22-S3-C880A/F880A-102003

USER'S MANUAL

S3C880A/F880A

8-Bit CMOS
Microcontroller
Revision 2

ELECTRONICS

S3C880A/F880A PRODUCT OVERVIEW

PRODUCT OVERVIEW

OVERVIEW

The S3C880A/F880A microcontroller has 48-Kbytes of on-chip program memory. This chips have a 336-byte
general-purpose internal register file. The interrupt structure has 9 interrupt sources with 9 interrupt vectors. The
CPU recognizes seven interrupt priority levels.

Using a modular design approach, the following peripherals were integrated with the SAM88LP core to make the
S3C880A/F880A microcontrollers suitable for use in color television and other types of screen display
applications:

— Four programmable 1/O ports (26 pins total: 16 general-purpose 1/O pins; 10 n-channel,
open-drain output pins)

— Four Channel A/D converter (8-bit resolution)
— Two 14-bit PWM output and four 8-bit PWM output.
— Basic timer (BT) with watchdog timer function

— One 8-bit general-purpose timer/counter (TO)
with interval timer Mode and PWM Output Mode

— One 8-bit timer/counters (TA) with prescalers
and interval timer mode

— On-screen display (OSD) with a wide range
of programmable features, including halftone
control signal output

The S3C880A/F880A is available in a versatile 42-pin SDIP, 44-pin QFP package.

ELECTRONICS 1-1

PRODUCT OVERVIEW

S3C880A/F880A

FEATURES

CPU
« SAMS8BLP CPU core

Memory
» 48-Kbyte internal program and OSD font memory

» 336-byte general-purpose register area

Instruction Set
e 78 instructions

* IDLE and STOP instructions added for power-
down modes

Instruction Execution Time
e 750 ns (minimum) with an 8-MHz CPU clock

Interrupts

* 9interrupt sources with 9 vectors

e 7 interrupt levels

» Fast interrupt processing for select levels

General I/O

* Four I/O ports (26 pins total)

* Six open-drain pins for up to 6-volt loads
» Four open-drain pins for up to 5-volt loads

8-Bit Basic Timer
* Three select able internal clock frequencies
» Watchdog or oscillation stabilization function

Timer/Counters

* One 8-bit timer/counter (TO) with three internal
clocks or an external clock, and two operating
modes; Interval mode or PWM mode

» One general-purpose 8-bit timer/counters with
interval timer (timer A)

A/D Converter

* Four analog input pins

e 8-bit resolution

e 25 us conversion time (8-MHz CPU clock)

Pulse Width Modulation Module

14-bit PWM with 2-channel output

e 8-bit PWM with 4-channel output
 PWM counter and data capture input pin

* Frequency: 5.859 kHz to 23.437 kHz with a
6-MHz CPU clock

On-Screen Display (OSD)

e Video RAM: 252 " 14 bits

» Character generator ROM: Variable size
Max:1024 ~ 18~ 16 bits
Min: Default 2 font reserved.
(1024 display characters: fixed: 2, variable: 1022)

252 display positions (12 rows =~ 21 columns)

16-dot © 18-dot character resolution

16 different character sizes

* 64 character colors

Fade In/Out

* 64 colors for character and frame background

» Halftone control signal output; select able for
individual characters

» Synchronous polarity selector for H-sync and
V-sync input

* Bordering function
* Smoothing function
* Fringing function

Oscillator Frequency

* 5-MHz to 8-MHz external crystal oscillator
(when OSD block active)

e Maximum 8-MHz CPU clock

Operating Temperature Range
«+ -20°C to +85°C
Operating Voltage Range

e 45V to 55V

Package Type
e 42-pin SDIP, 44-pin QFP

1-2

ELECTRONICS

S3C880A/F880A PRODUCT OVERVIEW
BLOCK DIAGRAM
P0.0-P0.7 P1.0-P1.7
<4— [NTO-INT3
P Port 1
RESET —» ort0 or il
XIN —» Main L
Xour «— OSC | |
Port I/0 and Interrupt | Timers A
OSCN = | ¢ osc Control
OSCout 4—
I Timer o [€7 CAPA
H-sync —p| | ol
V-sync —» >
Vred <€4— on
<«) SAMS8SLP CPU PWM
Vgreen Screen [Pwi
Vblue «—{ Display |— Pk
Vblank <—
< Counter | CAPA
OSDAT and Data
— Capture
—> 336-Byte 14-Bit —% PWMO
hom® | | Register P | i
ADCL > o o — File | | | [~ 777 —» PWM2
ADC2 8-Bit ADC | o it Pwm2
PWM —» PWM4
ADC3 —p| SAMS88 Bus PWMS
[] —
Port 2 Port 3
P2.0-P2.7 P3.0-P3.1

Figure 1-1. Block Diagram

ELECTRONICS

1-3

PRODUCT OVERVIEW

S3C880A/F880A

PIN ASSIGNMENTS

PWMO0/P2.5
PWM1/P2.1
PWM2/P2.2
PWM3/P2.3
PWM4/P2.4
PWM5/P2.0
TO/P2.6
TOCK/P1.7
ADCO/P3.0
ADC1/P3.1
ADC2/P0.6
ADC3/P0.7
TEST
INTO/P1.0
INT1/P1.1
INT2/P1.2
INT3/P1.3
P1.4

P15

P1.6
OSDHT/P2.7

AOoaoofononaononaoaonnnofnnn

O ~NOoO Ok, wWwN -

e)
N - O

13
14
15
16
17
18
19
20
21

O

O

S3C880A
S3F880A

(42-SDIP)

O

gtuouugutbuooubououbuogun

P0.0
P0.1
P0.2
P0.3
P0.4
Vss
CAP.A
P0.5
VDD
RESET
Xout
XIN
Vss1
OSCout
OSCNN
V-sync
H-sync
Vblank
Vred
Vgreen
Vblue

Figure 1-2. S3C880A/F880A Pin Assignment (42-SDIP)

1-4

ELECTRONICS

S3C880A/F880A

PRODUCT OVERVIEW

juouuuooui

|_
o ™
Zz 3 E
EEX_§409 £
278 PLSNOOTH
1258 dcddd
>TI>>>>a0000
SN OMOANTOMM”ONNOLWS
ITFTTTTOOOONOOMO™M
VSS2/VSS . 1 33
P0.4 5 O 32
P0.3] 3 31
ig-i E 4 S3C880A 30
. 5 29
P0.0 6 83F88OA 28
P2.5/PWMO0 = - 27
P2.1/PWM1] g (44-QFP) 26
P2.2IPWM2 . ¢ o5
P2.3/PWM3 . 1 o4
P2.4/PWM4 T 11 23
NMTWOHONO0O O N
e N NN
NONYXYOAdNMEFEOAWN
SEJ0000WVWEEE
SeQoooqWzzZ
aNRPILLIIESS]
Shgoden~ Sag
§ SEPESWERE

P1.2/INT2
P1.1/INT1
P1.0/INTO
TEST/TEST
PO.7/ADC3
P0.6/ADC2
P3.1/ADC1
P3.0/ADCO
P1.7/TOCLK
P2.6/TO
P2.0/PWM5

Figure 1-3. S3C880A/F880A Pin Assignment (44-QFP)

ELECTRONICS

1-5

PRODUCT OVERVIEW

S3C880A/F880A

PIN DESCRIPTIONS

Table 1-1. S3C880A/F880A Pin Descriptions

Pin Name

Pin
Type

Pin Description

Circuit
Type

Pin
Numbers

Share
Pins

P0.0-PO0.3

P0.4-P0.5

P0.6—PO0.7

I/0

General I/O port (4-bit), configurable for digital
input or n-channel open-drain, push-pull output.
Pins can withstand up to 5-volt loads.

2

3942

(See pin
description)

General I/O port (2-bit), configurable for digital
input or push-pull output.

38, 35

General I/O port (2-bit), configurable for digital
input or n-channel open-drain output.

P0.6-P0.7 can withstand up to 5-volt loads.
Multiplexed for alternative use as external inputs
ADC2-ADCS3.

11-12

ADC2-ADC3

P1.0-P1.3

P1.4-P1.5

P1.6-P1.7

I/0

General I/O port (4-bit), configurable for digital
input or n-channel open-drain output.
P1.0-P1.3 can withstand up to 6-volt loads.
Multiplexed for alternative use as external
interrupt inputs INTO-INT3

14-17

INTO-INT3

General I/O port (2-bit). configurable for digital
input or n-channel open-drain output.

P1.4-P1.5 can withstand up to 6-volt loads. High
current port (10mA).

18-19

General I/O port (2-bit). configurable for digital
input or push-pull output.

Each pin has an alternative function.

P1.7: TOCK (Timer O Clock Input)

20,8

TOCK

P2.0-P2.7

I/0

General I/0O port (8-bit). Input/output mode or n-
channel open-drain, push-pull output mode is
software configurable. Pins can withstand up to

5-volt loads. Each pin has an alternative function.

P2.0: PWMS5 (8-bit PWM output)

P2.1: PWM1 (14-bit PWM output)

P2.2: PWM2 (8-bit PWM output)

P2.3: PWM3 (8-bit PWM output)

P2.4: PWM4 (8-bit PWM output)

P2.5: PWMO (14-bit PWM output)

P2.6: TO (Timer 0 PWM and Interval output)
P2.7. OSDHT (Halftone signal output)

1-7,21

PWMO-
PWMS5S
TO, OSDHT

P3.0-P3.1

I/0

General I/O port (2-bit), configurable for digital
input or n-channel open-drain output.

P3.0-P3.1 can withstand up to 5-volt loads.
Multiplexed for alternative use as external inputs
ADCO-ADCL1.

9-10

ADCO-ADC1

1-6

ELECTRONICS

S3C880A/F880A PRODUCT OVERVIEW
Table 1-1. S3C880A/F880A Pin Descriptions (Continued)
Pin Name Pin Pin Description Circuit Pin Share
Type Type Numbers Pins
PWMO @] Output pin for 14-bit PWM circuit 1 1 P2.5
PWM1 @] Output pin for 14-bit PWM circuit 2 2 P2.1
PWM2-PWM4 o Output pin for 8-bit PWM circuit 2 3-5 P2.2-P2.4
PWM5 O Output pin for 8-bit PWM circuit 2 6 P2.0
ADCO-ADC1 I Analog inputs for 8-bit A/D converter 6 9,10 P3.0-P3.1
ADC2-ADC3 I Analog inputs for 8-bit A/D converter 6 11,12 P0.6—P0.7
INTO-INT3 I External interrupt input pins 7 14-17 P1.0-P1.3
TO O Timer 0 output (interval, PWM) 2 7 P2.6
TOCK I Timer O clock input 3 8 P1.7
OSDHT 0 Halftone control signal output for OSD 2 21 pP2.7
Vblue, Vgreen 0 Digital blue, green and red signal outputs for 4 22-24 -
Vred OsD
Vblank 0 Digital video blank signal outputs for OSD 4 25 -
H-sync, V-sync I H-sync, V-sync input for OSD 26, 27 -
OSC\, OSCqoyt I, O [L-C oscillator pins for OSD clock frequency - 28, 29 -
generation
Xine XouT I, O [System clock pins - 31,32 -
RESET I System reset input pin 8 33 -
TEST - Test Pin (must be connected to Vgg). Factory - 13 -
test mode is activated when 12 V is applied.
Vop: Vss - Power supply pins - 30, 34, 37 -
CAPA I Input for capture A module 1 36 -
ELECTRONICS 1-7

PRODUCT OVERVIEW S3C880A/F880A

PIN CIRCUITS

<€4—— Noise Filter o@ & Input

Figure 1-4. Pin Circuit Type 1 (V-Sync H-Sync, CAPA)

VDD
Data © DO_<
I/0
cu b o+ A=
Input < 0@

Figure 1-5. Pin Circuit Type 2 (P2.0-P2.7, P0.0-P0.3, PWMO0-PWM5, TO, OSDHT)

o

Data o———@ Output

Input

Figure 1-6. Pin Circuit Type 3 (P0.4-P0.5, P1.6—-P1.7, TOCK)

1-8 ELECTRONICS

S3C880A/F880A PRODUCT OVERVIEW

VDD
Data Output
4_
Vss

Figure 1-7. Pin Circuit Type 4 (Vblue, Vgreen, Vred, Vblank)

1/0
Data © {>c I <«
Vss
Input

Figure 1-8. Pin Circuit Type 5 (P1.4-P1.5)

I/0
Data © {>c I <«
Vss

Input 4—0@7

ADIn «

NOTE: Circuit type 6 can withstand up to 5 V loads.

Figure 1-9. Pin Circuit Type 6 (P3.0-P3.1, P0.6—-P0.7, ADCO-ADC3)

ELECTRONICS 1-9

PRODUCT OVERVIEW

S3C880A/F880A

Input <

INT <4—— Noise Filter

NOTE: Circuit type 7 can withstand up to 6 V loads.

Figure 1-10. Pin Circuit Type 7 (P1.0-P1.3, INTO-INT3)

VDD
—%250 KW
<«4— Noise Filter —o@]

Figure 1-11. Pin Circuit Type 8 (RESET)

1-10

ELECTRONICS

S3C880A/F880A ADDRESS SPACES

ADDRESS SPACES

OVERVIEW

The S3C880A/F880A microcontroller has two kinds of address space:
— Internal program memory (ROM)

— Internal register file

The S3C880A/F880A has an on-chip 48-Kbyte mask-programmable.

There are 336 general-purpose 8-bit data registers in the register file. Seventeen 8-bit registers are used for CPU
and system control. To support peripheral, I/O, and clock functions, there are 33 control registers and 16 data
registers. In addition, there is a 252 ~ 4-bit area for on-screen display (OSD) video RAM.

ELECTRONICS 2-1

ADDRESS SPACES S3C880A/F880A

PROGRAM MEMORY (ROM)

The S3C880A/F880A has a 48-Kbyte mask-programmable program memory. Program memory stores program
codes, table data or OSD font codes.

As shown in Figure 2-1, the first 256 bytes of the ROM (OH-0FFH) are reserved for interrupt vector addresses.
Unused locations in this range can be used as normal program memory. If the vector address area is used to
store normal program data, care must be taken to avoid overwriting vector addresses stored in these locations.

The ROM address at which program execution starts after a RESET is 0100H.

BFFFH
Program Memory
and Character
Generator Memory
100H
Interrupt
Vector Area
———————————————————— 40H
ROM Code Option Area
———————————————————— 3CH
OH

Figure 2-1. Program Memory Address Spaces

2-2 ELECTRONICS

S3C880A/F880A

ADDRESS SPACES

Table 2-1. Program ROM and Character ROM Area by the Font Figure

Font ROM Program ROM Character ROM

0 ROM size 48-Kbyte 0-Kbyte

ROM address 0-BFFFH 0
256 ROM size 39-Kbyte 9-Kbyte

ROM address 0-9BFFH 9CO0H-BFFFH
384 ROM size 34.5-Kbyte 13.5-Kbyte

ROM address 0-89FFH 8A00H-BFFFH
512 ROM size 30-Kbyte 18-Kbyte

ROM address 0-77FFH 7800H-BFFFH
640 ROM size 25.5-Kbyte 22.5-Kbyte

ROM address 0-65FFH 6600H-BFFFH
768 ROM size 21-Kbyte 27-Kbyte

ROM address 0-53FFH 5400H-BFFFH
1024 ROM size 12-Kbyte 36-Kbyte

ROM address 0-2FFFH 3000H-BFFFH

REGISTER ARCHITECTURE

The upper 64 bytes of the S3C880A/F880A internal register file is logically expanded into two 64-byte areas,
called set 1 and set 2. The upper 32-byte area of set 1 is divided into two register banks, called bank 0 and
bank 1. In addition, two register pages are implemented, called page 0 and page 1. The total addressable
register space is thereby expanded from 256 bytes to 654 bytes.

The extension of the physical register space into separately addressable areas (sets, banks, and pages) is
supported by various addressing mode restrictions, the select bank instructions, SBO and SB1, and the register
page pointer (PP).

Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2-1.

Table 2-2. Register Type Summary

Register Type Number of Bytes
General-purpose registers (including the 16-byte 336
working register common area)
CPU and system control registers 17
Peripheral, I/O, and clock control/data registers 49
On-screen display (OSD) video RAM 252
Total Addressable Bytes 654

ELECTRONICS

2-3

ADDRESS SPACES

S3C880A/F880A

SET 1
FFH Page 0 Page 1 Page 2
FFH FFH FFH FFH
EOH SET 2 FBH
SET 2
EOH General purpose
DFH registers OSD registers
(indirect address (indirect
ggﬂ mode) address
mode)
COH COH COH
BFH BFH
Prime data .
- OSD registers
registers (all a dgress 40H
(all address mode) 3FH
mode) Prime data
register area
(all address
mode)
00H 00H 00H
Not used

_REREENY N

System registers

Data register area

Display register area

(Video RAM)

Working registers

System and peripheral

control registers

Figure 2-2. Internal Register File Organization

2-4

ELECTRONICS

S3C880A/F880A

ADDRESS SPACES

ROM CODE OPTION (RCOD_OPT)

The address of RCOD_OPT, from 3CH to 3FH, are ROM code option area. By setting the value of RCOD_OPT,
S3CB880A/F880A operates optionally. But in S3C880A/F880A, the ROM code option is not available. So

RCOD_OPT area can be used as the normal ROM area in S3C880A/F880A.

ROM_CODE Option (RCOD_OPT)

ROM Address: 3CH

MSB 7 .6 5 A4 3 .2 1 .0

Not used

ROM Address: 3DH

MSB 7 .6 5 A4 3 .2 1 .0

Not used

ROM Address: 3EH

MSB 7 .6 5 A4 3 .2 1 .0

Not used

ROM Address: 3FH

MSB 7 .6 5 A4 .3 2 1 .0

Not used

LSB

LSB

LSB

LSB

Figure 2-3. ROM Code Option (RCOD_OPT)

ELECTRONICS

2-5

ADDRESS SPACES S3C880A/F880A

REGISTER PAGE POINTER (PP)

The SAMBBLP architecture supports the logical expansion of the physical 256-byte register file in up to 16
separately addressable register pages. Page addressing is controlled by the register page pointer, PP, DFH. Only
two pages are implemented in the S3C880A/F880A microcontrollers: page 0 and page 2 (OOH-3FH) are used as

general-purpose register space and page 1 contains a 252 ~ 4-bit area for the on-screen display (OSD) video
ROM.

As shown in Figure 2-3, when the upper nibble of the PP register is '0000B', the selected destination address is
located on page 0. When the upper nibble value is '0001B', page 1 is the selected destination. The lower nibble
of the page pointer controls the source register page destination addressing: when the lower nibble is '0000B',
page 0 is the selected source register page; when the lower nibble is '0001B', page 1 is the source register page.

