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H

BITC R1.1 → R1 = 05H

If the working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"
complements bit one of the destination, leaving the value 05H (00000101B) in the register R1.
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H)
is cleared.

SAM8 INSTRUCTION SET S3C880A/F880A

6-20

BITR – Bit Reset

BITR dst.b

Operation: dst(b) ← 0

The BITR instruction clears the specified bit within the destination without affecting any other bit
in the destination.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst | b | 0 2 8 77 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BITR R1.1 → R1 = 05H

If the value of the working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit
one of the destination register R1, leaving the value 05H (00000101B).

S3C880A/F880A SAM8 INSTRUCTION SET

6-21

BITS – Bit Set

BITS dst.b

Operation: dst(b) ← 1

The BITS instruction sets the specified bit within the destination without affecting any other bit in
the destination.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst | b | 1 2 8 77 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BITS R1.3 → R1 = 0FH

If the working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets
bit three of the destination register R1 to "1", leaving the value 0FH (00001111B).

SAM8 INSTRUCTION SET S3C880A/F880A

6-22

BOR – Bit OR

BOR dst,src.b

BOR dst.b,src

Operation: dst(0) ← dst(0) OR src(b)

or

dst(b) ← dst(b) OR src(0)

The specified bit of the source (or destination) is logically ORed with bit zero (LSB) of the
destination (or source). The resulting bit value is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 07 r0 Rb

opc src | b | 1 dst 3 10 07 Rb r0

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four
bits, the bit address 'b' is three bits, and the LSB address value is one bit.

Examples: Given: R1 = 07H and register 01H = 03H:

BOR R1, 01H.1 → R1 = 07H, register 01H = 03H

BOR 01H.2, R1 → Register 01H = 07H, R1 = 07H

In the first example, the destination working register R1 contains the value 07H (00000111B) and
the source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically
ORs bit one of the register 01H (source) with bit zero of R1 (destination). This leaves the same
value (07H) in the working register R1.

In the second example, the destination register 01H contains the value 03H (00000011B) and the
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically
ORs bit two of the register 01H (destination) with bit zero of R1 (source). This leaves the value
07H in the register 01H.

S3C880A/F880A SAM8 INSTRUCTION SET

6-23

BTJRF – Bit Test, Jump Relative on False

BTJRF dst,src.b

Operation: If src(b) is a "0", then PC ← PC + dst

The specified bit within the source operand is tested. If it is a "0", the relative address is added to
the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRF instruction is executed.

Flags: No flags are affected.

Format:

(1)
Bytes Cycles Opcode

(Hex)
Addr Mode
dst src

opc src | b | 0 dst 3 16/18 (2) 37 RA rb

NOTES:
1. In the second byte of the instruction format, the source address is four bits, the bit address 'b' is three

bits, and the LSB address value is one bit in length.
2. Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 07H:

BTJRF SKIP,R1.3 → PC jumps to SKIP location

If the working register R1 contains the value 07H (00000111B), the statement "BTJRF
SKIP,R1.3" tests bit 3. Because it is "0", the relative address is added to the PC and the PC
jumps to the memory location pointed to by the SKIP. (Remember that the memory location
must be within the allowed range of + 127 to – 128.)

SAM8 INSTRUCTION SET S3C880A/F880A

6-24

BTJRT – Bit Test, Jump Relative on True

BTJRT dst,src.b

Operation: If src(b) is a "1", then PC ← PC + dst

The specified bit within the source operand is tested. If it is a "1", the relative address is added to
the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRT instruction is executed.

Flags: No flags are affected.

Format:

(1)
Bytes Cycles Opcode

(Hex)
Addr Mode
dst src

opc src | b | 1 dst 3 16/18 (2) 37 RA rb

NOTES:
1. In the second byte of the instruction format, the source address is four bits, the bit address 'b' is three

bits, and the LSB address value is one bit in length.
2. Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 07H:

BTJRT SKIP,R1.1

If the working register R1 contains the value 07H (00000111B), the statement "BTJRT
SKIP,R1.1" tests bit one in the source register (R1). Because it is a "1", the relative address is
added to the PC and the PC jumps to the memory location pointed to by the SKIP. (Remember
that the memory location must be within the allowed range of + 127 to – 128.)

S3C880A/F880A SAM8 INSTRUCTION SET

6-25

BXOR – Bit XOR

BXOR dst,src.b

BXOR dst.b,src

Operation: dst(0) ← dst(0) XOR src(b)

or

dst(b) ← dst(b) XOR src(0)

The specified bit of the source (or destination) is logically exclusive-ORed with bit zero (LSB) of
the destination (or source). The result bit is stored in the specified bit of the destination. No other
bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 27 r0 Rb

opc src | b | 1 dst 3 10 27 Rb r0

NOTE: In the second byte of the 3-byte instruction format, the destination (or source) address is four bits,
the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):

BXOR R1,01H.1 → R1 = 05H, register 01H = 03H

BXOR 01H.2,R1 → Register 01H = 07H, R1 = 07H

In the first example, the destination working register R1 has the value 07H (00000111B) and the
source register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1"
exclusive-ORs bit one of the register 01H (source) with bit zero of R1 (destination). The result bit
value is stored in bit zero of R1, changing its value from 07H to 05H. The value of the source
register 01H is unaffected.

SAM8 INSTRUCTION SET S3C880A/F880A

6-26

CALL – Call Procedure

CALL dst

Operation: SP ← SP – 1
@SP ← PCL
SP ← SP –1
@SP ← PCH
PC ← dst

The current contents of the program counter are pushed onto the top of the stack. The program
counter value used is the address of the first instruction following the CALL instruction. The
specified destination address is then loaded into the program counter and points to the first
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used
to return to the original program flow. RET pops the top of the stack back into the program
counter.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 3 18 F6 DA

opc dst 2 18 F4 IRR

opc dst 2 20 D4 IA

Examples: Given: R0 = 35H, R1 = 21H, PC = 1A47H, and SP = 0002H:

CALL 3521H → SP = 0000H

(Memory locations 0000H = 1AH, 0001H = 4AH, where

4AH is the address that follows the instruction.)

CALL @RR0 → SP = 0000H (0000H = 1AH, 0001H = 49H)

CALL #40H → SP = 0000H (0000H = 1AH, 0001H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the
stack. The stack pointer now points to the memory location 0000H. The PC is then loaded with
the value 3521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the
statement "CALL @RR0" produces the same result except that 49H is stored in stack location
0001H (because the two-byte instruction format was used). The PC is then loaded with the value
3521H, the address of the first instruction in the program sequence to be executed. Assuming
that the contents of the program counter and stack pointer are the same as in the first example,
if the program address 0040H contains 35H and the program address 0041H contains 21H, the
statement "CALL #40H" produces the same result as in the second example.

S3C880A/F880A SAM8 INSTRUCTION SET

6-27

CCF – Complement Carry Flag

CCF

Operation: C ← NOT C

The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic
zero; if C = "0", the value of the carry flag is changed to logic one.

Flags: C: Complemented.

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 EF

Example: Given: The carry flag = "0":

CCF

If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H),
changing its value from logic zero to logic one.

SAM8 INSTRUCTION SET S3C880A/F880A

6-28

CLR – Clear

CLR dst

Operation: dst ← dst XOR dst

The destination location is cleared to "0".

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 B0 R

B1 IR

Examples: Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:

CLR 00H → Register 00H = 00H

CLR @01H → Register 01H = 02H, register 02H = 00H

In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)
addressing mode to clear the 02H register value to 00H.

S3C880A/F880A SAM8 INSTRUCTION SET

6-29

COM – Complement

COM dst

Operation: dst ← NOT dst

The contents of the destination location are complemented (one's complement); all "1s" are
changed to "0s", and vice-versa.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 60 R

61 IR

Examples: Given: R1 = 07H and register 07H = 0F1H:

COM R1 → R1 = 0F8H

COM @R1 → R1 = 07H, register 07H = 0EH

In the first example, the destination working register R1 contains the value 07H (00000111B).
The statement "COM R1" complements all the bits in R1: all logic ones are changed to logic
zeros, and vice-versa, leaving the value 0F8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value
of the destination register 07H (11110001B), leaving the new value 0EH (00001110B).

SAM8 INSTRUCTION SET S3C880A/F880A

6-30

CP – Compare

CP dst,src

Operation: dst – src

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags are set accordingly. The contents of both operands are unaffected by the
comparison.

Flags: C: Set if a "borrow" occurred (src > dst); cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 A2 r r

A3 r lr

opc src dst 3 10 A4 R R

A5 R IR

opc dst src 3 10 A6 R IM

Examples: 1. Given: R1 = 02H and R2 = 03H:

CP R1,R2 → Set the C and S flags

The destination working register R1 contains the value 02H and the source register R2 contains
the value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the
R1 value (destination/minuend). Because a "borrow" occurs and the difference is negative, C
and S are "1".

2. Given: R1 = 05H and R2 = 0AH:

CP R1,R2
JP UGE,SKIP
INC R1

SKIP LD R3,R1

In this example, the destination working register R1 contains the value 05H which is less than the
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1"
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"
executes, the value 06H remains in the working register R3.

S3C880A/F880A SAM8 INSTRUCTION SET

6-31

CPIJE – Compare, Increment, and Jump on Equal

CPIJE dst,src,RA

Operation: If dst – src = "0", PC ← PC + RA

Ir ← Ir + 1

The source operand is compared to (subtracted from) the destination operand. If the result is "0",
the relative address is added to the program counter and control passes to the statement whose
address is now in the program counter. Otherwise, the instruction immediately following the
CPIJE instruction is executed. In either case, the source pointer is incremented by one before
the next instruction is executed.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst RA 3 16/18 C2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 02H, R2 = 03H, and register 03H = 02H:

CPIJE R1,@R2,SKIP → R2 = 04H, PC jumps to SKIP location

In this example, the working register R1 contains the value 02H, the working register R2 the
value 03H, and the register 03H contains 02H. The statement "CPIJE R1,@R2,SKIP" compares
the @R2 value 02H (00000010B) to 02H (00000010B). Because the result of the comparison is
equal, the relative address is added to the PC and the PC then jumps to the memory location
pointed to by SKIP. The source register (R2) is incremented by one, leaving a value of 04H.
(Remember that the memory location must be within the allowed range of + 127 to – 128.)

SAM8 INSTRUCTION SET S3C880A/F880A

6-32

CPIJNE – Compare, Increment, and Jump on Non-Equal

CPIJNE dst,src,RA

Operation: If dst – src ≠ "0", PC ← PC + RA

Ir ← Ir + 1

The source operand is compared to (subtracted from) the destination operand. If the result is not
"0", the relative address is added to the program counter and control passes to the statement
whose address is now in the program counter; otherwise the instruction following the CPIJNE
instruction is executed. In either case the source pointer is incremented by one before the next
instruction.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst RA 3 16/18 D2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = 02H, R2 = 03H, and register 03H = 04H:

CPIJNE R1,@R2,SKIP → R2 = 04H, PC jumps to SKIP location

The working register R1 contains the value 02H, the working register R2 (the source pointer) the
value 03H, and the general register 03H contains the value 04H. The statement "CPIJNE
R1,@R2,SKIP" subtracts 04H (00000100B) from 02H (00000010B). Because the result of the
comparison is non-equal, the relative address is added to the PC and the PC then jumps to the
memory location pointed to by SKIP. The source pointer register (R2) is also incremented by
one, leaving a value of 04H. (Remember that the memory location must be within the allowed
range of + 127 to – 128.)

S3C880A/F880A SAM8 INSTRUCTION SET

6-33

DA – Decimal Adjust

DA dst

Operation: dst ← DA dst

The destination operand is adjusted to form two 4-bit BCD digits after an addition or subtraction
operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table indicates the
operation performed. (The operation is undefined if the destination operand was not the result of
a valid addition or subtraction of BCD digits):

Instruction Carry
Before DA

Bits 4–7
Value (Hex)

H Flag
Before DA

Bits 0–3
Value (Hex)

Number Added
to Byte

Carry
After DA

0 0–9 0 0–9 00 0

0 0–8 0 A–F 06 0

0 0–9 1 0–3 06 0

ADD 0 A–F 0 0–9 60 1

ADC 0 9–F 0 A–F 66 1

0 A–F 1 0–3 66 1

1 0–2 0 0–9 60 1

1 0–2 0 A–F 66 1

1 0–3 1 0–3 66 1

0 0–9 0 0–9 00 = – 00 0

SUB 0 0–8 1 6–F FA = – 06 0

SBC 1 7–F 0 0–9 A0 = – 60 1

1 6–F 1 6–F 9A = – 66 1

Flags: C: Set if there was a carry from the most significant bit; cleared otherwise (see table).
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 40 R

41 IR

SAM8 INSTRUCTION SET S3C880A/F880A

6-34

DA – Decimal Adjust

DA (Continued)

Example: Given: The working register R0 contains the value 15 (BCD), working register R1 contains
27 (BCD), and address 27H contains 46 (BCD):

ADD R1,R0 ; C ← "0", H ← "0", Bits 4–7 = 3, bits 0–3 = C, R1 ← 3CH

DA R1 ; R1 ← 3CH + 06

If an addition is performed using the BCD values 15 and 27, the result should be 42. The sum is
incorrect, however, when the binary representations are added in the destination location using
standard binary arithmetic:

0 0 0 1 0 1 0 1 15
+ 0 0 1 0 0 1 1 1 27

0 0 1 1 1 1 0 0 = 3CH

The DA instruction adjusts this result so that the correct BCD representation is obtained:

0 0 1 1 1 1 0 0
+ 0 0 0 0 0 1 1 0

0 1 0 0 0 0 1 0 = 42

Assuming the same values given above, the statements

SUB 27H,R0 ; C ← "0", H ¨ "0", Bits 4–7 = 3, bits 0–3 = 1

DA @R1 ; @R1 ← 31–0

leave the value 31 (BCD) in the address 27H (@R1).

S3C880A/F880A SAM8 INSTRUCTION SET

6-35

DEC – Decrement

DEC dst

Operation: dst ← dst – 1

The contents of the destination operand are decremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 00 R

01 IR

Examples: Given: R1 = 03H and register 03H = 10H:

DEC R1 → R1 = 02H

DEC @R1 → Register 03H = 0FH

In the first example, if the working register R1 contains the value 03H, the statement "DEC R1"
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by
one, leaving the value 0FH.

SAM8 INSTRUCTION SET S3C880A/F880A

6-36

DECW – Decrement Word

DECW dst

Operation: dst ← dst – 1

The contents of the destination location (which must be an even address) and the operand
following that location are treated as a single 16-bit value that is decremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 10 80 RR

81 IR

Examples: Given: R0 = 12H, R1 = 34H, R2 = 30H, register 30H = 0FH, and register 31H = 21H:

DECW RR0 → R0 = 12H, R1 = 33H

DECW @R2 → Register 30H = 0FH, register 31H = 20H

In the first example, the destination register R0 contains the value 12H and the register R1 the
value 34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit
word and decrements the value of R1 by one, leaving the value 33H.

NOTE: A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW
instruction. To avoid this problem, we recommend that you use DECW as shown in the following
example:

LOOP: DECW RR0
LD R2,R1
OR R2,R0
JR NZ,LOOP

S3C880A/F880A SAM8 INSTRUCTION SET

6-37

DI – Disable Interrupts

DI

Operation: SYM (0) ← 0

Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,
but the CPU will not service them while interrupt processing is disabled.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 8F

Example: Given: SYM = 01H:

DI

If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the
register and clears SYM.0 to "0", disabling interrupt processing.

SAM8 INSTRUCTION SET S3C880A/F880A

6-38

DIV – Divide (Unsigned)

DIV dst,src

Operation: dst ÷ src

dst (UPPER) ← REMAINDER

dst (LOWER) ← QUOTIENT

The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of
the destination. When the quotient is ≥ 28, the numbers stored in the upper and lower halves of
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned
integers.

Flags: C: Set if the V flag is set and the quotient is between 28 and 29 –1; cleared otherwise.
Z: Set if the divisor or quotient = "0"; cleared otherwise.
S: Set if the MSB of quotient = "1"; cleared otherwise.
V: Set if the quotient is ≥ 28 or if the divisor = "0"; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 28/12 * 94 RR R

28/12 * 95 RR IR

28/12 * 96 RR IM

* Execution takes 12 cycles if divide-by-zero
is attempted; otherwise it takes 28 cycles.

Examples: Given: R0 = 10H, R1 = 03H, R2 = 40H, register 40H = 80H:

DIV RR0,R2 → R0 = 03H, R1 = 40H

DIV RR0,@R2 → R0 = 03H, R1 = 20H

DIV RR0,#20H → R0 = 03H, R1 = 80H

In the first example, the destination working register pair RR0 contains the values 10H (R0) and
03H (R1), and the register R2 contains the value 40H. The statement "DIV RR0,R2" divides the
16-bit RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0
contains the value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of
the destination register RR0 (R0) and the quotient in the lower half (R1).

S3C880A/F880A SAM8 INSTRUCTION SET

6-39

DJNZ – Decrement and Jump if Non-Zero

DJNZ r,dst

Operation: r ← r – 1

If r ≠ 0, PC ← PC + dst

The working register being used as a counter is decremented. If the contents of the register are
not logic zero after decrementing, the relative address is added to the program counter and
control passes to the statement whose address is now in the PC. The range of the relative
address is +127 to –128, and the original value of the PC is taken to be the address of the
instruction byte following the DJNZ statement.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

r | opc dst 2 12 (jump taken) rA RA

10 (no jump) r = 0 to F

Example: Given: R1 = 02H and LOOP is the label of a relative address:

DJNZ R1,LOOP

DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the
destination operand instead of a numeric relative address value. In the example, the working
register R1 contains the value 02H, and LOOP is the label for a relative address.

The statement "DJNZ R1, LOOP" decrements the register R1 by one, leaving the value 01H.
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative
address specified by the LOOP label.

NOTE: When PP = 11H or 10H and working register area is NOT in C0H–CFH, DJNZ instruction can not
be used.

SAM8 INSTRUCTION SET S3C880A/F880A

6-40

EI – Enable Interrupts

EI

Operation: SYM (0) ← 1

An EI instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to
be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced
when you execute the EI instruction.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 9F

Example: Given: SYM = 00H:

EI

If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for
global interrupt processing.)

S3C880A/F880A SAM8 INSTRUCTION SET

6-41

ENTER – Enter

ENTER

Operation: SP ← SP – 2
@SP ← IP
IP ← PC
PC ← @IP
IP ← IP + 2

This instruction is useful when implementing threaded-code languages. The contents of the
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the
instruction pointer. The program memory word that is pointed to by the instruction pointer is
loaded into the PC, and the instruction pointer is incremented by two.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 20 1F

Example: The diagram below shows one example of how to use an ENTER statement.

00501P

0022SP

22 Data

Address Data

0040PC 40
41
42
43

Enter
Address H
Address L
Address H

Address Data

1F
01
10

Memory

00431P

0020SP

20
21
22

IPH
IPL
Data

Address Data

0110PC 40
41
42
43

Enter
Address H
Address L
Address H

Address Data

1F
01
10

Memory

00
50

Stack Stack

110 Routine

Before After

SAM8 INSTRUCTION SET S3C880A/F880A

6-42

EXIT – Exit

EXIT

Operation: IP ← @SP
SP ← SP + 2
PC ← @IP
IP ← IP + 2

This instruction is useful when implementing threaded-code languages. The stack value is
popped and loaded into the instruction pointer. The program memory word that is pointed to by
the instruction pointer is then loaded into the program counter, and the instruction pointer is
incremented by two.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 22 2F

Example: The diagram below shows one example of how to use an EXIT statement.

00501P

0022SP

Address Data

0040PC

Address Data

Memory

00521P

0022SP

Address Data

0060PC

Address Data

Memory

Stack Stack

Before After

22 Data

20
21
22

IPH
IPL
Data

00
50

50
51

140

PCL old
PCH

Exit

60
00

2F

60 Main

S3C880A/F880A SAM8 INSTRUCTION SET

6-43

IDLE – Idle Operation

IDLE

Operation:

The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle
mode can be released by an interrupt request (IRQ) or an external reset operation.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc 1 3 6F – –

Example: The instruction

IDLE

stops the CPU clock but not the system clock.

SAM8 INSTRUCTION SET S3C880A/F880A

6-44

INC – Increment

INC dst

Operation: dst ← dst + 1

The contents of the destination operand are incremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

dst | opc 1 6 rE r

r = 0 to
F

opc dst 2 6 20 R

21 IR

Examples: Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:

INC R0 → R0 = 1CH

INC 00H → Register 00H = 0DH

INC @R0 → R0 = 1BH, register 01H = 10H

In the first example, if the destination working register R0 contains the value 1BH, the statement
"INC R0" leaves the value 1CH in that same register.

The next example shows the effect an INC instruction has on the register 00H, assuming that it
contains the value 0CH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the
value of the register 1BH from 0FH to 10H.

S3C880A/F880A SAM8 INSTRUCTION SET

6-45

INCW – Increment Word

INCW dst

Operation: dst ← dst + 1

The contents of the destination (which must be an even address) and the byte following that
location are treated as a single 16-bit value that is incremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 10 A0 RR

A1 IR

Examples: Given: R0 = 1AH, R1 = 02H, register 02H = 0FH, and register 03H = 0FFH:

INCW RR0 → R0 = 1AH, R1 = 03H

INCW @R1 → Register 02H = 10H, register 03H = 00H

In the first example, the working register pair RR0 contains the value 1AH in the register R0 and
02H in the register R1. The statement "INCW RR0" increments the 16-bit destination by one,
leaving the value 03H in the register R1. In the second example, the statement "INCW @R1"
uses Indirect Register (IR) addressing mode to increment the contents of the general register
03H from 0FFH to 00H and the register 02H from 0FH to 10H.

NOTE: A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the
following example:

LOOP: INCW RR0
LD R2,R1
OR R2,R0
JR NZ,LOOP

SAM8 INSTRUCTION SET S3C880A/F880A

6-46

IRET – Interrupt Return

IRET IRET (Normal) IRET (Fast)

Operation: FLAGS ← @SP PC ↔ IP
SP ← SP + 1 FLAGS ← FLAGS'
PC ← @SP FIS ← 0
SP ← SP + 2
SYM(0) ← 1

This instruction is used at the end of an interrupt service routine. It restores the flag register and
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the
fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

Flags: All flags are restored to their original settings (that is, the settings before the interrupt occurred).

Format:

IRET
(Normal)

Bytes Cycles Opcode
(Hex)

opc 1 16 BF

IRET
(Fast)

Bytes Cycles Opcode
(Hex)

opc 1 6 BF

Example: In the figure below, the instruction pointer is initially loaded with 100H in the main program
before interrupts are enabled. When an interrupt occurs, the program counter and the instruction
pointer are swapped. This causes the PC to jump to the address 100H and the IP to keep the
return address. The last instruction in the service routine normally is a jump to IRET at the
address FFH. This causes the instruction pointer to be loaded with 100H "again" and the program
counter to jump back to the main program. Now, the next interrupt can occur and the IP is still
correct at 100H.

IRET

Interrupt
Service
Routine

JP to FFH

0H

FFH

100H

FFFFH

Note that in the fast interrupt example above, if the last instruction is not a jump to IRET, you
must pay attention to the order of the last two instructions. The IRET cannot be immediately
proceeded by clearing the interrupt status (as with a reset of the IPR register).

S3C880A/F880A SAM8 INSTRUCTION SET

6-47

JP – Jump

JP cc,dst (Conditional)

JP dst (Unconditional)

Operation: If cc is true, PC ← dst

The conditional JUMP instruction transfers program control to the destination address if the
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP
instruction is executed. The unconditional JP simply replaces the contents of the PC with the
contents of the specified register pair. Control then passes to the statement addressed by the
PC.

Flags: No flags are affected.

Format: (1)

(2)
Bytes Cycles Opcode

(Hex)
Addr Mode

dst

cc | opc dst 3 10/12 (3) ccD DA

cc = 0 to F

opc dst 2 10 30 IRR

NOTES:
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
2. In the first byte of the 3-byte instruction format (conditional jump), the condition code and the opcode

are both four bits.
3. For a conditional jump, execution time is 12 cycles if the jump is taken or 10 cycles if it is not taken.

Examples: Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:

JP C,LABEL_W → LABEL_W = 1000H, PC = 1000H

JP @00H → PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the
statement
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to
that location. Had the carry flag not been set, control would then have passed to the statement
immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

SAM8 INSTRUCTION SET S3C880A/F880A

6-48

JR – Jump Relative

JR cc,dst

Operation: If cc is true, PC ← PC + dst

If the condition specified by the condition code (cc) is true, the relative address is added to the
program counter and control passes to the statement whose address is now in the program
counter; otherwise, the instruction following the JR instruction is executed. (See the list of
condition codes).

The range of the relative address is +127 to –128, and the original value of the program counter
is taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

(1)
Bytes Cycles Opcode

(Hex)
Addr Mode

dst

cc | opc dst 2 10/12 (2) ccB RA

cc = 0 to F

NOTES:
1. In the first byte of the two-byte instruction format, the condition code and the opcode are four bits

each.
2. Instruction execution time is 12 cycles if the jump is taken or 10 cycles if it is not taken.

Example: Given: The carry flag = "1" and LABEL_X = 1FF7H:

JR C,LABEL_X → PC = 1FF7H

If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will
pass control to the statement whose address is now in the PC. Otherwise, the program
instruction following the JR would be executed.

S3C880A/F880A SAM8 INSTRUCTION SET

6-49

LD – Load

LD dst,src

Operation: dst ← src

The contents of the source are loaded into the destination. The source's contents are unaffected.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

dst | opc src 2 6 rC r IM

6 r8 r R

src | opc dst 2 6 r9 R r

r = 0 to F

opc dst | src 2 6 C7 r lr

6 D7 Ir r

opc src dst 3 10 E4 R R

10 E5 R IR

opc dst src 3 10 E6 R IM

10 D6 IR IM

opc src dst 3 10 F5 IR R

opc dst | src x 3 10 87 r x [r]

opc src | dst x 3 10 97 x [r] r

SAM8 INSTRUCTION SET S3C880A/F880A

6-50

LD – Load

LD (Continued)

Examples: Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:

LD R0,#10H → R0 = 10H

LD R0,01H → R0 = 20H, register 01H = 20H

LD 01H,R0 → Register 01H = 01H, R0 = 01H

LD R1,@R0 → R1 = 20H, R0 = 01H

LD @R0,R1 → R0 = 01H, R1 = 0AH, register 01H = 0AH

LD 00H,01H → Register 00H = 20H, register 01H = 20H

LD 02H,@00H → Register 02H = 20H, register 00H = 01H

LD 00H,#0AH → Register 00H = 0AH

LD @00H,#10H → Register 00H = 01H, register 01H = 10H

LD @00H,02H → Register 00H = 01H, register 01H = 02H, register 02H = 02H

LD R0,#LOOP[R1] → R0 = 0FFH, R1 = 0AH

LD #LOOP[R0],R1 → Register 31H = 0AH, R0 = 01H, R1 = 0AH

S3C880A/F880A SAM8 INSTRUCTION SET

6-51

LDB – Load Bit

LDB dst,src.b

LDB dst.b,src

Operation: dst(0) ← src(b)

or

dst(b) ← src(0)

The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the
source is loaded into the specified bit of the destination. No other bits of the destination are
affected. The source is unaffected.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | b | 0 src 3 10 47 r0 Rb

opc src | b | 1 dst 3 10 47 Rb r0

NOTE: In the second byte of the instruction format, the destination (or source) address is four bits, the bit
address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R0 = 06H and general register 00H = 05H:

LDB R0,00H.2 → R0 = 07H, register 00H = 05H

LDB 00H.0,R0 → R0 = 06H, register 00H = 04H

In the first example, the destination working register R0 contains the value 06H and the source
general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the
00H register into bit zero of the R0 register, leaving the value 07H in the register R0.