After a reset, the page pointer's source value (the lower nibble) and the destination value (the upper nibble) are
always '0000B', automatically selecting page 0 as both the source and the destination. To select page 1 as the
source or destination register page, you must modify the register page pointer values accordingly. Because only
page 0, page 1 and page 2 are used in the S3C880A/F880A implementation, only pointer values '0000B', ‘0001B’
and ‘0010B" are used.

Register Page Pointer (PP)
DFH, Set 1, R/IW

MSB 4 .6 5 4 3 2 d .0 [LSB

Destination register page seleciton bits: Source register page seleciton bits:

000O0B Destination: page 0 000O0B Destination: page 0

0001B Destination: page 1 0001B Destination: page 1

00108 Destinaton: page 2 00108 Destination: page 2
Not used for the Not used for the
S3F880A : S3F880A

111 1B | Notusedforthe 111 1B | Notusedforthe
S3F880A S3F880A

Figure 2-4. Register Page Pointer (PP)

2-6 ELECTRONICS

S3C880A/F880A

ADDRESS SPACES

= pROGRAMMING TIP — Data Operations Between Register Pages

LD PP #10H ; Destination register page 1, source register page 0
LD 20H,45H ; Register 20H in page 1 - Content of the register 45H
; inpage 0
ADD 30H,40H ; Register 30H in page 1 - Content of 30H in page 1
i plus (+) the content of 40H in page O
45H —
40H ® v 30H
—> 20H
Page 0 Page 1

Figure 2-5. Programming Tip Example for Inter-Page Data Operations

EFFECT OF DIFFERENT INSTRUCTIONS FOR INTER-PAGE DATA OPERATIONS

The source and the destination pages for data operations between pages differ, depending on which instruction
you use. The following programming tip, "Examples of Inter-Page Data Transfer Operations," provides you with a

detailed list of various case.

ELECTRONICS

2-7

ADDRESS SPACES

S3C880A/F880A

= pPROGRAMMING TIP — Examples of Inter-Page Data Transfer Operations

Example 1. a) ADC R1,RO ;RO — source page
; R1 - destination page
b) ADC R4,@R2 ; R2, 40H — source page
R2 contains 40H ; R4 — destination page
c) ADC RO,#0AAH ; RO — destination page
d) ADC 40H,42H ; 42H — source page
; 40H — destination page
e) ADC 40H,@42H ; 42H, 60H — source page
42H contains 60H ; 40H — destination page
f) ADC 40H,#02H ; 40H — destination page

NOTE: The above examples also apply to the instructions ADD, SUB, AND, OR, and XOR.

Example 2. a) BAND R0,40H.7 ; 40H — source page
; RO — destination page

b) BAND 40H.7,R0O ;RO — source page
; 40H — destination page

NOTE: The above examples also apply to the instructions BOR, BXOR, and LDB.

Example 3. a) BCP R3,44H.7 ; 44H — source page
; R3 — destination page

Example 4. a) BITC R3.7 ; R3 — destination page

NOTE: The above examples also apply to the instructions BITR and BITS.

2-8

ELECTRONICS

S3C880A/F880A

ADDRESS SPACES

= pPROGRAMMING TIP — Examples of Inter-Page Data Transfer Operations (continued)

Example 5. a) BTJRF SKIP,R6.7 ; R6 — source page

NOTE: The above example also applies to the instructions BTJRT.

Example 6. a) CALL @60H ; 60H, 61H — source page
Example 7. a) CLR 30H ; 30H — destination page
b) CLR @44H ; 44H — source page
44H contains 40H ; 40H — destination page

NOTE: The above examples also apply to the instructions RL, RLC, and SRA.

Example 8. a) COM O3H ; O3H — destination page
b) COM @44H ; 44H — source page
44H contains 40H ; 40H — destination page

NOTE: The above examples also apply to the instructions DEC, INC, RR, and RRC.

Example 9. a) CP R1,RO ;RO — source page
; R1 - destination page
b) CP R2,@R4 ; R4, 40H — source page
R4 contains 40H ; R2 — destination page
c) CP 40H,42H ; 42H — source page
; 40H — destination page
d CP 40H,@42H ; 42H, 44H — source page
42H contains 44H ; 40H — destination page
e) CP 20H,#0AAH ; 20H — destination page

NOTE: The above examples also apply to the instructions TCM and TM.

ELECTRONICS

2-9

ADDRESS SPACES S3C880A/F880A
= pPROGRAMMING TIP — Examples of Inter-Page Data Transfer Operations (Continued)
Example 10. a) CPIJE R3,@R5,SKIP ; R5, 40H — source page
R5 contains 40H ; R3 — destination page
NOTE: The above example also applies to the instruction CPIINE.
Example 11. a) DA OOH ; O0H — source page
b) DA @02H ; 02H — source page
02H contains 40H ; 40H — destination page
Example 12. a) DECW 60H ; 60H, 61H — destination page
b) DECW @O00H ; O0H, 01H — source page
OOH contains 48H ; 48H, 49H — destination page
01H contains 49H
NOTE: The above example also applies to the instruction INCW.
Example 13. a) DIV 60H,40H ; 40H — source page
; 60H, 61H — destination page
b) DIV 60H,@20H ; 20H, 40H — source page
20H contains 40H ; 60H, 61H — destination page
c) DIV 60H,#03H ; 60H, 61H — destination page
NOTE: The above example also applies to the instruction INCW.
Example 14. a) DJNZ R6,LOOP ; R6 — destination page
NOTE: Incase PP = 10H, 11H, this instruction is not valid.
Example 15. a) JP @60H ; 60H, 61H — source page
2-10 ELECTRONICS

S3C880A/F880A

ADDRESS SPACES

= pPROGRAMMING TIP — Examples of Inter-Page Data Transfer Operations (Continued)

Example 16. a)
b)

c)

d)

e)

f)

)

h)

)

k)

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

RO,#0AAH

RO0,40H

40H,RO

RO,@R2
R2 contains 50H

@R4,R2
R4 contains 40H

40H,41H

40H,@42H
42H contains 44H

45H,#02H

@40H,#02H
40H contains 44H

@40H,42H
40H contains 44H

R5,#04H(R0)
RO contains 02H

#04H(RO),R1
RO contains 02H

RO — destination page

40H — source page
RO — destination page

RO — source page
40H — destination page

R2, 50H — source page
RO — destination page

R4, R2 — source page
40H — destination page

41H — source page
40H — destination page

42H, 44H — source page
40H — destination page

45H — destination page

40H — source page
44H - destination page

40H, 42H — source page
44H - destination page

RO, 04H(2 + offset) — source page
R5 — destination page

RO, R1 — source page
04H — destination page

ELECTRONICS

2-11

ADDRESS SPACES

S3C880A/F880A

= pPROGRAMMING TIP — Examples of Inter-Page Data Transfer Operations (Continued)

R6, R7 — source page
RO — destination page

R6, R7, R2 — source page

RR6 contains an external memory address

Example 17. a) LDC RO,@RR6
b) LDC @RR6,R2
c) LDC RO,#01H(RR6)
d) LDC #01H(RR6),R0
e) LDC RO,#1000H(RR6)
f) LDC #1000H(RR6),R0O

Example 18. a) LDCD RO,@RR6

b) LDCPD @RR6,R0

R6, R7 — source page
RO — destination page

RO, R6, R7 — source page

R6, R7 — source page
RO — destination page

RO, R6, R7 — source page
R6, R7 — source page
RO — destination page

RO, R6, R7 — source page

NOTE: The above examples also apply to the instructions LDCI and LDCPI.

Example 19. a) LDW 40H,20H

b) LDW 60H,@20H
20H contains 40H

c) LDW 40H,#02H

20H, 21H — source page
40H, 41H - destination page

20H, 40H — source page
60H, 61H — destination page

40H, 41H - destination page

2-12

ELECTRONICS

S3C880A/F880A

ADDRESS SPACES

= pPROGRAMMING TIP — Examples of Inter-Page Data Transfer Operations (Concluded)

Example 20. a)

b)

Example 21. a)

Example 22. a)

MULT 40H,20H

MULT 60H,@20H
20H contains 40H

MULT 40H,#02H
POP OOH

POP @20H
20H contains 40H

POPUD OOH,@20H
20H contains 40H

20H — source page
40H, 41H - destination page

20H, 40H — source page
60H, 61H — destination page

40H, 41H - destination page
O0H — destination page

20H — source page
40H — destination page

20H, 40H — source page
O0H — destination page

NOTE: The above example also applies to the instruction POPUI.

Example 23. a)
b)

Example 24. a)

PUSH OOH

PUSH @20H
20H contains 40H

PUSHUD @60H,20H
60H contains 44H

O0H — destination page

20H, 40H — source page

60H, 20H — source page
44H — destination page

NOTE: The above example also applies to the instruction PUSHUI.

Example 25. a)
b)

SWAP OOH

SWAP @20H
20H contains 40H

O0H — destination page

20H — source page
40H — destination page

ELECTRONICS

2-13

ADDRESS SPACES S3C880A/F880A

REGISTER SET 1

The term set 1 refers to the upper 64 bytes of the register file, locations COH-FFH. This area can be accessed at
any time, regardless of which page is currently selected. The upper 32-byte area of this 64-byte space is divided
into two 32-byte register banks, called bank 0 and bank 1. You use the select register bank instructions, SBO or
SB1, to address one bank or the other. A reset operation automatically selects bank 0 addressing.

The lower 32-byte area of set 1 is not banked. This area contains 16 bytes for mapped system registers (DOH-
DFH) and a 16-byte common area (COH—CFH) for working register addressing.

Registers in set 1 are directly accessible at all times using Register addressing mode. The 16-byte working
register area ,however, can only be accessed using working register addressing. Working register addressing is a
function of Register addressing mode (see Chapter 3, "Addressing Modes," for more information).

REGISTER SET 2

The same 64-byte physical space that is used for the set 1 register locations COH—FFH is logically duplicated to
add another 64 bytes. This expanded area of the register file is called set 2. The logical division of set 1 and set
2 is maintained by means of addressing mode restrictions: while you can access set 1 using Register addressing
mode only, you should use Register Indirect addressing mode or Indexed addressing mode to access set 2.

For the S3C880A/F880A, the set 2 address range (COH-FFH) is accessible on page 0 and page 1. Please note,
however, that on page 1, the set 2 locations FCH-FFH are not mapped.

Part of the OSD video RAM is in page 1, set 2 (COH-FBH), and the other part (OOH-BFH) is in the page 1 prime
register area. To avoid programming errors, we recommend using either Register Indirect or Indexed mode to
address the entire 252-byte video RAM area.

PRIME REGISTER SPACE

The lower 192 bytes (0OH-BFH) of the S3C880A/F880A 's two 256-byte register pages and the 64 bytes (00H—
3FH) of register page 2 are called prime register area. Prime registers can be accessed using any of the seven
addressing modes. The prime register area on page 0 is immediately addressable after a reset. In order to
address registers on page 1 (in the OSD video RAM), you must first set the register page pointer (PP) to the
appropriate source and destination values.

2-14 ELECTRONICS

S3C880A/F880A ADDRESS SPACES
Set 1
Bank 0 Bank 1 Page 0 Page 1 Page 2
FFH FFH FFH FFH
FCH FBH
Set 2
EOH Set 2
DOH
COH COH COH Set 2
I:' CPU and system control
I:' General-purpose Prime Prime
Space Space 3FH
I:' Peripheral and 1/0
. Prime
I:' OSD video RAM Space
I:' Area not mapped
O00H 00H O00H

Figure 2-6. Set 1, Set 2, and Prime Area Register Map

ELECTRONICS

2-15

ADDRESS SPACES S3C880A/F880A

WORKING REGISTERS

Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.
When 4-bit working register addressing is used, the 256-byte register file is viewed as thirty two 8-byte register
groups or "slices." Each slice consists of eight 8-bit registers. When the two 8-bit register pointers, RP1 and RPO,
are used, two working register slices can be selected at any time to form a 16-byte working register block. Using
the register pointers, you can move this 16-byte register block anywhere in the addressable register file (except
for the set 2 area).

The terms slice and block are used in this manual to help you visualize the size and relative locations of selected
working register spaces:

— One working register slice is 8 bytes (eight 8-bit working registers; RO—R7 or R8—R15)
— One working register block is 16 bytes (sixteen 8-bit working registers; RO—R15)

All the registers in an 8-byte working register slice have the same binary value for their five most significant
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file.
The base addresses for the two selected 8-byte register slices are contained in the register pointers, RPO and
RP1. After a reset, RPO and RP1 always point to the 16-byte common area in set 1 (COH-CFH).

. FFH |
Slice 32 FsH
F7H
11111XXX FOH
Setl
RP1 (Registers R8-R15) Only
Each register pointer points to CFH
one 8-byte slice of the register COH |
space, selecting a total 16-byte :
working register block in total. :
1 i 1
[}
[}
00000 X XX :
| 10H
RPO (Registers RO-R7) FH
8H
. 7H
Slice 1 OH

Figure 2-7. 8-Byte Working Register Areas (Slices)

2-16 ELECTRONICS

S3C880A/F880A ADDRESS SPACES

USING THE REGISTER POINTERS

The register pointers, RP0 and RP1, are mapped to the addresses D6H and D7H in set 1. They are used to
select two movable 8-byte working register slices in the register file. After a reset, they point to the working
register common area: RPO points to the addresses COH—C7H, and RP1 points to the addresses C8H-CFH. If
you want to change a register pointer value, you should load a new value to RPO and/or RP1 using an SRP or LD
instruction (see Figures 2-7 and 2-8).

With working register addressing, you can only access those locations that are pointed to by the register pointers.
Please note that you cannot use the register pointers to select the working register area in set 2, COH-FFH,
because these locations are accessible only using the Indirect Register or Indexed addressing mode.

The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general
programming guideline, we recommend that RPO point to the "lower" slice and RP1 point to the "upper" slice (see
Figure 2-7). In some cases, it may be necessary to define working register areas in different (non-contiguous)
areas of the register file. In Figure 2-8, RP0 points to the "upper" slice and RP1 to the "lower" slice.

Because a register pointer can point to either of the two 8-byte slices in the working register block, you can
flexibly define the working register area.

I pPROGRAMMING TIP — Setting the Register Pointers

SRP #70H ; RPO - 70H,RP1 - 78H

SRP1 #48H ; RPO = nochange, RP1 - 48H
SRPO #0AOH ; RPO - AOH, RP1 - no change
CLR RPO ; RPO = OOH, RP1 - no change
LD RP1,#0F8H ; RPO = nochange, RP1 - OF8H

Register File
Contains 32
8-Byte Slices
00001XXX FH (R15)
\ 8'Byte Slice | 16'byte
RP1 8H contiguous
_ 7H working
00000XXX ——» 8-Byte Slice register block
OH (RO)

RPO

Figure 2-8. Contiguous 16-Byte Working Register Block

ELECTRONICS 2-17

ADDRESS SPACES

S3C880A/F880A

F7H (R7)
8-Byte Slice |
FOH (RO)
Register File 16-byte
Contains 32 contiguous
11110XXX 8-Byte Slices working
register block
RPO
_ 7H (R15)
00000 XXX (b—mp 8-Byte Slice |
OH (RO) |«
RP1

Figure 2-9. Non-Contiguous 16-Byte Working Register Block

I PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers

Calculate the sum of the registers, 80H—85H, using the register pointer. The register addresses 80H through 85H
contain the values 10H, 11H, 12H, 13H, 14H, and 15 H, respectively:

SRPO #80H ; RPO - 80H

ADD RO,R1 ;7 RO- RO + R1
ADC RO,R2 7 RO- RO+ R2 +C
ADC RO,R3 ; RO- RO+ R3 +C
ADC RO,R4 ; RO- RO+ R4 +C
ADC RO,R5 ; RO- RO+ R5 + C

The sum of these six registers, 6FH, is located in the register RO (80H). The instruction string used in this
example takes 12 bytes of instruction code and its execution time is 36 cycles. If you do not use the register
pointer to calculate the sum of these registers, you would have to execute the following instruction sequence:

ADD 80H,81H - 80H - (80H) + (81H)

ADC 80H,82H © 80H - (80H) + (82H) + C
ADC 80H,83H © 80H - (80H) + (83H) + C
ADC 80H,84H © 80H - (80H) + (84H) + C
ADC 80H,85H © 80H - (80H) + (85H) + C

Here, the sum of the six registers is also located in the register 80H. This instruction string, however, takes 15
bytes of instruction code rather than 12 bytes, and the execution time is 50 cycles rather than 36 cycles.

2-18 ELECTRONICS

S3C880A/F880A ADDRESS SPACES

REGISTER ADDRESSING

The SAMS register architecture provides an efficient method of working register addressing that takes full
advantage of shorter instruction formats to reduce execution time.

Register (R) addressing mode, in which the operand value is the content of a specific register or register pair, can
be used to access any location in the register file except for set 2.

For working register addressing, the register pointers, RP0 and RP1, are used to select a specific register within
a selected 16-byte working register area. To increase the speed of context switches in an application program,
the register pointers can be used to dynamically select different 8-byte "slices" of the register file as the active
working register space.

Registers are addressed either as a single 8-bit register or a paired 16-bit register. In 16-bit register pairs, the
address of the first 8-bit register is always an even number and that of the next register is an odd number. The
most significant byte of the 16-bit data is always stored in the even-numbered register; the least significant byte
is always stored in the next (+ 1) odd-numbered register.

MSB LSB n = Even address

Rn Rn+1

Figure 2-9. 16-Bit Register Pairs

ELECTRONICS 2-19

ADDRESS SPACES

S3C880A/F880A

FFH

DOH

COH
BFH

D6H

O0OH

Special-Purpose General-Purpose
Registers Registers
Set 1
T FFH
Control
Bank 1 Bank 0 Registers
- 2
> System Set
Registers
CPRH |
________________________________ . COH
Register /== =-----—=—1
I | R
Each register pointer (RP) can independently pointto | |
one of the twenty 8-byte "slices" of the register fle |77 7777777777
(other than set 2). After a reset, RPO points to -- Prime -~
locations COH-C7H and RP1 to locations C8H-CFH —_Registers._ |
(the common working register area).
Page 0, 1 Page 0, 1
Register Addressing Only All Indirect
Addressing Register,
Modes Indexed
f ; Addressing
Can be Pointed by Register Pointer Modes

Figure 2-11. Register File Addressing

2-20

ELECTRONICS

S3C880A/F880A ADDRESS SPACES

COMMON WORKING REGISTER AREA (COH-CFH)

After a reset, the register pointers, RP0 and RP1, automatically point to two 8-byte register slices in set 1,
locations COH—CFH, as the active 16-byte working register block:

RPO ® COH-C7H
RP1 ® C8H-CFH

This 16-byte address range is a common area. That is, locations in this area can be accessed using working
register addressing only.

Set 1
Page 0 Page 1 Page 2
FFH FFH FFH FFH
Not used
FCH FBH
EOH Set 2
DFH Set 2
CFH
COH COH COH
BFH BFH 4+ Notused -+
Register pointers RP0O and RP1 point
to the common working register area . .
4+ Prime + ~+ Prime 4
(COH-CFH) after a reset. Area Area
3FH
RPO=[1100]0000]| Prime
Area
=111 1
RP1=[1100]1000] 00H 00H 00H

Figure 2-12. Common Working Register Area

ELECTRONICS 2-21

ADDRESS SPACES S3C880A/F880A

= pPROGRAMMING TIP — Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations COH-CFH,
using working register addressing mode only.

Examples: 1. LD 0C2H,40H ; Invalid addressing mode!
Use working register addressing instead:
SRP #0COH
LD R2,40H ; R2 (C2H) - the value in location 40H
2. ADD OC3H,#45H ; Invalid addressing mode!
Use working register addressing instead:
SRP #0COH
ADD R3,#45H ; R3(C3H) = R3+45H

4-BIT WORKING REGISTER ADDRESSING

Each register pointer defines a movable 8-byte slice of working register space. The address information stored in
a register pointer serves as an addressing "window" that enables instructions to access working registers very
efficiently using short 4-bit addresses. When an instruction addresses a location in the selected working register
area, the address bits are concatenated in the following way to form a complete 8-bit address:

— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RPO; "1" selects RP1);

— The five high-order bits in the register pointer select an 8-byte slice of the register space;
— The three low-order bits of the 4-bit address select one of the eight registers in the slice.

As shown in Figure 2-12, the net effect of this operation is that the five high-order bits from the register pointer
are concatenated with the three low-order bits from the instruction address to form a complete address. As long
as the address stored in the register pointer remains unchanged, the three bits from the address will always point
to an address in the same 8-byte register slice.

Figure 2-13 shows a typical example of 4-bit working register addressing: the high-order bit of the instruction 'INC
R6'"is "0", which selects RPO. The five high-order bits stored in RP0 (01110B) are concatenated with the three
low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).

2-22 ELECTRONICS

S3C880A/F880A

ADDRESS SPACES

Register pointer
provides five
high-order bits

RPO
—>
RP1
Selects
RPO or RP1
Address OPCODE
Il
4-bit address

procides three
low-order bits

Together they create an
8-bit register address

Figure 2-13. 4-Bit Working Register Addressing

RPO RP1
01110| 000 |4 011111000
Selects RPO
l . 1 R6 OPCODE
Register
01110 110 address 0110 1110
(76H)

I

Instruction:
'INC R6'

Figure 2-14. 4-Bit Working Register Addressing Example

ELECTRONICS

2-23

ADDRESS SPACES S3C880A/F880A

8-BIT WORKING REGISTER ADDRESSING

You can also use 8-bit working register addressing to access registers in a selected working register area. In
order to initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the
value 1100B. This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit
working register addressing.

As shown in Figure 2-14, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit
addressing: bit 3 selects either RP0O or RP1, which then supplies the five high-order bits of the final address, and
the three low-order bits of the complete address are provided by the original instruction.

Figure 2-15 shows an example of 8-bit working register addressing: the four high-order bits of the instruction
address (1100B) specify 8-bit working register addressing. The fourth bit ("1") selects RP1 and the five high-order
bits in RP1 (10100B) become the five high-order bits of the register address. The three low-order bits of the
register address (011) are provided by the three low-order bits of the 8-bit instruction address. Together, the five
address bits from RP1 and the three address bits from the instruction comprise the complete register address,
R163 (10100011B).

RPO
—»>
RP1
Selects
RPO or RP1
Address
These address ! !
bits indicate 8-bit »| 1 11o0lo0 8-bit logical
working register o address
addressing
Register pointer Three low-
provides five order bits
high-order bits v

8-bit physical address

Figure 2-15. 8-Bit Working Register Addressing

2-24 ELECTRONICS

S3C880A/F880A ADDRESS SPACES

RPO RP1
01100000 —»| 10101000
Selects RP1
J— R11 . v l .
8-bit address Register
1100|1|011 | forminstruction 10101011 address
‘LD R11, R2' (OABH)

Specifies working
register addressing

Figure 2-16. 8-Bit Working Register Addressing Example

ELECTRONICS 2-25

ADDRESS SPACES S3C880A/F880A

SYSTEM AND USER STACKS

The S3C8-series microcontrollers use the system stack for subroutine calls and returns, interrupt processing, and
data storage. The PUSH and POP instructions support system stack operations. Stack operations in the internal
register file and in external data memory are supported by hardware. (The S3C880A/F880A do not support an
external memory access.) Bit 1 in the external memory timing register EMT selects an internal or external stack
area. The 16-bit stack pointer register (SPH, SPL) is used to access an externally defined system stack. An 8-bit
stack pointer (SPL) is sufficient for internal stack addressing.

Stack Operations

Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are
saved to stack by a CALL instruction and restored by an RET instruction. When an interrupt occurs, the contents
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to

their original locations. The stack address is always decremented before a push operation and incremented after
a pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown
in Figure 2-16.

High Address

PCL
PCL
Top of PCH
PCH
stack Top of Flags
stack 9
Stack contects Stack contects
after a call after an
instruction Low Address interrupt

Figure 2-17. Stack Operations

User-Defined Stacks

You can freely define stacks in the internal register file as data storage locations. The instructions, PUSHUI,
PUSHUD, POPUI, and POPUD, support user-defined stack operations.

Stack Pointers (SPL, SPH)

The register locations D8H and D9H contain the 16-bit stack pointer (SP) value. The most significant byte of a
16-bit stack address is stored in the SPH register (D8H) and the least significant byte is stored in the SPL register
(D9H). Because an external memory interface is not implemented for the S3C880A/F880A microcontrollers, a
single 8-bit stack pointer (SPL) is sufficient to address stack locations in the internal register file.

After a reset, the stack pointer value is undetermined. The SPL register must then be initialized to an 8-bit value
in the range 00H-FFH, page 0.

You can use the SPH register as a general-purpose data register. Please note that when you do so, data stored
in SPH may be overwritten if an overflow or underflow of the SPL register occurs during normal stack operations.
To prevent this, you can initialize the SPL value to FFH instead of O0H.

2-26 ELECTRONICS

S3C880A/F880A

ADDRESS SPACES

I pROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following sample code shows how to perform stack operations in the internal register file using PUSH and

POP instructions:

LD

PUSH
PUSH
PUSH
PUSH

POP
POP
POP
POP

SPL,#0FFH

PP
RPO
RP1
R3

R3
RP1
RPO
PP

SPL - FFH (Normally, the SPL is set to OFFH by the
initialization routine)

Stack address OFEH - PP
Stack address OFDH - RPO
Stack address OFCH = RP1
Stack address OFBH - R3

R3 - Stack address OFBH
RP1 - Stack address OFCH
RPO - Stack address OFDH
PP - Stack address OFEH

ELECTRONICS

2-27

ADDRESS SPACES S3C880A/F880A

NOTES

2-28 ELECTRONICS

S3C880A/F880A ADDRESSING MODES

ADDRESSING MODES

OVERVIEW

Instructions that are stored in program memory are fetched for execution using the program counter. Instructions
indicate the operation to be performed and the data to be operated on. Addressing mode is used to determine the
location of the data operand. The operands specified in SAM87 instructions may be condition codes, immediate
data, or a location in the register file, program memory, or data memory.

The SAMB8Y7 instruction set supports seven explicit addressing modes. Not all of these addressing modes are
available for each instruction. The addressing modes and their symbols are as follows:

— Register (R)

— Indirect Register (IR)

— Indexed (X)

— Direct Address (DA)

— Indirect Address (I1A)

— Relative Address (RA)

— Immediate (IM)

ELECTRONICS 3-1

ADDRESSING MODES

S3C880A/F880A

REGISTER ADDRESSING MODE (R)

In Register addressing mode, the operand is the content of a specified register or register pair (see Figure 3-1).
Working register addressing differs from Register addressing as it uses a register pointer to specify an 8-byte
working register space in the register file and an 8-bit register within that space (see Figure 3-2).

8-bit Register

File Address ™ dst ._ﬁ,
oint to One
x» OPCODE Register in
One-Opera_nd % Register File
Instruction
(Example)

Program Memory

Sample Instruction:

Register File

OPERAND

Wl

Value used in

Instruction Execution

DEC CNTR ;. Where CNTR is the label of an 8-bit register address
Figure 3-1. Register Addressing
Register File
MSB Point to
RPO ot RP1
> RPO or RP1 @
Selected
RP points
Program Memory to start
4-bit of working
Working Register\\‘ dst src @ 3LSBs > E:Tg(l:sl:[er
Point to the
» OPCODE Working Register OPERAND

Two-Operand
Instruction d
(Example)

ADD

Sample Instruction:

R1, R2

(1 of 8)

;. Where R1 and R2 are registers in the curruntly
selected working register area.

Figure 3-2. Working Register Addressing

3-2

ELECTRONICS

S3C880A/F880A ADDRESSING MODES

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of
the operand. Depending on the instruction used, the actual address may point to a register in the register file,
program memory (ROM), or an external memory space (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to
indirectly address another memory location. You cannot, however, access the locations COH-FFH in set 1 using
Indirect Register addressing mode.

Program Memory Register File
8-bit Register
File Address Ny dst . »| _ ADDRESS
Point to One
» OPCODE Register in Register /.
One-Operand File
Instruction A
(Example) Address of Operand

used by Instruction

Value used in _+¥ OPERAND

Instruction Execution

Sample Instruction:

RL @SHIFT ;. Where SHIFT is the label of an 8-bit register address

Figure 3-3. Indirect Register Addressing to Register File

ELECTRONICS 3-3

ADDRESSING MODES S3C880A/F880A

INDIRECT REGISTER ADDRESSING MODE (Continued)

Register File
Program Memory
Example Reglﬁter
Instruction dst L I — Pair .
References —%» OPCODE Points to
Program Register Pair 16-Bit
Memory Address
Points to
Program Memory Program
Memory
Sample Instructions: Value usedin —» OPERAND <
Instruction
CALL @RR2
JP @RR2

Figure 3-4. Indirect Register Addressing to Program Memory

3-4

ELECTRONICS

S3C880A/F880A ADDRESSING MODES

INDIRECT REGISTER ADDRESSING MODE (Continued)

Register File
MSB Points to
RPO or RP1
o > RPOor RP1 e
|
|
| Selected
| .
Program Memory ! ~ ~ RP Points to
I Start of
4-Bit l Working Register
i I 3LSBs
o > ast | o ef-i- 2Ky Block
oint to the °
Address OPCODE Working Register ADDRESS ¢
(1 of 8) «
Sample Instruction:)
Value used in —9» OPERAND <+
OR R3, @R6 Instruction

Figure 3-5. Indirect Working Register Addressing to Register File

ELECTRONICS 3-5

ADDRESSING MODES S3C880A/F880A

INDIRECT REGISTER ADDRESSING MODE (Concluded)

Register File
MSB Points to
RPO or RP1
> RPO or RP1 e
Selected
RP points to
Program Memory Start _of _
4-bit Working \é\forlsng Register
Register Address oc
$dst [sic e —> REGISTER :l__
. OPCODE Next 2-bit I_:’omt PAIR
Example Instruction 7’ to Working <
References either Register Pair
Program Memory or (1 of 4) 16-Bit Address
Data Memory o
LSB Selects Program Memory oints to
> or Program Memory
Data Memory or Data Memory
Value used in

—» OPERAND <+

Instruction
Sample Instructions:
LCD R5,@RR6 ; Program memory access
LDE R3,@RR14 ; External data memory access
LDE @RR4, R8 ; External data memory access

Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

3-6 ELECTRONICS

S3C880A/F880A ADDRESSING MODES

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during the instruction execution in order to
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access
locations in the internal register file or in external memory. You cannot, however, access the locations COH—FFH
in set 1 using Indexed addressing mode.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range
—128 to + 127. This applies to external memory accesses only (see Figure 3-8).

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained
in a working register. For external memory accesses, the base address is stored in the working register pair
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address
(see Figure 3-9).

The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for
external data memory, when implemented.

Register File

Femmm »| RPOOrRP1 e

Value used in Selected RP
OPERAND Working Register
Block
+

Program Memory / . ~

Base Address

[}
[}
[}
[}
[}
[}
[}
[}
:
, ’
! Instruction Points to Start of
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}

- I 3LSBs
TW(IJ Operand I el x edt-L-— =255 Y > INDEX <
nstruction OPCODE Point to One of the
Example Working Register
(1 of 8)
Sample Instruction:
LD RO, #BASE[R1] ;. Where BASE is an 8-bit immediate value

Figure 3-7. Indexed Addressing to Register File

ELECTRONICS 3-7

ADDRESSING MODES

S3C880A/F880A

INDEXED ADDRESSING MODE (Continued)

Program Memory

OFFSET
4-bit Working _[y, gst/src X
Register Address OPCODE

Sample Instructions:

LDC

LDE

R4, #04H[RR2]

R4,#04H[RR2]

Selected RP
Points to Start of
Working Register
Block

16-Bit Address
Added to Offset

; The values in the program address (RR2 + 04H)

Register File
MSB Points to
RPO or RP1
FooTmTmmomoes RPOor RP1 e
[}
[}
[}
[}
[}
[}
! A N
[}
[}
|
| NEXT 2 BITS
bmmmomm oo > REGISTER |
! Point to Working PAIR]
1 Register Pair
\ (1 of 4)
|
[}
b p Program Memory
LSB Selects or
Data Memory
—> <
8-Bits 16-Bits
OPERAND
16-Bits

| Value used in

Instruction

are loaded into register R4.

; ldentical operation to LDC example, except that
external program memory is accessed.

Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

3-8

ELECTRONICS

S3C880A/F880A ADDRESSING MODES

INDEXED ADDRESSING MODE (Concluded)

Register File
MSB Points to
RPO or RP1
i > RPO or RP1 ®
|
: Selected RP
Program Memory l i A Points to Start of
: Working Register
OFFSET i Block
. . OFFSET T | NEXT2BITS
. 4-?“ \Avgék'ng —>dst/src | src @fd-b------------ » REGISTER __ |
egister ress 1 Point to Working FAIR 1]
OPCODE : Register Pair
| <
i 16-Bit Address
I Added to Offset
Lo » Program Memory
LSB Selects or
Data Memory

> <
8-Bits | 16-Bits

OPERAND -<¢— Value usedin

16-Bits Instruction
Sample Instructions:
LDC R4, #1000H[RRZ2] ; The values in the program address (RR2 + 1000H)
are loaded into register R4.
LDE R4,#1000H[RR2] ; ldentical operation to LDC example, except that

external program memory is accessed.

Figure 3-9. Indexed Addressing to Program or Data Memory

ELECTRONICS 3-9

ADDRESSING MODES S3C880A/F880A

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC
whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or the destination address for
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

Program or
Data Memory

Memory
Address

Program Memory Used

Upper Address Byte
Lower Address Byte

dst/src_| "0 or 1" <« L SB Selects Program

OPCODE Memory or Data Memory:
"0" = Program Memory
"1" = Data Memory

Sample Instructions:

LDC R5,1234H; The values in the program address (1234H)
are loaded into register R5.
LDE R5,1234H; Identical operation to LDC example, except that

external program memory is accessed.

Figure 3-10. Direct Addressing for Load Instructions

3-10 ELECTRONICS

S3C880A/F880A

ADDRESSING MODES

DIRECT ADDRESS MODE (Continued)

Program Memory

Next OPCODE b

Memory
Address
Used
Upper Address Byte
Lower Address Byte
OPCODE
Sample Instructions:
JP C,JOB1 ;. Where JOBL1 is a 16-bit immediate address
CALL DISPLAY ;. Where DISPLAY is a 16-bit immediate address

Figure 3-11. Direct Addressing for Call and Jump Instructions

ELECTRONICS

3-11

ADDRESSING MODES S3C880A/F880A

INDIRECT ADDRESS MODE (lA)

In Indirect Address (IA) mode, the instruction specifies an address located in the lower 256 bytes of the program
memory. The selected pair of memory locations contains the actual address of the next instruction to be
executed. Only the CALL instruction can use Indirect Address mode.

As Indirect Address mode assumes that the operand is located in the lower 256 bytes of the program memory,
only an 8-bit address is provided in the instruction; the upper bytes of the destination address are assumed to be
all zeros.

Program Memory

v

«4— Next Instruction
LSB Must be Zero
L
c ¢ dst /4
urren
Instruction OPCODE
|_ Lower Address Byte Program Memory

Upper Address Byte |4 Locations 0-255

Sample Instruction:

CALL #40H ; The 16-bit value in program memory addresses
40H and 41H is the subroutine start address.

Figure 3-12. Indirect Addressing

3-12 ELECTRONICS

S3C880A/F880A

ADDRESSING MODES

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a two's-complement signed displacement between — 128 and + 127 is specified
in the instruction. The displacement value is then added to the current PC value. The result is the address of the
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction

immediately following the current instruction.

Several program control instructions use Relative Address mode to perform conditional jumps. The instructions
that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIINE, and JR.

Program Memory

Next OPCODE

Program Memory
Address Used

¢ Current
: PCValue b
Displacement >
Current Instruction —»__ OPCODE Signed
Displacement Value
Sample Instructions:
JR ULT,$+OFFSET ;. Where OFFSET is a value in the range +127 to -128

Figure 3-13. Relative Addressing

ELECTRONICS

3-13

ADDRESSING MODES

S3C880A/F880A

IMMEDIATE MODE (IM)

In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the
operand field itself. The operand may be one byte or one word in length, depending on the instruction used.

Immediate addressing mode is useful for loading constant values into registers.

Program Memory

OPERAND
OPCODE

(The Operand value is in the instruction)

Sample Instruction:

LD RO#0AAH

Figure 3-14. Immediate Addressing

3-14

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS

CONTROL REGISTERS

OVERVIEW

In this chapter, detailed descriptions of the S3C880A/F880A control registers are presented in an easy-to-read
format. These descriptions will help familiarize you with the mapped locations in the register file. You can also
use them as a quick-reference source when writing application programs.

System and peripheral registers are summarized in Tables 4-1, 4-2, and 4-3. Figure 4-1 illustrates the important
features of the standard register description format.

Control register descriptions are arranged in alphabetical order according to register mnemonic. More information
about control registers is presented in the context of the various peripheral hardware descriptions in Part Il of this
manual.