In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit
zero of the register R0 to the specified bit (bit zero) of the destination register, leaving 04H in the
general register 00H.

SAM8 INSTRUCTION SET S3C880A/F880A

6-52

LDC/LDE – Load Memory

LDC/LDE dst,src

Operation: dst ← src

This instruction loads a byte from program or data memory into a working register or vice-versa.
The source values are unaffected. LDC refers to program memory and LDE to data memory.
The assembler makes 'Irr' or 'rr' values an even number for program memory and an odd
number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

1. opc dst | src 2 12 C3 r Irr

2. opc src | dst 2 12 D3 Irr r

3. opc dst | src XS 3 18 E7 r XS [rr]

4. opc src | dst XS 3 18 F7 XS [rr] r

5. opc dst | src XLL XLH 4 20 A7 r XL [rr]

6. opc src | dst XLL XLH 4 20 B7 XL [rr] r

7. opc dst | 0000 DAL DAH 4 20 A7 r DA

8. opc src | 0000 DAL DAH 4 20 B7 DA r

9. opc dst | 0001 DAL DAH 4 20 A7 r DA

10. opc src | 0001 DAL DAH 4 20 B7 DA r

NOTES:
1. The source (src) or the working register pair [rr] for formats 5 and 6 cannot use the register pair 0–1.
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are one byte each.
3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are two bytes each.
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set of values, used
in formats 9 and 10, are used to address data memory.

S3C880A/F880A SAM8 INSTRUCTION SET

6-53

LDC/LDE – Load Memory

LDC/LDE (Continued)

Examples: Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory
locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:

LDC R0,@RR2 ; R0 ← contents of program memory location 0104H
; R0 = 1AH, R2 = 01H, R3 = 04H

LDE R0,@RR2 ; R0 ← contents of external data memory location 0104H
; R0 = 2AH, R2 = 01H, R3 = 04H

LDC (note) @RR2,R0 ; 11H (contents of R0) is loaded into program memory
; location 0104H (RR2),
; working registers R0, R2, R3 → no change

LDE @RR2,R0 ; 11H (contents of R0) is loaded into external data memory
; location 0104H (RR2),
; working registers R0, R2, R3 → no change

LDC R0,#01H[RR2] ; R0 ← contents of program memory location 0105H
; (01H + RR2),
; R0 = 6DH, R2 = 01H, R3 = 04H

LDE R0,#01H[RR2] ; R0 ← contents of external data memory location 0105H
; (01H + RR2), R0 = 7DH, R2 = 01H, R3 = 04H

LDC (note) #01H[RR2],R0 ; 11H (contents of R0) is loaded into program memory location
; 0105H (01H + 0104H)

LDE #01H[RR2],R0 ; 11H (contents of R0) is loaded into external data memory
; location 0105H (01H + 0104H)

LDC R0,#1000H[RR2] ; R0 ← contents of program memory location 1104H
; (1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H

LDE R0,#1000H[RR2] ; R0 ← contents of external data memory location 1104H
; (1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H

LDC R0,1104H ; R0 ← contents of program memory location 1104H, R0 = 88H

LDE R0,1104H ; R0 ← contents of external data memory location 1104H,
; R0 = 98H

LDC (note) 1105H,R0 ; 11H (contents of R0) is loaded into program memory location
; 1105H, (1105H) ← 11H

LDE 1105H,R0 ; 11H (contents of R0) is loaded into external data memory
; location 1105H, (1105H) ← 11H

NOTE: These instructions are not supported by masked ROM type devices.

SAM8 INSTRUCTION SET S3C880A/F880A

6-54

LDCD/LDED – Load Memory and Decrement

LDCD/LDED dst,src

Operation: dst ← src

rr ← rr – 1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then decremented. The contents of the source are unaffected.

LDCD refers to program memory and LDED refers to external data memory. The assembler
makes 'Irr' an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 16 E2 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and
external data memory location 1033H = 0DDH:

LDCD R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded

; into R8 and RR6 is decremented by one

; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ← RR6 – 1)

LDED R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded

; into R8 and RR6 is decremented by one (RR6 ← RR6 – 1)

; R8 = 0DDH, R6 = 10H, R7 = 32H

S3C880A/F880A SAM8 INSTRUCTION SET

6-55

LDCI/LDEI – Load Memory and Increment

LDCI/LDEI dst,src

Operation: dst ← src

rr ← rr + 1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then incremented automatically. The contents of the source are unaffected.

LDCI refers to program memory and LDEI refers to external data memory. The assembler
makes 'Irr' even number for program memory and odd number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 16 E3 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:

LDCI R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded

; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1)

; R8 = 0CDH, R6 = 10H, R7 = 34H

LDEI R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded

; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1)

; R8 = 0DDH, R6 = 10H, R7 = 34H

SAM8 INSTRUCTION SET S3C880A/F880A

6-56

LDCPD/LDEPD – Load Memory with Pre-Decrement

LDCPD/

LDEPD dst,src

Operation: rr ← rr – 1

dst ← src

These instructions are used for block transfers of data from program or data memory from the
register file. The address of the memory location is specified by a working register pair and is
first decremented. The contents of the source location are then loaded into the destination
location. The contents of the source are unaffected.

LDCPD refers to program memory and LDEPD refers to external data memory. The assembler
makes 'Irr' an even number for program memory and an odd number for external data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src | dst 2 16 F2 Irr r

Examples: Given: R0 = 77H, R6 = 30H, and R7 = 00H:

LDCPD @RR6,R0 ; (RR6 ← RR6 – 1)

; 77H (contents of R0) is loaded into program memory location

; 2FFFH (3000H – 1H)

; R0 = 77H, R6 = 2FH, R7 = 0FFH

LDEPD @RR6,R0 ; (RR6 ← RR6 – 1)

; 77H (contents of R0) is loaded into external data memory
; location 2FFFH (3000H – 1H)

; R0 = 77H, R6 = 2FH, R7 = 0FFH

S3C880A/F880A SAM8 INSTRUCTION SET

6-57

LDCPI/LDEPI – Load Memory with Pre-Increment

LDCPI/

LDEPI dst,src

Operation: rr ← rr + 1

dst ← src

These instructions are used for block transfers of data from program or data memory from the
register file. The address of the memory location is specified by a working register pair and is
first incremented. The contents of the source location are loaded into the destination location.
The contents of the source are unaffected.

LDCPI refers to program memory and LDEPI refers to external data memory. The assembler
makes 'Irr' an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src | dst 2 16 F3 Irr r

Examples: Given: R0 = 7FH, R6 = 21H, and R7 = 0FFH:

LDCPI @RR6,R0 ; (RR6 ← RR6 + 1)

; 7FH (contents of R0) is loaded into program memory

; location 2200H (21FFH + 1H)

; R0 = 7FH, R6 = 22H, R7 = 00H

LDEPI @RR6,R0 ; (RR6 ← RR6 + 1)

; 7FH (contents of R0) is loaded into external data memory

; location 2200H (21FFH + 1H)

; R0 = 7FH, R6 = 22H, R7 = 00H

SAM8 INSTRUCTION SET S3C880A/F880A

6-58

LDW – Load Word

LDW dst,src

Operation: dst ← src

The contents of the source (a word) are loaded into the destination. The contents of the source
are unaffected.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 10 C4 RR RR

10 C5 RR IR

opc dst src 4 12 C6 RR IML

Examples: Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH,
register 01H = 02H, register 02H = 03H, and register 03H = 0FH:

LDW RR6,RR4 → R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH

LDW 00H,02H → Register 00H = 03H, register 01H = 0FH,
register 02H = 03H, register 03H = 0FH

LDW RR2,@R7 → R2 = 03H, R3 = 0FH,

LDW 04H,@01H → Register 04H = 03H, register 05H = 0FH

LDW RR6,#1234H → R6 = 12H, R7 = 34H

LDW 02H,#0FEDH → Register 02H = 0FH, register 03H = 0EDH

In the second example, please note that the statement "LDW 00H,02H" loads the contents of
the source word 02H, 03H into the destination word 00H, 01H. This leaves the value 03H in the
general register 00H and the value 0FH in the register 01H.

Other examples show how to use the LDW instruction with various addressing modes and
formats.

S3C880A/F880A SAM8 INSTRUCTION SET

6-59

MULT – Multiply (Unsigned)

MULT dst,src

Operation: dst ← dst × src

The 8-bit destination operand (the even register of the register pair) is multiplied by the source
operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination
address. Both operands are treated as unsigned integers.

Flags: C: Set if the result is > 255; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if MSB of the result is a "1"; cleared otherwise.
V: Cleared.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 24 84 RR R

24 85 RR IR

24 86 RR IM

Examples: Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:

MULT 00H, 02H → Register 00H = 01H, register 01H = 20H, register 02H = 09H

MULT 00H, @01H → Register 00H = 00H, register 01H = 0C0H

MULT 00H, #30H → Register 00H = 06H, register 01H = 00H

In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in
the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The
16-bit product, 0120H, is stored in the register pair 00H, 01H.

SAM8 INSTRUCTION SET S3C880A/F880A

6-60

NEXT – Next

NEXT

Operation: PC ← @IP

IP ← IP + 2

The NEXT instruction is useful when implementing threaded-code languages. The program
memory word that is pointed to by the instruction pointer is loaded into the program counter. The
instruction pointer is then incremented by two.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 14 0F

Example: The following diagram shows one example of how to use the NEXT instruction.

Data

01
10

Before After

00451P

Address Data

0130PC 43
44
45

Address H
Address L
Address H

Address Data

Memory

130 Routine

00431P

Address Data

0120PC 43
44
45

Address H
Address L
Address H

Address Data

Memory

120 Next

S3C880A/F880A SAM8 INSTRUCTION SET

6-61

NOP – No Operation

NOP

Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are
executed in sequence in order to effect a timing delay of variable duration.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 FF

Example: When the instruction

NOP

is encountered in a program, no operation occurs. Instead, there happens a delay in instruction
execution.

SAM8 INSTRUCTION SET S3C880A/F880A

6-62

OR – Logical OR

OR dst,src

Operation: dst ← dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the
destination. The contents of the source are unaffected. The OR operation results in a "1" being
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is
stored.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 42 r r

6 43 r lr

opc src dst 3 10 44 R R

10 45 R IR

opc dst src 3 10 46 R IM

Examples: Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and
register 08H = 8AH:

OR R0,R1 → R0 = 3FH, R1 = 2AH

OR R0,@R2 → R0 = 37H, R2 = 01H, register 01H = 37H

OR 00H,01H → Register 00H = 3FH, register 01H = 37H

OR 01H,@00H → Register 00H = 08H, register 01H = 0BFH

OR 00H,#02H → Register 00H = 0AH

In the first example, if the working register R0 contains the value 15H and the register R1 the
value 2AH, the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores
the result (3FH) in the destination register R0.

Other examples show the use of the logical OR instruction with the various addressing modes
and formats.

S3C880A/F880A SAM8 INSTRUCTION SET

6-63

POP – Pop From Stack

POP dst

Operation: dst ← @SP

SP ← SP + 1

The contents of the location addressed by the stack pointer are loaded into the destination. The
stack pointer is then incremented by one.

Flags: No flags affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 10 50 R

10 51 IR

Examples: Given: Register 00H = 01H, register 01H = 1BH, SPH (0D8H) = 00H, SPL (0D9H) = 0FBH,
and stack register 0FBH = 55H:

POP 00H → Register 00H = 55H, SP = 00FCH

POP @00H → Register 00H = 01H, register 01H = 55H, SP = 00FCH

In the first example, the general register 00H contains the value 01H. The statement "POP 00H"
loads the contents of the location 00FBH (55H) into the destination register 00H and then
increments the stack pointer by one. The register 00H then contains the value 55H and the SP
points to the location 00FCH.

SAM8 INSTRUCTION SET S3C880A/F880A

6-64

POPUD – Pop User Stack (Decrementing)

POPUD dst,src

Operation: dst ← src

IR ← IR – 1

This instruction is used for user-defined stacks in the register file. The contents of the register file
location addressed by the user stack pointer are loaded into the destination. The user stack
pointer is then decremented.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 10 92 R IR

Example: Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and
register 02H = 70H:

POPUD 02H,@00H → Register 00H = 41H, register 02H = 6FH, register 42H = 6FH

If the general register 00H contains the value 42H and the register 42H the value 6FH, the
statement "POPUD 02H,@00H" loads the contents of the register 42H into the destination
register 02H. The user stack pointer is then decremented by one, leaving the value 41H.

S3C880A/F880A SAM8 INSTRUCTION SET

6-65

POPUI – Pop User Stack (Incrementing)

POPUI dst,src

Operation: dst ← src

IR ← IR + 1

The POPUI instruction is used for user-defined stacks in the register file. The contents of the
register file location addressed by the user stack pointer are loaded into the destination. The user
stack pointer is then incremented.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc src dst 3 10 93 R IR

Example: Given: Register 00H = 01H and register 01H = 70H:

POPUI 02H,@00H → Register 00H = 02H, register 01H = 70H, register 02H = 70H

If the general register 00H contains the value 01H and the register 01H the value 70H, the
statement "POPUI 02H,@00H" loads the value 70H into the destination general register 02H.
The user stack pointer (register 00H) is then incremented by one, changing its value from 01H to
02H.

SAM8 INSTRUCTION SET S3C880A/F880A

6-66

PUSH – Push to Stack

PUSH src

Operation: SP ← SP – 1

@SP ← src

A PUSH instruction decrements the stack pointer value and loads the contents of the source
(src) into the location addressed by the decremented stack pointer. The operation then adds the
new value to the top of the stack.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc src 2 10 (internal clock) 70 R

12 (external clock)

12 (internal clock)

14 (external clock) 71 IR

Examples: Given: Register 40H = 4FH, register 4FH = 0AAH, SPH = 00H, and SPL = 00H:

PUSH 40H → Register 40H = 4FH, stack register 0FFH = 4FH,

SPH = 0FFH, SPL = 0FFH

PUSH @40H → Register 40H = 4FH, register 4FH = 0AAH, stack register
0FFH = 0AAH, SPH = 0FFH, SPL = 0FFH

In the first example, if the stack pointer contains the value 0000H, and the general register 40H
the value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH.
It then loads the contents of the register 40H into the location 0FFFFH and adds this new value
to the top of the stack.

S3C880A/F880A SAM8 INSTRUCTION SET

6-67

PUSHUD – Push User Stack (Decrementing)

PUSHUD dst,src

Operation: IR ← IR – 1

dst ← src

This instruction is used to address user-defined stacks in the register file. PUSHUD decrements
the user stack pointer and loads the contents of the source into the register addressed by the
decremented stack pointer.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst src 3 10 82 IR R

Example: Given: Register 00H = 03H, register 01H = 05H, and register 02H = 1AH:

PUSHUD @00H,01H → Register 00H = 02H, register 01H = 05H, register 02H = 05H

If the user stack pointer (register 00H, for example) contains the value 03H, the statement
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The
01H register value, 05H, is then loaded into the register addressed by the decremented user
stack pointer.

SAM8 INSTRUCTION SET S3C880A/F880A

6-68

PUSHUI – Push User Stack (Incrementing)

PUSHUI dst,src

Operation: IR ← IR + 1

dst ← src

This instruction is used for user-defined stacks in the register file. PUSHUI increments the user
stack pointer and then loads the contents of the source into the register location addressed by
the incremented user stack pointer.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst src 3 10 83 IR R

Example: Given: Register 00H = 03H, register 01H = 05H, and register 04H = 2AH:

PUSHUI @00H,01H → Register 00H = 04H, register 01H = 05H, register 04H = 05H

If the user stack pointer (register 00H, for example) contains the value 03H, the statement
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H
register value, 05H, is then loaded into the location addressed by the incremented user stack
pointer.

S3C880A/F880A SAM8 INSTRUCTION SET

6-69

RCF – Reset Carry Flag

RCF RCF

Operation: C ← 0

The carry flag is cleared to logic zero, regardless of its previous value.

Flags: C: Cleared to "0".

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 CF

Example: Given: C = "1" or "0":

The instruction RCF clears the carry flag (C) to logic zero.

SAM8 INSTRUCTION SET S3C880A/F880A

6-70

RET – Return

RET

Operation: PC ← @SP

SP ← SP + 2

The RET instruction is normally used to return to the previously executed procedure at the end of
a procedure entered by a CALL instruction. The contents of the location addressed by the stack
pointer are popped into the program counter. The next statement that is executed is the one that
is addressed by the new program counter value.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 14 AF

Example: Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:

RET → PC = 101AH, SP = 00FEH

The statement "RET" pops the contents of the stack pointer location 00FCH (10H) into the high
byte of the program counter. The stack pointer then pops the value in the location 00FEH (1AH)
into the PC's low byte and the instruction at the location 101AH is executed. The stack pointer
now points to the memory location 00FEH.

S3C880A/F880A SAM8 INSTRUCTION SET

6-71

RL – Rotate Left

RL dst

Operation: C ← dst (7)

dst (0) ← dst (7)

dst (n + 1) ← dst (n), n = 0–6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7
is moved to the bit zero (LSB) position and also replaces the carry flag.

7 0

C

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 90 R

6 91 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:

RL 00H → Register 00H = 55H, C = "1"

RL @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if the general register 00H contains the value 0AAH (10101010B), the
statement "RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H
(01010101B) and setting the carry and overflow flags.

SAM8 INSTRUCTION SET S3C880A/F880A

6-72

RLC – Rotate Left Through Carry

RLC dst

Operation: dst (0) ← C

C ← dst (7)

dst (n + 1) ← dst (n), n = 0–6

The contents of the destination operand with the carry flag are rotated left one bit position. The
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

7 0

C

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during

rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 10 R

6 11 IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":

RLC 00H → Register 00H = 54H, C = "1"

RLC @01H → Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if the general register 00H has the value 0AAH (10101010B), the statement
"RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag
and the initial value of the C flag replaces bit zero of the register 00H, leaving the value 55H
(01010101B). The MSB of the register 00H resets the carry flag to "1", setting the overflow flag.

S3C880A/F880A SAM8 INSTRUCTION SET

6-73

RR – Rotate Right

RR dst

Operation: C ← dst (0)

dst (7) ← dst (0)

dst (n) ← dst (n + 1), n = 0–6

The contents of the destination operand are rotated right one bit position. The initial value of bit
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

7 0

C

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during

rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 E0 R

6 E1 IR

Examples: Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

RR 00H → Register 00H = 98H, C = "1"

RR @01H → Register 01H = 02H, register 02H = 8BH, C = "1"

In the first example, if the general register 00H contains the value 31H (00110001B), the
statement "RR 00H" rotates this value one bit position to the right. The initial value of bit zero is
moved to bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit
zero also resets the C flag to "1" and the sign flag and overflow flag are also set to "1".

SAM8 INSTRUCTION SET S3C880A/F880A

6-74

RRC – Rotate Right Through Carry

RRC dst

Operation: dst (7) ← C

C ← dst (0)

dst (n) ← dst (n + 1), n = 0–6

The contents of the destination operand and the carry flag are rotated right one bit position. The
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit
7 (MSB).

7 0

C

Flags: C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is "0" cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during

rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 C0 R

6 C1 IR

Examples: Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":

RRC 00H → Register 00H = 2AH, C = "1"

RRC @01H → Register 01H = 02H, register 02H = 0BH, C = "1"

In the first example, if the general register 00H contains the value 55H (01010101B), the
statement "RRC 00H" rotates this value one bit position to the right. The initial value of bit zero
("1") replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the
new value 2AH (00101010B) in the destination register 00H. The sign flag and the overflow flag
are both cleared to "0".

S3C880A/F880A SAM8 INSTRUCTION SET

6-75

SB0 – Select Bank 0

SB0

Operation: BANK ← 0

The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,
selecting bank 0 register addressing in the set 1 area of the register file.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 4F

Example: The statement

SB0

clears FLAGS.0 to "0", selecting bank 0 register addressing.

SAM8 INSTRUCTION SET S3C880A/F880A

6-76

SB1 – Select Bank 1

SB1

Operation: BANK ← 1

The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,
selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not
implemented in some KS88-series microcontrollers.)

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 5F

Example: The statement

SB1

sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.

S3C880A/F880A SAM8 INSTRUCTION SET

6-77

SBC – Subtract with Carry

SBC dst,src

Operation: dst ← dst – src – c

The source operand, along with the current value of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the source are
unaffected. Subtraction is performed by adding the two's-complement of the source operand to
the destination operand. In multiple precision arithmetic, this instruction permits the carry
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of
high-order operands.

Flags: C: Set if a borrow occurred (src > dst); cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign

of the result is the same as the sign of the source; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;

set otherwise, indicating a "borrow".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 32 r r

6 33 r lr

opc src dst 3 10 34 R R

10 35 R IR

opc dst src 3 10 36 R IM

Examples: Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and
register 03H = 0AH:

SBC R1,R2 → R1 = 0CH, R2 = 03H

SBC R1,@R2 → R1 = 05H, R2 = 03H, register 03H = 0AH

SBC 01H,02H → Register 01H = 1CH, register 02H = 03H

SBC 01H,@02H → Register 01H = 15H,register 02H = 03H, register 03H = 0AH

SBC 01H,#8AH → Register 01H = 95H; C, S, and V = "1"

In the first example, if the working register R1 contains the value 10H and the register R2 the
value 03H, the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value
("1") from the destination (10H) and then stores the result (0CH) in the register R1.

SAM8 INSTRUCTION SET S3C880A/F880A

6-78

SCF – Set Carry Flag

SCF

Operation: C ← 1

The carry flag (C) is set to logic one, regardless of its previous value.

Flags: C: Set to "1".

No other flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6 DF

Example: The statement

SCF

sets the carry flag to logic one.

S3C880A/F880A SAM8 INSTRUCTION SET

6-79

SRA – Shift Right Arithmetic

SRA dst

Operation: dst (7) ← dst (7)

C ← dst (0)

dst (n) ← dst (n + 1), n = 0–6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into the
bit position 6.

7 0

C

6

Flags: C: Set if the bit shifted from the LSB position (bit zero) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 6 D0 R

6 D1 IR

Examples: Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":

SRA 00H → Register 00H = 0CDH, C = "0"

SRA @02H → Register 02H = 03H, register 03H = 0DEH, C = "0"

In the first example, if the general register 00H contains the value 9AH (10011010B), the
statement "SRA 00H" shifts the bit values in the register 00H right one bit position. Bit zero ("0")
clears the C flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged).
This leaves the value 0CDH (11001101B) in the destination register 00H.

SAM8 INSTRUCTION SET S3C880A/F880A

6-80

SRP/SRP0/SRP1 – Set Register Pointer

SRP src

SRP0 src

SRP1 src

Operation: If src (1) = 1 and src (0) = 0 then: RP0 (3–7) ← src (3–7)

If src (1) = 0 and src (0) = 1 then: RP1 (3–7) ← src (3–7)

If src (1) = 0 and src (0) = 0 then: RP0 (4–7) ← src (4–7),

RP0 (3) ← 0

RP1 (4–7) ← src (4–7),

RP1 (3) ← 1

The source data bits one and zero (LSB) determine whether to write one or both of the register
pointers, RP0 and RP1. Bits 3–7 of the selected register pointer are written unless both register
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
src

opc src 2 6 31 IM

Examples: The statement

SRP #40H

sets the register pointer 0 (RP0) at location 0D6H to 40H and the register pointer 1 (RP1) at
location 0D7H to 48H.

The statement "SRP0 #50H" sets RP0 to 50H, and the statement "SRP1 #68H" sets RP1 to
68H.

S3C880A/F880A SAM8 INSTRUCTION SET

6-81

STOP – Stop Operation

STOP

Operation:

The STOP instruction stops both the CPU clock and the system clock causing the microcontroller
to enter Stop mode. During Stop mode, the contents of on-chip CPU registers, peripheral
registers, and I/O port control and data registers are retained. Stop mode can be released only
by an external reset operation. For the reset operation, the RESET pin must be held to Low level
until the required oscillation stabilization interval has elapsed.

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc 1 3 7F – –

Example: The statement

STOP

halts all microcontroller operations.

SAM8 INSTRUCTION SET S3C880A/F880A

6-82

SUB – Subtract

SUB dst,src

Operation: dst ← dst – src

The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. Subtraction is performed by adding the
two's complement of the source operand to the destination operand.

Flags: C: Set if a "borrow" occurred; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the

sign of the result is of the same as the sign of the source operand; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;

set otherwise, indicating a "borrow".

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst |
src

2 6 22 r r

6 23 r lr

opc src dst 3 10 24 R R

10 25 R IR

opc dst src 3 10 26 R IM

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

SUB R1,R2 → R1 = 0FH, R2 = 03H

SUB R1,@R2 → R1 = 08H, R2 = 03H

SUB 01H,02H → Register 01H = 1EH, register 02H = 03H

SUB 01H,@02H → Register 01H = 17H, register 02H = 03H

SUB 01H,#90H → Register 01H = 91H; C, S, and V = "1"

SUB 01H,#65H → Register 01H = 0BCH; C and S = "1", V = "0"

In the first example, if the working register R1 contains the value 12H and the register R2
contains the value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the
destination value (12H), storing the result (0FH) in the destination register R1.

S3C880A/F880A SAM8 INSTRUCTION SET

6-83

SWAP – Swap Nibbles

SWAP dst

Operation: dst (0 – 3) ↔ dst (4 – 7)

The contents of the lower four bits and the upper four bits of the destination operand are
swapped.

7 04 3

Flags: C: Undefined.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst

opc dst 2 8 F0 R

8 F1 IR

Examples: Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:

SWAP 00H → Register 00H = 0E3H

SWAP @02H → Register 02H = 03H, register 03H = 4AH

In the first example, if the general register 00H contains the value 3EH (00111110B), the
statement "SWAP 00H" swaps the lower and the upper four bits (nibbles) in the 00H register,
leaving the value 0E3H (11100011B).

SAM8 INSTRUCTION SET S3C880A/F880A

6-84

TCM – Test Complement under Mask

TCM dst,src

Operation: (NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask). The TCM statement complements the destination operand, which is then ANDed with the
source mask. The zero (Z) flag can then be checked to determine the result. The destination and
source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 62 r r

6 63 r lr

opc src dst 3 10 64 R R

10 65 R IR

opc dst src 3 10 66 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

TCM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "1"

TCM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"

TCM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "1"

TCM 00H,@01H → Register 00H = 2BH, register 01H = 02H,
register 02H = 23H, Z = "1"

TCM 00H,#34 → Register 00H = 2BH, Z = "0"

In the first example, if the working register R0 contains the value 0C7H (11000111B) and the
register R1 the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the
destination register for a "1" value. Because the mask value corresponds to the test bit, the Z
flag is set to logic one and can be tested to determine the result of the TCM operation.