ELECTRONICS 4-1

CONTROL REGISTERS S3C880A/F880A
Table 4-1. Set 1 Registers

Register Name Mnemonic Decimal Hex R/W
Timer O counter TOCNT 208 DOH R
Timer O data register TODATA 209 D1H R/W
Timer O control register TOCON 210 D2H R/W
Basic timer control register BTCON 211 D3H R/W
Clock control register CLKCON 212 D4H R/W
System flags register FLAGS 213 D5H R/W
Register pointer 0 RPO 214 D6H R/W
Register pointer 1 RP1 215 D7H R/W
Stack pointer (high byte) SPH 216 D8H R/W
Stack pointer (low byte) SPL 217 D9H R/W
Instruction pointer (high byte) IPH 218 DAH R/W
Instruction pointer (low byte) IPL 219 DBH R/W
Interrupt request register IRQ 220 DCH R
Interrupt mask register IMR 221 DDH R/W
System mode register SYM 222 DEH R/W
Register page pointer PP 223 DFH R/W

Table 4-2. Set 1, Bank 0 Registers

Register Name Mnemonic Decimal Hex R/W
Port 0 data register PO 224 EOH R/W
Port 1 data register P1 225 E1H R/W
Port 2 data register P2 226 E2H R/W
Port 3 data register P3 227 E3H R/W
Port 0 control register (high byte) POCONH 228 E4H R/W
Port 0 control register (low byte) POCONL 229 E5H R/W
Port 1 control register (high byte) P1CONH 230 E6H R/W
Port 1 control register (low byte) P1CONL 231 E7H R/W
Port 2 control register (high byte) P2CONH 232 E8H R/W
Port 2 control register (low byte) P2CONL 233 E9H R/W

Location EAH in set 1, bank 0, are not mapped.
Port 3 control register (low byte) P3CONL 235 EBH R/W
Locations ECH - EEH in set 1, bank 0, are not mapped.

PLL control register (note) PLLCON 236 EFH R/W

NOTE: PLL control register, PLLCON, is a system register for factory test. So user should not access this register.

4-2

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS

Table 4-2. Set 1, Bank 0 Registers (Continued)

Register Name Mnemonic Decimal Hex R/W

Timer A data register TADATA 240 FOH R/W
Location F1H in set 1, bank 0, are not mapped.

STOP control register STCON 238 F3H R/W
Timer A control register TACON 242 F2H R/W
PWMO data register (main byte) PWMO 244 F4H R/W
PWMO data register (extension byte) PWMOEX 245 F5H R/W
PWML1 data register (main byte) PWM1 246 F6H R/W
PWML1 data register (extension byte) PWM1EX 247 F7H R/W
PWM control register PWMCON 248 F8H R/W
Capture A data register CAPA 249 FOH R
A/D converter control register ADCON 250 FAH R/W
A/D conversion data register ADDATA 251 FBH R
Test control register TSTC 252 FCH R/W ()
Basic timer counter BTCNT 253 FDH R
External memory timing register EMT 254 FEH R/W
Interrupt priority register IPR 255 FFH R/W

NOTE: Test control register, TSTC, is a system register for factory test. So user should not access this register.

ELECTRONICS 4-3

CONTROL REGISTERS

S3C880A/F880A

Table 4-3. Set 1, Bank 1 Registers

Register Name Mnemonic Decimal Hex R/W
OSD fringe/border control register 1 OSDFRG1 224 EOH R/W
OSD fringe/border control register 2 OSDFRG2 225 E1H R/W
OSD smooth control register 1 OSDSMH1 226 E2H R/W
OSD smooth control register 2 OSDSMH2 227 E3H R/W
OSD space color control register OSDCOL 236 E4H R/W
OSD field control register OSDFLD 237 E5H R/W
OSD palette color mode R 1 OSDPLTR1 230 E6H R/W
OSD palette color mode R 2 OSDPLTR2 231 E7H R/W
OSD palette color mode G 1 OSDPLTG1 232 E8H R/W
OSD palette color mode G 2 OSDPLTG2 233 E9H R/W
OSD palette color mode B 1 OSDPLTB1 234 EAH R/W
OSD palette color mode B 2 OSDPLTB2 235 EBH R/W

Locations ECH-EFH in set 1, bank 1, are not mapped.

OSD character size control register CHACON 240 FOH R/W
OSD fade control register FADECON 241 F1H R/W
OSD row position control register ROWCON 242 F2H R/W
OSD column position control register CLMCON 243 F3H R/W
OSD background color control register COLCON 244 F4H R/W
On-screen display control register DSPCON 245 F5H R/W
Halftone signal control register HTCON 246 F6H R/W
V-SYNC blank control register VSBCON 251 F7H R/W
PWM2 Data register PWM2 247 F8H R/W
PWM3 Data register PWM3 248 FOH R/W
PWM4 Data register PWM4 249 FAH R/W
PWMS5 Data register PWMb5 250 FBH R/W
OSD Color Buffer COLBUF 252 FCH R/W

Locations FDH-FFH in set 1, bank 1, are not mapped.

4-4

ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

Bit number(s) that is/are appended to
the register name for bit addressing

Name of an
individual
bit or bit function

Register location

Addressing mode or

modes you can use to
modify register values

Logic
Logic

HaxX I

Not used
Undetermined value

Zero
one

Register Register address in the internal
mnemonic Full register name (hexadecimal) register file
| | | |
FLAGS — System Flags Register D5H Setl
Bitidentifier | 7 | 6 | 5 |[[4a | 3| 2| 1| o |-
RESET Value X X X X X X <4 0 0
Read/Write —> R/W R/IW R/W R/W R/W R/W | R/W R/W
Addressing Mofle Register addressing mode pnly
3
> 7 Carry Flag (C) *+—
0 | Operation does not generate a carry or borrow conglition
1 | Operation generates a carry-out or a borrow conditfon in high-order bit 7
> 5 Zero Flag (2)
0 | Operation result is a non-zero value
1 | Operation result is zero
> 5 Sign Flag (S)
|
* 0 | Operation generates a positive number (MSB = "0"
1 | Operation generates a negative number (MSB = "11)
R = Read-only Description of the Bit number:
W = Write-only effect of specific MSB = Bit7
R/W = Read/write bit settings LSB = Bit0
—' = Not used RESET value notation:

Figure 4-1. Register Description Format

ELECTRONICS

4-5

CONTROL REGISTERS S3C880A/F880A
ADCON — A/D converter Control Register FAH Set 1, Bank O
Bit Identifier 7 6 | 5 | a4 3 2 1 0
RESET Value - - 0 0 X 0 0 0
Read/Write - - R/W R/W R R/W R/W R/IW

Addressing Mode

7—.6

5-4

.2and .1

Register addressing mode only

Not used for the S3C880A/F880A

A/D Converter Input Pin Selection Bits

0 | 0 [|ADCO (P3.0)
0 | 1 |ADC1 (P3.1)
1 | 0 |ADC2 (P0.6)
1 | 1 |ADC3 (P0.7)

End-of-Conversion Status Bit (Read Only)

0

A/D conversion is in progress

1

A/D conversion complete

Clock Source Selection Bits

0 | 0 |fosc/16 (fosc <8 MHz)

0 1 |fosc/8 (fosc < 8 MHz)

1 0 |fosc/l4(fosc < 8 MHz)

1 1 |fosc/2 (fosc < 8 MHz)
Conversion Start Bit

0 | No meaning

0 | A/D conversion start

4-6

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS

BTCON — Basic Timer Control Register D3H Setl
Bit Identifier 7 6 | 5 | a4 3 2 1 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7-4 Watchdog Timer Function Disable Code (for Reset)

1 | 0 | 1 | 0 | Disable watchdog timer function

Others Enable watchdog timer function

3and .2 Basic Timer Input Clock Selection Bits

0 | 0 |fogc/4096

0 | 1 |fosc/1024
1] 0 [fogc/128
1)1

Invalid selection

= Basic Timer Counter Clear Bit (note)
0 | No effect
1 | Clear the basic timer counter value

.0 Clock Divider Clear Bit for Basic Timer and Timer 0 (note)
0 | No effect
1 [Clear both dividers

NOTE: When you write a "1" to bit O or bit 1, the corresponding divider or counter value is cleared to '00H'. The
corresponding BTCON bit is then automatically reset by hardware to "0".

ELECTRONICS 4-7

CONTROL REGISTERS S3C880A/F880A

CHACON — 0sD character Size Control Register FOH Set 1, Bank 1
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7and .6 Vertical Character Size Selection Bits

0 0 | Select 'x1' vertical character size

Select 'x2' vertical character size

0 1
1 0 | Select 'x3' vertical character size
1 1 | Select 'x4' vertical character size

S5 and .4 Horizontal Character Size Selection Bits

0 0 | Select 'x1' horizontal character size

Select 'x2' horizontal character size

0 1
1 0 | Select 'x3' horizontal character size
1 1 | Select 'x4' horizontal character size

.3-0 Fade Row Address Selection for Rows 0-11 in On-Screen Display
0 0 0 0 | Row O selected
0 0 0 1 [Row 1 selected
0 0 1 0 | Row 2 selected
0 0 1 1 | Row 3 selected
0 1 0 0 | Row 4 selected
0 1 0 1 [Row 5 selected
0 1 1 0 | Row 6 selected
0 1 1 1 [Row 7 selected
1 0 0 0 | Row 8 selected
1 0 0 1 [Row 9 selected
1 0 1 0 | Row 10 selected
1 0 1 1 | Row 11 selected

Others Invalid selection

4-8 ELECTRONICS

S3C880A/F880A CONTROL REGISTERS

CLKCON — System Clock Control Register D4H Setl
Bit Identifier | 7 6 | 5 | a4 3 2 1 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

7 Oscillator IRQ Wake-up Function Enable Bit

0 | Enable IRQ for main system oscillator wake-up in power-down mode

1 | Disable IRQ for main system oscillator wake-up in power-down mode

.6and .5 Main Oscillator Stop Control Bits
0 0 | No effect
0 1 | No effect
1 0 | Stop main oscillator
1 1 | No effect
4and .3 CPU Clock (System Clock) Selection Bits (1)
0 | O |Divide by 16 (fo5c/16)
0 | 1 |Divide by 8 (fysc/8)
1 | 0 |Divide by 2 (fysc/2)
1 1 | Non-divided clock (fosc)

2-.0 Subsystem Clock Selection Bits (2)
1 | 0 | 1 [invalid selection for S3C880A/F880A
Others Select main system clock (MCLK)

NOTES:

1. After a reset, the slowest clock (divide by 16) is selected as the system clock. To select faster clock speeds, load the
appropriate values to CLKCON.3 and CLKCON.4.

2. These selection bits are required only for systems that have a main clock and a subsystem clock. The S3C880A/F880A
microcontrollers have only a main oscillator (and an L-C oscillator for the OSD module). For this reason, the setting
'101B' is invalid.

ELECTRONICS 4-9

CONTROL REGISTERS S3C880A/F880A

CLMCON — osD column Control Register F3H Set 1, Bank 1
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

7-3 Left Margin Display Position Control Bits (16 + 4 x LMG value of 0-31 dots)

0 0 0 0 0 | Left margin = 16 dot clocks
0 0 0 0 1 |[Leftmargin =16 +4 " 1 dot clock

1] 1] 1] 1] 1 [Leftmargin=16+4" 31dotclocks

.2-.0 Inter-Column Spacing Control Selection (0-7 dots)

0 | 0 | O |Nointer-column spacing

0 0 1 | Inter-column spacing = 1 dot

1 | 1 | 1 | Inter-column spacing = 7 dots

NOTE: To set left margin and inter-column spacing, separate decimal values must be calculated, converted to their binary
equivalents, and then written to the CLMCON register.

4-10 ELECTRONICS

S3C880A/F880A CONTROL REGISTERS

COLBUF — 0sD character Color Buffer FCH Set 1, Bank 1
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value - - - X X X X X
Read/Write - - - R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7—.6 Not used for the S3C880A/F880A

5 Video RAM Bit-9 Enable Bit

0 | Disable VRAM bit-9
1 | Enable VAM bit-9

4 Video RAM Bit-8 Enable Bit
0 | Disable VRAM bit-8
1 | Enable VRAM bit-8

3 H/T and BGRND Enable Bit
0 | Disable H/T and BRGND
1 | Enable H/T and BRGND

.2-.0 Character Color Selection Bits
21.11].0 OSDCOL.0=0 OosDCOoL.0=1
0 0 0 Black Color mode 0
0 0 1 Blue Color mode 1
0 1 0 Green Color mode 2
0 1 1 Cyan Color mode 3
1 0 0 Red Color mode 4
1 0 1 Magenta Color mode 5
1 1 0 Yellow Color mode 6
1 1 1 White Color mode 7

ELECTRONICS 4-11

CONTROL REGISTERS

S3C880A/F880A

COLCON —osp Background Color Control Register

Bit Identifier

RESET Value
Read/Write
Addressing Mode

F4H

7

0
R/W

R/W

5 | a4
0 0
R/W R/W

Register addressing mode only

Frame Background Color Enable Bit

Set 1, Bank 1
IR
0 0
R/IW R/IW R/IW

0 | Disable frame background color (no background color is displayed)
1 | Enable frame background color

Frame Background Color Selection Bits (when .7 ="1")
6| 5] 4 OSDCOL.0=0 OosDCOoL.0=1
0 0 0 Black Color mode 0
0 0 1 Blue Color mode 1
0 1 0 Green Color mode 2
0 1 1 Cyan Color mode 3
1 0 0 Red Color mode 4
1 0 1 Magenta Color mode 5
1 1 0 Yellow Color mode 6
1 1 1 White Color mode 7

Character Background Color Enable Bit

0 | Disable character background color (no background color is displayed)

1 | Enable character background color display

Character Background Color Selection Bits (when .3 ="1")

21.11].0 OSDCOL.0=0 OosDCOoL.0=1
0 0 0 Black Color mode 0
0 0 1 Blue Color mode 1
0 1 0 Green Color mode 2
0 1 1 Cyan Color mode 3
1 0 0 Red Color mode 4
1 0 1 Magenta Color mode 5
1 1 0 Yellow Color mode 6
1 1 1 White Color mode 7

4-12

ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

DSPCON — on-screen Display Control Register F5H Set 1, Bank 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 2 | a1 [o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R R R R R/W R/W R/W R/W
Addressing Mode Register addressing mode only
g-4 OSD Row Counter (Read-only)

0O 0] 0| O |RowO

0 0 0 1 |Row 1

0 0 1 0 |Row?2

0 0 1 1 |Row3

0 1 0 0O |[Row4

0 1 0 1 |Row5

0 1 1 0 | Row6

0 1 1 1 |Row7

1]10|] 0| O |RowS8

1 0 0 1 |Row9

1 0 1 0 |Row 10

1 0 1 1 |Row 11

Others 1100-1111 are not used

3 Clock Edge Selection for H/V-Sync Polarity

0 | Rising edge

1 [Falling edge

2-1 Halftone or Background Color Selection Bits

0 0 | Character background color

Not used

0|1
1 0 | Halftone output
1 1

Character halftone and background color

.0 Display Enable Bit

0 | Disable OSD (turn off L-C OSC)

1 | Enable OSD (turn on L-C OSC)

ELECTRONICS

4-13

CONTROL REGISTERS S3C880A/F880A

EMT — External Memory Timing Register FEH Set 1, Bank 0
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 0 0 0 0 0 0 0 -
Read/Write R/W R/W R/W R/W R/W R/W R/W -
Addressing Mode Register addressing mode only

7 External WAIT Input Function Enable Bit

O | Disable WAIT input function for external device (normal operating mode)

1 | Enable WAIT input function for external device

.6 Slow Memory Timing Enable Bit

0 | Disable slow memory timing

1 | Enable slow memory timing

Sand 4 Program Memory Automatic Wait Control Bits

0 | O | No wait (normal operation)

Wait one cycle

0|1
1 0 | Wait two cycles
1 1

Wait three cycles

3and .2 Data Memory Automatic Wait Control Bits
0 | O | No wait (normal operation)
0 1 | Wait one cycle
1 0 | Wait two cycles
1 1 | Wait three cycles
A Stack Area Selection Bit

0 | Select internal register file area

1 [Select external data memory area

.0 Not used for the S3C880A/F880A

NOTE: Because an external interface is not implemented for the S3C880A/F880A, the EMT values should
always be "0".

4-14 ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

FADECON —

Bit Identifier

RESET Value
Read/Write
Addressing Mode

OSD Fade Control Register F1H Set 1, Bank 1
| 7 | 6 | 5 | 4 | 3 2 | 1 | o |
- 0 0 0 0 0 0 0

- R/W R/W R/W R/W
Register addressing mode only

R/W R/W R/W

Not used for the S3C880A/F880A

Fade Function Enable Bit

0 | Fade disable

1 | Fade enable

Fade Direction Selection Bit

0 | Fade before matrix

1 | Fade after matrix

Halftone or Background Color Selection Bits (1)

0O 0] 0| O] O (Lineo

0 0 0 0 1 |Linel

Line 16

Line 17

Inter-row space Line 1 (1H)

Inter-row space Line 2 (1H)

Inter-row space Line 3 (1H)

Inter-row space Line 4 (1H)

Inter-row space Line 5 (1H)

Inter-row space Line 6 (1H)

Inter-row space Line 7 (1H)

PlRrlr(r|lrlr|lRr|Rr|[R|+
R|lr|lolo|lo|lo|lo|o|o|o
o|lo|r|rR|rRr|[r|o|o|o|O
o|lo|r|r|o|lo|r|r|o|oO
Rrl|lo|r|lo|r|o|rRr|o|r|oO

Not used

1] 1] 2] 1] 1 [Notused

NOTE: There are two choices of fade direction: before (FADECON.5="0") and after (FADECON.5="1"). When you select
fade before, the character matrix is faded starting with current line +1 (not including current line). When you
select fade after, the character matrix is faded starting with current line.