S3C880A/F880A SAM8 INSTRUCTION SET

6-85

TM – Test under Mask

TM dst,src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to
determine the result. The destination and source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 72 r r

6 73 r lr

opc src dst 3 10 74 R R

10 75 R IR

opc dst src 3 10 76 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

TM R0,R1 → R0 = 0C7H, R1 = 02H, Z = "0"

TM R0,@R1 → R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"

TM 00H,01H → Register 00H = 2BH, register 01H = 02H, Z = "0"

TM 00H,@01H → Register 00H = 2BH, register 01H = 02H,
register 02H = 23H, Z = "0"

TM 00H,#54H → Register 00H = 2BH, Z = "1"

In the first example, if the working register R0 contains the value 0C7H (11000111B) and the
register R1 the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the
destination register for a "0" value. Because the mask value does not match the test bit, the Z
flag is cleared to logic zero and can be tested to determine the result of the TM operation.

SAM8 INSTRUCTION SET S3C880A/F880A

6-86

WFI – Wait for Interrupt

WFI

Operation:

The CPU is effectively halted until an interrupt occurs, except in the case that DMA transfers can
still take place during this wait state. The WFI status can be released by an internal interrupt,
including a fast interrupt .

Flags: No flags are affected.

Format:

Bytes Cycles Opcode
(Hex)

opc 1 6n 3F
(n = 1, 2, 3, …)

Example: The following sample program structure shows the sequence of operations that follow a "WFI"
statement:

EI
WFI
(Next instruction)

Main program
.
.
.

.

.

.
Interrupt occurs

Interrupt service routine
.
.
.
Clear interrupt flag
IRET

Service routine completed

(Enable global interrupt)
(Wait for interrupt)

S3C880A/F880A SAM8 INSTRUCTION SET

6-87

XOR – Logical Exclusive OR

XOR dst,src

Operation: dst ← dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

Bytes Cycles Opcode
(Hex)

Addr Mode
dst src

opc dst | src 2 6 B2 r r

6 B3 r lr

opc src dst 3 10 B4 R R

10 B5 R IR

opc dst src 3 10 B6 R IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and
register 02H = 23H:

XOR R0,R1 → R0 = 0C5H, R1 = 02H

XOR R0,@R1 → R0 = 0E4H, R1 = 02H, register 02H = 23H

XOR 00H,01H → Register 00H = 29H, register 01H = 02H

XOR 00H,@01H → Register 00H = 08H, register 01H = 02H, register 02H = 23H

XOR 00H,#54H → Register 00H = 7FH

In the first example, if the working register R0 contains the value 0C7H and the register R1
contains the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with
the R0 value, storing the result (0C5H) in the destination register R0.

SAM8 INSTRUCTION SET S3C880A/F880A

6-88

NOTES

S3C880A/F880A CLOCK CIRCUITS

7-1

7 CLOCK CIRCUITS

OVERVIEW

The clock frequency generated by an external crystal or ceramic resonator may range from 0.5 MHz to 8 MHz.
The maximum CPU clock frequency is 8 MHz. The XIN and XOUT pins connect the external oscillation source to

the on-chip clock circuit.

A separate external L-C resonator circuit generates a clock pulse for the on-screen display (OSD) block.

SYSTEM CLOCK CIRCUIT

The system clock circuit has the following components:

— External crystal or ceramic oscillation source

— Oscillator stop and wake-up functions

— Programmable frequency divider for the CPU clock (fOSC divided by 1, 2, 8, or 16)

— Clock circuit control register, CLKCON

S3C880A/F880A

XIN

XOUT

C1

C2

NOTE: In XIN, XOUT pin, 10 pF load capacitor is built-in.

Figure 7-1. Main Oscillator Circuit (External Crystal or Ceramic Resonator)

CLOCK CIRCUITS S3C880A/F880A

7-2

CLOCK STATUS DURING POWER-DOWN MODES

The two power-down modes, Stop mode and Idle mode, affect system clock oscillation as follows:

— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator started, by a reset
operation or by an external interrupt (with RC-delay noise filter).

— In Idle mode, the internal clock signal is gated off to the CPU and to all peripherals except for the OSD block,
Timer A counter, PWM, and capture (CAPA), which are inactive. Idle mode is released by a reset or by all
interrupt.

Main
OSC

Noise
Filter

Oscillator
Wake-up

Oscillator
Stop

CLKCON.7

INT Pin (1)

Stop
Instruction

NOTES:
1. An external interrupt (with RC-delay noise filter) can be used to release Stop mode and
 "wake up" the main oscillator. This interrupt type includes INT0-INT3 and CAPA input.
2. For S3F880A, the CLKCON signature code (CLKCON.0-CLKCON.2) should not be
 '101B' (because no subsystem clock is implemented)

CLKCON.3, .4

1/2

1/8

1/16

M
U
X

CLKCON.0-.2
3-Bit Signature Code (2)

M
U
X

CPU Clock

CLKCON.5, .6

Figure 7-2. System Clock Circuit Diagram

S3C880A/F880A CLOCK CIRCUITS

7-3

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in set 1 at address D4H. It is read/write addressable and
has the following functions:

— Oscillator IRQ wake-up function enable/disable

— Main oscillator stop control

— Oscillator frequency divide-by value: non-divided, 2, 8, or 16

— System clock signal selection

The CLKCON register controls whether or not an external interrupt can be used to trigger a power-down mode
release. (This is called the "IRQ wake-up" function.) The IRQ wake-up enable bit is CLKCON.7.

After a reset, the external interrupt oscillator wake-up bit is set to "1", the main oscillator is activated, and the
fOSC/16 (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the CPU
clock speed to fOSC, fOSC/2, or fOSC/8.

For the S3C880A/F880A, the CLKCON.0–CLKCON.2 system clock signature code should be any value other
than '101B'. (This setting is invalid because a subsystem clock is not implemented.) The reset value for the clock
signature code is '000B'.

System Clock Control Register (CLKCON)
D4H, Set 1, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Divide-by selection bits for
CPU clock frequency:
00 = f OSC/16
01 = f OSC/8
10 = f OSC/2
11 = f OSC/(non-divided)

System clock selection bits: (note)

101B = Invalid selection
Other value = Normal operating mode

Main oscillator stop control bits: (note)

00 = No effect
01 = No effect
10 = Stop main oscillator
11 = No effect

Oscillator IRQ wake-up enable bit:
0 = Enable IRQ for main system
 oscillator wake-up in
 power-down mode
1 = Disable IRQ for main system
 Oscillator wake-up in
 power-down mode

NOTE: Not used in S3C880A.
These setting is valid in subsystem clock operation.
S3C880A is not implemented subsystem operation function.

Figure 7-3. System Clock Control Register (CLKCON)

CLOCK CIRCUITS S3C880A/F880A

7-4

L-C Oscillator Circuit

The L-C oscillator circuit has the following components:

— External L-C oscillator with a 5-8 MHz frequency range

— Oscillator clock divider value (CHACON.4 and CHACON.5)

— OSCIN and OSCOUT pins

— On/off control bit (DSPCON.0)

Red-green-blue (RGB) color outputs, as well as display rates and positions, are determined by the L-C clock
signal. This signal is scaled by the dot and column counter. The clock signal equals to the OSD oscillator clock
divided by the clock divider value. The clock divider value is determined by the horizontal character size settings
in the CHACON register.

The rate at which each new display line is generated is determined strictly by the H-sync input. The rate at which
each new frame (screen) is generated is determined by the V-sync input.

NOTE: For stable on screen display operation, the CPU clock frequency should faster than L-C (OSD) clock.

S3C880A/F880A

OSCIN

OSDOUT

C1 = 20 pF

C2 = 20 pF

L

Figure 7-4. L-C Oscillator Circuit for OSD

S3C880A/F880A CLOCK CIRCUITS

7-5

L-C oscillator Operating Condition

To operate the LC oscillator, the following conditions must be satisfied.

— LC oscillator operation must be enabled by setting DSPCON.0 to “1”.

— V-sync signal and H-sync signal must be input.

— LC oscillator must be operated except at the range of H-sync blanking and V-sync blanking.

V-sync Signal

H-sync Signal

L-C OSC on

L-C OSC off

V-sync Blanking Range

H-sync Blanking Range

RELATION BETWEEN L-C OSCILLATOR AND CPU CLOCK

For normal On Screen Display, L-C oscillator less than CPU Clock + 10 % is better. For 8 MHz CPU clock, an
active L-C oscillator clock range is lower than 9MHz.

CLOCK CIRCUITS S3C880A/F880A

7-6

NOTES

S3C880A/F880A RESETRESET and POWER-DOWN

8-1

8 RESETRESET and POWER-DOWN

SYSTEM RESETRESET

OVERVIEW

During a power-on reset, the voltage at VDD is High level and the RESET pin is forced to Low level. The RESET
signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This brings the
S3C880A/F880A into a normal operating status.

The RESET pin must be held to Low level for a minimum time interval after the power supply comes within
tolerance in order to allow time for internal CPU clock oscillation to stabilize. The minimum time required for
oscillation stabilization for a reset is 1 millisecond.

When a reset occurs during the normal operation (that is, when VDD and RESET are High level), the RESET pin

is forced Low and the reset operation starts. All system and peripheral control registers are set to their default
hardware reset values (see Table 8-1). In summary, the following sequence of events occurs during a reset
operation:

— All interrupts are disabled.

— The watchdog function (basic timer) is enabled.

— Ports P0.0–P0.5, P1.6–P1.7 and P2are set to input mode, and P0.6–P0.7, P1.0–P1.5 and P3, these ports set
to N-channel open-drain output mode.

— Peripheral control and data registers are disabled and reset to their initial control values.

— The program counter is loaded with the ROM's reset address, 0100H.

— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in the ROM
location 0100H (and 0101H) is fetched and executed.

NOTE

You can program the duration of the oscillation stabilization interval by making the appropriate settings to
the basic timer control register, BTCON, before entering Stop mode. Also, you if you do not want to use
the basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs),
you can disable it by writing '1010B' to the upper nibble of BTCON.

RESETRESET and POWER-DOWN S3C880A/F880A

8-2

HARDWARE RESET VALUES

Tables 8-1 through 8-3 list the reset values for CPU and system registers, peripheral control registers, and
peripheral data registers after a reset operation. The following notation is used to represent reset values:

— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.

— An 'x' means that the bit value is undefined after a reset.

— A dash ('–') means that the bit is either not used or not mapped.

Table 8-1. Set 1 Register Values after a Reset

Register Name Mnemonic Address Bit Values After a Reset

Dec Hex 7 6 5 4 3 2 1 0

Timer 0 counter T0CNT 208 D0H 0 0 0 0 0 0 0 0

Timer 0 data register T0DATA 209 D1H 1 1 1 1 1 1 1 1

Timer 0 control register T0CON 210 D2H 0 0 0 0 0 0 0 0

Basic timer control register BTCON 211 D3H 0 0 0 0 0 0 0 0

Clock control register CLKCON 212 D4H 0 0 0 0 0 0 0 0

System flags register FLAGS 213 D5H x x x x x x 0 0

Register pointer 0 RP0 214 D6H 1 1 0 0 0 – – –

Register pointer 1 RP1 215 D7H 1 1 0 0 1 – – –

Stack pointer (high byte) SPH 216 D8H x x x x x x x x

Stack pointer (low byte) SPL 217 D9H x x x x x x x x

Instruction pointer (high byte) IPH 218 DAH x x x x x x x x

Instruction pointer (low byte) IPL 219 DBH x x x x x x x x

Interrupt request register IRQ 220 DCH 0 0 – 0 0 0 0 0

Interrupt mask register IMR 221 DDH x x – x x x x x

System mode register SYM 222 DEH 0 – 0 x x x 0 0

Register page pointer PP 223 DFH 0 0 0 0 0 0 0 0

NOTE: Although it is not used for the S3C880A/F880A, bit 5 of the SYM register should always be "0". If this bit is
accidentally written to "1" by software, a system malfunction may occur.

S3C880A/F880A RESETRESET and POWER-DOWN

8-3

Table 8-2. Set 1, Bank 0 Register Values after a Reset

Register Name Mnemonic Address Bit Values After a Reset

Dec Hex 7 6 5 4 3 2 1 0

Port 0 data register P0 224 E0H 0 0 0 0 0 0 0 0

Port 1 data register P1 225 E1H 0 0 0 0 0 0 0 0

Port 2 data register P2 226 E2H 0 0 0 0 0 0 0 0

Port 3 data register P3 227 E3H – – – – – – 0 0

Port 0 control register (high byte) P0CONH 228 E4H 1 1 1 1 0 0 0 0

Port 0 control register (low byte) P0CONL 229 E5H 0 0 0 0 0 0 0 0

Port 1 control register (high byte) P1CONH 230 E6H 0 0 0 0 1 1 1 1

Port 1 control register (low byte) P1CONL 231 E7H 1 1 1 1 1 1 1 1

Port 2 control register (high byte) P2CONH 232 E8H 0 0 0 0 0 0 0 0

Port 2 control register (low byte) P2CONL 233 E9H 0 0 0 0 0 0 0 0

Location EAH in set 1, bank 0, are not mapped.

Port 3 control register (low byte) P3CONL 235 EBH – – – – 1 1 1 1

Locations ECH–EFH in set 1, bank 0, are not mapped.

Timer A data register TADATA 240 F0H 0 0 0 0 0 0 0 0

Location F1H in set 1, bank 0, are not mapped.

Timer A control register TACON 242 F2H 0 0 0 0 0 0 0 –

STOP control register STCON 238 F3H 0 0 0 0 0 0 0 0

PWM0 data register (main byte) PWM0 244 F4H 1 1 1 1 1 1 1 1

PWM0 data register (extension byte) PWM0EX 245 F5H 0 0 0 0 0 0 – –

PWM1 data register (main byte) PWM1 246 F6H 1 1 1 1 1 1 1 1

PWM1 data register (extension byte) PWM1EX 247 F7H 0 0 0 0 0 0 – –

PWM control register PWMCON 248 F8H 0 0 0 0 0 – 0 0

Capture A data register CAPA 249 F9H 0 0 0 0 0 0 0 0

A/D converter control register ADCON 250 FAH – – 0 0 x 0 0 0

A/D conversion data register ADDATA 251 FBH x x x x x x x x

Location FCH in set 1, bank 0, are not mapped.

Basic timer counter BTCNT 253 FDH 0 0 0 0 0 0 0 0

External memory timing register EMT 254 FEH 0 0 0 0 0 0 0 –

Interrupt priority register IPR 255 FFH x x – x x x x x

RESETRESET and POWER-DOWN S3C880A/F880A

8-4

Table 8-2. Set 1, Bank 1 Register Values after a Reset

Register Name Mnemonic Address Bit Values After a Reset

Dec Hex 7 6 5 4 3 2 1 0

OSD fringe/border control register 1 OSDFRG1 224 E0H 0 0 0 0 0 0 0 0

OSD fringe/border control register 2 OSDFRG2 225 E1H 0 0 0 0 0 0 0 0

OSD smooth control register 1 OSDSMH1 226 E2H 0 0 0 0 0 0 0 0

OSD smooth control register 2 OSDSMH2 227 E3H – – – – 0 0 0 0

OSD space color control register OSDCOL 236 E4H – – – – 0 0 0 0

OSD field control register OSDFLD 237 E5H – – x 0 0 1 1 0

OSD palette color mode R 1 OSDPLTR1 230 E6H 0 0 0 0 0 0 0 0

OSD palette color mode R 2 OSDPLTR2 231 E7H 1 1 1 1 1 1 1 1

OSD palette color mode G 1 OSDPLTG1 232 E8H 1 1 1 1 0 0 0 0

OSD palette color mode G 2 OSDPLTG2 233 E9H 1 1 1 1 0 0 0 0

OSD palette color mode B 1 OSDPLTB1 234 EAH 1 1 0 0 1 1 0 0

OSD palette color mode B 2 OSDPLTB2 235 EBH 1 1 0 0 1 1 0 0

Locations ECH–EFH in set 1, bank 1, are not mapped.

OSD character size control register CHACON 240 F0H 0 0 0 0 0 0 0 0

OSD fade control register FADECON 241 F1H 0 0 0 0 0 0 0 0

OSD row position control register ROWCON 242 F2H 0 0 0 0 0 0 0 0

OSD column position control register CLMCON 243 F3H 0 0 0 0 0 0 0 0

OSD background color control register COLCON 244 F4H 0 0 0 0 0 0 0 0

On-screen display control register DSPCON 245 F5H 0 0 0 0 0 0 0 0

Halftone signal control register HTCON 246 F6H 0 0 0 0 0 0 0 0

V-SYNC blank control register VSBCON 252 F7H – – – 0 1 0 0 1

PWM2 data register PWM2 248 F8H x x x x x x x x

PWM3 data register PWM3 249 F9H x x x x x x x x

PWM4 data register PWM4 250 FAH x x x x x x x x

PWM5 data register PWM5 251 FBH x x x x x x x x

OSD color buffer COLBUF 247 FCH – – – x x x x x

Locations FDH–FFH in set 1, bank 1, are not mapped.

Table 8-3. Page 1 Video RAM Register Values after a Reset

Register Name Address Bit Values After a Reset

7 6 5 4 3 2 1 0

OSD video RAM 00H–FBH x x x x x x x x

S3C880A/F880A RESETRESET and POWER-DOWN

8-5

POWER-DOWN MODES

STOP MODE

Stop mode is invoked by the instruction Stop (opcode 7FH) however Stop available state must be set by value
"10100101b" in "STCON" register before Stop instruction is invoked. If Stop instruction (opcode 7FH) is executed
in Stop not available state (STCON = other value except "10100101b") CPU go to RESET address. After Stop
instruction is executed the state return to Stop not available state.
In Stop mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops
and the supply current is reduced to less than maximum 10 µA. All system functions stop when the clock
"freezes," but data stored in the internal register file is retained. Stop mode can be released in one of two ways:
by a RESET signal or by an external interrupt.

Using RESETRESET to Release Stop Mode

Stop mode is released when the RESET signal goes inactive (High level) from active (Low level) state.
All system and peripheral control registers are reset to their default values and the contents of all data registers
are retained. A reset operation automatically selects a slow clock (1/16) because CLKCON.3 and CLKCON.4 are
cleared to '00B'. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system
initialization routine by fetching the address stored in the ROM location 0100H.

Using an External Interrupt to Release Stop Mode

Two kinds of external interrupts with an RC-delay noise filter circuit can be used to release Stop mode. One
external interrupts in the S3C880A/F880A interrupt structure that meet this requirement are INT0–INT3 (P1.0–
P1.3) and the other one is V-sync input. Which interrupt you can use to release Stop mode in a given situation
depends on the microcontroller's current internal operating mode.

Note that when Stop mode is released by an external interrupt, the current values in system and peripheral
control registers are not changed. When you use an interrupt to release Stop mode, the CLKCON.3 and
CLKCON.4 register values remain unchanged, and the currently selected clock value is used. If you use an
external interrupt for Stop mode release, you can also program the duration of the oscillation stabilization
interval. To do this, you must make the appropriate control and clock settings before entering Stop mode.

The external interrupt is serviced when a Stop mode release occurs. Following the IRET from the service routine,
the instruction immediately following the one that initiated Stop mode is executed.

RESETRESET and POWER-DOWN S3C880A/F880A

8-6

IDLE MODE

Idle mode is invoked by the instruction IDLE (opcode 6FH). In Idle mode, the CPU operations are halted while
selected peripherals remain active. During Idle mode, the internal clock signal is gated off to the CPU and all
peripherals except the OSD block timer A counter, PWM and capture (CAPA). Port pins retain the mode (input or
output) they had at the time Idle mode was entered.

There are two ways to release Idle mode:

1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents
of all data registers are retained. The reset automatically selects a slow clock (1/16) because CLKCON.3 and
CLKCON.4 are cleared to '00B'. If interrupts are masked, a reset is the only way to release Idle mode.

2. Activate any enabled interrupt, causing Idle mode to be released. When you use an interrupt to release Idle
mode, the CLKCON.3 and CLKCON.4 register values remain unchanged, and the currently selected clock
value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction
immediately following the one that initiated Idle mode is executed.

NOTE

Only external interrupts can be used to release Stop mode. To release Idle mode, you can use either
type of interrupt (internal or external).

0.1-10 µF

Internal
Recommand

External Circuit

200 kΩ

Figure 8-1. Reset Circuit Application

S3C880A/F880A RESETRESET and POWER-DOWN

8-7

++ PROGRAMMING TIP — Enter to Stop Mode

The following sample program shows you recommended entering Stop mode for the S3C880A/F880A.

•
•
•
ld STCON, #10100101b ; After this instruction is executed

; Stop instruction is available
STOP
NOP ; NOP need more than three after STOP instruction
NOP
NOP
•
•
•

Stop Available
State

STCON
#10100101b

STON
Instruction

Stop State
Enable

Disable

Enable

Disable

Stop available state is released
automatically after STOP
instruction.

Figure 8-2. Stop State Timing Diagram

RESETRESET and POWER-DOWN S3C880A/F880A

8-8

++ PROGRAMMING TIP — Initial Settings for Address Space, Vectors, and Peripherals

The following sample program shows you recommended initial settings for the S3C880A/F880A address space,
interrupt vectors, and peripheral functions. Program comments guide you through the required steps:

•
•
•

OSD_REG EQU 0C8H ; OSD working register area
OSD_FLG EQU 8
DSP_TYP EQU 9
VRAMAD EQU 0CH
WORK1 EQU 0BH ; General-purpose area
WORK2 EQU 0AH ; General-purpose area
REMOCON EQU 3FH ; CAPA data save register

•
•
•
ORG 02H
DW CAPA_INT ; Capture A interrupt

ORG 0BEH
DW TIMERA_INT ; Timer A interrupt

ORG 0C0H
DW P10_INT ; P1.0 external interrupt
DW P11_INT ; P1.1 external interrupt
DW OSD ROW_INT ; OSD ROW interrupt
DW P12_INT ; P1.2 external interrupt
DW P13_INT ; P1.3 external interrupt

ORG 0D4H
DW V_SYNC_INT ; V-sync interrupt

ORG 0FCH
DW TIMER0_INT ; Timer 0 interrupt

ORG 0100H

START DI ; Disable all interrupts
LD BTCON,#0AAH ; Disable the watchdog timer
LD CLKCON,#98H ; Non-divided clock
CLR SYM ; Disable global and fast interrupts
CLR SPL ; Stack pointer low byte ← "0"

; Stack area will start at 0FFH
SB1 ; Select bank 1

(Continued on next page)

S3C880A/F880A RESETRESET and POWER-DOWN

8-9

++ PROGRAMMING TIP — Initial Settings for Address Space, Vectors, and Peripherals (Continued)

; Enable OSD ROW interrupt
LD HTCON,#2AH ; Enable V-sync interrupt
LD DSPCON,#0A0H ; Disable OSD logic
SB0 ; Select bank 0
LD PWMCON,#0E9H ; Prescaler ← 4

; Enable PWM counter
; Enable capture A interrupt

LD IPR,#0AEH ; Interrupt priority settings
; IRQ6 > 7 > 3 > 2 > 0 > 1

LD IMR,#0CCH ; Enable level 2, 3, 6, and 7 interrupts
LD P0CONH,#00H ; Input mode
LD P0CONL,#0FFH ; Push-pull output mode
LD P1CONH,#0FFH ; Output mode
LD P1CONL,#00H ; Input mode
LD P2CONH,#00H ; Input mode
LD P2CONL,#00H ; Input mode
LD P3CONL,#00H ; Input mode

LD TACON,#54H ; Prescaler ← 6
; Clock source ← CPU clock / 1000
; Enable timer A interrupt
; Interval timer mode

LD TADATA,#03H ; 4-millisecond interrupt

EI

MAIN NOP
NOP
•
•
•
NOP
JP T,MAIN ; Jump MAIN

CAPA_INT: ; CAPA interrupt service
PUSH PP ; Save page pointer to stack
PUSH RP0 ; Save register pointer 0 to stack
PUSH RP1 ; Save register pointer 1 to stack
•
•
•
LD REMOCON,CAPA ; REMOCON ← CAPA data
POP RP1 ; Restore register pointer 1 value
POP RP0 ; Restore register pointer 0 value
POP PP ; Restore page pointer value
IRET ; Return from interrupt service routine

(Continued on next page)

RESETRESET and POWER-DOWN S3C880A/F880A

8-10

++ PROGRAMMING TIP — Initial Settings for Address Space, Vectors, and Peripherals (Continued)

TIMERA_INT PUSH PP ; TIMER_A interrupt service
PUSH RP0
PUSH RP1
•
•
•
LD TACON, #54H ; Clear pending bit
POP RP1
POP RP0
POP PP
IRET ; Return from interrupt service routine

V_SYNC_INT PUSH PP ; V_SYNC interrupt service
PUSH RP0
PUSH RP1
•
•
•
SB1
LD HTCON, #3AH ; Clear pending bit
POP RP1
POP RP0
POP PP
IRET ; Return from interrupt service routine

OSD ROW_INT:
PUSH PP
PUSH RP0
PUSH RP1
•
•
•
SB1
LD HTCON, #2BH ; Clear pending bit
POP RP1
POP RP0
POP PP
IRET

P10_INT: ; P1.0 external interrupt

P11_INT: ; P1.1 external interrupt

P12_INT: ; P1.2 external interrupt

P13_INT: ; P1.3 external interrupt

TIMER0_INT: ; Timer 0 interrupt

IRET ; Return from interrupt service routine

S3C880A/F880A I/O PORTS

9-1

9 I/O PORTS

OVERVIEW

The S3C880A/F880A and the S3C880A/F880A microcontrollers have four I/O ports with a total of 26 pins. Up to
10 pins can be configured as n-channel open-drain outputs. Of these 10 open-drain pins, 6 pins can withstand
loads of up to 6 volts and 4 pins can withstand loads of up to 5 volts.

The CPU accesses ports by directly writing or reading port registers. No special I/O instructions are required.
Table 9-1 gives you a summary of port functions:

Table 9-1. S3C880A/F880A Port Configuration Overview

Port Configuration Options Programmability

0 General I/O port, configurable for digital input or
push-pull output. Pins P0.6–P0.7 are multiplexed to
support alternative function.

Bit programmable

1 General I/O port, configurable for digital input or
n-channel open-drain output. Pins 1.0–P1.5 can
withstand up to 6-volt loads. Pins 1.0–P1.3 are
multiplexed to support alternative functions.

Bit programmable

2 General I/O port, configurable for n-channel open-drain
or push-pull output mode by software. Pins can withstand
up to 5-volt loads. Each pin has an alternative function.

Bit programmable

3 General 2-bit I/O port, configurable for digital input or
n-channel open-drain output. Pins can withstand up to
5 V. P3.0–P3.1 can be alternately used as external
interrupt inputs ADC0–ADC1.

Bit programmable

I/O PORTS S3C880A/F880A

9-2

PORT DATA REGISTERS

Data registers for ports 0–3 have the structure shown in Figure 9-1. Table 9-2 gives you an overview of the port
data register locations:

Table 9-2. Port Data Register Summary

Register Name Mnemonic Decimal Hex Location R/W

Port 0 data register P0 224 E0H Set 1, bank 0 R/W

Port 1 data register P1 225 E1H Set 1, bank 0 R/W

Port 2 data register P2 226 E2H Set 1, bank 0 R/W

Port 3 data register P3 227 E3H Set 1, bank 0 R/W

I/O Port n Data Register (n = 0-3)

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Pn.0Pn.4 Pn.1Pn.2Pn.3Pn.7 Pn.5Pn.6

Figure 9-1. Port Data Register Format

Port 0

Port 0 is a bit-programmable general I/O port. Port 0 is accessed directly by writing or reading the port 0 data
register, P0 (E0H, set 1, bank 0).

The port 0 pins are configured by bit-pair settings in the P0CONH and P0CONL registers. P0CONH controls I/O
for the upper byte pins and P0CONL controls I/O for the lower byte pins.

S3C880A/F880A I/O PORTS

9-3

Port 0 Control Register, High Byte (P0CONH)
E4H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

P0.7/ADC2 P0.6/ADC2 P0.4P0.5

P0CONH Pin Configuration Settings:

00
01
10
11

Input mode
Input mode (P0.4-P0.5), ADC input mode (P0.6-P0.7)
Push-pull output mode (P0.4-P0.5), open-drain output mode (P0.6-P0.7)
Push-pull output mode (P0.4-P0.5), open-drain output mode (P0.6-P0.7)

Figure 9-2. Port 0 High-Byte Control Register (P0CONH)

Port 0 Control Register, Low Byte (P0CONL)
E5H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

P0.3 P0.2 P0.1 P0.0

P0CONL Pin Configuration Settings:

00
01
10
11

Input mode
Input mode
N-channel open-drain output mode (5V load capacity)
Push-pull output mode

Figure 9-3. Port 0 Low-Byte Control Register (P0CONL)

I/O PORTS S3C880A/F880A

9-4

PORT 1

Port 1 is a bit-programmable general I/O port. Port 1 is accessed directly by writing or reading the port 1 data
register, P1 (E1H, set 1, bank 0). The upper byte (P1.4–P1.7) and the lower byte (P1.0–P1.3) are controlled by
the P1CONH and P1CONL registers, respectively. P1CONH is located at E6H in set 1, bank 0 and P1CONL is
located at E7H in set 1, bank 0.

Port 1 Control Register, High Byte (P1CONH)
E6H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

P1.4

P1CONH Pin Configuration Settings:

00
01
10

11

Input mode
Inputmode (P1.4-P1.6), Timer 0 clock input: T0CK (P1.7)
P1.4-P1.5: N-channel open-drain mode (6V load capacity),
P1.6-P1.7: Push-pull output mode
P1.4-P1.5: N-channel open-drain mode (6V load capacity),
P1.6-P1.7: Push-pull output mode

P1.5P1.6P1.7/T0CK

Figure 9-4. Port 1 High-Byte Control Register (P1CONH)

Port 1 Control Register, Low Byte (P1CONL)
E7H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

P1.0/INT0

P1CONL Pin Configuration Settings:

00
01
10
11

Input mode: Interrupt disabled
Input mode: Interrupt on rising edge
Input mode: Interrupt on falling edge
N-channel open-drain output mode (6V load capacity)

P1.1/INT1P1.2/INT2P1.3/INT3

Figure 9-5. Port 1 Low-Byte Control Register (P1CONL)

S3C880A/F880A I/O PORTS

9-5

PORT 2

Port 2 is a bit-programmable general I/O port. Port 2 is accessed directly by writing or reading the port 2 data
register, P2 (E2H, set 1, bank 0). The upper byte (P2.4–P2.7) and the lower byte (P2.0–P2.3) are controlled by
the P2CONH and P2CONL registers, respectively.

A reset clears the port 2 control registers to '00H', configuring the port 2 pins to normal input mode (P2.0–P2.3)
and input mode (2.4–P2.7). You use P2CONH and P2CONL register settings to configure individual port 2 pins:

Port 2 Control Register, High Byte (P2CONH)
E8H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

P2.4/PWM4

P2CONH Pin Configuration Settings:

00
01
10
11

Input mode
N-channel open-drain output mode (5V load capacity)
Push-pull output mode
P2.4: PWM4 output mode (open-drain type)
P2.5: PWM5 output mode (push-pull circuit type)
P2.6: Timer 0 output mode (PWM or Interval; open-drain type)
P2.7: OSD half-tone output mode (push-pull circuit type)

P2.5/PWM0P2.6/T0P2.7/OSDHT

Figure 9-6. Port 2 High-Byte Control Register (P2CONH)

Port 2 Control Register, Low Byte (P2CONL)
E9H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

P2.0/PWM5

P2CONL Pin Configuration Settings:

00
01
10
11

Normal input mode
N-channel open-drain output mode with 5V load capacity
PWM output mode: N-channel open-drain type
Push-pull output mode

P2.1/PWM1P2.2/PWM2P2.3/PWM3

Figure 9-7. Port 2 Low-Byte Control Register (P2CONL)

I/O PORTS S3C880A/F880A

9-6

PORT 3

Port 3 is a bit-programmable general I/O port. Only two bits are used. Port 3 is accessed directly by writing or
reading the port 3 data register, P3 (E3H, set 1, bank 0).

A reset operation sets the P3 data register to '00H', and the port 3 control register to ‘0FH’, configuring the port 3
pins to output (open-drain) mode.

Port 3 Control Register (P3CON)
EBH, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

P3.0/ADC0

P3CON Pin Configuration Settings:

00
01
10
11

Input mode
ADC input mode
Input mode
N-channel open-drain output mode (with 5V load capacity)

P3.1/ADC1No effect

Figure 9-8. Port 3 Control Register (P3CON)

S3C880A/F880A I/O PORTS

9-7

++ PROGRAMMING TIP — Configuring I/O Port Pins to Specification

The following sample program shows you how to configure the S3C880A/F880A I/O ports to specification. The
following parameters are given for ports 0, 1, 2, and 3:

— Set P0.0 and P0.1 to input mode

— Set P0.2 and P0.3 to output mode

— Set P0.4 and P0.5 to input mode

— Set P0.6 and P0.7 to open-drain output mode

— Set P1.0–P1.1 to interrupt rising edge mode

— Set P1.2–1.5 to open-drain output mode

— Set P1.6– P1.7 to push-pull output mode

— Set P2.0 and P2.1 to open-drain output mode

— Set P2.2–P2.4 to input mode

— Set P2.6–2.7 to push-pull output mode

— Set P2.5 to PWM0 output mode

— Set P3.0–P3.1 to ADC input mode

•
•
•
SB0 ; Select bank 0

LD P0CONH,#0F0H ; P0.4, P0.5 ← Input mode
; P0.6, P0.7 ← Open-drain output mode

LD P0CONL,#0F0H ; P0.0, P0.1 ← Input mode
; P0.2, P0.3 ← Output mode

LD P1CONH,#0FFH ; P1.6–1.7 ← Push-pull output mode
; P1.2–1.5 ← Open-drain output mode

LD P1CONL,#0F5H ; P1.0, P1.1 ← Interrupt rising edge mode

LD P2CONH,#0ACH ; P2.4 ← Input mode
; P2.6, 2.7 ← Push-pull output mode
; P2.5 ← PWM0 output mode

LD P2CONL,#05H ; P2.0, P2.1 ← Open-drain output mode
; P2.2, P2.3 ← Input mode

LD P3CONL,#05H ; P3.0, P3.1 ← ADC input mode
•
•
•

I/O PORTS S3C880A/F880A

9-8

++ PROGRAMMING TIP — Clearing Port 0 Interrupt Pending Bits

This sample program shows you how to clear the interrupt pending bits for port 1. The program parameters are
as follows:

— Enable only the interrupt level 1 (IRQ1) for P1.0–P1.1

— Set the interrupt priorities as P1.0 > P1.1

ORG 0C0H
VECTOR EXT_INT_P10
VECTOR EXT_INT_P11
•
•
•
ORG 0100H

RESET DI ; Disable all interrupts
SB0 ; Select bank 0
LD BTCON,#0AAH ; Disable the watchdog timer
LD CLKCON,#98H ; Non-divided clock
CLR SPL ; Stack pointer low byte ← "0"

; Stack area starts at 0FFH
•
•
•
LD IMR,#06H ; Enable IRQ1 and IRQ2 interrupts
LD IPR,#11H ; IRQ1 > IRQ2
LD P1CONL,#0AH ; P1.0, P1.1 ← Input mode; falling edge interrupts
•
•
•
SRP #0C0H ; Set register pointer to 0C0H
EI ; Enable interrupts
•
•
•

MAIN NOP
NOP
•
•
•
JP T,MAIN
•
•
•

(Continued on next page)

S3C880A/F880A I/O PORTS

9-9

++ PROGRAMMING TIP — Clearing Port 1 Interrupt Pending Bits (Continued)

EXT_INT_P10: ; P1.0 external interrupt service
PUSH PP ; Save page pointer to stack
PUSH RP0 ; Save register pointer 0 to stack
PUSH RP1 ; Save register pointer 1 to stack
•
•
•
POP RP1 ; Restore register pointer 1 value
POP RP0 ; Restore register pointer 0 value
POP PP ; Restore page pointer value
IRET ; Return from interrupt service routine

EXT_INT_P11: ; P1.1 external interrupt service
PUSH PP
PUSH RP0
PUSH RP1
•
•
•
POP RP1
POP RP0
POP PP
IRET

I/O PORTS S3C880A/F880A

9-10

NOTES

S3C880A/F880A BASIC TIMER and TIMER 0

10-1

10 BASIC TIMER and TIMER 0

MODULE OVERVIEW

The S3C880A/F880A microcontrollers have two default timers: an 8-bit basic timer (BT) and an 8-bit general-
purpose timer/counter, called timer 0 (T0).

The basic timer (BT) has two alternative functions: 1) it can be used as a watchdog timer that provides an
automatic reset mechanism in the event of a system malfunction, and 2) it can be used to signal the end of the
required oscillation stabilization interval after a reset or a Stop mode release. The components of the basic timer
are:

— Clock frequency divider (fOSC divided by 4096, 1024, or 128) with multiplexer

— 8-bit basic counter, BTCNT (set 1, bank 0, FDH, read-only)

— Basic timer control register, BTCON (set 1, D3H, read/write)

— Clock frequency divider (fOSC divided by 4096, 256, or 8) with multiplexer

— 8-bit counter (T0CNT), 8-bit comparator, and 8-bit reference data register (T0DATA)

— Timer 0 match interrupt (T0INT) generation

— Timer 0 control register, T0CON (set 1, D2H, read/write)

BASIC TIMER and TIMER 0 S3C880A/F880A

10-2

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, clear the basic timer counter
and frequency dividers, and enable or disable the watchdog timer function. It is located in set 1, address D3H,
and is read/write addressable using Register addressing mode only.

A reset clears BTCON to '00H'. This enables the watchdog function and selects a basic timer clock frequency of
fOSC/4096. To disable the watchdog function, you must write the signature code '1010B' to the basic timer

register control bits BTCON.7–BTCON.4.

The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared during the normal operation by writing
a "1" to BTCON.1. To clear the frequency dividers for both the basic timer input clock and the timer 0 clock, you
should write a "1" to BTCON.0.

Basic Timer Control Register (BTCON)
D3H, Set 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Divider clear bit for basic timer and T0:
0 = No effect
1 = Clear divider

Basic timer counter clear bit:
0 = No effect
1 = Clear basic timer counter

Basic timer input clock selection bits:
00 = fosc/4096
01 = fosc/1024
10 = fosc/128
11 = fosc/16

Watchdog timer enable bit:
1010B = Disable watchdog function
Other value = Enable watchdog function

Figure 10-1. Basic Timer Control Register (BTCON)

S3C880A/F880A BASIC TIMER and TIMER 0

10-3

BASIC TIMER FUNCTION DESCRIPTION

Watchdog Timer Function

The basic timer overflow signal can be programmed to generate a reset by setting the BTCON.7–BTCON.4 bits
to any value other than '1010B'. (The '1010B' value disables the watchdog function.) A reset clears the BTCON
register to '00H', automatically enabling the watchdog timer function. A reset also selects the CPU clock (as
determined by the CLKCON register setting) divided by 4096 as the BT clock.

With every overflow of the basic timer counter, a reset occurs. During the normal operation, this overflow-
generated reset should be prevented from occurring. To do this, the basic timer counter value must be cleared by
software (write BTCON.1 to "1") in regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the basic timer counter clear
operation may not be executed and a basic timer overflow will occur, initiating a system reset. In other words, in
normal operating condition the basic timer overflow loop (a bit 7 overflow of the 8-bit BT counter) is always
broken by a clear counter instruction.

An application program can use the basic timer as a watchdog timer to trigger an automatic system reset in case
a malfunction occurs.

Oscillation Stabilization Interval Timer Function

The basic timer determines the oscillation stabilization interval after a reset or the release of Stop mode by an
external interrupt. Whenever a reset or an external interrupt occurs during Stop mode, the oscillator begins
operating. The basic timer value then starts increasing at the rate of fOSC/4096 (in the case of a reset), or at the

rate of the preset clock source (in the case of an external interrupt).

When bit 4 of the BT counter is set to “1”, a signal is generated to indicate that the stabilization interval has
elapsed. This allows the clock signal to be gated on to the CPU so that it can resume normal operation. In
summary, the following events occur when Stop mode is released:

1. During Stop mode a power-on reset or an external interrupt occurs to trigger a Stop mode release, and
oscillation starts.

2. If a power-on reset occurrs, the basic timer counter increases at the rate of fOSC/4096. If an external interrupt

is used to release Stop mode, the basic timer value increases at the rate of the preset clock source.

3. Clock oscillation stabilization interval begins and continues until bit 3 of the basic timer counter overflows.

4. When bit 4 of BTCNT is set to “1”, the normal CPU operation resumes.

BASIC TIMER and TIMER 0 S3C880A/F880A

10-4

Oscillation Stabilization Time Normal Operating mode

0.8 VDD

tWAIT = (4096x16)/fOSC

Basic timer increment and
CPU operations are IDLE mode

10000B

00000B

Reset Release Voltage

NOTE: Duration of the oscillator stabilization wait time, tWAIT, when it is released by a
Power-on-reset is 4096 x 16/fOSC.
tRST RC (R is external resistor and C is on chip capacitor)

VDD

RESET

Internal
 Reset

 Release

Oscillator
(XOUT)

BTCNT
clock

BTCNT
value

Oscillator Stabilization Time

trst ~ RC~

~~

0.8 VDD

Figure 10-2. Oscillation Stabilization Time on RESETRESET

S3C880A/F880A BASIC TIMER and TIMER 0

10-5

NOTE: Duration of the oscillator stabilzation wait time, tWAIT, it is released by an
interrupt is determined by the setting in basic timer control register, BTCON.

VDD

Oscillation Stabilization Time

RESET

External
Interrupt

Oscillator
(XOUT)

BTCNT
clock

BTCNT
Value tWAIT

Basic Timer Increment

10000B

STOP
Release

Signal

00000B

Normal
Operating

Mode

Normal
Operating

Mode

STOP Mode

STOP Mode
Release Signal

STOP
Instruction
Execution

BTCON.3 BTCON.2

0

0

1

1

0

1

0

1

tWAIT

(4096 x 16)/fosc

(1024 x 16)/fosc

(128 x 16)/fosc

Invalid setting

tWAIT (When fOSC is 8 MHz)

10.92 ms

2.7 ms

0.341 ms

Figure 10-3. Oscillation Stabilization Time on STOP Mode Release

BASIC TIMER and TIMER 0 S3C880A/F880A

10-6

TIMER 0 CONTROL REGISTER (T0CON)

The timer 0 control register, T0CON, is used to select the timer 0 operating mode (interval timer) and input clock
frequency, clear the timer 0 counter, and enable the T0 match interrupt. It also contains a pending bit for T0
match interrupt. It is located in set 1, address D2H, and is read/write addressable using register addressing mode.

A reset clears T0CON to '00H'. This sets timer 0 to normal interval timer mode, selects an input clock frequency
of fOSC/4096, and disables the T0 match interrupt. The T0 counter can be cleared at any time during the normal
operation by writing a "1" to T0CON.3.

To enable the T0 match interrupt (T0INT, IRQ0, vector FCH), you must set T0CON.1 to "1". The interrupt service
routine must clear the pending condition by writing a "0" to the T0 interrupt pending bit, T0CON.0.

Timer 0 Control Register (T0CON)
D2H, Set 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

T0 interrupt pending bit:
0 = No T0 interrupt pending
0 = Clear T0 pending bit (write)
1 = T0 interrupt is pending

T0 counter clear bit:
0 = No effect
1 = Clear the T0 counter (when write)

T0 operation mode
selection bits:
00 = Interval mode
01 = PWM mode
10 = PWM mode
11 = PWM mode

T0 input clock selection bits:
00 = fosc/4096
01 = fosc/256
10 = fosc/8
11 = External clock (T0CK)
 (Max fosc/8) T0 interrupt enable bit:

0 = Disable T0 interrupt
1 = Enable T0 interrupt

No effect

Figure 10-4. Timer 0 Control Register (T0CON)

S3C880A/F880A BASIC TIMER and TIMER 0

10-7

TIMER 0 FUNCTION DESCRIPTION

T0 Interrupts (IRQ0, Vector FCH)

The T0 module can generate one interrupt: the timer 0 match interrupt (T0INT). T0INT is also in the level IRQ0,
vector address: FCH. The T0INT pending condition must be cleared by software by writing a "0" to the T0CON.0
pending bit.

Interval Timer Mode

In interval timer mode, a match signal is generated when the counter value is identical to the value written to the
T0 reference data register, T0DATA. The match signal generates a T0 match interrupt (T0INT, vector FCH) and
then clears the counter. If, for example, you write the value '10H' to T0DATA, the counter will increment until it
reaches '10H'. At this point, the T0 interrupt request is generated, the counter value is reset and counting
resumes.

CLK Counter
R (Clear)

Comparator

Data Register

Match

PND

T0CNT

Interrupt
Enable/Disable

T0DATA

IRQ0
(T0INT)

Figure 10-5. Timer 0 Function Diagram (Interval Timer Mode)

BASIC TIMER and TIMER 0 S3C880A/F880A

10-8

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the T0
pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written
to the T0 data register. In PWM mode, however, the match signal does not clear the counter (it runs
continuously, overflowing at 'FFH', and continuing incrementing from '00H').

Although it is possible to use the match signal to generate a T0INT interrupt, an interrupt is typically not used in
PWM-type applications. Instead, the pulse at the T0 pin is held to Low level as long as the reference data value
is less than or equal to the counter value; the pulse is then held to high level for as long as the data value is
greater than the counter value. One pulse width is equal to tCLK x 256. (See figure 10-6)

NOTE: When timer 0 is configured to operate in PWM mode,
 interrupts are typically not used.

CLK Counter

Comparator

Data Register

Match

PND

T0CNT

Interrupt
Enable/Disable

T0DATA

IRQ0
(T0INT)

CTL

T0CON

T0 pin
High level when data > counter;
Low level when data < counter=

Figure 10-6. Timer 0 Function Diagram (PWM Mode)

S3C880A/F880A BASIC TIMER and TIMER 0

10-9

DIV

DIV

RESET or
STOP

RESET

Data Bus

XIN

R

1/4096

1/1024

1/128

R 1/4096

1/8

1/256

Bit 0

MUX

Bit 3, 2

Bit 1

Bits 7, 6

BTCNT
8-Bit Basic Counter

(Read-Only) Overflow

Basic Timer Control Register
(Write '1010xxxxB' to disable)

MUX

T0CK

T0CNT
8-Bit Counter
(Read-Only)

8-Bit Comparator

Data Bus

CTL

R
Match

Clear

Bit 3

Bits 4, 5

T0DATA
Timer 0 Data Register

(Read/Write)

Bit 3

T0 (PWM & Interval)

IRQ0

Bit 3

Interrupt
Enable

Data Bus

Basic Timer Counter Register

Timer 0 Counter Register

NOTE: During a power-on reset operation, the CPU is idle during the required oscillation
 stabilization interval (until bit 4 of the basic timer counter is set to "1").

Figure 10-7. Basic Timer and Timer 0 Block Diagram

BASIC TIMER and TIMER 0 S3C880A/F880A

10-10

++ PROGRAMMING TIP — Configuring the Basic Timer

This example shows how to configure the basic timer to sample specifications:

ORG 0100H

RESET DI ; Disable all interrupts
SB0 ; Select bank 0
LD BTCON,#0AAH ; Disable the watchdog timer
LD CLKCON,#98H ; Non-divided clock
CLR SYM ; Disable global and fast interrupts
CLR SPL ; Stack pointer low byte ← "0"

; Stack area starts at 0FFH
•
•
•
SRP #0C0H ; Set register pointer ← 0C0H
EI ; Enable interrupts
•
•
•

MAIN LD BTCON,#52H ; Enable the watchdog timer
; Basic timer clock: fOSC/4096

; Clear basic timer counter
NOP
NOP
•
•
•
JP T,MAIN
•
•
•

S3C880A/F880A BASIC TIMER and TIMER 0

10-11

++ PROGRAMMING TIP — Configuring Timer 0

This sample program sets timer 0 to interval timer mode, determining the frequency of the oscillator clock, and
the execution sequence which follows a timer 0 interrupt. The program givens are as follows:

— Timer 0 is used in interval mode; the timer interval is set to 4 milliseconds

— Oscillation frequency is 6 MHz

— General register 60H (page 0) ← 60H + 61H + 62H + 63H + 64H (page 0) is executed after a timer 0
interrupt

ORG 0FCH ; Timer 0 interrupt (match)
VECTOR T0INT
ORG 0100H

RESET DI ; Disable all interrupts
SB0 ; Select bank 0
LD BTCON,#0AAH ; Disable the watchdog timer
LD CLKCON,#98H ; Non-divided clock
CLR SYM ; Disable global and fast interrupts
CLR SPL ; Stack pointer low byte ← "0"

; Stack area starts at 0FFH
•
•
LD T0CON,#42H ; 01000010B

; Input clock is fOSC/256
; Interval timer mode
; Enable the timer 0 interrupt

LD T0DATA,#5DH ; Set timer interval to 4 milliseconds
; (6 MHz/256) ÷ (93 + 1) = 0.25 kHz (4 ms)

SRP #0C0H ; Set register pointer ← 0C0H
EI ; Enable interrupts
•
•

T0INT PUSH PP ; Save page pointer to the stack
PUSH RP0 ; Save RP0 to stack
SB0 ; Select bank 0
LD PP,#00H ; Page pointer ← 00H (select page 0)
SRP0 #60H ; RP0 ← 60H
INC R0 ; R0 ← R0 + 1
ADD R2,R0 ; R2 ← R2 + R0
ADC R3,R2 ; R3 ← R3 + R2 + Carry
ADC R4,R0 ; R4 ← R4 + R0 + Carry
CP R0,#32H ; 50 × 4 = 200 ms
JR ult,NO_200MS_SET
BITS R1.2 ; Bit setting (61.2H)

NO_200MS_SET:
LD T0CON,#42H ; Clear pending bit
POP RP0 ; Restore register pointer 0 value
POP PP ; Restore page pointer value
IRET ; Return from interrupt service routine

BASIC TIMER and TIMER 0 S3C880A/F880A

10-12

NOTES

S3C880A/F880A TIMER A

11-1

11 TIMER A

OVERVIEW

The S3C880A/F880A microcontrollers have an 8-bit timer/counter (timer A). Each timer has a control register, an
8-bit counter register, an 8-bit data register, an 8-bit comparator. Timer A runs continuously. Counter register
addresses are not mapped and they cannot, therefore, be read or written.

TIMER CLOCK INPUT

Timer A has different clock input options. You can select the non-divided CPU clock or the CPU clock divided by
1000. The selected clock input frequency for each timer can be scaled using the 4-bit prescaler that is located in
bits 4–7 of the TACON register.

TIMER A INTERRUPT CONTROL

Timer A generate a match signal when the count value is equal to the referenced data value in the TADATA.
When the interrupt enable bit is set for timer A, an interrupt is generated whenever a match is detected. The
corresponding count register is then cleared and counting resumes. To enable the timer A interrupt, you should
set TACON.2 to "1".

The timer A interrupt pending bit is TACON.1. When a timer A pending bit read operation shows a "0" value, no
interrupt is pending; when it is "1", an interrupt request is pending. When the request is acknowledged by the
CPU and the service routine starts, the pending bit must be cleared by the interrupt service routine. To do this,
you must write a "0" to the appropriate bit location.

TIMER A S3C880A/F880A

11-2

TIMER A FUNCTION DESCRIPTION

When a match occurs, the timer is reset to zero.

CPU
CLK TA Counter

Comparator

TADATA

Match

PND

R

TACON.2

TACON.1

Timer A
Interrupt
(IRQ6,BEH)

4-Bit
Prescaler

M
U
X

TACON.3

1 + 1000

8-Bit

8-Bit

Figure 11-1. Timer A Block Diagram

S3C880A/F880A TIMER A

11-3

TIMER A CONTROL REGISTER (TACON)

The timer A control register, TACON, is located at F2H in set 1, bank 0. All bits are read/write addressable. The
TACON register settings control four functions:

— Interrupt enable/disable

— Interrupt pending control (read for status, write to clear)

— Clock source selection

— Prescaler (4-bit) for timer clock input

TACON.1 is the pending flag for the timer A interrupt (IRQ6, vector BEH). Application software can poll the TAIP
bit to detect timer A interrupt requests. When an interrupt request is acknowledged, the interrupt service routine
must clear TACON.1 by writing a "0" to the bit location.

Note that there are two clock source selections for timer A: the CPU clock divided by 1000 or the non-divided
CPU clock.

A reset clears TACON to '00H', selecting the CPU clock/1000, and disabling the timer A interrupt.