ELECTRONICS

4-15

CONTROL REGISTERS S3C880A/F880A

FLAGS — System Flags Register D5H Setl
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 1 [o |
RESET Value X X X X X X 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

7 Carry Flag (C)

0 | Operation does not generate a carry or borrow condition

1 | Operation generates a carry-out or borrow into high-order bit-7

.6 Zero Flag (2)
0 | Operation result is a non-zero value

1 [Operation result is zero

5 Sign Flag (S)
0 | Operation generates a positive number (MSB = "0")

1 | Operation generates a negative number (MSB = "1")

4 Overflow Flag (V)
0 | Operation result is £ + 127 or 3 — 128
1 | Operation resultis > + 127 or < — 128

3 Decimal Adjust Flag (D)
0 | Add operation has completed

1 | Subtraction operation has completed

2 Half-Carry Flag (H)
0 | No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction

1 | Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3

A Fast Interrupt Status Flag (FIS)
0 | Cleared automatically during an interrupt return (IRET)

1 | Automatically set to logic one during a fast interrupt service routine

.0 Bank Address Selection Flag (BA)
0 | Bank O is selected (using the SBO instruction)

1 | Bank 1 is selected (using the SB1 instruction)

4-16 ELECTRONICS

S3C880A/F880A

CONTROL REGIST

ERS

HTCON — Halftone Signal Control Register F6H Set 1, Bank 1
Bit Identifier 7 | e | 5 | 4 | 3 | 2 [1 [o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W RIW RIW RIW RIW

Addressing Mode

Register addressing mode only

Halftone Output Polarity Selection Bit (HT Only)

0 | Active high (normal halftone output is Low level)

1 | Active low (normal halftone output is High level)

RGB Output Polarity Selection Bit

0 | Active high (normal RGB polarity is Low level)

1 | Active low (normal RGB polarity is High level)

OSD ROW Interrupt Enable Bit

0 | Disable the OSD ROW interrupt

1 | Enable the OSD ROW interrupt

OSD ROW Interrupt Pending Bit

0 | No interrupt is pending (when read); clear pending bit (when write)

1 [Interrupt is pending (when read); no effect (when write)

Halftone Function Enable Bit

0 | Disable the halftone control signal

1 | Enable the halftone control signal

Halftone Option Selection Bit

0 | Halftone output for character periods only (as selected by video RAM bit-13)

1 | Halftone output for all frame periods (regardless of video RAM bit-13 setting)

V-Sync Interrupt Enable Bit

0 | Disable the V-sync interrupt

1 | Enable the V-sync interrupt

V-Sync Interrupt Pending Bit

0 | No OSD ROW interrupt is pending (when read)

Clear pending bit (when write)

0
1 | OSD ROW interrupt is pending (when read)
1 [No effect (when write)

ELECTRONICS

4-17

CONTROL REGISTERS

S3C880A/F880A

IMR — Interrupt Mask Register

Bit Identifier

RESET Value
Read/Write
Addressing Mode

DDH Set 1
|7 | & | 5 | a4 2 | o |
X X - X X X
RIW RIW - RIW RIW RIW RIW

Register addressing mode only

Interrupt Priority Level 7 (IRQ7) Enable Bit; V-Sync

0 | Disable IRQ7 interrupt

1 | Enable IRQ7 interrupt

Interrupt Priority Level 6 (IRQ6) Enable Bit; Timer A

0 | Disable IRQ6 interrupt

1 | Enable IRQ6 interrupt

Not used for S3C880A/F880A

Interrupt Priority Level 4 (IRQ4) Enable Bit; P1.2 and P1.3 External Interrupt

0 | Disable IRQ4 interrupt

1 | Enable IRQ4 interrupt

Interrupt Priority Level 3 (IRQ3) Enable Bit; CAPA

0 | Disable IRQ3 interrupt

1 | Enable IRQ3 interrupt

Interrupt Priority Level 2 (IRQ2) Enable Bit; OSD ROW Interrupt

0 | Disable IRQ2 interrupt

1 | Enable IRQ2 interrupt

Interrupt Priority Level 1 (IRQ1) Enable Bit; P1.0 and P1.1 External Interrupt

0 | Disable IRQL1 interrupt

1 | Enable IRQ1 interrupt

Interrupt Priority Level 0 (IRQO) Enable Bit; TOINT (Match)

0 | Disable IRQO interrupt

1 | Enable IRQO interrupt

4-18

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS

|[PH — instruction Pointer (High Byte) DAH Setl
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | a1 | o |
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7-.0 Instruction Pointer Address (High Byte)

The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction
pointer address (IP15—1P8). The lower byte of the IP address is located in the IPL
register (DBH).

IPL — Instruction Pointer (Low Byte) DBH Setl
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

7-.0 Instruction Pointer Address (Low Byte)

The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction
pointer address (IP7—I1P0). The upper byte of the IP address is located in the IPH
register (DAH).

ELECTRONICS 4-19

CONTROL REGISTERS S3C880A/F880A

IPR — Interrupt Priority Register FFH Set 1, Bank 0
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value X X - X X X X X
Read/Write R/W R/W - R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7,.4,and .1 Priority Control Bits for Interrupt Groups A, B, and C (1)

0 0 0 | Group priority undefined

0 0 1 [B>C>A

0 1 0 |[A>B>C

0 1 1 |B>A>C

1]10]|0|C>A>B

1 0 1 [C>B>A

1 1 0 |A>C>B

1 1 1 | Group priority undefined
.6 Interrupt Group C Priority Control Bit

0 |IRQ6 > IRQ7
1 |IRQ7 > IRQ6

5 Not used for the S3C880A/F880A (2)

3 Interrupt Sub Group B Priority Control Bit
0 |IRQ3>IRQ4
1 [IRQ4 > IRQ3

2 Interrupt Group B Priority Control Bit
0 |IRQ2 > (IRQ3, IRQ4)
1 [(IRQ3, IRQ4) > IRQ2

.0 Interrupt Group A Priority Control Bit
0 |IRQO>IRQ1
1 [IRQ1>IRQO

NOTES:
1. Interrupt group A is IRQO and IRQ1; interrupt group B is IRQ2, IRQ3, and IRQ4; interrupt group C is IRQ6 and IRQ?7.
2. Interrupt level IRQ5 is not used in the S3C880A/F880A interrupt structure. For this reason, IPR.5 is not used.

4-20 ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

|RQ — Interrupt Request Register DCH Setl
Bit Identifier | 7 | & |
RESET Value 0 0 - 0
Read/Write R R - R R R R R
Addressing Mode Register addressing mode only
v Interrupt Level 7 (IRQ7) Request Pending Bit; V-Sync
0 | No IRQ7 interrupt pending
1 [IRQY7 interrupt is pending
.6 Interrupt Level 6 (IRQ6) Request Pending Bit; Timer A
0 | No IRQ6 interrupt pending
1 [IRQ6 interrupt is pending
5 Not used for the S3C880A/F880A
4 Interrupt Level 4 (IRQ4) Request Pending Bit; P1.2 and P1.3 External Interrupt
0 | No IRQ4 interrupt pending
1 [IRQ4 interrupt is pending
3 Interrupt Level 3 (IRQ3) Request Pending Bit; CAPA
0 | No IRQ3 interrupt pending
1 [IRQ3 interrupt is pending
2 Interrupt Level 2 (IRQ2) Request Pending Bit; OSD ROW Interrupt
0 | No IRQ2 interrupt pending
1 [IRQ2 interrupt is pending
A Interrupt Level 1 (IRQ1) Request Pending Bit; P1.0 and P1.1 External Interrupt
0 | No IRQ1 interrupt pending
1 [IRQL1 interrupt is pending
.0 Interrupt Level 0 (IRQO) Request Pending Bit; TOINT (Match)
0 | No IRQO interrupt pending
1 [IRQO interrupt is pending

NOTE:

Interrupt level request pending bits can be polled by software to detect an interrupt request pending condition on

any of the seven valid interrupt levels (IRQ0-IRQ4, IRQ6, and IRQ7). Interrupt pending bits are read-only

addressable.

ELECTRONICS

4-21

CONTROL REGISTERS

S3C880A/F880A

OSDCOL —osb Space Color Control Register E4H Set 1, Bank 1
Bit Identifier | 7 | s 5 | 4 | 3 2 1 0
RESET Value - - - 0 0 0 0 0
Read/Write - - - R/W R/W R/IW R/W R/IW
Addressing Mode Register addressing mode only
7-5 Not used for the S3C880A/F880A
4 Inter Character Smoothing Control Bit (ote)

0 | Disable inter character smoothing

1 | Enable inter character smoothing
3 Fringe Dot Size Selection Bit

0 |1dot

1 | 1/2 dot
2 Inter-row Space Half Tone

0 | Depend on character background half tone

1 | Depend on frame background half tone
A Inter-row Space Color

0 | Depend on character background color

1 | Depend on frame background color
.0 RGB Output Selection Bit

0 | Digital RGB output (disable palette color mode)

1 | Analog RGB output (enable palette color mode)
NOTE: In 1-dot fringe mode (OSDCOL.3 = “0") , Inter-character smooth function is disabled.
4-22 ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

OSDFLD — osD Field control Register ESH Set 1, Bank 1
Bit Identifier | 7 6 | 5 | a4 3 2 1 0
RESET Value - - X 0 0 1 1 0
Read/Write - - R R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7—-,6 Not used for the S3C880A/F880A
5 Field Data (Read Only)

0 | Even field

1 | Odd field
4 H-sync Detect Position Select Bit

0 | Detect H-sync before V-sync

1 | Detect H-sync after V-sync
.3-0 Even Field Range

OO0 O O [Notused

00| 0|1 |fp,/16" 1

00| 1]0 |fp,/16" 2

0| 0| 1] 1|fepy/16~3

0 1]0]| 0 |fep,/16" 4

O 1]0]|1|fp,/16"5

0| 1| 1] 0 |fepy/16 " 6 (Resetvalue)

0| 1|11 |fepy/16" 7

110|100 |fep,/16" 8

11001 |fp,/16"9

10| 1|0 |fep,/167 10

10| 1|1 [fepy/16° 11

11|00 |fep,/16" 12

11|01 |fep,/16" 13

11 |1]0 |[fep,/16" 14

11| 1|1 |fep,/16° 15

ELECTRONICS

4-23

CONTROL REGISTERS S3C880A/F880A
OSDFRG1 —osp Fringe/Border Control Register 1 EOH Set 1, Bank 1
Bit Identifier | 7 | s 5 | 4 | 3 2 1 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Addressing Mode Register addressing mode only

.7-.0 Fringe/Border Function Enable Bit

0 | Disable Fringe/Border function at row n (n = 0-7)

1 | Enable Fringe/Border function at row n (n = 0-7)

NOTE: Row n is respectively correspond with bit n (n = 0-7).

4-24

ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

OSDFRG2 —

Bit Identifier

RESET Value
Read/Write
Addressing Mode

OSD Fringe/Border Control Register 2 E1H Set 1, Bank 1
| 7 | 6 5 | 4 | 3 2 1 0
0 0 0 0 0 0 0 0
R/W R/W R/W R/W R/W R/W R/W R/W
Register addressing mode only
Fringe or Border Selection Bit
0 | Border function select
1 | Fringe function select
Fringe/Border Color Selection Bits (.6: Red, .5: Green, .4: Blue)
6| 5] 4 OSDCOL.0=0 OosDCOoL.0=1
0 0 0 Black Color mode 0
0 0 1 Blue Color mode 1
0 1 0 Green Color mode 2
0 1 1 Cyan Color mode 3
1 0 0 Red Color mode 4
1 0 1 Magenta Color mode 5
1 1 0 Yellow Color mode 6
1 1 1 White Color mode 7
Fringe/Border Function Enable Bits
0 | Disable Fringe/Border function at row n (n = 8-11)
1 | Enable Fringe/Border function at row n (n = 8-11)

NOTE: Row 8, row 9, row 10, row 11 are correspond with bit 0, bit 1, bit 2, bit3, respectively.

ELECTRONICS

4-25

CONTROL REGISTERS

S3C880A/F880A

OSDPLTB1 —

Bit Identifier

RESET Value
Read/Write
Addressing Mode

7—.6

OSD Palette Color Mode Register B1 EAH Set 1, Bank 1
|7 6 5 | 4 | 3 2 1 0
1 1 0 0 1 1 0 0
RIW RIW RIW RIW RIW RIW RIW RIW

Register addressing mode only

OSD Mode 3 Blue Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 2 Blue Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 1 Blue Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 1 Blue Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

4-26

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS
OSDPLTB?2 — 0sD Palette Color Mode Register B2 EBH Set 1, Bank 1
Bit Identifier | 7 6 5 | 4 | 3 2 1 0
RESET Value 1 1 0 0 1 1 0 0
Read/Write R/W R/W R/W R/W RIW R/W R/W RIW

Addressing Mode

7—.6

Register addressing mode only

OSD Mode 7 Blue Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 6 Blue Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 5 Blue Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 4 Blue Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

ELECTRONICS

4-27

CONTROL REGISTERS

S3C880A/F880A

OSDPLTG1 —

Bit Identifier

RESET Value
Read/Write
Addressing Mode

7—.6

OSD Palette Color Mode Register G1 ESH Set 1, Bank 1
|7 6 5 | 4 | 3 2 1 0
1 1 1 1 0 0 0 0
RIW RIW RIW RIW RIW RIW RIW RIW

Register addressing mode only

OSD Mode 3 Green Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 2 Green Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 1 Green Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 1 Green Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

4-28

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS
OSDPLTG2 — 0sD Palette Color Mode Register G2 E9H Set 1, Bank 1
Bit Identifier | 7 6 5 | 4 | 3 2 1 0
RESET Value 1 1 1 1 0 0 0 0
Read/Write R/W R/W R/W R/W RIW RIW RIW RIW

Addressing Mode

7—.6

Register addressing mode only

OSD Mode 7 Green Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 6 Green Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 5 Green Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 4 Green Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

ELECTRONICS

4-29

CONTROL REGISTERS

S3C880A/F880A

OSDPLTR1 —

Bit Identifier

RESET Value
Read/Write
Addressing Mode

7—.6

OSD Palette Color Mode Register R1 E6H Set 1, Bank 1
|7 6 5 | 4 | 3 2 1 0
0 0 0 0 0 0 0 0
RIW RIW RIW RIW RIW RIW RIW RIW

Register addressing mode only

OSD Mode 3 Red Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 2 Red Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 1 Red Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 1 Red Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

4-30

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS
OSDPLTRZ2 — 0sD Palette Color Mode Register R2 E7H Set 1, Bank 1
Bit Identifier | 7 6 5 | 4 | 3 2 1 0
RESET Value 1 1 1 1 1 1 1 1
Read/Write R/W R/W R/W R/W RIW R/W R/W RIW

Addressing Mode

7—.6

Register addressing mode only

OSD Mode 7 Red Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 6 Red Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 5 Red Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

OSD Mode 4 Red Level

0 0 | Disable
0| 1 |33%

1| 0 |66%

1 1 |100 %

ELECTRONICS

4-31

CONTROL REGISTERS

S3C880A/F880A

OSDSMH1 — osb smooth Control Register 1 E2H Set 1, Bank 1
Bit Identifier | 7 6 | 5 | a4 3 2 1 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
4 Row 7 Smooth Function Enable Bit
0 | Disable smooth function at Row 7
1 | Enable smooth function at Row 7
.6 Row 6 Smooth Function Enable Bit
0 | Disable smooth function at Row 6
1 | Enable smooth function at Row 6
.5 Row 5 Smooth Function Enable Bit
0 | Disable smooth function at Row 5
1 | Enable smooth function at Row 5
4 Row 4 Smooth Function Enable Bit
0 | Disable smooth function at Row 4
1 | Enable smooth function at Row 4
3 Row 3 Smooth Function Enable Bit
0 | Disable smooth function at Row 3
1 | Enable smooth function at Row 3
2 Row 2 Smooth Function Enable Bit
0 | Disable smooth function at Row 2
1 | Enable smooth function at Row 2
1 Row 1 Smooth Function Enable Bit
0 | Disable smooth function at Row 1
1 | Enable smooth function at Row 1
.0 Row 0 Smooth Function Enable Bit
0 | Disable smooth function at Row 0
1 | Enable smooth function at Row O
4-32 ELECTRONICS

S3C880A/F880A CONTROL REGISTERS
OSDSMH2 — 0sb smooth Control Register 2 E3H Set 1, Bank 1
Bit Identifier | 7 6 | 5 | a4 3 2 1 0
RESET Value - - - - 0 0 0 0
Read/Write - - - - R/IW R/IW R/W R/IW

Addressing Mode

T4

Register addressing mode only

Not used for the S3C880A/F880A

Row 11 Smooth Function Enable Bit

0 | Disable smooth function at Row 11

1 | Enable smooth function at Row 11

Row 10 Smooth Function Enable Bit

0 | Disable smooth function at Row 10

1 | Enable smooth function at Row 10

Row 9 Smooth Function Enable Bit

0 | Disable smooth function at Row 9

1 | Enable smooth function at Row 9

Row 8 Smooth Function Enable Bit

0 | Disable smooth function at Row 8

1 | Enable smooth function at Row 8

ELECTRONICS

4-33

CONTROL REGISTERS

S3C880A/F880A

POCONH — port 0 control Register (High Byte) E4H Set 1, Bank O
Bit Identifier | 7 | 6 | 5 | 4 | 3 2 | a1 [o |
RESET Value 1 1 1 1 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7and .6 Port 0.7 Configuration Bits

0 0 | Input mode

ADC Input mode

0|1
1 0 | Open-drain output mode
1 1 | Open-drain output mode

Sand .4 Port 0.6 Configuration Bits

0 0 | Input mode

ADC Input mode

0|1
1 0 | Open-drain output mode
1 1 | Open-drain output mode

3and .2 Port 0.5 Configuration Bits

0 0 | Input mode

Input mode

0|1
1 0 | Push-pull output mode
1 1 | Push-pull output mode

land .0 Port 0.4 Configuration Bits

0 0 | Input mode

Input mode

0|1
1 0 | Push-pull output mode
1 1

Push-pull output mode

4-34

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS

POCONL — port 0 control Register (Low Byte) E5H Set 1, Bank O
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | a1 | o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7and .6 Port 0.3 Configuration Bits

0 0 | Input mode

Input mode

0|1
1 0 | N-channel open-drain output mode (5 V load)
1 1 | Push-pull output mode

Sand .4 Port 0.2 Configuration Bits
0 0 | Input mode

Input mode

0|1
1 0 | N-channel open-drain output mode (5 V load)
1 1 | Push-pull output mode

3and .2 Port 0.1 Configuration Bits
0 0 | Input mode

Input mode

0|1
1 0 | N-channel open-drain output mode (5 V load)
1 1 | Push-pull output mode

land .0 Port 0.0 Configuration Bits
0 0 | Input mode

Input mode

0|1
1 0 | N-channel open-drain output mode (5 V load)
1 1

Push-pull output mode

ELECTRONICS 4-35

CONTROL REGISTERS

S3C880A/F880A

P1CONH — port 1 control Register (High Byte) E6H Set 1, Bank O
Bit Identifier | 7 | 6 | 5 | 4 | 3 2 | a1 [o |
RESET Value 0 0 0 0 1 1 1 1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7and .6 Port 1.7/TOCK Configuration Bits

0 0 | Input mode

Timer O clock Input mode

0|1
1 0 | Push-pull output mode
1 1 | Push-pull output mode

Sand .4 Port 1.6 Configuration Bits

0 0 | Input mode

Input mode

0|1
1 0 | Push-pull output mode
1 1 | Push-pull output mode

3and .2 Port 1.5 Configuration Bits

0 0 | Input mode

Input mode

0|1
1 0 | N-channel open-drain mode (6-volt load capacity)
1 1 | N-channel open-drain mode (6-volt load capacity)

land .0 Port 1.4 Configuration Bits

0 0 | Input mode

Input mode

0|1
1 0 | N-channel open-drain mode (6-volt load capacity)
1 1 | N-channel open-drain mode (6-volt load capacity)

4-36

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS

P1CONL — port 1 control Register (Low Byte) E7H Set 1, Bank 0
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | a1 | o |
RESET Value 1 1 1 1 1 1 1 1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7and .6 Port 1.3/INT3 Configuration Bits

0 | O |Input mode; interrupt disabled

Input mode; interrupt on rising edge

0|1
1 0 | Input mode; interrupt on falling edge
1 1 | N-channel open-drain output mode (6-volt load capacity)