Timer A Control Register (TACON)
F2H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Not used

Timer A interrupt pending bit:
0 = No interrupt pending (when read)
0 = Clear pending bit (when write)
1 = Interrupt is pending (when read)
1 = No effect (when write)

4-bit prescaler for timer A clock

Divide input by 1 (non-divided)
Divide input by 2

0000
0001

Divide input by 3-151111

Timer A interrupt enable:
0 = Disable interrupt
1 = Enable interrupt

Timer A clock source selection bit:
0 = CPU clock divided by 1000
1 = Non-divided CPU clock

Figure 11-2. Timer A Control Register (TACON)

TIMER A S3C880A/F880A

11-4

++ PROGRAMMING TIP — Configuring Timer A

This example sets timer A to normal interval mode, determining the oscillation frequency of the timer clock, the
execution sequence that follows a timer A interrupt. The program parameters are:

— The timer interval is set to 10 milliseconds

— Oscillation frequency = 6 MHz

— General register 70H (page 0) ← 70H + 71H + 72H + 73H + 74H (page 0) is executed after a timer A
interrupt

ORG 0BEH ; Timer A interrupt
VECTOR TAINT

ORG 0100H
RESET DI ; Disable all interrupts

SB0 ; Select bank 0
LD BTCON,#0AAH ; Disable the watchdog timer
LD CLKCON,#98H ; Non-divided clock
CLR SYM ; Disable global and fast interrupts
CLR SPL ; Stack pointer low byte ← "0"

; Stack area starts at 0FFH
•
•
•
LD TACON,#54H ; 01010100B

; PS ← 5 (divide-by-6)
; CPU clock/1000
; Select interval mode for timer A

LD TADATA,#59H ; 10-ms interval time
; (6 MHz/1000) ÷ (59 + 1) = 100 Hz (10 ms)

SRP #0C0H ; Set register pointer ← 0C0H
EI ; Enable interrupts
•
•
•

TAINT PUSH PP ; Save page pointer to stack
PUSH RP0 ; Save register pointer 0 to stack
SB0 ; Select bank 0
LD PP,#00H ; Page pointer ← 00H (select page 0)
SRP0 #70H ; RP0 ← 70H
INC R0 ; R0 ← R0 + 1
ADD R2,R0 ; R2 ← R2 + R0
ADC R3,R2 ; R3 ← R3 + R2 + Carry
ADC R4,R0 ; R4 ← R4 + R0 + Carry
CP R0,#64H ; 100 × 10 ms = 1000 ms (1 second)
JR ult,NO_1SEC_SET
BITS R1.2 ; Bit setting (71.2H)

(Continued on next page)

S3C880A/F880A TIMER A

11-5

++ PROGRAMMING TIP — Configuring Timer A (Continued)

NO_1SEC_SET:
LD TACON,#54H ; Clear pending bit
POP RP0 ; Restore register pointer 0 value
POP PP ; Restore page pointer value

IRET ; Return from interrupt service routine

TIMER A S3C880A/F880A

11-6

NOTES

S3C880A/F880A PWM and CAPTURE

12-1

12 PWM AND CAPTURE

PWM/CAPTURE MODULE

The S3C880A/F880A microcontrollers have two 14-bit PWM circuits and four 8-bit PWM circuits. The 14-bit
circuits are called PWM0 and PWM1; the 8-bit circuits are PWM2–PWM5. The operation of all the PWM circuits
is controlled by a single control register, PWMCON. PWMCON also contains a 3-bit prescaler for adjusting the
PWM frequency (cycle).

The capture function, called capture A, is integrated in this block. Using PWMCON settings, you can enable the
capture A interrupt and select the desired triggering edge for data capture on the CAPA input pin.

The PWM counter is a 14-bit incrementing counter. It is used by the 14-bit PWM circuits. To start the counter and
enable the PWM circuits, you must set PWMCON.5 to "1". If the counter is stopped, it retains its current count
value; when re-started, it resumes counting from the retained count value.

A 3-bit prescaler controls the clock input frequency to the PWM counter. By modifying the prescaler value, you
can divide the input clock by one (non-divided), two, three, four, five, six, seven, or eight. The prescaler output is
the clock frequency of the PWM counter.

PWM and CAPTURE S3C880A/F880A

12-2

PWM CONTROL REGISTER (PWMCON)

The control register for the PWM module, PWMCON, is located at the register address F8H in set 1, bank 0. Bit
settings in the PWMCON register control the following functions:

— 3-bit prescaler for scaling the PWM counter clock

— Stop/start (or resume) the PWM counter operation

— Capture A interrupt enable and capture A edge selection

A reset clears all PWMCON bits to logic zero, disabling the entire PWM module.

PWM Control Register (PWMCON)
F8H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Capture function control bits:
00 = Disable capture function
01 = Capture on falling edges
10 = Capture on rising edges
11 = Capture on both edges

3-bit prescaler for PWM
counter clock:

Non-divide
Divide by 2
Divide by 3
Divide by 4
Divide by 5
Divide by 6
Divide by 7
Divide by 8

Not used

PWM counter enable bit:
0 = Stop counter
1 = Start (resume) counting

.4 .7 .6

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Capture interrupt enable bit:
0 = Disable capture interrupt
1 = Enable capture interrupt

Figure 12-1. PWM Control Register (PWMCON)

S3C880A/F880A PWM and CAPTURE

12-3

PWM2–PWM5

The S3C880A/F880A microcontrollers have four 8-bit PWM circuits, called PWM2–PWM5. These 8-bit circuits
have the following components:

— 14-bit counter with 3-bit prescaler

— 8-bit comparators

— 8-bit PWM data registers (PWM2–PWM5)

— PWM output pins (PWM2–PWM5)

The PWM2–PWM5 circuits are controlled by the PWMCON register (F8H, set 1, bank 0).

CPU
CLK

8-bit PWM2-PWM5
Registers

8 x 4

Data Bus

8-bit PWM2-PWM5
Comparators

x 4

8

Lower 8-bit of
14-bit Counter

PWM0/1 Logic

"1" When Reg > Count

"0" When Reg < Count=

PWM2-PWM5
Output pins

PWM2-PWM5
Output pins

3-bit P.S.

PWMCON.5

Upper 6-bit of
14-bit Counter

Capture Register

62

8

8
CAP Input

PWMCON.1

PWMCON.0

PWMCON.3

IRQ3 (02H)

Data Bus

Figure 12-2. Block Diagram for PWM2–PWM5

PWM and CAPTURE S3C880A/F880A

12-4

PWM2–PWM5 FUNCTION DESCRIPTION

All the four 8-bit PWM circuits function identically: each has its own 8-bit data register and 8-bit comparator. Each
circuit compares a unique data register value to the lower 8-bit value of the 14-bit PWM counter.

The PWM2–PWM5 data registers are located in set 1, bank 1, at locations F8H–FBH, respectively. These data
registers are read/write addressable. By loading specific values into the respective data registers, you can
modulate the pulse width at the corresponding PWM output pins, PWM2–PWM5.

The level at the output pins toggles High and Low at a frequency equal to the counter clock, divided by 256 (28).
The duty cycle of the PWM0 and PWM1 pins ranges from 0% to 99.6%, based on the corresponding data
register values.

To determine the PWM output duty cycle, its 8-bit comparator sends the output level High when the data register
value is greater than the lower 8-bit count value. The output level is Low when the data register value is less than
or equal to the lower 8-bit count value. The output level at the PWM2–PWM5 pins remains at Low level for the
first 256 counter clocks. Then, each PWM waveform is repeated continuously, at the same frequency and duty
cycle, until one of the following three events occurs:

— The counter is stopped

— The counter clock frequency is changed

— A new value is written to the PWM data register

S3C880A/F880A PWM and CAPTURE

12-5

STAGGERED PWM OUTPUTS

The PWM2–PWM5 outputs are staggered in order to reduce the overall noise level on the pulse width modulation
circuits. If you load the same value to the PWM2–PWM5 data registers, a match condition (data register value is
equal to the lower 8-bit count value) will occur on the same clock cycle for all the four 8-bit PWM circuits. The
output of PWM3, PWM4, and PWM5 are delayed by one-half of a counter clock for subsequent clock cycles (see
Figure 12-4).

NOTES:
1. A counter clock value of 8 MHz is assumed for all timing values.
2. 'n' = 2-5, for PWM2-PWM5

Counter
Value
(HEX)

PWM = "0"

0H

125 ns

100H

12.5 µs

125 ns

PWM Cycle

25 µs

200H 300H

Counter
Clock

(8 MHz)

PWM = "1"

PWMn = 80H

PWMn = FFH

Figure 12-3. PWM Waveforms for PWM2–PWM5

PWM and CAPTURE S3C880A/F880A

12-6

PWM2

0H (After RESET) 100H

CPU
Clock

PWM3

PWM4

PWM5

Match occurs;
PWM2 toggles to high level

1/2-Clock Delay

1/2-Clock Delay

1/2-Clock Delay

Figure 12-4. PWM Clock to PWM2–PWM5 Output Delays

S3C880A/F880A PWM and CAPTURE

12-7

PWM0–PWM1

The S3C880A/F880A pulse width modulation (PWM) module has two 14-bit PWM circuits (PWM0 and PWM1).
The 14-bit PWM circuits have the following components:

— 14-bit counter with 3-bit prescaler (an 8-bit counter with 6-bit extension is used for 14-bit output resolution)

— 8-bit comparator and extension cycle circuit

— 8-bit reference data registers (PWM0, PWM1)

— 6-bit extension data registers (PWM0EX, PWM1EX)

— PWM output pins (PWM0, PWM1)

The PWM0 and PWM1 circuits are enabled by the PWMCON register (F8H, set 1, bank 0).

PWM COUNTER

The PWM counter is a 14-bit increasing counter comprised of a lower byte counter and an upper byte counter.

To determine the PWM module's base operating frequency, the lower byte counter is compared to the PWM data
register value. In order to achieve higher resolutions, the lower six bits of the upper byte counter can be used to
modulate the "stretch" cycle. To control the "stretching" of the PWM output duty cycle at specific intervals, the
6-bit extended counter value is compared with the 6-bit value (bits 2–7) that you write to the module's extension
register.

PWM DATA AND EXTENSION REGISTERS

Two PWM (duty) data registers, located in set 1, bank 0, determine the output value generated by each 14-bit
PWM circuit. PWM0 and PWM1 are read/write addressable.

— 8-bit data registers PWM0 (F4H) and PWM1(F6H)

— 6-bit extension registers PWM0EX (F5H) and PWM1EX (F7H) of which only bits 2–7 are used

To program the required PWM output, you should load the appropriate initialization values into the 8-bit data
registers (PWM0, PWM1) and the 6-bit extension registers (PWM0EX, PWM1EX). To start the PWM counter, or
to resume counting, you should set PWMCON.5 to "1".

A reset operation disables all PWM output. The current counter value is retained when the counter stops. When
the counter starts, counting resumes at the retained value.

PWM CLOCK RATE

The timing characteristics of both 14-bit output channels are identical, and are based on the maximum 8-MHz
CPU clock frequency. The 2-bit prescaler value in the PWMCON register determines the frequency of the
counter clock. You can set PWMCON.6 and PWMCON.7 to divide the CPU clock frequency by 1 (non-divided),
2, 3, 4, 5, 6, 7, or 8.

Because the maximum CPU clock rate for the S3C880A/F880A microcontrollers is 8 MHz, the maximum base
PWM frequency is 31.25 kHz (8 MHz divided by 256). This assumes a non-divided CPU clock.

PWM and CAPTURE S3C880A/F880A

12-8

Table 12-1. PWM0 and PWM1 Control and Data Registers

Register Name Mnemonic Address (Set 1, Bank 0) Function

PWM0 data registers PWM0 F4H 8-bit PWM0 basic cycle frame value

PWM0EX F5H 6-bit extension ("stretch") value

PWM1 data registers PWM1 F6H 8-bit PWM1 basic cycle frame value

PWM1EX F7H 6-bit extension ("stretch") value

PWM control register PWMCON F8H PWM0 counter stop/start (resume),
and 3-bit prescaler for CPU clock; also
contains capture A control settings

PWM0 AND PWM1 FUNCTION DESCRIPTION

The PWM output signal toggles to Low level whenever the lower 8-bit counter matches the reference value
stored in the module's data register (PWM0, PWM1). If the value in the PWM data register is not zero, an
overflow of the lower counter causes the PWM output to toggle to High level. In this way, the reference value
written to the data register determines the module's base duty cycle.

The value in the 6-bit extension counter (the lower six bits of the upper counter) is compared with the extension
settings in the 6-bit extension data register (PWM0EX, PWM1EX). This 6-bit extension counter value (bits 2–7),
together with extension logic and the PWM module's extension register, is then used to "stretch" the duty cycle of
the PWM output. The "stretch" value is one extra clock period at specific intervals, or cycles (see Table 12-2).

If, for example, the value in the extension register is '1', the 32nd cycle will be one pulse longer than the other 63
cycles. If the base duty cycle is 50%, the duty of the 32nd cycle will therefore be "stretched" to approximately
51% duty. For example, if you write 80H to the extension register, all odd-numbered pulses will be one cycle
longer. If you write FCH to the extension register, all pulses will be stretched by one cycle except the 64th pulse.
PWM output goes to an output buffer and then to the corresponding PWM0 and PWM1 output pin. In this way,
you can obtain high output resolution at high frequencies.

Table 12-2. PWM Output "Stretch" Values for Extension Registers PWM0EX and PWM1EX

PWM0EX/PWM1EX Bit "Stretched" Cycle Number

7 1, 3, 5, 7, 9, …, 55, 57, 59, 61, 63

6 2, 6, 10, 14, …, 50, 54, 58, 62

5 4, 12, 20, …, 44, 52, 60

4 8, 24, 40, 56

3 16, 48

2 32

1 Not used

0 Not used

S3C880A/F880A PWM and CAPTURE

12-9

CPU CLK

8-bit PWM2-PWM5
Comparators

Lower 8-bit of
14-bit Counter

"1" When Reg > Count
"0" When Reg < Count

PWM0,PWM1
Output pins

3-bit P.S.

PWMCON.5

Upper 6-bit of
14-bit Counter

Extension Logic

8

6-bit Extension Registers
(PWM0EX, PWM1EX)

8-bit PWM2-PWM5
Registers

8

Match when
Reg = Count

Bit 7 Bit2

321, 3, ..., 61, 63

Figure 12-5. Block Diagram for PWM0 and PWM1

PWM and CAPTURE S3C880A/F880A

12-10

++ PROGRAMMING TIP — Programming PWM0 to Sample Specifications

This example shows how to program the 14-bit pulse-width modulation module, PWM0. The program parameters
are as follows:

— The oscillation frequency of the main crystal is 6 MHz

— PWM0 data is in the working register R0

— PWM0EX (PWM0 extension value) is in the working register R1, bits 2–7

The program performs the following operations:

1. Set the PWM0 frequency to 23.437 kHz

2. If R3.0 = "1", then PWM ← PWM + 12H
(If an overflow occurs from R0, then R0 ← 0FFH and R1 ← 0FCH.)

3. If R3.0 = "0", then PWM ← PWM – 11H
(If an underflow occurs from R0, then R0 ← 00H and R1 ← 00H.)

N (0)

PWMCON #20H

R3.0 = 1?

R1 R1 - #20H

Underflow?

R1 R1 - #20H

Borrow?

R1 R1 + #48H

Carry?

R0 Min. value
R1 Min. value

Carry?

R0 R1 + #01H

R0 Max. value
R1 Max. value

PWM Control Register Setting

Y (1)

N Y

Y

N

N

Y

Y

N

PWM0EX R1
PWM0 R0

Figure 12-6. Decision Flowchart for PWM0 Programming Tip

S3C880A/F880A PWM and CAPTURE

12-11

++ PROGRAMMING TIP — Programming PWM0 to Sample Specifications (Continued)

•
•
•
LD PWMCON,#20H ; PS ← 0 (Select 23.437-kHz PWM frequency)

; Enable the PWM counter
•
•
•
BTJRF pwm0_dec,R3.0 ; If R3.0 = "0", then jump to pwm0_dec

pwm0_inc:
ADD R1,#48H ; If R3.0 = "1", then add 48H to the PWM data
JR NC,pwm0_data_end ; If no carry, go to pwm0_data_end
INC R0 ; R0 ← R0 + 1
JR NZ,pwm0_data_end ; If no overflow, jump to pwm0_data_end for update
LD R0,#0FFH ; If overflow, set 0FFH to R0
LD R1,#0FCH ; Set 0FCH to R1
JR T,pwm0_data_end ; Jump to pwm0_data_end unconditionally

pwm0_dec:
SUB R1,#44H ; R3.0 = "0", so subtract 44H from PWM data
JP NC,pwm0_data_end ; If no borrow, jump to pwm0_data_end for update
SUB R0,#01H ; Decrement R0 (R0 ← R0 – 1)
JR NC,pwm0_data_end ; If no borrow, jump to pwm0_data_end
CLR R0 ; Clear data R0
CLR R1 ; Clear data R1

pwm0_data_end:
LD PWM0EX,R1 ; Load new value to PWM0EX (bits 2–7)
LD PWM0,R0 ; Load new value to PWM0
•
•
•

PWM and CAPTURE S3C880A/F880A

12-12

CAPTURE UNIT

An 8-bit capture unit is integrated in the PWM module. The capture unit detects incoming signal edges and can
be used to measure the pulse width of the incoming signals. PWMCON register settings control the capture unit,
which has the following components:

— 8-bit capture data register (CAPA)

— Capture input pin (CAPA/Pin 36)

— 8-bit capture interrupt (IRQ3, vector 02H)

The capture unit captures the upper 8-bit value of the 14-bit counter when a signal edge transition is detected at
the CAPA pin. The captured value is then dumped into the capture A data register, also called CAPA, where it
can be read.

Using PWMCON.0 and PWMCON.1 settings, you can set edge detection at the CAPA pin for rising edges, falling
edges, or for both signal edge types.

You can also use signal edges at the CAPA pin to generate an interrupt. PWMCON.3 is the capture A interrupt
enable bit.

The capture interrupt is in the level 3 (IRQ3) and its vector address is 02H.

Using the capture A interrupt, you can read the contents of the CAPA data register from edge to edge and use
the values to calculate the elapsed time between pulses.

CPU
CLK

Lower 8-bit of
14-bit Counter

PWMCON.5

Upper 6-bit of
14-bit Counter

Capture Register

8
CAP Input

PWMCON.1

PWMCON.0

PWMCON.3

IRQ3 (02H)

Data Bus

3-bit P.S.

62

Figure 12-7. Block Diagram for Capture A

S3C880A/F880A PWM and CAPTURE

12-13

++ PROGRAMMING TIP — Programming the Capture Module to Sample Specifications

This example shows you how to program the S3C880A/F880A capture A module. The sample parameters are as
follows:

— The main oscillator frequency is 6 MHz

— Timer A interrupt occurs every 2 ms

— The following waveform is currently being input at the capture (CAPA) pin:

tHtL

— The following registers are assigned for program values:

Register 70H LDR ; First captured count value

Register 71H ; Second captured count value

Register 72H ; Third captured count value

Register 73H DWNCNT ; Down-counter; decremented by 1 with each timer A interrupt

Register 74H CAPCNT ; Capture counter

Register 77H FLAG ; Flags

Here is some additional information about the sample program:

1. If 4.35 ms < tH, tL < 4.6 ms, then set bit zero (LDR) in the register 77H; otherwise clear the zero bit (LDR)
in the register 77H.

2. If the interval between two rising signal edges (capture trigger) is > 30 ms, disregard the capture setting.

Figures 12-4 and 12-5 show decision flowcharts for the sample program.

PWM and CAPTURE S3C880A/F880A

12-14

Y (zero)

Timer A Setting
Capture Unit Setting

DWNCNT = 0?

Flag 0
CAPA Rising Enable

Main JOB

N (not zero)

Main Routine Timer A Interrupt

Back up the PP, PR0

DWNCNT = 0?

DWNCNT DWNCNT - #1H

Y (zero)

Other JOB

Restore PP, RP0

RET

N (not zero)

Figure 12-8. Decision Flowchart (Main Routine and Timer A Interrupt)

S3C880A/F880A PWM and CAPTURE

12-15

Capture A Interrupt

Save PP, RP0

Flag = 0?
"0"

CAPCNT CAPCNT + 1

CAPCNT = #01?

CAPCNT = #02?

R2 3rd capture

Y (#02)

Flag "1"
DWNCNT #0FH
CAPCNT #00H

R0 1st capture
CAPA Interrupt on both edges

SUB R2, R1
SUB R1, R0

R1 2nd capture

4.35 ms < R1
R2 < 4.6 ms

LDR "1"
LDR "0"

CAPA Disable

N

N

Y

Restore PP, RP0

"1"

Y (#01)

RET

Figure 12-9. Decision Flowchart for Capture A Interrupt

PWM and CAPTURE S3C880A/F880A

12-16

++ PROGRAMMING TIP — Programming the Capture Module to Sample Specifications

•
•
•

LDR EQU 0
DWNCNT EQU 3
CAPCNT EQU 4
FLAG EQU 7

•
•
•
CLR PP ; Select page 0
LD TACON,#54H ; PS ← 5, interval mode

; Enable timer A interrupt
LD TADATA,#01H ; 2-ms interval (6 MHz /1000 ÷ 6 ÷ 2 = 0.5 kHz = 2 ms)
•
•
•

EXEC_MAIN:
SRP0 #70H ; RP0 ← 70H
CP RDWNCNT,#00H ; Down-counter = "0"?
JP NE,MAIN ; If not zero, then jump to MAIN
BITR R7.FLAG ; Clear the 'FLAG'
LD PWMCON,#0AH ; Enable capture A interrupt

; Trigger interrupt on rising edges
MAIN: ; Other job...

•
•
•

 JP T,exec_main ; For looping
•
•
•

TAINT PUSH PP ; Save page pointer
PUSH RP0 ; Save register pointer 0
SRP0 #70H ; RP0 ← 70H
CP RDWNCNT,#00H ; R3 (down-counter) = "0"?
JP EQ,ta_exec ;
DEC RDWNCNT ; If not zero, then decrement R3 by 1

TA_EXEC:
•
•
•
POP RP0 ; Restore register pointer 0
POP PP ; Restore page pointer
IRET ; Return from timer A interrupt service routine

(Continued on next page)

S3C880A/F880A PWM and CAPTURE

12-17

++ PROGRAMMING TIP — Programming the Capture Module to Sample Specifications (Continued)

CAPINT PUSH PP ; Save the page pointer to stack
PUSH RP0 ; Save register pointer 0 to stack
SRP0 #70H ; RP0 ← 70H
INC RCAPCNT ; Increment the capture counter
BTJRT cap_one,R7.FLAG ; R7.FLAG ← "1", then jump to cap_one
BITS R7.FLAG ; Set R7.FLAG
CLR RCAPCNT ; Clear capture counter
LD RDWNCNT,#0FH ; Down-counter ← 15 (for counting 30 ms)
LD R0,CAPA ; R0 ← 1st captured count value

; CAPA = 0F9H, page 0
LD PWMCON,#0BH ; Enable capture interrupt

; Trigger interrupt on both rising and falling edges

CAP_END POP RP0 ; Restore the register pointer 0 value
POP PP ; Restore the page pointer value
IRET ;

CAP_ONE CP RCAPCNT,#01H ; CAPCNT = #01H?
JP NE,cap_con2 ;
LD R1,CAPA ; R1 ← 2nd captured count value
JR T,cap_end ;

CAP_CON2 CP RCAPCNT,#02H ; CAPCNT = #02H?
JP EQ,cap_con3 ;

CAP_CON4 BITR R7.LDR ; Clear the LDR bit in R7
CAP_CON5 LD PWMCON,#00H ; Disable the capture module

JR T,cap_end ;

(Continued on next page)

PWM and CAPTURE S3C880A/F880A

12-18

++ PROGRAMMING TIP — Programming the Capture Module to Sample Specifications (Concluded)

CAP_CON3 LD R2,CAPA ; R2 ← 3rd capture count value
SUB R2,R1 ; R2 ← (3rd capture value – 2nd capture value)
SUB R1,R0 ; R1 ← (2nd capture value – 1st capture value)
CP R1,#24H ; 24H = 4.6 ms

JP UGT,cap_con4 ; If High signal period > 4.6 ms, then go to cap_con4
CP R2,#24H ;
JP UGT,cap_con4 ; If Low signal period > 4.6 ms, then go to cap_con4

CP R1,#22H ; 22H = 4.35 ms

JP ULT,cap_con4 ; If High signal period < 4.35 ms, then go to cap_con4
CP R2,#22H ;
JP ULT,cap_con4 ; If Low signal period < 4.35 ms, then go to cap_con4

BITS R7.LDR ; Set bit 'LDR'
JP T,cap_con5 ; Jump to cap_con5 unconditionally
•
•
•

S3C880A/F880A ON-SCREEN DISPLAY

13-1

13 ON-SCREEN DISPLAY (OSD)

OVERVIEW

The on-screen display (OSD) module displays channel number, the time, and other information on a display
screen. The OSD character display module has 252 locations and supports a set of maximum 1024 characters.
(Two characters are reserved: 00H for the blank function and 01H for the test pattern.) There are sixty four
display colors.

PATTERN GENERATION SOFTWARE

For application development using the S3C880A/F880A microcontrollers, Samsung provides OSD pattern
generation software (OSDFONT.exe). You can customize standard OSD patterns contained in this file.

Table 13-1. OSD Function Block Summary

OSD Function Block Function Description

Video RAM (note) Located in register page 1, the video RAM contains 252 "word" lines. Each line is
14 bits long. Each 14-bit RAM address stores an 10-bit character code, a character
halftone or character background color display control bit, and a 3-bit color code.
Video RAM locations can be read or written: 00H–BFH can be accessed using any
addressing mode; C0H–FBH can be accessed using Indirect Register or Indexed
addressing mode only.

Character ROM The character ROM contains an 18-dot × 16-dot matrix data for 1024 characters. It
is synchronized with the internal dot clock. The ROM outputs the dot matrix data for
each character. The function of two characters is pre-determined: 00H is used for
blank (no-display) data and 01H is for a factory test pattern.

Output control logic Output control logic receives input from the Character ROM, OSD control registers,
and fade control circuits. It then decides what to display on the screen and what
color the display should be. On the basis of truth table calculations, the final OSD
signals (blue, green, red, blank, and H/T) are output from the OSD block at pins
22–25, 21.

NOTE: The video RAM can be cleared only by “LD” instruction.

ON-SCREEN DISPLAY S3C880A/F880A

13-2

INTERNAL OSD CLOCK

Red-green-blue (RGB) color outputs, as well as display rates and positions, are determined by the clock signal,
DOT_CLK. This signal is generated by the L-C oscillator and is scaled by the dot and column counter. DOT_CLK
equals the OSD oscillator clock divided by the clock divider value. The clock divider value is set by the horizontal
character size settings in the CHACON register.

The rate at which each new display line is generated is determined by H-sync input. The rate at which each new
frame (screen) is generated is determined by V-sync input. For stable on screen display operation, the CPU clock
frequency should faster than OSD clock.

OSD VIDEO RAM

The OSD video RAM contains 252 word lines. Each line is 14 bits long. Of these 14 bits, eight are character
display codes (bits 0-9). Bit 13 is the character halftone or character background color display control bit and bits
10-12 are used to determine the red, green, and blue components of the character color.