Sand .4 Port 1.2/INT2 Configuration Bits
0 | O |Input mode; interrupt disabled

Input mode; interrupt on rising edge

0|1
1 0 | Input mode; interrupt on falling edge
1 1 | N-channel open-drain output mode (6-volt load capacity)

3and .2 Port 1.1/INT1 Configuration Bits
0 | O |Input mode; interrupt disabled

Input mode; interrupt on rising edge

0|1
1 0 | Input mode; interrupt on falling edge
1 1 | N-channel open-drain output mode (6-volt load capacity)

land .0 Port 1.0/INTO Configuration Bits
0 | O |Input mode; interrupt disabled

Input mode; interrupt on rising edge

0|1
1 0 | Input mode; interrupt on falling edge
1 1

N-channel open-drain output mode (6-volt load capacity)

ELECTRONICS 4-37

CONTROL REGISTERS

S3C880A/F880A

P2CONH — port 2 control Register (High Byte) E8H Set 1, Bank O
Bit Identifier 7 | 6 | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write RIW R/W R/W R/W R/W R/W R/W R/W

Addressing Mode

.7 and .6

S5 and .4

3and .2

.land.O

Register addressing mode only

Port 2.7/OSDHT Configuration Bits

0 0 | Input mode

N-channel open-drain output mode (5-volt load capacity)

0|1
1 0 | Push-pull output mode
1 1 | OSD half-tone output mode (push-pull circuit type)

Port 2.6/TO Configuration Bits

0 0 | Input mode

N-channel open-drain output mode (5-volt load capacity)

0|1
1 0 | Push-pull output mode
1 1 | Timer O output mode (interval or PWM; N-channel open-drain type)

Port 2.5/PWMO0 Configuration Bits

0 0 | Input mode

N-channel open-drain output mode (5-volt load capacity)

0|1
1 0 | Push-pull output mode
1 1 | PWMO output mode (push-pull circuit type)

Port 2.4/PWM4 Configuration Bits

0 0 | Input mode

N-channel open-drain output mode (5-volt load capacity)

0|1
1 0 | Push-pull output mode
1 1

PWM4 output mode (N-channel open-drain type)

4-38

ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

P2CONL — port 2 control Register (Low Byte) E9H Set 1, Bank O
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | a1 | o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W RIW

Addressing Mode

.7 and .6

S5and .4

3and .2

.land.O

Register addressing mode only

Port 2.3/PWM3 Configuration Bits

0 0 | Normal input mode

0 1 | Normal input mode

1 0 | PWM3 output mode; N-channel, open-drain output mode
With 5-volt load capacity

1 1 | Push-pull output mode

Port 2.2/PWM2 Configuration Bits

0 0 | Normal input mode

0 1 | Normal input mode

1 0 | PWM2 output mode; N-channel, open-drain output mode
With 5-volt load capacity

1 1 | Push-pull output mode

Port 2.1/PWM1 Configuration Bits

0 0 | Normal input mode

0 1 | Normal input mode

1 0 | PWM1 output mode; N-channel, open-drain output mode
With 5-volt load capacity

1 1 | Push-pull output mode

Port 2.0/PWM5 Configuration Bits

0 0 | Normal input mode

0 1 | Normal input mode

1 0 | PWMS5 output mode; N-channel, open-drain output mode
With 5-volt load capacity

1 1 | Push-pull output mode

ELECTRONICS

4-39

CONTROL REGISTERS S3C880A/F880A

P3CONL — port 3 control Register (Low Byte) EBH Set 1, Bank O
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value - - - - 1 1 1 1
Read/Write - - - - R/W R/W R/W R/W
Addressing Mode Register addressing mode only

7-.4 No effect

.3and .2 Port 3.1/ADC1 Configuration Bits

0 0 | Input mode

0 1 | ADC input mode
1 0 | Input mode
1 1

N-channel, open-drain output mode with 5-volt load capacity

land .0 Port 3.0/ADCO Configuration Bits
0 0 | Input mode

0 1 | ADC input mode

1 0 | Input mode
1 1

N-channel, open-drain output mode with 5-volt load capacity

4-40 ELECTRONICS

S3C880A/F880A CONTROL REGISTERS
PP — Register Page Pointer DFH Setl
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | a 0 |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode

7-4

Register addressing mode only

Destination Register Page Selection Bits

0 0 0 0 | Destination: page 0
0| 0] O 1 [Destination: page 1
0| O 1 0 | Destination: page 2
0 0 1 1 | Not used for the S3C880A/F880A
1 | 1] 1] 1 |Notused for the S3C880A/F8B0A

Source Register Page Selection Bits

0 0 0 0 | Source: page 0
0 0 0 1 | Source: page 1
0 0 1 0 | Source: page 2
0| O 1 1 [Not used for the S3C880A/F880A
1 | 1] 1] 1 |Notused for the S3C880A/F8B0A

ELECTRONICS

4-41

CONTROL REGISTERS

S3C880A/F880A

PWMCON — pwmM control Register F8H Set 1, Bank 0
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 0 0 0 0 0 - 0 0
Read/Write R/W R/W RIW R/W R/W - R/W R/W

Addressing Mode

4,.7,and .6

.land.O

Register addressing mode only

3-Bit Prescaler Value for PWM Counter Input Clock

0 | 0 | O |Non-divided input clock

0 0 1 | Divided-by-two input clock

0 1 0 | Divided-by-three input clock

0 1 1 | Divided-by-four input clock

1 0 0 | Divided-by-five input clock

1 0 1 | Divided-by-six input clock

1 1 0 | Divided-by-seven input clock
1 1 1 | Divided-by-eight input clock

PWM Counter Enable Bit

0

Stop PWM counter operation

1

Start (or resume) PWM counter operation

Capture A Interrupt Enable Bit

0

Disable capture A interrupt

1

Enable capture A interrupt

Not used for the S3C880A/F880A

Capture A Module Control Bits

0 0 | Disable capture A module

0 1 [Capture on falling edges only

1 0 | Capture on rising edges only

1 1 | Capture on both rising and falling edges

4-42

ELECTRONICS

S3C880A/F880A CONTROL REGISTERS

ROWCON — 0sD Row Position Control Register F2H Set 1, Bank 1
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | a1 | o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

7-3 Top Margin Display Position Control Value (4 x TMG value of 0-31 dots)

0 0 0 0 0 | Top margin position = OH

0 0 0 0 1 | Top margin position = 4H

1 | 1 | 1 | 1 | 1 | Top margin position = 124H

.2-.0 Inter-Row Spacing Control Value (0-7H)

0 | 0 | O |Nointer-row spacing

0 0 1 [Inter-row spacing = 1H

1 | 1 | 1 [Inter-row spacing = 7H

NOTE: To settop margin and inter-row spacing, separate decimal values must be calculated, converted to their binary
equivalents, and then written to the ROWCON register.

ELECTRONICS 4-43

CONTROL REGISTERS S3C880A/F880A

RPO — Register Pointer O D6H Setl
Bit Identifier | 7 6 5 4 3 2 1 0
RESET Value 1 1 0 0 0 - - -
Read/Write R/W R/W R/W R/W R/W - - -
Addressing Mode Register addressing mode only

7-3 Register Pointer 0 Address Value

Register pointer 0 can independently point to one of the twenty four 8-byte working
register areas in the register file. Using the register pointers RP0 and RP1, you can
select two 8-byte register slices at one time as active working register space. After a
reset, RPO points to the address COH in the register set 1, selecting the 8-byte
working register slice COH-C7H.

2-0 Not used for the S3C880A/F880A

RP1— Register Pointer 1 D7H Setl
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 1 1 0 0 1 - - -
Read/Write R/W R/W R/W R/W R/W - - -
Addressing Mode Register addressing mode only

7-3 Register Pointer 1 Address Value

Register pointer 1 can independently point to one of the twenty four 8-byte working
register areas in the register file. Using the register pointers RP0 and RP1, you can
select two 8-byte register slices at one time as active working register space. After a
reset, RP1 points to the address C8H in the register set 1, selecting the 8-byte
working register slice CBH—CFH.

.2-.0 Not used for the S3C880A/F880A

4-44 ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

SPH — stack Pointer (High Byte) D8H Setl
Bit Identifier 7 | e | 5 | 4 | 3 | 2 [1 [o |
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode

Register addressing mode only

.7-.0 Stack Pointer Address (High Byte)
The high-byte stack pointer value is the upper 8 bits of the 16-bit stack pointer
address (SP15-SP8). The lower byte of the stack pointer value is located in the
register SPL (D9H). The SP value is undefined after a reset.
SPL — stack Pointer (Low Byte) D9H Setl
Bit Identifier 7 | 6 | 5 | 4 | 3 | 2 | 1 | o |
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode

.7-0

Register addressing mode only

Stack Pointer Address (Low Byte)

The low-byte stack pointer value is the lower 8 bits of the 16-bit stack pointer
address (SP7-SP0). The upper byte of the stack pointer value is located in the
register SPH (D8H). The SP value is undefined after a reset.

ELECTRONICS

4-45

CONTROL REGISTERS S3C880A/F880A

STCON — Stop Control Register F3H Set 1, Bank O
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only

.7-.0 Stop Condition Enable Bits

Other set value | Stop Condition Disable (Stop instruction is not available)
10100101 Stop Condition Enable (Stop instruction is available)

NOTE: When the Stop control register, STCON, is set by '10100101B', Stop instruction is available.
The other value except '10100101B' make Stop instruction not available. When Stop condition is disabled,
using "stop" instruction make state reset. Once Stop instruction is executed in state of STOP instruction available,
the state is changed to Stop instruction not available.

4-46 ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

SYM— System Mode Register DEH Setl
Bit Identifier | | 5 | 4 | 3 | 2 | 1 | o |
RESET Value - X X X 0 0
Read/Write R/W - R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7 Tri-State External Interface Control Bit (1)

0 | Normal operation (disable tri-state operation)

1 | Set external interface lines to high impedance (enable tri-state operation)
.6-.5 Not used for the S3C880A/F880A |
A4-2 Fast Interrupt Level Selection Bits

0 0 0 | Level 0 (IRQO)

0 0 1 |Levell (IRQ1)

0 1 0 | Level 2 (IRQ2)

0| 1] 1 |Level3(IRQ3)

1 0 0 | Level 4 (IRQ4)

1| 0 | 1 |Notused for S3C880A/F880A

1 1 0 | Level 6 (IRQ6)

1] 1| 1 |Level7(IRQ7)
A Fast Interrupt Enable Bit

0 | Disable fast interrupt processing

1 | Enable fast interrupt processing
.0 Global Interrupt Enable Bit (@

0 | Disable global interrupt processing

1 | Enable global interrupt processing
NOTES:

1. Because the S3C880A/F880A microcontrollers do not have an external interface, bit 7 should always be "0".
2. After a reset, the initialization routine must enable global interrupt processing by executing an El instruction (and not by

writing a "1" to SYM.0).

ELECTRONICS

4-47

CONTROL REGISTERS S3C880A/F880A

TACON — Timer A Control Register F2H Set 1, Bank 0
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 0 0 0 0 0 0 0 -
Read/Write R/W R/W R/W R/W R/W R/W R/W -
Addressing Mode Register addressing mode only

7-4 4-Bit Prescaler for Timer A Clock Input

O | O | O | O |Divideinput by 1 (non-divided)
0| 0] O 1 [Divide input by 2

1 | 1 |Divide input by 16

3 Timer A Clock Source Selection Bit
0 | CPU clock divided by 1000
1 | Non-divided CPU clock

2 Timer A Interrupt Enable Bit

0 | Disable interrupt

1 | Enable interrupt

A Timer A Interrupt Pending Bit
0 | No interrupt pending (when read)
0 | Clear pending bit (when write)
1 | Interrupt is pending (when read)
1 [No effect (when write)

.0 Not used for the S3C880A/F880A

4-48 ELECTRONICS

S3C880A/F880A

CONTROL REGISTERS

TOCON — Timer 0 control Register

Bit Identifier

RESET Value
Read/Write
Addressing Mode

.7 and .6

S5and .4

D2H Set 1
| 7 | 6 | 5 | 4 | 3 2 | 1 | o |
0 0 0 0 0 — 0 0
RIW RIW RIW RIW RIW - RIW RIW

Register addressing mode only

TO Input Clock Selection Bits

0 | 0 |fogc/4096

0 | 1 |fogc/256

1|0 |fosc/8

1 1 [External clock (TOCLK)

TO Operating Mode Selection Bits

0 0 | Interval mode
0 1 | PWM mode
1 0 | PWM mode
1 1 | PWM mode

TO Counter Clear Bit

0 | No effect
1 | Clear the TO counter (when write)
No effect

TO Interrupt Enable Bit

0

Disable TO interrupt

1

Enable TO interrupt

TO Interrupt Pending Bit

0 | No timer 0 interrupt pending (when read)
0 | Clear timer O pending bit (when write)

1 | Timer O interrupt is pending (when read)
1 [No effect (when write)

ELECTRONICS

4-49

CONTROL REGISTERS S3C880A/F880A

VSBCON — v-syNC Blank Control Register F7H Set 1, Bank1l
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value - - - 0 1 0 0 1
Read/Write - - - R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7and .5 | Not used for the S3C880A/F880A
4-.0 V-SYNC Blank Time Control Bits:

oo o] o] o]oHorizontal sync

o o0 @

0 1 0 0 1 | 9 Horizontal Sync
1 0 1 0 | 10 Horizontal Sync
1 0 1 1 | 11 Horizontal Sync

1] 2] 2] 2] 1 [31Horizontal sync

4-50 ELECTRONICS

S3C880A/F880A INTERRUPT STRUCTURE

INTERRUPT STRUCTURE

OVERVIEW

The SAMB8Y interrupt structure has three basic components: levels, vectors, and sources. The CPU recognizes 8
interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has more than one
vector address, the vector priorities are established in hardware. Each vector can have one or more interrupt
sources.

Levels

Levels provide the highest-level method of interrupt priority assignment and recognition. All peripherals and I/O
blocks can issue interrupt requests. In other words, peripheral and 1/O operations are interrupt-driven. There are
eight interrupt levels: IRQO—-IRQ7. Each interrupt level directly corresponds to an interrupt request number
(IRQn). The total number of interrupt levels used in the interrupt structure varies from device to device. For the
S3C880A/F880A microcontrollers, seven levels are recognized: IRQ0-IRQ4, IRQ6, and IRQ7.

The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are
simply identifiers for the interrupt levels that are recognized by the CPU (IRQ0-IRQ7). The relative priority of
different interrupt levels is determined by settings in the interrupt priority register, IPR. Interrupt logic controlled
by the IPR settings lets you define additional priority relationship for specific interrupt levels.

Vectors

Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all.
The maximum number of vectors that can be supported for a given level is 128. (The actual number of vectors
used for the S3C8-series microcontrollers is always much smaller.) If an interrupt level has more than one vector
address, the vector priorities are set in hardware. The S3C880A/F880A have 9 vectors, one corresponding to
each of the 9 possible sources.

Sources

A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow, for
example. Each vector can have several interrupt sources. In the S3C880A/F880A interrupt structure, each
source has its own vector address. When a service routine starts, the respective pending bit is either cleared
automatically by hardware or "manually” by the program software. The characteristics of the source's pending
mechanism determine which method is used to clear its pending bit.

INTERRUPT TYPES

The three components of the SAM87 interrupt structure described above — levels, vectors, and sources — are
combined to determine the interrupt structure of an individual device and to make full use of its available

interrupt logic. There are three possible combinations of interrupt structure components, called interrupt types 1,
2, and 3. The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):

Type 1. One level (IRQn) + one vector (V,) + one source (S,)
Type 2: One level (IRQnN) + one vector (V,) + multiple sources (S; — S,)
Type 3: One level (IRQnN) + multiple vectors (V, —V,)) + multiple sources (S; - S,,, S;;41 — Sp+m)

In the S3C880A/F880A interrupt structure, only interrupt types 1 and 3 are implemented.

ELECTRONICS 5-1

INTERRUPT STRUCTURE S3C880A/F880A

LEVELS VECTORS SOURCES
Type 1: IRQN Vi S1
S1
Type 2: IRQN Vi S2
S3
-------- Sn
Vi S1
Type 3: IRQN V2 S2
V3 S3
-------- Vn R I Sn
NOTES: P Sn+1
1. The number of S and Vn value is expandable. |
2. Inthe S3F880A implementation, F==mmm- Sn+2
only interrupt types 1 and 3 are used. L Sn+m

Figure 5-1. S3C8-Series Interrupt Types

S3C880A/F880A INTERRUPT STRUCTURE

The S3C880A/F880A microcontrollers have 9 standard interrupt sources. Nine different vector addresses are
used to support these interrupt sources. Seven of the eight available levels are used for the interrupt structure:
IRQO-IRQ4, IRQ6, and IRQ7. The device-specific interrupt structure is shown in Figure 5-2.

When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt
with the lowest vector address is usually processed first. (The relative priorities of multiple interrupts within a
single level are hardwired.)

When an interrupt request is granted, interrupt processing starts: subsequent interrupts are disabled and the
program counter value and status flags are pushed to stack. The starting address of the service routine is fetched
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the
service routine is executed.

5-2 ELECTRONICS

S3C880A/F880A INTERRUPT STRUCTURE

LEVELS VECTORS SOURCES IDENTIFIER RESET
IRQO —— FCH — Timer O interrupt (match) TOINT S/W
0
—— COH ———— P1.0 external interrupt P10INT H/W
IRQL — 1
—— C2H —— P1.1 external interrupt P11INT H/W
IRQ2 —— C4H — OSD ROW interrupt ROWINT SIW
IRQ3 ———— 02H —— Capture A (8-bit) CAPA H/W
0
—— C6H —————— P1.2 external interrupt P12INT H/W
IRQ4 — 1
—— C8H — P1.3 external interrupt P13INT H/W
IRQG ——— BEH ——— Timer A TAINT S/W
IRQ7 ——— D4H —— V-sync VSYNC SIW
NOTES:

1. The interrupt level IRQ5 is not used in the S3F880A interrupt structure.

2. For interrupt levels with two or more vectors, the lowest vector address usually has the highest
priority. For example, COH has higher priority (0) than C2H (1) within the level IRQ1.
These priorities (see numbers) are hardwired.

3. The interrupt names in the 'Identifier' column are used in this documentation to refer to specific
interrupts, as distinguished from the interrupt source name or the pin at which an external
interrupt request arrives.

Figure 5-2. S3C880A/F880A Interrupt Structure

ELECTRONICS 5-3

INTERRUPT STRUCTURE

S3C880A/F880A

INTERRUPT VECTOR ADDRESSES

Interrupt vector addresses for the S3C880A/F880A are stored in the first 256 bytes of the ROM. The reset
address is 0100H. Vectors for all interrupt levels are stored in the vector address area (OH—FFH). Unused ROM
in the range OOH—FFH can be used as program memory locations. You must be careful, however, not to
overwrite interrupt vector addresses stored in this area.