S3C880A/F880A ON-SCREEN DISPLAY

13-3

Register Data Bus

Register Address Bus

XOR

XOR

Polarity
Selector

H-SYNC

V-SYNC

fOSD

ROW interrupt
(IRQ2, 0C4H)

Line Address (5)

Dot and Column
Counter

Character
Generator

ROM
(1024 x 18 x 16)

Output Control
Logic

Character Out
(16-Dot)

Dot Clock

Line
Count (6)

Video RAM
(252 x 14 Bits)

CHAR
CODE (10)

Column
Address

(5)

Row
Address

(4)

Line and Row
Counter

ROWINT

H
alfone (1)

C
haracter C

olor (3)

Red Green Blue Blank Halftone

Color
Buffer

(5)

Figure 13-1. On-Screen Display Function Block Diagram

ON-SCREEN DISPLAY S3C880A/F880A

13-4

Bit 3

H/T and BGRND

Bit 2

R

Bit 1

G

Bit 0

B

Bit 4-5

VRAM

H/T and
BGRND

R G B Character Code (10-Bit)

H/T and
BGRND

R G B Character Code (10-Bit)

H/T and
BGRND

R G B Character Code (10-Bit)

H/T and
BGRND

R G B Character Code (10-Bit)

Row 0, Column 0

Row 0, Column 1

Row 0, Column 2

Row 0, Column 3

00H = Row 0, Column 0
01H = Row 0, Column 1

FBH = Row 11, Column 20

Color Code VRAM (Bit8-9)
MSB(Bit 9) LSB(Bit 0)

8-Bit

6-Bit

Data Bus

Data Bus

Color Buffer
(FCH), Bits 0-5

H/T and
BGRND

R G B Character Code (10-Bit)

H/T and
BGRND

R G B Character Code (10-Bit)