(Decimal)
45,151

256
255

Addressable
Program Memory
(ROM) Area

Interrupt Vector
Address Area

(HEX)

BFFFH
(for S3F880A)

100H €4 RESET Address
FFH

Figure 5-3. ROM Vector Address Area

5-4

ELECTRONICS

S3C880A/F880A

INTERRUPT STRUCTURE

Table 5-1. S3C880A/F880A Interrupt Vectors

Vector Address Interrupt Source Request Reset/Clear
Decimal Hex Interrupt Priority in H/W | S/W
Value Value Level Level
252 FCH Timer 0 (match) IRQO - o
212 D4H V-sync IRQ7 - 0]
200 C8H P1.3 external interrupt IRQ4 1 (0]
198 C6H P1.2 external interrupt 0 (0]
196 C4H OSD ROW interrupt IRQ2 - (0]
194 C2H P1.1 external interrupt IRQ1 1 (0]
192 COH P1.0 external interrupt 0 0]
190 BEH Timer A IRQ6 - 0]
2 02H Capture A (8-bit) IRQ3 - (0]
NOTES:
1. Interrupt priorities are identified in inverse order: '0'" is the highest priority, '1" is the next highest, and so on.
2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority

over one with a higher vector address. (The priorities within a level are hardwired) For example, in the interrupt level
IRQ1, the higher-priority interrupt vector is the P1.0 external interrupt, vector COH; the lower-priority interrupt within that
level is the P1.1 external interrupt, vector C2H.

ELECTRONICS

5-5

INTERRUPT STRUCTURE

S3C880A/F880A

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (El, DI)

The Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are serviced as they
occur, and according to established priorities. The system initialization routine that is executed following a reset
must always contain an El instruction (assuming one or more interrupts are used in the application).

During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable
interrupt processing. The El and DI instructions change the value of bit 0 in the SYM register. Although you can
manipulate SYM.O directly to enable or disable interrupts, we recommend that you use the EI and DI instructions

instead.

SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS

In addition to the control registers for specific interrupt sources, four system-level control registers control

interrupt processing:

— Each interrupt level is enabled or disabled (masked) by bit settings in the interrupt mask register (IMR).

— Relative priorities of interrupt levels are controlled by the interrupt priority register (IPR).

— The interrupt request register (IRQ) contains interrupt pending flags for each level.

— The system mode register (SYM) dynamically enables or disables global interrupt processing. SYM settings
also enable fast interrupts and control external interface, if implemented.

Table 5-2. Interrupt Control Register Overview

Control Register ID R/W Function Description

System mode register SYM R/W | Global interrupt processing enable and disable, fast interrupt
processing.

Interrupt mask register IMR R/W Bit settings in the IMR register enable and disable interrupt
processing for each of the seven recognized interrupt levels,
IRQO-IRQ4, IRQ6, and IRQ7.

Interrupt priority register IPR R/W | Controls the relative processing priorities of the interrupt
levels. For the S3C880A/F880A, the seven levels are
organized into three groups: A, B, and C. Group A includes
IRQO and IRQ1, group B is IRQ2, IRQ3, and IRQ4, and group
Cis IRQ6 and IRQ7.

Interrupt request register IRQ R This register contains a request pending bit for each interrupt

level.

5-6

ELECTRONICS

S3C880A/F880A

INTERRUPT STRUCTURE

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can therefore be controlled in two ways: either globally, or by specific interrupt level and
source. The system-level control points in the interrupt structure are therefore:

Global interrupt enable and disable (by El and DI instructions or by direct manipulation of SYM.0)
Interrupt level enable and disable settings (IMR register)

Interrupt level priority settings (IPR register)

Interrupt source enable and disable settings in the corresponding peripheral control register(s)

NOTE

When writing an interrupt service routine, be sure that it properly manages the register pointer values
(RPO and RP1).

"EI" Instruction
Execution — S Q Interrupt Pending .
D—b Register —» Polling Cycle
RESET —|R
h 4
Source Interrupt Request Register
Interrupt (Read-only)
Source —
Interrupts
Enable o
Interrupt Priority Vector
Register j—b Interrupt
Cycle

Interrupt Mask
Register

NOTE: In the S3F880A microcontrollers, only seven
interrupt levels (IRQO-IRQ4, IRQ6, and IRQ7) are
recognized by the CPU.

Global Interrupt Control (El,
DI or SYM.0 manipulation)

Figure 5-4. Interrupt Function Diagram

ELECTRONICS

5-7

INTERRUPT STRUCTURE

S3C880A/F880A

PERIPHERAL INTERRUPT CONTROL REGISTERS

For each interrupt source there is a corresponding peripheral control register (or registers) that controls the
interrupts generated by the peripheral. These registers and their locations are listed in Table 5-3.

Table 5-3. Interrupt Source Control Registers

Interrupt Source Interrupt Level Control Register Register Location

Timer 0 (match) IRQO TOCON Set 1, D2H

P1.0 external interrupt IRQ1 P1CONL Set 1, bank 0, E7H
P1.1 external interrupt

OSD ROW interrupt IRQ2 HTCON Set 1, bank 1, E6H
Capture A (8-bit) IRQ3 PWMCON Set 1, bank 0, F8H
P1.2 external interrupt IRQ4 P1CONL Set 1, bank 0, E7H
P1.3 external interrupt

Timer A IRQ6 TACON Set 1, bank 0, F2H
V-sync IRQ7 HTCON Set 1, bank 1, F6H

5-8

ELECTRONICS

S3C880A/F880A INTERRUPT STRUCTURE

SYSTEM MODE REGISTER (SYM)

The system mode register, SYM (DEH, set 1), is used to enable and disable interrupt processing and control fast
interrupt processing.

SYM.O0 is the enable and disable bit for global interrupt processing. SYM.1-SYM.4 control fast interrupt
processing: SYM.1 is the enable bit; SYM.2-SYM.4 are the fast interrupt level selection bits. SYM.7 is the enable
bit for the tri-state external memory interface (not implemented in the S3C880A/F880A). A reset clears SYM.0,
SYM.1, and SYM.7 to "0"; other bit values are undetermined.

The instructions El and DI enable and disable global interrupt processing, respectively, by modifying the bit O
value of the SYM register. An Enable Interrupt (El) instruction must be included in the initialization routine, which
follows a reset operation, in order to enable interrupt processing. Although you can manipulate SYM.O0 directly to
enable and disable interrupts during the normal operation, we recommend using the El and DI instructions for
this purpose.

System Mode Register (SYM)
DFH, Set 1, RIW

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

External interface tri-state Not used Global interrupt enable bit:
enable bit: 0 = Disable all interrupts
0 = Normal operation Fast interrupt level 1 = Enable all interrupts
(Tri-state disabled) selection bits:
1 = High inpendence 0 0 0] IRQO — Fast interrupt enable bit:
(Tri-state disabled) 0 = Disable fast interrupt
0 0 1|IRQ1 pts
01 0|IRQ2 1 = Enable fast interrupts
01 1]|IRQ3
NOTE: The external interface is 1 0 0| IRQ4
not implemented for 1 0 1 | Notused
the S3F880A microcontroller. 1 1 0| IRQ6
1 1 1] IRQY

Figure 5-5. System Mode Register (SYM)

ELECTRONICS 5-9

INTERRUPT STRUCTURE S3C880A/F880A

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register (IMR) is used to enable or disable interrupt processing for each of the seven interrupt
levels used in the S3C880A/F880A interrupt structure, IRQ0-IRQ4, IRQ6, and IRQ7. After a reset, all the IMR
register values are undetermined.

Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit
of an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a
level's IMR bit to "1", interrupt processing for the level is enabled (not masked).

The IMR register is mapped to the register location DDH in set 1. Bit values can be read and written by
instructions using Register addressing mode.

Interrupt Mask Register (IMR)
DDH, Set 1, RIW

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

.
RO IRQO

RO3 IRQ2

IRQ4
IRO6 Not Q
IRQ7 used Interrupt level enable bits:
0 = Disable interrupt level

1 = Enable interrupt level

Figure 5-6. Interrupt Mask Register (IMR)

5-10 ELECTRONICS

S3C880A/F880A INTERRUPT STRUCTURE

INTERRUPT PRIORITY REGISTER (IPR)

The interrupt priority register, IPR, is used to set the relative priorities of the seven interrupt levels used in the
S3C880A/F880A interrupt structure. The IPR register is mapped to the register location FFH in set 1, bank O.
After a reset, the IPR register values are undetermined. If more than one interrupt source is active, the source
with the highest priority level is serviced first. If both sources belong to the same interrupt level, the source with
the lowest vector address usually has priority. (This priority is hardwired.)

In order to define the relative priorities of interrupt levels, they are organized into groups and subgroups by the
interrupt logic. Three interrupt groups are defined for the IPR logic (see Figure 5-7). These groups and subgroups
are used only for IPR register priority definitions:

Group A IRQO, IRQ1

Group B IRQ2, IRQ3, and IRQ4

Group C IRQ6, IRQ7

Bits 7, 4, and 1 of the IPR register control the relative priority of interrupt groups A, B, and C. For example, the
setting '001B' would select the group relationship B > C > A, and '101B' would select C > B > A. The functions of
other IPR bit settings are as follows:

— IPR.O controls the relative priority setting of IRQO and IRQ1 interrupts.

— IPR.2 controls interrupt group B.

— Interrupt group B has a subgroup to provide an additional priority relationship among interrupt levels 2, 3,
and 4. IPR.3 defines possible subgroup B relationship.

— IPR.6 controls the relative priorities of group C interrupts.

Interrupt Priority Register (IPR)
FEH, Set 1, R/IW

MSB | .7 .6 5 A4 3 .2 1 .0 |LSB

| |

Group priority: S S IS I N |_ Group A

D7 D4 D1 0=1RQ0 >IRQ1
e 1=1RQ1 > IRQO
0 O 0 =Undefined Group B

0 0 1=B>C>A 0 = IRQ2 > (IRQ3, IRQ4)
0 1 0=A>B>C 1 = (IRQ3, IRQ4) > IRQ2
0 1 1=B>A>C — Subgroup B
1 0 0=C>A>B 0 =1RQ3 > IRQ4
1 0 1=C>B>A 1=IRQ4 >IRQ3
1 1 0=A>C>B Not used
1 1 1 =Undefined

— Group C
0 =IRQ6 > IRQ7
1=IRQ7 > IRQ6

Figure 5-7. Interrupt Priority Register (IPR)

ELECTRONICS 5-11

INTERRUPT STRUCTURE S3C880A/F880A

INTERRUPT REQUEST REGISTER (IRQ)

Bit values in the interrupt request register, IRQ, are polled to determine interrupt request status for the seven
interrupt levels in the S3C880A/F880A interrupt structure (IRQ0-IRQ4, IRQ6, and IRQ7). Each bit corresponds
to the interrupt level of the same number: bit 0 to IRQO, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt
is requested and a "1" indicates that an interrupt is requested for that level.

The IRQ register is mapped to the register location DCH in set 1. IRQ bit values are read-only addressable using
Register addressing mode. You can read (test) the contents of the IRQ register at any time using bit or byte
addressing to determine the current interrupt request status of specific interrupt levels. After a reset, the IRQ
register is cleared to OOH.

IRQ register values can be polled even if a DI instruction has been executed. If an interrupt occurs while the
interrupt structure is disabled, it will not be serviced. But the interrupt request can still be detected by polling IRQ
values. This can be useful in order to determine which events occurred while the interrupt structure was disabled.

Interrupt Request Register (IRQ)
DCH, Set 1, Read-only

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

IRQ4
Not used for the S3F880A.

IRQ6

IRQ7

Interrupt level request pending bits:
0 = Interrupt level is not pending

1 = Interrupt level is pending

Figure 5-8. Interrupt Request Register (IRQ)

5-12 ELECTRONICS

S3C880A/F880A INTERRUPT STRUCTURE

INTERRUPT PENDING FUNCTION TYPES

Overview

There are two types of interrupt pending bits: one is the type that automatically cleared by hardware after the
interrupt service routine is acknowledged and executed; the other is the one that must be cleared by the
application program's interrupt service routine.

Each interrupt level has a corresponding interrupt request bit in the IRQ register that the CPU polls for interrupt
requests.

Pending Bits Cleared Automatically by Hardware

For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding
pending bit to "1" when a request occurs. It then issues an IRQ pulse to tell the CPU that an interrupt is waiting to
be serviced. The CPU acknowledges the interrupt source, executes the service routine, and clears the pending
bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written by software.

In the S3C880A/F880A interrupt structure, the P1.0, P1.1, P1.2 and P1.3 external interrupts, and the capture A
interrupt belong to this category of interrupts whose pending conditions are cleared automatically by hardware.

Pending Bits Cleared by the Service Routine

The second type of pending bit must be cleared by program software. The service routine must clear the
appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be written
to the pending bit location in the corresponding mode or control register.

Pending conditions for the timer 0 match interrupt, the timer A interrupt, the OSD row interrupt and the V-sync
interrupt must be cleared by the application's service routines.

ELECTRONICS 5-13

INTERRUPT STRUCTURE S3C880A/F880A

INTERRUPT SOURCE POLLING SEQUENCE

The interrupt request polling and servicing sequence is as follows:

N o o~ wDdPE

A source generates an interrupt request by setting the interrupt request bit to "1".

The CPU polling procedure identifies a pending condition for that source.

The CPU checks the source's interrupt level.

The CPU generates an interrupt acknowledge signal.

Interrupt logic determines the interrupt's vector address.

The service routine starts and the source's pending flag is cleared to "0" (either by hardware or by software).
The CPU continues polling for interrupt requests.

INTERRUPT SERVICE ROUTINES

Before an interrupt request is serviced, the following conditions must be met:

Interrupt processing must be enabled (El, SYM.0 ="1")

Interrupt level must be enabled (IMR register)

Interrupt level must have the highest priority if more than one level is currently requesting service
Interrupt must be enabled at the interrupt's source (peripheral control register)

If all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The
CPU then initiates an interrupt machine cycle that completes the following processing sequence:

A wDd PR

Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.
Save the program counter and status flags to stack.

Branch to the interrupt vector to fetch the service routine's address.

Pass control to the interrupt service routine.

When the interrupt service routine is completed, an Interrupt Return instruction (IRET) occurs. The IRET restores
the PC and status flags and sets SYM.0 to "1", allowing the CPU to process the next interrupt request.

5-14 ELECTRONICS

S3C880A/F880A INTERRUPT STRUCTURE

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM contains the addresses of the interrupt service routine that corresponds to
each level in the interrupt structure. Vectored interrupt processing follows this sequence:

Push the program counter's low-byte value to stack.

Push the program counter's high-byte value to stack.

Push the FLAGS register values to stack.

Fetch the service routine's high-byte address from the vector address.

Fetch the service routine's low-byte address from the vector address.

o gk~ w bR

Branch to the service routine specified by the 16-bit vector address.

NOTE
A 16-bit vector address always begins at an even-numbered ROM location from 00H—-FFH.

NESTING OF VECTORED INTERRUPTS

You can nest a higher priority interrupt request while a lower priority request is being serviced. To do this, you
must follow these steps:

Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).

Load the IMR register with a new mask to enable the higher priority interrupt only.

Execute an El instruction to enable interrupt processing (a higher priority interrupt will be processed if it
occurs).

4. When the lower-priority interrupt service routine ends, return the IMR to its original value by restoring the
previous mask from the stack (POP IMR).

5. Execute an IRET.
Depending on the application, you may be able to simplify this procedure to some extent.

INSTRUCTION POINTER (IP)

The instruction pointer (IP) is used by all the S3C8-series microcontrollers to control optional high-speed interrupt
processing called fast interrupts. The IP consists of the register pair, DAH and DBH. The IP register names are
IPH (high byte, IP15-IP8) and IPL (low byte, IP7—IP0).

ELECTRONICS 5-15

INTERRUPT STRUCTURE S3C880A/F880A

FAST INTERRUPT PROCESSING

The feature called fast interrupt processing lets designated interrupts be completed in approximately six clock
cycles instead of the usual 22 clock cycles. Bit 1 of the system mode register, SYM.1, enables fast interrupt
processing while SYM.2—-SYM.4 are used to select a specific level for fast processing.

Two other system registers support fast interrupts:
— The instruction pointer (IP) holds the starting address of the service routine (and is later used to swap the

program counter values), and

— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated
register called FLAGS' (FLAGS prime).

NOTE

For the S3C880A/F880A microcontrollers, the service routine for any one of the seven interrupt levels
(IRQO-IRQ4, IRQS6, or IRQ7) can be designated as a fast interrupt.

Procedure for Initiating Fast Interrupts
To initiate fast interrupt processing, follow these steps:

1. Load the start address of the service routine into the instruction pointer.
2. Load the level number into the fast interrupt select field.
3. Write a "1" to the fast interrupt enable bit in the SYM register.

Fast Interrupt Service Routine
When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:

The contents of the instruction pointer and the PC are swapped.

The FLAGS register values are written to the dedicated FLAGS' register.
The fast interrupt status bit in the FLAGS register is set.

The interrupt is serviced.

a 0D PE

Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction
pointer and PC values are swapped back.

The content of FLAGS' (FLAGS prime) is copied automatically back into the FLAGS register.
7. The fast interrupt status bit in FLAGS is cleared automatically.

o

Programming Guidelines

Remember that the only way to enable or disable a fast interrupt is to set or clear the fast interrupt enable bit in
the SYM register (SYM.1), respectively. Executing an El or DI instruction affects only normal interrupt
processing.

Also, if you use fast interrupts, remember to load the IP with a new start address when the fast interrupt service
routine ends. (Please refer to the programming tip on page 5-17 for an example.)

5-16 ELECTRONICS

S3C880A/F880A INTERRUPT STRUCTURE
I PROGRAMMING TIP — Programming Level IRQO as a Fast Interrupt
This example shows you how to program fast interrupt processing for a select interrupt level — in this case, for

the timer O (capture) interrupt, INTO:

LD TOCON,#52H
LDW IPH#TO_INT
LD SYM,#02H

El

Enable TO interrupt
Select fo5/256 as TO clock source

IPH = high byte of interrupt service routine
IPL = low byte of interrupt service routine
Enable fast interrupt processing

Select IRQO for fast service

Enable interrupts

FAST_RET: ; IP = Address of TO_INT (again)
TO_INT:
(Fast service routine executes)
LD TOCON,#52H ; Clear TOINT interrupt pending bit
JP T,FAST_RET
ELECTRONICS 5-17

INTERRUPT STRUCTURE S3C880A/F880A

NOTES

5-18 ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

SAMS8 INSTRUCTION SET

OVERVIEW

The SAMS8 instruction set is designed to support a large register file. It includes a full complement of 8-bit
arithmetic and logic operations, including multiplying and dividing. There are 78 instructions. No special I/O
instructions are necessary because I/O control and data registers are mapped directly into the register file.
Decimal adjustment is included in binary-coded decimal (BCD) operations. 16-bit word data can be incremented
and decremented. Flexible instructions for bit addressing, rotate, and shift operations complete the powerful data
manipulation capabilities of the SAM8 instruction set.