H/T and
BGRND

R G B Character Code (10-Bit)

~~~~

10-Bit

14-Bit

Row 11, Column 18

Row 11, Column 19

Row 11, Column 20

Figure 13-2. On-Screen Display Video RAM Data Organization



S3C880A/F880A ON-SCREEN DISPLAY

13-5

OSD CONTROL REGISTER OVERVIEW

Seven control registers are used to control specific functions of the on-screen display module:

There are seven control registers for OSD functions and one color buffer register:

DSPCON Display control register

CHACON Character size and fade control register

FADECON Fade control register

ROWCON Row display position and inter-row spacing control register

CLMCON Column display position and inter-column spacing control register

COLCON Background color control register

HTCON Halftone signal control register

COLBUF Character color buffer register

VSBCON V-sync blank time control register

OSDFRG1/2 Fringe or border control registers

OSDSMH1/2 Smooth display control registers

OSDCOL OSD factor control register

OSDFLD Field control register

OSDPLTR1/2 Palette color mode Red 1/2

OSDPLTG1/2 Palette color mode Green 1/2

OSDPLTB1/2 Palette color mode Blue 1/2

These registers are described in this section within the context of the OSD hardware module description. For
detailed quick-reference descriptions of the control register bit settings, please refer to Section 4, "Control
Registers."



ON-SCREEN DISPLAY S3C880A/F880A

13-6

DISPLAY CONTROL REGISTER (DSPCON)

Settings in the display control register, DSPCON (F5H, set 1, bank 1), are used to enable and disable the
on-screen display to select halftone or background color for character displays, choose the polarity for H-sync
and V-sync signal synchronization, and as OSD ROW counter which is read-only (bit4–bit7).

Display Control Register (DSPCON)
F5H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Display enable bit:
0 = Disable OSD (turn off L-C osc)
1 = Enable OSD (turn on L-C osc)

Halftone or background color selection bits
(for character data in bit 13 of video RAM):
00 = Character background color
01 = Not used
10 = Halftone output
11 = Character halftone and background color

Clock edge selection for H/V-sync polarity:
0 = Rising edges
1 = Falling edges

OSD Row counter (Read-only)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011

Row0
Row1
Row2
Row3
Row4
Row5
Row6
Row7
Row8
Row9
Row10
Row11

1100-1111: Not used

Figure 13-3. OSD Display Control Register (DSPCON)

NOTE

Refer to the PROGRAMMING TIP – Row Interrupt Function of 13-24.



S3C880A/F880A ON-SCREEN DISPLAY

13-7

OSD Enable/Disable

The DSPCON.0 setting enables or disables the on-screen display module. To enable the OSD (turn L-C
oscillation on), set DSPCON.0 to "1"; to disable OSD (turn L-C oscillation off), clear DSPCON.0 to "0". When you
do not use the display module, we recommend that you keep DSPCON.0 cleared to "0" in order to reduce
possible noise generation by the L-C oscillator.

The DSPCON.0 settings determine the on/off condition of L-C oscillation, synchronized with Vsync input. And the
OSD output can be turned on or off in OSD row units when L-C oscillation is on. At the point the value of
DSPCON.0 is changed from “1” to “0” in the middle of a frame, OSD is disabled (OSD output is off). In this
condition, L-C oscillation becomes off at the next Vsync input. When the value is shifted from “0” to “1”, OSD is
enabled (OSD output is on) and L-C oscillation returns to “on” at the following Vsync input.

H-Sync and V-Sync Polarity Selection

DSPCON.3 selects the triggering edge of H-sync and V-sync inputs to the OSD block. Incoming sync pulses
enter a polarity option circuit that is controlled by the SYNC bit. If DSPCON.3 = "0", rising edges are selected; if
it is "1", falling edges are selected.

Character Halftone or Character Background Color Selection

DSPCON.2 and DSPCON.1 let you select a halftone or background color display for individual characters.
(Which characters are displayed as halftones, or with character background color, or with character halftone, or
with character background color, or with character halftone and background color, depends on the bit 13 settings
in the character video RAM data)
When DSPCON.2-.1 = "00", the character background color option is selected; when DSPCON.2-.1 = "10", the
character halftone function is selected; when DSPCON.2-.1 = "11", the character halftone and background color
option are selected; but DSPCON.2-.1 = "01" is not used.

ROW Counter Function

DSPCON.4–DSPCON.7 to the OSD ROW read data. OSD ROW counter indicates the OSD ROW currently
displayed. One ROW comprises one character (18 lines) and inter-ROW space (ROWCON.2–.0).
The Row counter value for the first ROW after a Vsync input is set to “0”.



ON-SCREEN DISPLAY S3C880A/F880A

13-8

CHARACTER SIZE CONTROL REGISTER (CHACON)

Using the character size control register, CHACON, you can specify four different standard character sizes in
both vertical and horizontal directions. You also use the CHACON register to select rows (0–11) for the character
fade function (see Figure 13-5).

Vertical character size is defined by bits 6 and 7 of the CHACON register; horizontal direction is defined by bits 4
and 5. There are four basic character size settings: ×1, ×2, ×3, and ×4. Size '×1' is the smallest and '×4' is the
largest. For example, to display a '×1' (horizontal) by '×1' (vertical) size character, you should clear CHACON.4–
CHACON.7 to "0". To display a '×4' by '×4' size character, you should set bits 4–7 to '1111B'.

You can also combine different vertical and horizontal size selections to produce flattened or elongated
characters (see Figure 13-5).

"1 dot" is a minimum unit of character size. 1 character is composed of 16 dots in width and 18 dots in length. 1
dot in width is 1 fosd clock and 1 dot in length is 1 H-sync line. 1 dot of 1x1 character size (minimum unit) is
composed of 1 fosd clock and 2 H-sync line (even + odd field).

Character size in width is increased by 1 clock. So x1, x2, x3, and x4 in width are the same as 1, 2, 3 and 4
clock, respectively. Character size in length is increased by 2 H-sync line (even field + odd field), so x1 and x2 in
length are the same as 2 H-sync line (even field + odd field) and 4 H- sync line (even field + odd field + even
field + odd field), respectively. Half dot in width is 1/2 fosd clock, and 1/2 dot in length is 1 H-sync line (even or
odd field).

In the fringe and boarder function, 1/2 dot setting can be used. So, please be more careful in using the 1/2 dot to
prevent the blink. (Because the character size is changed in 1 dot unit or set to 1/2 dot in fringing or boarder
function, blinking can occur in interlace scan, so care must be taken when 1/2 dot is used for width.)

OSD Character Size Control Register (CHACON)
F0H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Vertical character
size selection bits:
00 = 'x1' size
01 = 'x2' size
10 = 'x3' size
11 = 'x4' size

Fade row address selection bits:
0000 = Row 0 0110 = Row 6
0001 = Row 1 0111 = Row 7
0010 = Row 2 1000 = Row 8
0011 = Row 3 1001 = Row 9
0100 = Row 4 1010 = Row 10
0101 = Row 5 1011 = Row 11

Horizontal character
size selection bits:
00 = 'x1' size
01 = 'x2' size
10 = 'x3' size
11 = 'x4' size

Figure 13-4. OSD Character Size Control Register (CHACON)



S3C880A/F880A ON-SCREEN DISPLAY

13-9

Horizontal = x3
Vertical = x2

Horizontal = x2
Vertical = x3

Horizontal = x1
Vertical = x1

Horizontal = x4
Vertical = x4

Horizontal = x3
Vertical = x3

Horizontal = x2
Vertical = x2

Figure 13-5. OSD Character Sizing Dimensions



ON-SCREEN DISPLAY S3C880A/F880A

13-10

FADE-IN AND FADE-OUT CONTROL REGISTER (FADECON)

The OSD block lets you program fade-in and fade-out displays. A fade-in display is one in which a character
matrix is displayed incrementally until the complete character "appears". A fade-out display shows the complete
character matrix first and then decrements the matrix line-by-line until the character "disappears" from the
display field.

The address of the character display (and the specific line) to be faded-in or faded-out is selected by writing bit
values into the CHACON and FADECON registers. Bits 3–0 in the CHACON register specify the 4-bit video RAM
address of one of the twelve rows (0–11) of the fade display. Bits 0–4 in the FADECON register specify the 5-bit
line address within the selected row.

Fade direction is controlled by FADECON.5. There are two choices of fade direction: before (FADECON.5 = "0")
and after (FADECON.5 = "1"). When you select fade before, the character matrix is faded starting with line 0.
When you select fade after, the matrix is faded starting with inter-row space line 6. (The inter = row space line 6
start position is only a suggestion, however, as the fade interval is assignable by software.) To enable the fade
function, you should set FADECON.6 to "1". (FADECON.7 is not used).

NOTE

To avoid confusion in determining fade row and line addresses in the CHACON and FADECON
registers, please note that line is a horizontal value that encompasses the entire character display field
while row  is a horizontal value for the character display matrix.

OSD Fade Control Register (FADECON)
F1H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Fade function enable bit:
0 = Fade disable
1 = Fade enable

Fade row address selection bits:
00000 = Line 0 00001 = Line 1
00010 = Line 2 00011 = Line 3
00100 = Line 4 00101 = Line 5
00110 = Line 6 00111 = Line 7
01000 = Line 8 01001 = Line 9
01010 = Line 10 01011 = Line 11
01100 = Line 12 01101 = Line 13
01110 = Line 14 01111 = Line 15
10000 = Line 16 10001 = Line 17
10010 = Inter-row space Line 0 (1H)
10011 = Inter-row space Line 1 (2H)
10100 = Inter-row space Line 2 (3H)
10101 = Inter-row space Line 3 (4H)
10110 = Inter-row space Line 4 (5H)
10111 = Inter-row space Line 5 (6H)
11000 = Inter-row space Line 6 (7H)
11001-11111 = Not used

Not used

Fade direction selection bit:
0 = Fade before matrix
1 = Fade after matrix

Figure 13-6. OSD Fade Control Register (FADECON)



S3C880A/F880A ON-SCREEN DISPLAY

13-11

 n

 n - 1

n + 1

Line

12
13
14
15
16
17
18 (Inter-row space Line 0)
19 (Inter-row space Line 1)
20 (Inter-row space Line 2)
21 (Inter-row space Line 3)
0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17

8
9

0
1
2
3
4
5
6
7

18 (Inter-row space Line 0)
19 (Inter-row space Line 1)
20 (Inter-row space Line 2)
21 (Inter-row space Line 3)

ROW

Figure 13-7. Line and Row Addressing Conventions when ROWCON.2-.0 = "100"



ON-SCREEN DISPLAY S3C880A/F880A

13-12

Fade After (Fade Line = 13, Fade Line  = No Display)

P Q

M N

J K

G H

D E
A B

COLUMNS 0-20

R
O

W
S

 0-11

Line = 0

Line = 12

CHACON
FADECON

05H (Fade Row = 5)
6DH (Fade Line = 13;
Fade After Selected)

Figure 13-8. OSD Fade Function Example: Fade After



S3C880A/F880A ON-SCREEN DISPLAY

13-13

P Q

COLUMNS 0-20

R
O

W
S

 0-11

Line = 5

Line = 17

Fade Before (Fade Line = 5, Fade Line  = Display)

CHACON
FADECON

06H (Fade Row = 6)
45H (Fade Line = 5;
Fade Before Selected)

M N

J K

G H

D E
A B

Figure 13-9. OSD Fade Function Example: Fade Before



ON-SCREEN DISPLAY S3C880A/F880A

13-14

DISPLAY POSITION CONTROL

The on-screen display has 252 character display positions. There are 21 horizontal columns and 12 vertical rows.
Positions can be numbered sequentially from 0–251 (decimal) or from 0–FB (hexadecimal), as shown in Figures
13-11 and 13-12. To control display position, you can adjust the top and left margins and the inter-column and
inter-row spacing between characters on the screen.

COLUMNS 0-20

R
O

W
S

 0-11

DECIMAL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

83

103 104

123 124 125

143 144 145 146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

189 180 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

Figure 13-10. 252-Byte On-Screen Character Display Map (Decimal)

COLUMNS 0-20

R
O

W
S

 0-11

HEXADECIMAL

0 1 2 3 4 5 6 7 8 9 A 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79

80 81 82 84 85 86 87 88 89 90 91 92

93 94 95 96 97 98 99

83

B C D E F 10

1A 1B 1C 1D 1E 1F

2A 2B 2C 2D 2E 2F 3A 3B 3C 3D 3E

3F 4A 4B 4C 4D 4E 4F

5A 5B 5C 5D 5E 5F

6A 6B 6C 6D 6E 6F 7A 7B 7C 7D

7E 7F 8A 8B 8C 8D 8E 8F

9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7

A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC

BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1

D4 D5D2 D3 D8 D9D6 D7 DA DB DE DFDC DD E0 E1 E2 E3 E4 E5 E6

E7 E8 E9 EA EB EC ED EE F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FBEF

Figure 13-11. 252-Byte On-Screen Character Display Map (Hexadecimal)



S3C880A/F880A ON-SCREEN DISPLAY

13-15

ROW CONTROL REGISTER (ROWCON)

The row control register, ROWCON, controls the top margin and inter-row spacing. Top margin is the distance (in
H-sync pulses) to the top row of a character display from the top edge of its display frame. Inter-row spacing is
the distance (in H-sync pulses) between two rows of displayed characters. The inter-row spacing value you select
is applied equally to all rows in the display.

OSD Row Control Register (ROWCON)
F2H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Inter-row spacing control bits
(0H-7H in H-sync pulses):
000 = No inter-row spacing (0H)
001 = Inter-row spacing = 1H

111 = Inter-row spacing = 7H

Top margin display position control bits
(4 x TMG value of 0-31 dots):
00000 = Top margin = 0H
00001 = Top margin = 4H

11111 = Top margin = 124H

Figure 13-12. OSD Row Control Register (ROWCON)

COLUMN CONTROL REGISTER (CLMCON)

The column control register, CLMCON, controls the left margin and inter-column spacing. Left margin is the
distance to the character display from the left edge of the display frame. Inter-column spacing is the distance (0–
7 dots) between space separating the characters displayed in a row. The inter-column spacing value that you
select is applied equally to all columns in the display.

OSD Column Control Register (CLMCON)
F3H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Left margin display position control value
(16 + 4 x LMG value of 0-31 dots):
00000 = Left margin = 16 dots clock
00001 = Left margin = 16 + 4 x 1 dot clock

11111 = Left margin = 16 + 4 x 31 dot clock

Inter-column spacing control value
(0-7 dots):
000 = No inter-column spacing
001 = Inter-column spacing = 1 dot

111 = Inter-column spacing = 7 dots

Figure 13-13. OSD Column Control Register (CLMCON)



ON-SCREEN DISPLAY S3C880A/F880A

13-16

Inter-Row Space

Inter-Column Space

Left
Margin

Top Margin

Figure 13-14. OSD Display Formatting and Spacing Conventions

Calculating Row and Column Spacing

Inter-row spacing and inter-column spacing are controlled by the ROWCON and CLMCON registers. You can
select from zero to seven dots of spacing.

For inter-row spacing, the desired spacing value (0–7) is written to bits 0–2 of the ROWCON register. For inter-
column spacing, the desired spacing value (0–7) is written to bits 0–2 of the CLMCON register.

Calculating Margin Settings

By writing a value to ROWCON.3–ROWCON.7, you can set the top margin at 4 × the top margin dot value
(TMG). Because TMG is a 5-bit value, you can select any dot value in the range 0–31.

By writing a value to CLMCON.3–CLMCON.7, you can set the left margin at 16 + 4 × the left margin dot value
(LMG).  Because LMG is a 5-bit value, you can select any dot value in the range 0–31. The zero position for the
left margin is always 16 dots.

— Top margin = 4 × (top margin register value) H

— Left margin = 16 + 4 × (left margin register value) dot clock

— Inter-column space = (Register value) dot clock

— Inter-row space = (Register value) H



S3C880A/F880A ON-SCREEN DISPLAY

13-17

CHARACTER COLOR CONTROL REGISTER (COLBUF)

The color of the character matrix display is controlled by manipulating a 5-bit value in the OSD video RAM. You
can modify the character color selection bits only by addressing the OSD color buffer register, COLBUF (FCH,
set 1, bank 1). The color selection bits are COLBUF.2, COLBUF.1, COLBUF.0 and COLBUF.3 (H/T and
BGRND). These four bits comprise the RGB value (bit 10, 11, 12) and H/T and BGRND enable bit (bit 13) of the
character data stored in the video RAM.

When programming the display RAM values for a character display, you must first load a 3-bit color value into
the color buffer. This color setting is automatically appended to each 10-bit character code as it is written to the
OSD RAM addresses. If only one COLBUF value is loaded, all characters in the screen display will, of course, be
the same color. To change the display color of successive characters, modify the COLBUF value before you load
the address data for a specific row and column into the video RAM.

OSD Character Color Buffer (COLBUF)
FCH, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Not used

Video RAM bit 9 enable bit:
0 = Disable VRAM bit 9
1 = Enable VRAM bit 9

Character color selection bits
(.2 = red, .1 = green, .0 = blue)

Video RAM bit 8 enable bit:
0 = Disable VRAM bit 8
1 = Enable VRAM bit 8

H/T and BGRND enable bit:
0 = Disable H/T and BGRND
1 = Enable H/T and BGRND
(VRAM bit 13)

Character color
.0

OSDCOL.0 = 0 OSDCOL.0 = 1
.1.2

00 0

00

0 0

0

00

0

0

1

1

1 1

1

1

11

1

11 1

Black

Blue

Green

Cyan

Red

Magenta

Yellow

White

Color Mode 0

Color Mode 1

Color Mode 2

Color Mode 3

Color Mode 4

Color Mode 5

Color Mode 6

Color Mode 7

Figure 13-15. OSD Character Color Buffer Register (COLBUF)



ON-SCREEN DISPLAY S3C880A/F880A

13-18

BACKGROUND COLOR CONTROL

The background color control register, COLCON, lets you select background colors for both the display frame
and characters:

— Frame background  is the full-screen display field upon which the character display is imposed.

— Character background  is a color field that surrounds the individual character. To enhance readability, the
background is usually a color that contrasts or highlights the characters in a pleasing manner.

Frame
Background

Color

Wide Screen
Color TV

Wide Screen
Color TV

Character
Background

Color

No Character
Background

Color

Character
Background

Off

Wide Screen
Color TVColor  TV

Wide  Screen Wide Screen
Color TV

Wide Screen
Color TV

Figure 13-16. Background Color Display Conventions



S3C880A/F880A ON-SCREEN DISPLAY

13-19

OSD Background Color Control Register (COLCON)
F3H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Frame background color enable bit:
0 = Disable frame background color
      (No color is displayed)
1 = Enable frame background color

Character color selection bits
(See table)

Character background color enable bit:
0 = Disable character background color
      (No color is displayed)
1 = Enable character background color

Frame background color selection bit:

Frame Character Background color
.4 or .0.5 or .1.6 or .2

0 x

OSDCOL.0 = 1

Color Mode 0

Color Mode 1

Color Mode 2

Color Mode 3

Color Mode 4

Color Mode 5

Color Mode 6

Color Mode 7

OSDCOL.0 = 0

Black

Blue

Green

Cyan

Red

Magenta

Yellow

White

.7 or .3

x x

1

0 0 0

0 0

0

0

0

1

1

1

No background display

1

1

1

1

1 1 1

1 1

1

1

1

1

1

0

0

0

1

0

1

Figure 13-17. OSD Background Color Control Register (COLCON)



ON-SCREEN DISPLAY S3C880A/F880A

13-20

V-SYNC BLANK CONTROL REGISTER (VSBCON)

VSBCON sets the blank area, which stops the L-C oscillator during the defined time from the V-sync input time.
Unit of V-sync blank time is 1 H-sync. It can be set up to a maximum of 31 H-syncs. If VSBCON.4 is set from“0”
to “1001B”, blank time is always 9 H-syncs regardless of the setting value.

V-sync Blank Control Register (VSBCON)
F7H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

V-sync blank time control bit:Not used

00000
00001
00010

9 Horizontal sync
9 Horizontal sync
9 Horizontal sync

01001
01010
01011

11110
11111

9 Horizontal sync
10 Horizontal sync
11 Horizontal sync

30 Horizontal sync
31 Horizontal sync

NOTE:    Frame background is disabled during the V-sync blank time.

Figure 13-18. V-sync Blank Control Register (VSBCON)



S3C880A/F880A ON-SCREEN DISPLAY

13-21

V-SYNC BLANK AND TOP MARGIN TIMING DIAGRAM

The following is a timing diagram simplified with external V-sync input and H-sync input signals. V-sync blank
and top margin are controlled by VSBCON and ROWCON VSBCON .4–.0 = 01011B (V-sync blank time = 11
Horizontal sync). ROWCON.7–.3 = 00100B (top margin control value = 16, top margin = 5).

V-sync
blank

V-sync blank time on chip Row 0

V-sync interrupt Row 0 interrupt

V-sync input

H-sync input

Internal V-sync

H-line count

10 32 54 76 98 10 11 1312 1514 1716 1918 20 21

10 32 54 76 98 10 11 1312 1514 16 10 32 4

Top margin

ROWCON.7-.3 (Top margin control value)

Figure 13-19. V-sync Blank and Top Margin Timing Diagram



ON-SCREEN DISPLAY S3C880A/F880A

13-22

HALFTONE SIGNAL CONTROL REGISTER (HTCON)

The halftone function lets you output halftone control signals to peripherals such as a chroma-IC. You can select
halftone output for character back ground periods (as selected by bit 13 in the video RAM) or for frame periods
(regardless of the bit 13 setting). The halftone signal control register, HTCON, has the following functions:

— Halftone option selection (character or frame)

— Halftone display enable/disable

— V-sync interrupt enable and pending control

— Polarity selection of RGB and halftone outputs

Bits 4 and 5 are used for OSD Row interrupt function.

OSD ROW Interrupt Control

The S3C880A/F880A has a total of 12 OSD display rows. When enabled, an OSD ROW interrupt occurs in the
first line of each row. Up to 12 OSD ROW interrupts can be generated, while this number can be reduced
according to different settings in top margin (ROWCON.7–.3), inter row space (ROWCON.2–.0), vertical
character size (CHACON.7–.6), and Vsync blank time (VSBCON). The ROW counter of DSPCON.7–.4 informs
the order of an OSD ROW interrupt occurring within a frame. An OSD ROW interrupt is generated at the
beginning of a ROW (for ROW0 through ROW11).

OSD ROW interrupt allow different controls to each ROW. If the OSD control register is adjusted in the N-th row
area, the new value is applied from (N+1)th row. That is, if the OSD control register is adjusted in the first OSD
ROW interrupt (DSPCON.7–.4 = 0000B) service routine, the new value is applied from ROW1. A change in the
12 th OSD ROW interrupt service routine affects the rows from ROW0.

NOTE: OSD output enable/disable (DSPCON.0) settings are immediately applied. Top margin (ROWCON.7–.3) and 
VSBCON are applied in accordance with Vsync input signals.

Halftone Option Selection

In character periods only (HTCON.2 = “0”), the character specified in COLBUF.3 may have the halftone function
according to the condition of DSPCON.2–.1 (DSPCON.2–.1 = "10" or DSPCON.2–.1 = "11").

In all frame periods (HTCON.2 = “1”), the entire section can have the function, regardless of the COLBUF.3
condition.



S3C880A/F880A ON-SCREEN DISPLAY

13-23

Halftone Signal Control Register (HTCON)
F3H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Halftone signal output
polarity selection bit: (1)

0 = Active high level
1 = Active low level

V-sync interrupt pending bit:
0 = No interrupt pending (when read)
0 = Clear pending bit (when write)
1 = Interrupt is pending (when read)
1 = No effect (when write)

V-sync interrupt enable bit:
0 = Disable the V-sync interrupt
1 = Enable the V-sync interrupt

Halftone option selection bit:(3)

0 = Character back ground periods only
      (when bit 3 of COLBUF is set to "1")
1 = All frame periods (disregard COLBUF "Bit 3")

RGB polarity selection bit: (2)

0 = Active high level
1 = Active low level

Halftone control signal enable bit:
0 = Disable halftone signal
1 = Enable halftone signal

OSD Row interrupt enable bit:
0 = Disable the OSD Row interrupt
1 = Enable the OSD Row interrupt

OSD Row interrupt pending bit:
0 = No interrupt pending (when read)
0 = Clear pending bit (when write)
1 = Interrupt is pending (when read)
1 = No effect (when write)

NOTES:
1.    The HTCON.7 setting applies to halftone output only. The active high setting ("0") means
       that the normal halftone signal output is Low level. when you select the active low setting ("1"),
       the normal halftone signal output is High level.
2.    The active high setting ("0") for HTCON.6 means that the normal RGB polarity is Low level.
       When you select the active low setting ("1"), the normal RGB polarity is High level.
3.    In case HTCON.2 = 1, character halftone and background color (DSPCON.2-.1 = "11B") do not operate.

Figure 13-20. Halftone Signal Control Register (HTCON)



ON-SCREEN DISPLAY S3C880A/F880A

13-24

Background Color and Halftone Function Mode

R

G

B

Blank

OSDHT

R

G

B

Blank

OSDHT

COLCON.7 = "0", If OSDCOL.0 = "0", COLCON = 29H, HTCON.3-.2 ="10b"
Frame background: Disable, Frame halftone: Disable, Character background: Enable with Blue color,
Character background halftone: Enable

If OSDCOL.0 = "0", COLCON = A1H, HTCON.3-.2 ="11b"
Frame background: Enable with Green coler, Frame halftone: Enable,
Character background: Enable with Blue color, Character background halftone: Enable

Background Color: Blue

Character Color: Red

Frame background color: Green
SCAN

Figure 13-21. Halftone or Character Backgound Signal Output



S3C880A/F880A ON-SCREEN DISPLAY

13-25

OSD FIELD CONTROL REGISTER (OSDFLD)

OSD field control register helps recognizing whether the current field is an EVEN field or an ODD one, in a TV
signal frame. This control register must be defined for a current field recognition of V-sync and H-sync entering
the S3C880A/F880A. In order to recognize an even field, OSDFLD.0–.3 defines the range starting from the point
of
V-sync edge, where H-sync must be present. If H-sync exits within the range, the field is recongnized as an
EVEN field.

OSDFLD.4 defines when H-sync must be detected. If it is set to “0”, the existence of H-sync is detected within
the range set by OSDFLD.0–.3 before V-sync is input. If it is set “1”, it is detected after V-sync is input.

OSDFLD.5 describes whether the current, field input by the field control which is set by OSDFLD.0–.3 and
OSDFLD.4 is an EVEN field or an ODD one.

OSD Field Control Register (OSDFLD)
E5H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Not used

Field data (read only):
0 = Even field
1 = Odd field

Even field range:
0000 = Not used
0001 = fCPU/16 x 1
0010 = fCPU/16 x 2
0011 = fCPU/16 x 3
0100 = fCPU/16 x 4
0101 = fCPU/16 x 5
0110 = fCPU/16 x 6
0111 = fCPU/16 x 7
1000 = fCPU/16 x 8
1001 = fCPU/16 x 9
1010 = fCPU/16 x 10
1011 = fCPU/16 x 11
1100 = fCPU/16 x 12
1101 = fCPU/16 x 13
1110 = fCPU/16 x 14
1111 = fCPU/16 x 15

H-sync detect position select:
0 = Detect H-sync before V-sync
1 = Detect H-sync after V-sync

Figure 13-22. OSD Field Control Register (OSDFLD)



ON-SCREEN DISPLAY S3C880A/F880A

13-26

Field Detect by OSDFLD Control

When control register set is OSDFLD.0-.3 = “1010B”, OSDFLD.4 = 0

 

fCPU/
16 x 10

V-sync
blank

Even filed

Odd filed

V-sync input

H-sync input

H-sync input

Figure 13-23. Field Detect in Before V-sync

fCPU/
16 x 10

V-sync
blank

Even filed

Odd filed

V-sync input

H-sync input

V-sync input

Figure 13-24. Field Detect in After V-sync



S3C880A/F880A ON-SCREEN DISPLAY

13-27

OSD PALETTE COLOR CONTROL

OSD Palette Color Mode Registers (OSDPLTR, OSDPLTG, OSDPLTB)

OSD palette color mode register R, G, B controls the color of OSD R, G, B output. OSDPLTR1, OSDPLTR2,
OSDPLTG1, OSDPLTG2, OSDPLTB1, and OSDPLTB2 are composed of 8 bits each, in which the combinations
of bit0-bit1, bit2-bit3, bit4-bit5, bit6-bit7 of OSDPLTx1 (x = R, G, B) define color mode 0 to 3 and bit0-bit1, bit2-
bit3, bit4-bit5, bit6-bit7 of OSDPLTx2 (x = R, G, B) define color mode 4 to 7, respectively.

Each color mode can express upto 64 color by combing the six registers (OSDPLTR1, OSDPLTR2, OSDPLTG1,
OSDPLTG2, OSDPLTB1, OSDPLTB2). As one color mode can select one color out of 64 choices, and there are
8 color modes, a total of 8 colors can be displayed at time. For example, when combining color mode 0, each of
OSDPLTR1.0-1, and OSDPLTB1.0-1 can produce 4 kids of red level, which can be multiplied upto 64
combinations.

Each 2 bits define a color mode make 4 color levels available. When the standard lighting is 100%, the value
"00B" means disabled, "01B" means 33% and "10B" means 66% of the standard light level.

 

OSD Palette Color Mode Register R1 (OSDPLTR1)
E6H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

OSD mode 3 red level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 2 red level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 0 red level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 1 red level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

Figure 13-25. OSD Palette Color Mode Register R1 (OSDPLTR1)



ON-SCREEN DISPLAY S3C880A/F880A

13-28

OSD Palette Color Mode Register R2 (OSDPLTR2)
E7H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

OSD mode 7 red level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 6 red level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 4 red level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 5 red level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

Figure 13-26. OSD Palette Color Mode Register R2 (OSDPLTR2)



S3C880A/F880A ON-SCREEN DISPLAY

13-29

OSD Palette Color Mode Register G1 (OSDPLTG1)
E8H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

OSD mode 3 green level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 2 green level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 0 green level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 1 green level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

Figure 13-27. OSD Palette Color Mode Register G1 (OSDPLTG1)

OSD Palette Color Mode Register G2 (OSDPLTG2)
E9H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

OSD mode 7 green level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 6 green level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 4 green level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 5 green level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

Figure 13-28. OSD Palette Color Mode Register G2 (OSDPLTG2)



ON-SCREEN DISPLAY S3C880A/F880A

13-30

OSD Palette Color Mode Register B1 (OSDPLTB1)
EAH, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

OSD mode 3 blue level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 2 blue level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 0 blue level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 1 bluelevel
00 = Disable
01 = 33%
10 = 66%
11 = 100%

Figure 13-29. OSD Palette Color Mode Register B1 (OSDPLTB1)

OSD Palette Color Mode Register B2 (OSDPLTB2)
EBH, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

OSD mode 7 blue level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 6 blue level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 4 blue level
00 = Disable
01 = 33%
10 = 66%
11 = 100%

OSD mode 5 bluelevel
00 = Disable
01 = 33%
10 = 66%
11 = 100%

Figure 13-30. OSD Palette Color Mode Register B2 (OSDPLTB2)



S3C880A/F880A ON-SCREEN DISPLAY

13-31

OSD SPACE COLOR CONTROL REGISTER (OSDCOL)

RGB output selection

S3C880A/F880A has two RGB output mode: digital mode and analog mode.
In Digital mode, OSDCOL.0 must be set to 0. RGB output has two levels, VSS and VDD. Eight colors can be
produced: black, blue, green, cyan, red, magenta, yellow and white. OSD palette color control registers,
OSDPLTR1, OSDPLTR2, OSDPLTG1, OSDPLTG2, OSDPLTB1, and OSDPLTB2, are not used in this mode.
In analog mode, OSDCOL.0 must be set to 1. R.G.B output color bright can be selected among four levels
respectively. 64 colors can be selected by setting OSD palette color control registers, OSDPLTR1, OSDPLTR2,
OSDPLTG1, OSDPLTG2, OSDPLTB1, and OSDPLTB2. In one display row you can select 8 colors, color mode
0–7, by setting COLBUF.2–.0. The color selected by color mode 0–7 can be changed in every display row.

Inter-row space halftone

Inter-row spacing is the distance (in H-sync pulses) between two rows of displayed characters and can be
changed by setting ROWCON.2-.0. Also halftone character can be changed for this inter-row spacing.

For OSDCOL.1=0, halftone function of inter-row space region is the same as that of the character background
region. That is, if the halftone function of character background region is enabled by setting HTCON.3 to “1”, the
halftone function of inter-row space region is enabled. When HTCON.3 is set to “1”, halftone function of
character background is enabled regardless of the value of HTCON.2.

For OSDCOL=1 (depend on frame background halftone), inter-row space halftone function is enabled when the
value of HTCON.3 and HTCON.2 are set to "1".

Inter-row space color

Inter-row space color depends on the character background color and frame background color by COLCON.
When OSDCOL.2 is “0”, inter-row space color depends on the current character background color; when
OSDCOL.2 is “1”, inter-row space color depends on the current frame background color.

Fringe dot size selection

1 dot (when OSDCOL.3 is “0”) is a fringe size, which is set by OSDFRG1 and OSDFRG2.

For 1/2 dot fringe size (when OSDCOL.3 is “1”), fringe function is set by 1/2 dot unit. In the interlaced scan, even
field line and odd field line are added to form 1 dot of length. If character size of length is x1 or x3 in the 1/2 dot
fringe size, blinking can occur. So, 1 dot fringe size method is recommended.

Inter character smoothing control

If inter character smoothing is enabled (when OSDCOL.4 is “1”), adjacent character is considered as one
character and smoothing function is enabled.



ON-SCREEN DISPLAY S3C880A/F880A

13-32

OSD Space Color Control Register (OSDCOL)
E4H, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Not used

Inter character smoothing control bit (note):
0 = Disable inter character smoothing
1 = Enable inter character smoothing

RGB output selection bit:
0 = Digital RGB output (Disable palette color mode)
1 = Analog RGB output (Enable palette color mode)

Fringe dot size
selection bit:
0 = 1 dot
1 = 1/2 dot

Inter-row space halftone
0 = Depend on character background halftone
1 = Depend on frame background halftone

Inter-row space color
0 = Depend on character background color
1 = Depend on frame background color

Figure 13-31. OSD Space Color Control Register (OSDCOL)



S3C880A/F880A ON-SCREEN DISPLAY

13-33

OSD BORDER/FRINGE FUNCTION

Fringing Function

The fringing function is used to display a character with a fringe (fringe means shadowed character at bottom and
right direction) width is 1 or 1/2 dot in a different color from that of the character. For all character size, fringe
width is 1 or 1/2 dot by set of OSDCOL.3. When a character is displayed with the maximum of 18 vertical dots
and 16 horizontal dots, the fringe exceeds right and bottom of the character display area. The exceeded fringe
can be displayed; however , display characters have higher priority to fringe. In this case, If you want to display
both fringe and character, you should set inter-row space and inter-column space. When 1dot fringe function is
selected, you should set minimum two dots of inter-row space or inter-column space. When 1/2 dot fringe
function is selected, you should set minimum one dot of inter-row space or inter-column space.
Fringing is enabled for each line by setting each bit of OSDFRG1 and OSDFRG2 to “1” when OSDFRG2.7=”1”.

Three bits of  OSDFRG2.6-.4 are control Border color. A color for fringe is specified common to selected row and
a color for fringe to each row are controlled differently.

NOTE: When Vertical size x1 and x3 in 1/2 fringe enabled, the flickering may be generated. Because vertical 1 dot
means even and odd field, that is  1/2 dot is even or odd field area.  So interlace scan TV system, you can
see the flickering.

Border Function

The Border function is used to display a character with a Border (Border means shadowed at all character
boundary) width is 1/2 dot in a different color from that of the character. For all character size, Border width is 1/2
dot. When a character is displayed with the maximum of 18 vertical dots and 16 horizontal dots, the fringe
exceeds right and bottom of the character display area. The exceeded Border can be displayed; however ,
display characters have higher priority to fringe. In this case, If you want to display both Border and character,
you should set inter-row space and inter-column space over minimum one dot. Border is enabled for each line by
setting each bit of OSDFRG1 and OSDFRG2 to “1” when OSDFRG2.7=”0”.

Three bits of  OSDFRG2.6-.4 are control Border color. A color for Border is specified common to selected row
and a color for fringe to each row are controlled differently.

NOTE: When Vertical size x1 and x3, the flickering may be generated. Because vertical 1 dot means even and odd field,
that is  1/2 dot is even or odd field area.  So interlace scan TV system, you can see the flickering.



ON-SCREEN DISPLAY S3C880A/F880A

13-34

OSD Fringe/Border Control Register 1 (OSDFRG1)
E0H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Fringe/Border function enable bit:
0 = Disable fringe/border function at row n (n = 0-7)
1 = Enable fringe/border function at row n (n = 0-7)

Figure 13-32. OSD Fringe/Border Control Register 1 (OSDFRG1)

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Fringe/Border color selection bits:
(.6 = red, .5 = green, .4 = blue)

Fringe/Border Color
.4

OSDCOL.0 = 0 OSDCOL.0 = 1
.5.6

00 0

00

0 0

0

00

0

0

1

1

1 1

1

1

11

1

11 1

Black

Blue

Green

Cyan

Red

Magenta

Yellow

White

Color Mode 0

Color Mode 1

Color Mode 2

Color Mode 3

Color Mode 4

Color Mode 5

Color Mode 6

Color Mode 7

OSD Fringe/Border Control Register 2 (OSDFRG2)
E1H, Set 1, Bank 1, R/W

Fringe/Border function enable bit:
0 = Disable fringe/border function at row n (n = 8-11)
1 = Enable fringe/border function at row n (n = 8-11)

Fringe or Border selection bit:
0 = Border function select
1 = Fringe function select

Figure 13-33. OSD Fringe/Border Control Register 2 (OSDFRG2)



S3C880A/F880A ON-SCREEN DISPLAY

13-35

OSD SMOOTH FUCNTION

Smoothing function

The smoothing function is used to make characters look smooth. Enabling smoothing displays 1/4 dot between
two dots connecting corner to corner within a character.  Smoothing is enabled by setting each bit of OSDSMH1
and OSDSMH2 to “1”. A smooth is specified common to selected row.

OSD Smooth Control Register 1(OSDSMH1)
E2H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Row 0 smooth function enable bit:
0 = Disable smooth function at Row 0
1 = Enable smooth function at Row 0

Row 1 smooth function enable bit:
0 = Disable smooth function at Row 1
1 = Enable smooth function at Row 1

Row 2 smooth function enable bit:
0 = Disable smooth function at Row 2
1 = Enable smooth function at Row 2

Row 3 smooth function enable bit:
0 = Disable smooth function at Row 3
1 = Enable smooth function at Row 3

Row 7 smooth function enable bit:
0 = Disable smooth function at Row 7
1 = Enable smooth function at Row 7

Row 6 smooth function enable bit:
0 = Disable smooth function at Row 6
1 = Enable smooth function at Row 6

Row 5 smooth function enable bit:
0 = Disable smooth function at Row 5
1 = Enable smooth function at Row 5

Row 4 smooth function enable bit:
0 = Disable smooth function at Row 4
1 = Enable smooth function at Row 4

Figure 13-34. OSD Smooth Control Register 1 (OSDSMH1)



ON-SCREEN DISPLAY S3C880A/F880A

13-36

OSD Smooth Control Register 2 (OSDSMH2)
E3H, Set 1, Bank 1, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Row 8 smooth function enable bit:
0 = Disable smooth function at Row 8
1 = Enable smooth function at Row 8

Row 9 smooth function enable bit:
0 = Disable smooth function at Row 9
1 = Enable smooth function at Row 9

Row 10 smooth function enable bit:
0 = Disable smooth function at Row 10
1 = Enable smooth function at Row 10

Row 11 smooth function enable bit:
0 = Disable smooth function at Row 11
1 = Enable smooth function at Row 11

Not used

Figure 13-35. OSD Smooth Control Register 2 (OSDSMH2)

(a) Smoothing (b) Bordering (c) Priority of Smoothing
and Bordering

(d) Fringing (1 dot)

Figure 13-36. Smoothing/Fringing/Priority of Smoothing and Fringing



S3C880A/F880A ON-SCREEN DISPLAY

13-37

++ PROGRAMMING TIP — Row Interrupt Function

This example shows the effect of the control register setting excluding the HTCON.5,4,1,0 and DSPCON 3,0
occurs in the next row. The sample program should meet the following specifications:

1. The character size of the row 2 must be double-sized (× 2).

2. The character size of the other rows must be normal (× 1).

R0 = 10H

V-sync interrupt

SB1

DSPCON          #01H

CHACON          #00H

HTCON          #32H

IRET

OSD Row interrupt

SB1

PUSH R0

R0          DSPCON

AND R0, #0F0H

CHACON          #50H

POP R0

Yes

CHACON          #00H

HTCON          #23H

IRET

No

Figure 13-37. Decision Flowchart for Row Interrupt Function Programming Tip



ON-SCREEN DISPLAY S3C880A/F880A

13-38

++ PROGRAMMING TIP — Row Interrupt Function (Continued)

Vsync_int:
SB1 ; Select bank 1
LD DSPCON,#01H ;   OSD on, H/V sync rising edge

;This is Vsync interrupt service routine.

Interrupt_end:
LD HTCON, #32H ;   Pending bit clear
IRET

Row_int:
SB1 ; Select bank 1
PUSH R0 ; Stack ←  R0
LD R0,DSPCON ; R0 ←  DSPCON data
AND R0,#0F0H ; 11110000b, bit0-bit3 clear
CP R0,#10H ; Row 1 interrupt?
JR NE, No_Char_Change
LD CHACON,#50H ;   Double size character at row 2
JR t, Row_interrupt_end

No_char_change:
LD CHACON, #00H ; X1 size character except row 2

Row_interrupt_end:
POP R0
LD HTCON, #23H ; Pending bit clear
IRET



S3C880A/F880A ON-SCREEN DISPLAY

13-39

++ PROGRAMMING TIP — Writing Character Code and Color Data to the OSD Video RAM

This example shows how to write character code and color data to the OSD video RAM. The sample program
performs the following operations:

1. Write red character 'A' (code 0A, for example) to the video RAM from address 00H to 77H.

2. Write green character 'B' (code 0B, for example) to the video RAM from address 78H to 0FBH.

•
•
•
SB1 ; Select bank 1
LD DSPCON,#0F9H ; OSD module on; negative sync trigger is selected
LD OSDCOL,#0 ; Digital RGB selection
LD PP,#11H ; Select OSD video RAM page (page 1)
SRP0 #0C0H ; Select common working register area
LD COLBUF,#04H ; Load color buffer (red color)
CLR R0 ; Load starting address (00H) to R0

OSDLP1 LD @R0,#0AH ; Write red character A to video RAM address 00H–77H
INC R0 ; "
CP R0,#77H ; "
JP ULE,OSDLP1 ; "
LD COLBUF,#02H ; Load green color code (02H) to the color buffer

OSDLP2 LD @R0,#0BH ; Write green character B to RAM address 78H–0FBH
INC R0 ; "
CP R0,#0FBH ; "
JP ULE,OSDLP2 ; "
SB0 ; Select bank 0
•
•
•

++  PROGRAMMING TIP — OSD Fade Function; Line and Row Counters

This example is a continuation of the previous OSD example in which character code and color data were written
to the video RAM. Assuming a timer A interrupt interval of 2 milliseconds, the sample program should meet the
following specifications:

1. If bit fade (R4.0) is set, then enable the fade function.

2. Interval time between two lines  =  20 ms. (The flag 'INTVAL' is set at 20-ms intervals in the timer A service
routine.)

3. Fade direction is 'fade after'.



ON-SCREEN DISPLAY S3C880A/F880A

13-40

Yes ("1")
Fade = "1"?

FADECON

F_STRT = "1"?F_STRT          "1"

Exit
INTVAL = "1"?

ROWCNT          #00H
LINECNT          #00H

F_STRT          "1"

No ("0")

Exit

No ("0")

No ("0")

LINECNT          LINECNT + #1
INTVAL          "1"

LINECNT = #19?

Yes ("1")

LINECNT          #00H
ROWCNT          ROWCNT + 1

N (< #19)Y (> #19)=

ROWCNT = #11?

Fade          0
Disable Fade Function

Enable Fade

N (< #12)

OSD ON

Exit

Yes (Initial)

Figure 13-38. Decision Flowchart for Fade Function Programming Tip



S3C880A/F880A ON-SCREEN DISPLAY

13-41

++ PROGRAMMING TIP — OSD Fade Function; Line and Row Counters (Continued)

ROWCNT EQU 6
LINECNT EQU 7
FADE EQU 0
F_STRT EQU 1
INT_CNT EQU 5
INTVAL EQU 2

•
•
•
SB1 ; Select bank 1
LD PP,#11H ; Select OSD video RAM page (page 1)
SRP0 #0C0H ; RP0  ←  0C0H (common working register area)
BTJRF EXIT1,R4.FADE ; If flag FADE  =  "0", then jump to EXIT1
BTJRT FAD1,R4.F_STRT ; If F_STRT  =  "1", then jump to FAD1
BTJRF EXIT,R4.INTVAL ; If INTVAL  =  "1", then jump to EXT
INC RLINECNT ; Line counter  ←  line counter  +  1
BITR R4.INTVAL ; INTVAL  ←  "0"
CP RLINECNT,#13H ; Line counter  ≥ 19?
JP ULT,FAD2 ; If line counter  <  19, then jump to FAD2
CLR RLINECNT ; Line counter  ←  "0"
INC RROWCNT ; Row counter  ←  row counter  +  1
CP RROWCNT,#0DH ; Row counter  <  11?
JP ULT,FAD2 ; If row  ≤  12, then jump to FAD2
LD R1,#0F1H ; If row  >  12, then finish the fade function
LD R2,@R1
BITR R2.6 ; Fade disable
LD @R1,R2

FAD3 LD DSPCON,#0F9H ; OSD module on
JR T,EXIT

(Continued on next page)



ON-SCREEN DISPLAY S3C880A/F880A

13-42

++ PROGRAMMING TIP — OSD Fade Function; Line and Row Counters (Continued)

FAD1 CLR RROWCNT ; Row counter (R6)  ←  0H
CLR RLINECNT ; Line counter (Rn)  ←  0H
BITS R4.F_STRT

FAD2 LD R2,CHACON ; R2  ←  CHACON
AND R2,#0F0H ; Clear the fade row address
OR R2,RROWCNT ; Load new fade row address to R2
LD CHACON,R2 ; CHACON  ←  R2
INC R1 ; R1  ←  0F1H (fade line address)
LD R2,RLINECNT ; R2  ←  new fade line address
OR R2,#60H ; Enable fade function, select fade after
LD FADECON,R2
JR T,FAD3

EXIT1 BITS R4.F_STRT

EXIT SB0 ; Select bank 0
•
•
•

TAINT PUSH PP
PUSH RP0
LD PP,#11 ; Select video RAM page (page 1)
SRP0 #0C0H ; RP0  ←  0C0H
INC RINT_CNT ; Interval counter  ←  interval counter  +  1
CP RINT_CNT,#0AH ; Interval counter  ≤  10?  (Has 20 ms elapsed?)
JP ULE,TA1 ; If yes, then jump to TA1
CLR RINT_CNT ; 20 ms has elapsed, so clear interval counter
BITS R4.INTVAL ; INTVAL  ←  "1"

TA1 NOP
•
•
•
POP RP0
POP PP
IRET



S3C880A/F880A ON-SCREEN DISPLAY

13-43

++ PROGRAMMING TIP — Manipulating OSD Character Colors; Halftone Function

This example is a continuation of the previous OSD examples. Following the second sample program, red
character A is in the video RAM address 00H–77H and green character B has been written to addresses 78H–
0EFH. The program performs the following additional actions:

1. Change the color of character 'A' to white.

2. Change the color of character 'B' to its complementary color.

3. Enable the halftone function for character 'B'.

•
•
•
SB1 ; Select bank 1
LD PP,#11H ; Select video RAM page (page 1)
SRP0 #0C0H ; RP0  ←  0C0H (common working register area)
LD COLBUF,#0FH ; Color buffer  ←  white color code (07H), character

; background enable
CLR R0 ; R0 (video RAM address)  ←  00H

OSDLP1 LD @R0,#0AH ; Video RAM (00H–77H)  ←  white 'A'
INC R0 ; "
CP R0,#77H ; "
JP ULE,OSDLP1 ; "
LD R2,COLBUF ; R2  ←  color buffer (color of character in address 78H)
COM R2 ; R2  ←  (not R2)
AND R2,#0FH ; Mask out bit 7 through bit 3 of R2
LD COLBUF,R2 ; Color buffer  ←  complementary color of the character

; in address 78H
LD DSPCON,#0F9H ; OSD module on; negative sync trigger selected
•
•
•

(Continued on next page)



ON-SCREEN DISPLAY S3C880A/F880A

13-44

++ PROGRAMMING TIP — Manipulating Character Colors; Halftone Function (Continued)

halftone CALL halftone1 ; Halftone signal control
•
•
•

halftone1 PUSH PP ; Stack  ←  PP
PUSH RP0 ; Stack  ←  RP0
PUSH FLAGS ; Save flags to stack
SB1 ; Select bank 1
LD PP,#11H ; Page 1 selected
SRP0 #20H ; RP0  ←  20H (working register area)
CLR R0 ; R0  ←  00H

loop_halftone
LD HTCON,#02H ; Disable halftone control register

; Enable V-sync interrupt
LD DSPCON,#09H ; Enable OSD; select negative sync trigger
LD R1,@R0 ; Video RAM zero address
INC R0
CP R0,#0FBH ; Video RAM end?
JP UGT,end_halftone
tm COLBUF,#08H ; Check COLBUF.3 (character background enable?)
JR Z,loop_halftone
LD HTCON,#0AH ; Enable halftone

; Enable V-sync interrupt
LD DSPCON,#0DH ; Halftone output mode

; Select negative sync trigger
; No line is double size

JP t,loop_halftone

end_halftone
POP FLAGS ; Restore flag values from stack
POP RP0 ; Restore register pointer 0 value
POP PP ; Restore page pointer
RET ; Return
•
•
•



S3C880A/F880A ON-SCREEN DISPLAY

13-45

++ PROGRAMMING TIP — OSD Character Size, Background Color, and Display Position

This example is a continuation of the previous OSD examples. It performs the following additional actions:

1. Change the character size to horizontal ×3 and vertical ×2.

2. Enable character background color to the complementary color of the character code in address 0EFH of the
video RAM.

3. Enable the frame background; select the color cyan.

4. Set top margin to 16H, inter-row spacing to 1H, left margin to 24 dots, and inter-column spacing to three (3)
dots.

•
•
•
SB1 ; Select bank 1
LD PP,#11H ; Select video RAM page (page 1)
SRP0 #0C0H ; Select common working register area
LD COLCON,#0 ; Digital RGB selection
LD CHACON,#60H ; Horizontal ×3, vertical ×2 for character size
LD FADECON,#00H ; Disable the fade function
LD ROWCON,#21H ; Top margin  ←  16H, inter-row space  ←  1H
LD CLMCON,#1BH ; Left margin  ←  24 dots, inter-column space  ←  3 dots
LD R3,COLBUF ; R3  ←  color of the character in address 0EFH
COM R3 ; R3  ←  not R3
AND R3,#07H ; Mask out bit 7 through bit 3 of R3
OR R3,#0B8H ; R3  ←  cyan frame background color
LD COLBUF,R3 ; Enable character and frame background color
LD DSPCON,#09H ; Falling edge sync trigger, OSD on
SB0 ; Select bank 0
•
•
•

++ PROGRAMMING TIP — Helpful Hints About COLBUF and OSD Character Code 0

When working with the OSD module, please note the somewhat unusual characteristics of the color buffer
register (COLBUF) and the OSD character code 0:

— The color buffer register, COLBUF (F7C, set 1, bank 1) provides a somewhat unusual method for
manipulating character color data.

— OSD character code 0 produces a no-display and no-background condition, regardless of the font coding
used.



ON-SCREEN DISPLAY S3C880A/F880A

13-46

NOTES



S3C880A/F880A A/D CONVERTER

14-1

14 ANALOG-TO-DIGITAL CONVERTER

OVERVIEW

The 8-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at
one of the four input channels to equivalent 8-bit digital values. The analog input level must lie between the VDD
and VSS values. The A/D converter has the following components:

— Analog comparator with successive approximation logic

— D/A converter logic (resistor string type)

— ADC control register (ADCON)

— Four multiplexed analog data input pins (ADC0–ADC3)

— 8-bit A/D conversion data output register (ADDATA)

To initiate an analog-to-digital conversion procedure, you write the channel selection data in the A/D converter
control register ADCON to select one of the four analog input pins (ADCn, n = 0–3) and set the conversion start
or enable bit, ADCON.0. The read-write ADCON register is located at address FAH.

During a normal conversion, A/D C logic initially sets the successive approximation register to 80H (the
approximate half-way point of an 8-bit register). This register is then updated automatically during each
conversion step. The successive approximation block performs 8-bit conversions for one input channel at a time.
You can dynamically select different channels by manipulating the channel selection bit value (ADCON.5–4) in
the ADCON register. To start the A/D conversion, you should set a the enable bit, ADCON.0. When a conversion
is completed, ADCON.3, the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into
the ADDATA register where it can be read. The A/D converter ten enters an idle state. Remember to read the
contents of ADDATA before another conversion starts. Otherwise, the previous result will be overwritten by the
next conversion result.

NOTE

Because the ADC does not use sample-and-hold circuitry, it is important that any fluctuations in the
analog level at the ADC0–ADC3 input pins during a conversion procedure be kept to an absolute
minimum. Any change in the input level, perhaps due to circuit noise, will invalidate the result.  



A/D CONVERTER S3C880A/F880A

14-2

USING A/D PINS FOR STANDARD DIGITAL INPUT

The ADC module's input pins are alternatively used as digital input in port 0 and port 3. The ADC0–ADC1 share
pin names are P3.0–P3.1 and ADC2–ADC3 share pin names are P0.6–P0.7, respectively.

A/D CONVERTER CONTROL REGISTER (ADCON)

The A/D converter control register, ADCON, is located at address FAH. Only bits 5-0 are used in the
S3C880A/F880A implementation. ADCON has three functions:

— Bits 5–4 select an analog input pin (ADC0–ADC3).

— Bit 3 indicates the status of the A/D conversion.

— Bit 2-1 select a conversion speed.

— Bit 0 starts the A/D conversion.

Only one analog input channel can be selected at a time. You can dynamically select any one of the four analog
input pins (ADC0–ADC3) by manipulating the 2-bit value for ADCON.5–ADCON.4.

A/D Converter Control Register (ADCON)
FAH, Set 1, Bank 0, R/W

LSBMSB .7 .6 .5 .4 .3 .2 .1 .0

Conversion start bit:
0 = No effect
1 = A/D conversion start

Analog input pin selection bits:
00 = ADC0 (P3.0)
01 = ADC1 (P3.1)
10 = ADC2 (P0.6)
11 = ADC3 (P0.7)

Not used

Clock source selection bit:
00 = fOSC/16
01 = fOSC/8
10 = fOSC/4
11 = fOSC/2

End-of-conversion status bit: (Read only)
0 = A/D conversion is in progress
1 = A/D conversion complete

Figure 14-1. A/D Converter Control Register (ADCON)



S3C880A/F880A A/D CONVERTER

14-3

INTERNAL REFERENCE VOLTAGE LEVELS

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input
level must remain within the range AVSS to AVREF (usually, AVREF = VDD).

Different reference voltage levels are generated internally along the resistor tree during the analog conversion
process for each conversion step. The reference voltage level for the first bit conversion is always 1/2 AVREF.

A/D Converter Control Register

ADCON (FAH)

M
U
L
T
I
P
L
E
X
E
R

ADCON .5-4

+_

Control
Circuit

Successive
Approximation

Circuit

Clock
Selector

D/A Converter AVREF

AVSS

ADCON .0 (ADEN)

ADCON .2-1
ADCON .3
(EOC Flag)

Analog
Comparator

Conversion
Result

To Data Bus

ADC0/P3.0

ADC1/P3.1

ADC3/P0.7

ADC2/P0.6

ADDATA
(FBH)

Figure 14-2. A/D Converter Circuit Diagram

.7 .6 .5 .4 .3 .2ADDATA (FBH) .1 .0

Figure 14-3. A/D Converter Data Register (ADDATA)



A/D CONVERTER S3C880A/F880A

14-4

tCON = 50 CPU Clock

Value Remains Undetermined

Conversion
Start

EOC

ADDATA

Previous
Value

Valid
Data

Figure 14-4. S3C880A/F880A A/D Converter Timing Diagram

CONVERSION TIMING

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 18 clocks to step-up A/D
conversion. Therefore, total of 50 clocks are required to complete an 8-bit conversion: With an 10 MHz CPU
clock frequency, one clock cycle is 100 ns. If each bit conversion requires 4 clocks, the conversion rate is
calculated as follows:

4 clocks/bit x 8-bits + step-up time (18 clock) = 50 clocks
50 clock x 100 ns = 5 µs at 10 MHz, 1 clock time = CPU clock

INTERNAL A/D CONVERSION PROCEDURE

1. Analog input must remain between the voltage range of AVSS and AVREF.

2. Configure the analog input pins to input mode by making the appropriate settings in P3CONL and P0CONH
registers.

3. Before the conversion operation starts, you must first select one of the four input pins (ADC0–ADC3) by
writing the appropriate value to the ADCON register.

4. When conversion has been completed, (50 CPU clocks have elapsed), the EOC flag is set to “1”, so that a
check can be made to verify that the conversion was successful.

5. The converted digital value is loaded to the output register, ADDATA, than the ADC module enters an idle
state.

6. The digital conversion result can now be read from the ADDATA register.



S3C880A/F880A A/D CONVERTER

14-5

 NOTE: The symbol 'R' signifies an offset resistor with a value of from 50 to 10 0 Ohm.

VSS

S3F880A

AVSS

ADC0-ADC3

AVREF

Reference
Voltage

Input

Analog
Input Pin

R

104

101

VDD

VDD

Figure 14-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy

++ PROGRAMMING TIP – Configuring A/D Converter

•
•
•
LD P3CONL,#00000101B ; P3.1-0 A/D Input MODE
LD P0CONH,#01010000B ; P0.7-6 A/D Input MODE
•
•
•
LD ADCON,#00000001B ; channel ADC0: P3.0/conversion start

AD0_CHK: TM ADCON,#00001000B ; A/D conversion end ? → EOC check
JR Z,AD0_CHK ; no
LD AD0BUF,ADDATA ; Conversion data
•
•
LD ADCON,#00010001B ; channel ADC1: P3.1/conversion start

AD1_CHK: TM ADCON,#00001000B ; A/D conversion end ? → EOC check
JR Z,AD1_CHK ; no
LD AD1BUF,ADDATA ; Conversion data
•
•



A/D CONVERTER S3C880A/F880A

14-6

NOTES



S3C880A/F880A ELECTRICAL DATA

15-1

15 ELECTRICAL DATA

OVERVIEW

In this section, S3C880A/F880A electrical characteristics are presented in tables and graphs. The information is
arranged in the following order:

— Absolute maximum ratings

— D.C. electrical characteristics

— I/O capacitance

— A.C. electrical characteristics

— Input timing measurement points for tNF1 and tNF2

— Data retention supply voltage in Stop mode

— Stop mode release timing when initiated by RESET
— Main oscillator and L-C oscillator frequency

— Clock timing measurement points for XIN

— Main oscillator clock stabilization time (tST)

— A/D converter electrical characteristics

— Characteristic curves



ELECTRICAL DATA S3C880A/F880A

15-2

Table 15-1. Absolute Maximum Ratings

 (TA =  25°C)

Parameter Symbol Conditions Rating Unit

Supply Voltage VDD – – 0.3  to  + 6.0 V

Input Voltage VI1 P1.0–P1.5 (open-drain) – 0.3  to  + 7 V

VI2 All port pins except VI1 – 0.3  to  VDD + 0.3

Output Voltage VO All output pins – 0.3  to  VDD + 0.3 V

Output Current
High

IOH One I/O pin active – 18 mA

All I/O pins active – 60

Output Current
Low

IOL One I/O pin active + 30 mA

Total pin current for port 1 + 100

Total pin current for ports 0, 2, and 3 + 100

Operating
Temperature

TA – – 20  to  + 85 °C

Storage
Temperature

TSTG – – 65  to  + 150 °C

Table 15-2. D.C. Electrical Characteristics

(TA  =  – 20°C  to  + 85°C, VDD  =  4.5 V  to  5.5 V)

Parameter Symbol Conditions Min Typ Max Unit

Input High VIH1 All input pins except VIH2 0.8 VDD – VDD V

Voltage VIH2 XIN, XOUT 2.7 V

Input Low Voltage VIL1 All input pins except VIL2 – – 0.2 VDD V

VIL2 XIN, XOUT 1.0 V

Output High
Voltage

VOH IOH = – 500 µA

P0.0–P0.5, P1.6–P1.7, P2
R, G, B (digital level), Vblank

VDD – 0.8 – – V

Output Low
Voltage

VOL1 IOL = 4 mA

P0.0–P0.5, P1.6–P1.7
– – 0.5 V

VOL2 IOL = 10 mA

P1.4–P1.5
– – 0.8

VOL3 IOL = 2 mA

P1.0–P1.3, P3.0–P3.1, P0.6–
P0.7

– – 0.5

VOL4 IOL = 1 mA

R, G, B (digital level), Vblank, P2
– – 0.4 V



S3C880A/F880A ELECTRICAL DATA

15-3

Table 15-2. D.C. Electrical Characteristics (Continued)

(TA  =  – 20°C  to  + 85°C, VDD  =  4.5 V  to  5.5 V)

Parameter Symbol Conditions Min Typ Max Unit

Input High
Leakage Current

ILIH1 VIN = VDD
All input pins except ILIH2

and ILIH3

– – 1 µA

ILIH2 VIN = VDD, OSCIN, OSCOUT 10

ILIH3 VIN = VDD, XIN, XOUT 2.5 10 20

Input Low
Leakage Current

ILIL1 VIN = 0 V
All input pins except ILIL2,

ILIL3, and RESET

– – – 1 µA

ILIL2 VIN = 0 V,
OSCIN, OSCOUT

– 10

ILIL3 VIN = 0 V, XIN, XOUT – 2.5 – 10 – 20

Output High
Leakage Current

ILOH1 VOUT = VDD
All output pins except ILOH2

– – 1 µA

ILOH2 VOUT = 6 V

P1.0–P1.5
10

Output Low
Leakage Current

ILOL VOUT = 0 V

All output pins
– – – 1 µA

Supply Current
(note)

IDD1 Normal mode;
VDD = 4.5 V  to  5.5 V

8-MHz CPU clock

– 7 20 mA

IDD2 Idle mode;
VDD = 4.5 V  to  5.5 V

8-MHz CPU clock

4 10

IDD3 Stop mode;
VDD = 4.5 V  to  5.5 V

1 10 µA

NOTE: Supply current does not include the current drawn through internal pull-up resistors or external output current loads.



ELECTRICAL DATA S3C880A/F880A

15-4

Table 15-3. Input/Output Capacitance

(TA  =  – 20°C to  + 85°C, VDD  =  0 V)

Parameter Symbol Conditions Min Typ Max Unit

Input
capacitance

CIN f = 1 MHz; unmeasured pins
are connected to VSS

– – 10 pF

Output
capacitance

COUT

I/O capacitance CIO

Table 15-4. A.C. Electrical Characteristics

(TA  =  – 20°C  to  + 85°C, VDD  =  4.5 V  to  5.5 V)

Parameter Symbol Conditions Min Typ Max Unit

V-sync Pulse
Width

tVW – 4 – – µs

H-sync Pulse
Width

tHW – 3 – – µs

Noise Filter tNF1 P1.0–P1.3, H-sync, V-sync – 350 – ns

tNF2 RESET – 1000

tNF3 Glitch filter (oscillator block) – 25

tNF4 CAPA – 5 – tCAPA

NOTE: fCAPA = fOSC/128.

Table 15-5. Analog R,G,B Output

(TA  =  – 20°C  to  + 85°C, VDD  =  4.75 V  to  5.25 V)

Output Voltage (50 kΩΩ load) Remark

VDD = 4.75 V VDD = 5.00 V VDD = 5.25 V

Data = 11 4.00 V ± 0.30 V 4.20 V ± 0.30 V 4.40 V ± 0.30 V

Data = 10 3.10 V ± 0.25 V 3.35 V ± 0.25 V 3.40 V ± 0.25 V

Data = 01 1.90 V ± 0.20 V 2.00 V ± 0.20 V 2.10 V ± 0.20 V

Data = 00 0.00 V – 0.65 V 0.00 V – 0.75 V 0.00 V – 0.75 V



S3C880A/F880A ELECTRICAL DATA

15-5

tNF1L

0.8 VDD

0.2 VDD

tNF2H

1tCPU

tNF2

Figure 15-1. Input Timing Measurement Points for tNF1 and tNF2

Table 15-6. Data Retention Supply Voltage in Stop Mode

(TA  =  – 20 °C to  +  85 °C)

Parameter Symbol Conditions Min Typ Max Unit

Data Retention
Supply Voltage

VDDDR Stop mode 2 – 6 V

Data Retention
Supply Current

IDDDR Stop mode, VDDDR = 2.0 V – – 5 µA

NOTES:
1. Supply current does not include the current drawn through internal pull-up resistors or external output current loads.
2. During the oscillator stabilization wait time (tWAIT), all the CPU operations must be stopped.

Execution of
STOP Instrction

RESET
Occurs

~ ~

VDDDR

~ ~

Stop Mode

Oscillation
Stabilization

Time
Normal
Operating ModeData Retention Mode

tWAIT

RESET

VDD

NOTE: tWAIT is the same as 4096 x 16 x 1/fOSC

0.2 VDD

Figure 15-2. Stop Mode Release Timing When Initiated by a RESETRESET



ELECTRICAL DATA S3C880A/F880A

15-6

Table 15-7. Main Oscillator and L-C Oscillator Frequency

(TA  =  – 20°C  +  85°C, VDD  =  4.5 V  to  5.5 V)

Oscillator Clock Circuit Conditions Min Typ Max Unit

Crystal XIN

C1 C2

XOUT OSD block active 5 6 8 MHz

OSD block inactive 0.5 6 8

Ceramic XIN

C1 C2

XOUT
OSD block active 5 6 8 MHz

OSD block inactive 0.5 6 8

External Clock XIN XOUT
OSD block active 5 6 8 MHz

OSD block inactive 0.5 6 8

L-C Oscillator OSCIN

C1 C2

OSCOUT Recommend value;
C1 = C2 = 20 pF

5 6.5 8 MHz

CPU Clock Frequency – 0.032 6.0 8 MHz

XIN

tXHtXL

1/fOSC

2.7 V

1.0 V

Figure 15-3. Clock Timing Measurement Points for XIN



S3C880A/F880A ELECTRICAL DATA

15-7

Table 15-8. Main Oscillator Clock Stabilization Time

(TA  =  – 20°C  + 85°C, VDD  =  4.5 V  to  5.5 V)

Oscillator Symbol Test Condition Min Typ Max Unit

Crystal – VDD  =  4.5 V  to  6.0 V – – 20 ms

Ceramic (Oscillation stabilization occurs when
VDD is equal to the minimum
oscillator voltage range.)

10

External Clock XIN input High and Low level width
(tXH, tXL)

65 – 100 ns

Release Signal Setup
Time

tSREL Normal operation – 1000 – ns

Oscillation
Stabilization Wait

tWAIT CPU clock = 8 MHz; Stop mode
released by RESET

– 8.3 – ms

Time (1) CPU clock = 8 MHz; Stop mode
released by an interrupt

(2)

NOTES:
1. Oscillation stabilization time is the time required for the CPU clock to return to its normal oscillation frequency after a

power-on occurs, or when Stop mode is released.
2. The oscillation stabilization interval is determined by the basic timer (BT) input clock setting.

Table 15-9. A/D Converter Electrical Characteristics

(TA  =  – 20°C  to  + 85°C, VDD = 4.5 V  to  5.5 V, VSS =  0 V)

Parameter Symbol Test Conditions Min Typ Max Unit

Absolute
Accuracy

VDD = 5.12 V

CPU CLOCK = 8 MHz
AVREF = 5.12 V
AVSS = 0 V

– – ± 2 LSB

Conversion
Time (1)

tCON fOSC = 8 MHz 25 – – us

Analog Input Voltage VIAN – AVSS – AVREF V

Analog Input Impedance RAN – 2 – – MΩ

ADC Reference Voltage AVREF – 2.5 – VDD V

ADC Reference Ground AVSS – VSS – VSS + 0.3 V

Analog input current IADIN AVREF = VDD = 5 V – – 10 uA

ADC block current (2) IADC AVREF = VDD = 5 V – 1 3 mA

AVREF = VDD = 5 V

Power down mode
– 100 500 nA

NOTES:
1. 'Conversion time' is the time required from the moment a conversion operation starts until it ends.
2. IADC is operating current during A/D conversion.



ELECTRICAL DATA S3C880A/F880A

15-8

NOTES



S3C880A/F880A  MECHANICAL DATA 

  16-1 

16 MECHANICAL DATA 

OVERVIEW 

The S3C880A/F880A microcontrollers are available in 42-pin SIP package (42-SDIP-600), 44-pin QFP package 
(44-QFP-1010B) . 

NOTE:    Dimensions are in millimeters.

39.50 MAX

39.10 ± 0.20

0.50 ± 0.10

1.78(1.77)

0.
51

 M
IN

3.
30

 ±
 0

.3
0

3.
50

 ±
 0

.2
0

5.
08

 M
A

X

42-SDIP-600

0-15

1.00 ± 0.10

0.
25

+ 
0.

10
- 0

.0
515

.2
4

14
.0

0 
±

 0
.2

0

#42 #22

#21#1

 

Figure 16-1. 42-Pin SDIP Package Dimensions (42-SDIP-600) 



MECHANICAL DATA  S3C880A/F880A 

16-2   

44-QFP-1010B

#44

NOTE:   Dimensions are in millimeters.

10.00  ± 0.2

13.20  ± 0.3

10
.0

0 
± 

0.
2

13
.2

0 
± 

0.
3

#1
0.35

+ 0.10
- 0.05

0.80 (1.00)

0.10 MAX

0.
80

 ±
 0

.2
0

0.05 MIN

2.05  ± 0.10

2.30 MAX

0.15
+ 0.10
- 0.05

0-8

 

Figure 16-2. 44-Pin QFP Package Dimensions (44-QFP-1010B) 



S3C880A/F880A S3C880A/F880A MTP

 17-1

17 S3F880A MTP

OVERVIEW

The S3C880A/F880A single-chip CMOS microcontroller is the MTP flash ROM version. It has an on-chip flash
ROM instead of a masked ROM. The flash ROM is accessed by serial data format.

PWM0/P2.5
PWM1/P2.1

PWM2/P2.2 (SCLK)
PWM3/P2.3 (SDAT)

PWM4/P2.4
PWM5/P2.0

T0/P2.6
T0CK/P1.7
ADC0/P3.0
ADC1/P3.1
ADC2/P0.6
ADC3/P0.7

TEST/TEST
INT0/P1.0
INT1/P1.1
INT2/P1.2
INT3/P1.3

P1.4
P1.5
P1.6

OSDHT/P2.7

S3F880A

(42-SDIP)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

P0.0
P0.1
P0.2
P0.3
P0.4
VSS/VSS

CAP.A
P0.5
VDD/VDD

RESET/RESETRESET
XOUT

XIN

VSS1

OSCOUT

OSCIN

V-sync
H-sync
Vblank
Vred
Vgreen
Vblue

42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22

Figure 17-1. S3F880A Pin Assignment (42-SDIP)



S3C880A/F880A MTP S3C880A/F880A

17-2  

P
2.

0/
P

W
M

5
P

2.
6/

T
0

P
1.

7/
T

0C
LK

P
3.

0/
A

D
C

0
P

3.
1/

A
D

C
1

P
0.

6/
A

D
C

2
P

0.
7/

A
D

C
3

T
E

S
T

/T
E

S
T

P
1.

0/
IN

T
0

P
1.

1/
IN

T
1

P
1.

2/
IN

T
2

P1.2/INT2
P1.1/INT1
P1.0/INT0
TEST/TEST
P0.7/ADC3
P0.6/ADC2
P3.1/ADC1
P3.0/ADC0
P1.7/T0CLK
P2.6/T0
P2.0/PWM5

V
_s

yn
cI

N
H

_s
yn

cI
N

V
bl

an
k

V
re

d
V

gr
ee

n
V

bl
ue

P
2.

7/
O

S
D

H
T

P
1.

6
P

1.
5

P
1.

4
P

1.
3/

IN
T

3

VSS2/VSS
P0.4
P0.3
P0.2
P0.1
P0.0

P2.5/PWM0
P2.1/PWM1
P2.2/PWM2
P2.3/PWM3
P2.4/PWM4

S3C880A
S3F880A

(44-QFP)

1
2
3
4
5
6
7
8
9
10
11

44 43 42 41 40 39 38 37 36 35 34

33
32
31
30
29
28
27
26
25
24
23

12 13 14 15 16 17 18 19 20 21 22

Figure 17-2. S3F880A Pin Assignment (44-QFP)



S3C880A/F880A S3C880A/F880A MTP

 17-3

Table 17-1. Descriptions of Pins Used to Read/Write the Flash ROM (S3F880A)

Main Chip During Programming

Pin Name Pin Name Pin No. I/O Function

P2.3 (Pin 4) SDAT 4 I/O Serial data pin (output when reading, Input when writing)
Input and push-pull output port can be assigned

P2.2 (Pin 3) SCLK 3 I/O Serial clock pin (Input only pin)

TEST VPP

(TEST)
13 I 0 V: operating mode

5 V: test mode
12.5 V: flash ROM writing mode

RESET RESET 33 I 5 V: operating mode, 0 V: flash ROM writing mode

VDD/VSS VDD/VSS 34/30, 37 I Logic power supply pin.



S3C880A/F880A DEVELOPMENT TOOLS

18-1

18 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for
S3C7, S3C8, S3C9 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2.
Samsung also offers support software that includes debugger, assembler, and a program for setting options.

SHINE

Samsung Host Interface for in-circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked
help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be
sized, moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates
object code in standard hexadecimal format. Assembled program code includes the object code that is used for
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and
an auxiliary definition (DEF) file with device specific information.

SASM88

The SASM88 is an relocatable assembler for Samsung's S3C8-series microcontrollers. The SASM88 takes a
source file containing assembly language statements and translates into a corresponding source code, object
code and comments. The SASM88 supports macros and conditional assembly. It runs on the MS-DOS operating
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked
with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code.(OBJ file) by
HEX2ROM, the value 'FF' is filled into the unused ROM area up to the maximum ROM size of the target device
automatically.



DEVELOPMENT TOOLS S3C880A/F880A

18-2

TARGET BOARDS

Target boards are available for all S3C8-series microcontrollers. All required target system cables and adapters
are included with the device-specific target board.

SMDS2+RS-232C

POD

Probe
Adapter

TB880A
Target
Board

IBM-PC AT or Compatible

      PROM/OTP Writer Unit

B
us

      RAM Break/Display Unit

      Trace/Timer Unit

      SAM8 Base Unit

      Power Supply Unit

Target
Application

System

Eva
Chip

Figure 18-1. SMDS Product Configuration (SMDS2+)



S3C880A/F880A DEVELOPMENT TOOLS

18-3

TB880A TARGET BOARD

The TB880A target board is used for the S3C880A/F880A microcontrollers. It is supported with the SMDS2+. The
TB880A target board can also be used for S3C880A/F880A.

TB880A

SM1342A

10
0-

P
in

 C
on

ne
ct

or

25

1

RESET

J101

421

144 QFP
S3E8800
EVA Chip

40
-P

in
 C

on
ne

ct
or

G
N

D
V

C
C

21 22

74HC10
To User_VCC

Off On

74HC4050 74HC4050

Idle Stop

27C512

External
Triggers

Ch1

Ch2 SMDS2+SMDS2

CN

++

MDS EPROM

1

L-C clock

Figure 18-2. TB880A Target Board Configuration



DEVELOPMENT TOOLS S3C880A/F880A

18-4

Table 17-1. Power Selection Settings for TB880A

'To User_Vcc' Settings Operating Mode Comments

To User_VCC

Off On Target
System

SMDS2+

TB880A
VCC

VSS

VCC

The SMDS2+ main board
supplies VCC to the target

board (evaluation chip) and
the target system.

To User_VCC

Off On Target
System

SMDS2+

External
VCC

VSS

VCC

TB880A

The SMDS2+ main board
supplies VCC only to the target

board (evaluation chip). The
target system must have its
own power supply.

NOTE: The following symbol in the 'To User_Vcc' Setting column indicates the electrical short (off) configuration:



S3C880A/F880A DEVELOPMENT TOOLS

18-5

SMDS2+ Selection (SAM8)

In order to write data into program memory that is available in SMDS2+, the target board should be selected to
be for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.

Table 17-2. The SMDS2 + Tool Selection Setting

'SW1' Setting Operating Mode

SMDS2 SMDS2+ R/W R/W

SMDS2+

Target
System

OSD Font ROM Selection

Table 17-3. OSD Font ROM Selection Setting

'SW2' Setting Comments

MDS EPROM
EPROM (27C512) is used for OSD font ROM

MDS EPROM
Not used



DEVELOPMENT TOOLS S3C880A/F880A

18-6

Table 17-4. Using Single Header Pins as the Input Path for External Trigger Sources

Target Board Part Comments

External
Triggers

Ch1

Ch2

Connector from
External Trigger
Sources of the
Application System

You can connect an external trigger source to one of the two
external trigger channels (CH1 or CH2) for the SMDS2+ breakpoint
and trace functions.



S3C880A/F880A DEVELOPMENT TOOLS

18-7

J101

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22

50-P
in

 D
IP

 C
o

n
n

ecto
r

PWM0/P2.5
PWM1/P2.1

PWM2/P2.2 (SCLK)
PWM3/P2.3 (SDAT)

PWM4/P2.4
PWM5/P2.0

T0/P2.6
T0CK/P1.7
ADC0/P3.0
ADC1/P3.1
ADC2/P0.6
ADC3/P0.7

VSS

INT0/P1.0
INT1/P1.1
INT2/P1.2
INT3/P1.3

P1.4
P1.5
P1.6

OSDHT/P2.7
NC
NC
NC
NC

P0.0
P0.1
P0.2
P0.3
P0.4
VSS

CAP.A
P0.5
VDD/VDD

RESET/RESETRESET
N.C
N.C
VSS

OSCOUT

OSCIN

V-sync
H-sync
Vblank
Vred
Vgreen
Vblue
NC
NC
NC
NC

Figure 17-3. 50-Pin DIP Connector J101 for TB880A

Target Board

50-P
in D

IP
 C

onnector

Target System

42-SDIP
Conversion
PCB

J101

1 50

25 26

Part Name: AP42SD
Order Cods: SM6538

1 50

25 26

1 42

21 22

S
3C

88
0A

Figure 17-4. S3C880A/F880A Probe Adapter for 42-SDIP Package



DEVELOPMENT TOOLS S3C880A/F880A

18-8

NOTES


	S3C880A,F880A
	01-Product Overview
	02-Address Space
	03-Addressing Modes
	04-Control Registers
	05-Interrupt Structure
	06-SAM8 Instruction Set
	07-Clock Circuits
	08-RESET and Power-Down
	09-I/O Ports
	10-Basic Timer and Timer0
	11-Timer A
	12-PWM and Capture
	13-OSD
	14-ADC
	15-Electrical Data
	16-Mechanical Data
	17-S3F880A MTP
	18-Development Tools