DATA TYPES

The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can
be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least
significant (right-most) bit.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory
addresses. For detailed information about register addressing, please refer to Chapter 2, "Address Spaces."

ADDRESSING MODES

There are seven addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA),
Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to chapter 3,
"Addressing Modes."

ELECTRONICS 6-1

SAMS8 INSTRUCTION SET

S3C880A/F880A

Table 6-1. Instruction Group Summary

Mnemonic Operands Instruction

Load Instructions

CLR dst Clear

LD dst,src Load

LDB dst,src Load bit

LDE dst,src Load external data memory

LDC dst,src Load program memory

LDED dst,src Load external data memory and decrement
LDCD dst,src Load program memory and decrement
LDEI dst,src Load external data memory and increment
LDCI dst,src Load program memory and increment
LDEPD dst,src Load external data memory with pre-decrement
LDCPD dst,src Load program memory with pre-decrement
LDEPI dst,src Load external data memory with pre-increment
LDCPI dst,src Load program memory with pre-increment
LDW dst,src Load word

POP dst Pop from stack

POPUD dst,src Pop user stack (decrementing)

POPUI dst,src Pop user stack (incrementing)

PUSH src Push to stack

PUSHUD dst,src Push user stack (decrementing)

PUSHUI dst,src Push user stack (incrementing)

6-2

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

Table 6-1. Instruction Group Summary (Continued)

Mnemonic

Operands

Instruction

Arithmetic Instructions

ADC
ADD
CP
DA
DEC
DECW
DIV
INC
INCW
MULT
SBC
SUB

Logic Instructions

AND
COM
OR

XOR

dst,src
dst,src
dst,src
dst
dst
dst
dst,src
dst
dst
dst,src
dst,src
dst,src

dst,src
dst

dst,src
dst,src

Add with carry
Add

Compare
Decimal adjust
Decrement
Decrement word
Divide
Increment
Increment word
Multiply
Subtract with carry
Subtract

Logical AND
Complement

Logical OR

Logical exclusive OR

ELECTRONICS

6-3

SAMS8 INSTRUCTION SET

S3C880A/F880A

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Program Control Instructions

BTJRF dst,src Bit test and jump relative on false

BTJRT dst,src Bit test and jump relative on true

CALL dst Call procedure

CPIJE dst,src Compare, increment and jump on equal
CPIINE dst,src Compare, increment and jump on non-equal
DJINZz r,dst Decrement register and jump on non-zero
ENTER Enter

EXIT Exit

IRET Interrupt return

JP cc,dst Jump on condition code

JP dst Jump unconditional

JR cc,dst Jump relative on condition code

NEXT Next

RET Return

WEFI Wait for interrupt

Bit Manipulation Instructions

BAND dst,src Bit AND

BCP dst,src Bit compare

BITC dst Bit complement

BITR dst Bit reset

BITS dst Bit set

BOR dst,src Bit OR

BXOR dst,src Bit XOR

TCM dst,src Test complement under mask
™ dst,src Test under mask

6-4

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

Table 6-1. Instruction Group Summary (Concluded)

Mnemonic Operands Instruction

Rotate and Shift Instructions

RL dst Rotate left

RLC dst Rotate left through carry
RR dst Rotate right

RRC dst Rotate right through carry
SRA dst Shift right arithmetic
SWAP dst Swap nibbles

CPU Control Instructions

CCF Complement carry flag
DI Disable interrupts

El Enable interrupts
IDLE Enter Idle mode
NOP No operation

RCF Reset carry flag

SBO Set bank 0

SB1 Set bank 1

SCF Set carry flag

SRP src Set register pointers
SRPO src Set register pointer 0
SRP1 src Set register pointer 1
STOP Enter Stop mode

ELECTRONICS

6-5

SAMS8 INSTRUCTION SET S3C880A/F880A

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits that describe the current status of the CPU operations. Four of
these bits, FLAGS.4 — FLAGS.7, can be tested and used with conditional jump instructions; two others FLAGS.2
and FLAGS.3 are used for BCD arithmetic. The FLAGS register also contains a bit to indicate the status of fast
interrupt processing (FLAGS.1) and a bank address status bit (FLAGS.0) to indicate whether bank O or bank 1 is
being addressed.

FLAGS is located in the system control register area of set 1 (D5H). FLAGS register can be set or reset by
instructions as long as its outcome does not affect the flags, such as, Load instruction. Logical and Arithmetic
instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For example, the AND
instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND instruction. If the AND
instruction uses the Flags register as the destination, then simultaneously, two writes will occur to the Flags
register, producing an unpredictable result.

System Flags Register (FLAGS)
D5H, Set 1, R/W

MSB | .7 .6 5 A4 3 .2 1 .0 |LSB

J |_ Bank address
Carry flag (C) status flag (BA)
First interrupt

Zero flag (2) status flag (FIS)

Sign flag (S) — — Half-carry flag (H)

Overflow (V) — — Decimal adjust flag (D)

Figure 6-1. System Flags Register (FLAGS)

6-6 ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

FLAG DESCRIPTIONS

C

FIS

BA

Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the
specified register. Program instructions can set, clear, or complement the carry flag.

Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is
logic zero.

Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the
result. A logic zero indicates a positive number and a logic one indicates a negative number.

Overflow Flag (FLAGS.4)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than
—128. It is also cleared to "0" following logic operations.

Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by
programmers, and cannot be used as a test condition.

Half-Carry Flag (FLAGS.2)

The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a
program.

Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET
instruction is executed.

Bank Address Flag (FLAGS.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently
selected, bank O or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SBO
instruction and is set to "1" (select bank 1) when you execute the SB1 instruction.

ELECTRONICS 6-7

SAMS8 INSTRUCTION SET

S3C880A/F880A

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag Description
C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag
0 Cleared to logic zero
1 Set to logic one
* Set or cleared according to operation
- Value is unaffected
X Value is undefined
Table 6-3. Instruction Set Symbols
Symbol Description
dst Destination operand
src Source operand
@ Indirect register address prefix
PC Program counter
IP Instruction pointer
FLAGS Flags register (D5H)
RP Register pointer
Immediate operand or register address prefix
H Hexadecimal number suffix
D Decimal number suffix
B Binary number suffix
opc Opcode

6-8

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

Table 6-4. Instruction Notation Conventions

Notation Description Actual Operand Range
cc Condition code See list of condition codes in Table 6-6.
r Working register only Rn (n =0-15)
rb Bit (b) of working register Rn.b (n=0-15, b =0-7)
ro Bit 0 (LSB) of working register Rn (n = 0-15)
re Working register pair RRp (p=0,2,4,..,14)
R Register or working register reg or Rn (reg = 0-255, n = 0-15)
Rb Bit 'b' of register or working register reg.b (reg =0-255, b =0-7)
RR Register pair or working register pair reg or RRp (reg = 0-254, even number only, where
p=0,2, .. 14)
1A Indirect addressing mode addr (addr = 0-254, even number only)
Ir Indirect working register only @Rn (n=0-15)
IR Indirect register or indirect working register | @Rn or @reg (reg = 0-255, n = 0-15)
Irr Indirect working register pair only @RRp (p=0,2,..,14)
IRR Indirect register pair or indirect working @RRp or @reg (reg = 0-254, even only, where
register pair p=0,2,..14)
X Indexed addressing mode #reg[Rn] (reg = 0-255, n = 0-15)
XS Indexed (short offset) addressing mode #addr[RRp] (addr = range —128 to +127, where
p=0,2, .. 14)
XL Indexed (long offset) addressing mode #addr [RRp] (addr = range 0—65535, where
p=0,2, .. 14)
DA Direct addressing mode addr (addr = range 0-65535)
RA Relative addressing mode addr (addr = number in the range +127 to —128 that is
an offset relative to the address of the next instruction)
IM Immediate addressing mode #data (data = 0-255)
IML Immediate (long) addressing mode #data (data = range 0-65535)
ELECTRONICS 6-9

SAMS8 INSTRUCTION SET

S3C880A/F880A

Table 6-5. Opcode Quick Reference

OPCODE MAP
LOWER NIBBLE (HEX)
0 1 2 3 4 5 6 7
U DEC DEC ADD ADD ADD ADD ADD BOR
R1 IR1 ri,r2 ri,lir2 R2,R1 IR2,R1 R1,IM r0—Rb
P RLC RLC ADC ADC ADC ADC ADC BCP
R1 IR1 ri1,r2 ri,ir2 R2,R1 IR2,R1 R1,IM rl.b, R2
P INC INC SUB SUB SUB SUB SUB BXOR
R1 IR1 ri,r2 ri,lir2 R2,R1 IR2,R1 R1,IM r0—Rb
E JP SRP/0/1 SBC SBC SBC SBC SBC BTJR
IRR1 IM ri1,r2 ri,ir2 R2,R1 IR2,R1 R1,IM r2.b, RA
R DA DA OR OR OR OR OR LDB
R1 IR1 ri,r2 ri,lir2 R2,R1 IR2,R1 R1,IM r0—Rb
POP POP AND AND AND AND AND BITC
R1 IR1 ri1,r2 ri,ir2 R2,R1 IR2,R1 R1,IM rl.b
N COM COM TCM TCM TCM TCM TCM BAND
R1 IR1 ri,r2 ri,lir2 R2,R1 IR2,R1 R1,IM r0—Rb
| PUSH PUSH ™ ™ ™ ™ ™ BIT
R2 IR2 ri,r2 ri,lir2 R2,R1 IR2,R1 R1,IM rl.b
B DECW DECW PUSHUD | PUSHUI MULT MULT MULT LD
RR1 IR1 IR1,R2 IR1,R2 R2,RR1 IR2,RR1 IM,RR1 rl, x, r2
B RL RL POPUD POPUI DIV DIV DIV LD
R1 IR1 IR2,R1 IR2,R1 R2,RR1 IR2,RR1 IM,RR1 r2, x, rl
L INCW INCW CP CP CP CP CP LDC
RR1 IR1 ri1,r2 ri,ir2 R2,R1 IR2,R1 R1,IM rl, Irr2,
XL
E CLR CLR XOR XOR XOR XOR XOR LDC
R1 IR1 ri1,r2 ri,ir2 R2,R1 IR2,R1 R1,IM r2, Irr2,
XL
RRC RRC CPIJE LDC LDW LDW LDW LD
R1 IR1 Ir,r2,RA ri,lrr2 RR2,RR1 | IR2,RR1 | RR1,IML rl, Ir2
H SRA SRA CPIINE LDC CALL LD LD
R1 IR1 Irr,r2,RA r2,lrrl IA1 IR1,IM Irl, r2
E RR RR LDCD LDCI LD LD LD LDC
R1 IR1 r1,irr2 r1,lrr2 R2,R1 IR2,R1 R1,IM r1, Irr2, xs
X SWAP SWAP LDCPD LDCPI CALL LD CALL LDC
R1 IR1 r2,lrrl r2,lrrl IRR1 R2,IR1 DAl r2, Irrl, xs

6-10

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

Table 6-5. Opcode Quick Reference (Continued)

OPCODE MAP
LOWER NIBBLE (HEX)

— 8 9 A B C D E F

U 0 LD LD DJINZ JR LD JP INC NEXT
r1,R2 r2,R1 r1,RA cc,RA r1,IM cc,DA ri

P 1 - - - - - - - ENTER
P 2 EXIT
E 3 WFI
R 4 SBO

5 SB1
N 6 IDLE
| 7 - - - - - - - STOP
B 8 DI
B 9 El
L A RET
E B IRET

C RCF
H D - - - - - - - SCF
E E CCF
X F LD LD DJINZ JR LD JP INC NOP

r1,R2 r2,R1 r1,RA cc,RA r1,IM cc,DA ri

ELECTRONICS 6-11

SAMS8 INSTRUCTION SET

S3C880A/F880A

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal”
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (2), sign (S), and overflow (V) flags are used to control the operation of conditional jump

instructions.
Table 6-6. Condition Codes
Binary Mnemonic Description Flags Set
0000 F Always false -
1000 Always true -
0111 % C Carry c=1
1111 @ NC No carry C=0
0110 @ z Zero z=1
1110 NZ Not zero Z=0
1101 PL Plus S=0
0101 M Minus S=1
0100 ov Overflow V=1
1100 NOV No overflow V=0
0110 ™ EQ Equal Z=1
1110 @ NE Not equal Z=0
1001 GE Greater than or equal (S XOR V)=0
0001 LT Less than (S XOR V)=1
1010 GT Greater than (Z OR(S XOR V))=0
0010 LE Less than or equal (Z OR(S XOR V))=1
1111 @ UGE Unsigned greater than or equal C=0
0111 @ ULT Unsigned less than c=1
1011 UGT Unsigned greater than (C=0 AND 2z=0)=1
0011 ULE Unsigned less than or equal (COR 2)=1
NOTES:
1. ltindicates condition codes that are related to two different mnemonics but which test the same flag. For

2.

example, Z and EQ are both true if the zero flag (2) is set, but after an ADD instruction, Z would probably be used;
after a CP instruction, however, EQ would probably be used.
For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

6-12

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

INSTRUCTION DESCRIPTIONS

This chapter contains detailed information and programming examples for each instruction in the SAM8

instruction set. Information is arranged in a consistent format for improved readability and fast referencing. The
following information is included in each instruction description:

Instruction name (mnemonic)

Full instruction name

Source/destination format of the instruction operand

Shorthand notation of the instruction's operation

Textual description of the instruction's effect

Specific flag settings affected by the instruction

Detailed description of the instruction's format, execution time, and addressing mode(s)
Programming example(s) explaining how to use the instruction

ELECTRONICS

6-13

SAMS8 INSTRUCTION SET

S3C880A/F880A

ADC — Add with carry

ADC

Operation:

Flags:

Format:

Examples:

dst,src

dst = dst + src + C

The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected. Two's-
complement addition is performed. In multiple precision arithmetic, this instruction permits the
carry from the addition of low-order operands to be carried into the addition of high-order
operands.

Set if there is a carry from the most significant bit of the result; cleared otherwise.

Set if the result is "0"; cleared otherwise.

Set if the result is negative; cleared otherwise.

Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result
is of the opposite sign; cleared otherwise.

Always cleared to "0".

Set if there is a carry from the most significant bit of the low-order four bits of the result;
cleared otherwise.

IO <uONO

Bytes Cycles Opcode Addr Mode

(Hex) dst src

| opc | dst | src | 2 6 12 r r
13 r Ir

| opc | src | dst | 3 10 14 R R
15 R IR

| opc | dst | src | 3 10 16 R IM

Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and
register 03H = OAH:
ADC R1,R2
ADC R1,@R2
ADC 01H,02H
ADC 01H,@02H
ADC O1H#11H ®

R1 = 14H, R2 = 03H

R1 = 1BH,R2 = O3H

Register 01H = 24H, register 02H = 03H
Register 01H = 2BH, register 02H = 03H
Register 01H = 32H

®
®
®
®

In the first example, the destination register R1 contains the value 10H, the carry flag is set to
"1", and the source working register R2 contains the value 03H. The statement "ADC R1,R2"
adds 03H and the carry flag value ("1") to the destination value 10H, leaving 14H in the register
R1.

6-14

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

ADD — Add

ADD

Operation:

Flags:

Format:

Examples:

dst,src

dst -

dst + src

The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. Two's-complement addition is performed.

IO <uONO

opc	dst	src
opc	src	dst
opc	dst	src

Given: R1 =12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

ADD
ADD
ADD
ADD
ADD

R1,R2
R1,@R2
01H,02H
01H,@02H
01H,#25H

®
®
®
®
®

Set if there is a carry from the most significant bit of the result; cleared otherwise.
Set if the result is "0"; cleared otherwise.
Set if the result is negative; cleared otherwise.
Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the
result is of the opposite sign; cleared otherwise.
Always cleared to "0".
Set if a carry from the low-order nibble occurred.

(Hex) dst
2 6 02 r
03 r
3 10 04 R
05 R
3 10 06 R

R1 = 15H, R2 = 0O3H

R1 = 1CH, R2 = 03H

Register 01H = 24H, register 02H = 03H
Register 01H = 2BH, register 02H = 03H
Register 01H = 46H

Bytes Cycles Opcode Addr Mode
src

r
Ir

In the first example, the destination working register R1 contains 12H and the source working
register R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H
in the register R1.

ELECTRONICS

6-15

SAMS8 INSTRUCTION SET S3C880A/F880A

AND — Logical AND

AND

Operation:

Flags:

Format:

Examples:

dst,src

dst = dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the
source are unaffected.

C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|src| 2 6 52 r r
53 r Ir
| opc | src | dst | 3 10 54 R R
55 R IR
| opc | dst | src | 3 10 56 R IM

Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = OAH:

AND R1,R2 ® R1 = 02H, R2 = 0O3H
AND R1,@R2 ® R1 = 02H, R2 = 0O3H
AND 01H,02H ® Register 01H = 01H, register 02H = 03H
AND 0lH,@02H ® Register 01H = OOH, register 02H = 03H

AND 0O1IH#25H ® Register 01H = 21H

In the first example, the destination working register R1 contains the value 12H and the source
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source
operand 03H with the destination operand value 12H, leaving the value 02H in the register R1.

6-16

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

BAND -Bit AND
BAND dst,src.b
BAND dst.b,src

Operation: dst(0) - dst(0) AND src(b)
or
dst(b) - dst(b) AND src(0)

The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of
the destination (or source). The resultant bit is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc [dstiblo| s | 3 10 67 0 Rb
| opc [scibli]| dst | 3 10 67 Rb 10

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four
bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H and register 01H = O5H:

BAND R1,01H1 ® R1 = O5H, register 01H = 05H
BAND 0Ol1H.1,R1 ® Register 01H = 05H, R1 = 07H

In the first example, the source register 01H contains the value 05H (00000101B) and the
destination working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1"
ANDs the bit 1 value of the source register ("0") with the bit O value of the register R1
(destination), leaving the value 0525H (00000101B) in the register R1.

ELECTRONICS 6-17

SAMS8 INSTRUCTION SET S3C880A/F880A

BCP -Bit Compare

BCP

Operation:

Flags:

Format:

Example:

dst,src.b

dst(0) — src(b)

The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both
operands are unaffected by the comparison.

Unaffected.

Set if the two bits are the same; cleared otherwise.
Cleared to "0".

Undefined.

Unaffected.

Unaffected.

IO<ONO

Bytes Cycles Opcode Addr Mode
(Hex) dst src

opc dst|b|O src 3 10 17 ro Rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Given: R1 = 07H and register 01H = O01H:
BCP R1,01H1 ® R1 = O7H, register 01H = 01H

If the destination working register R1 contains the value 07H (00000111B) and the source
register 01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit
one of the source register (01H) and bit zero of the destination register (R1). Because the bit
values are not identical, the zero flag bit (2) is cleared in the FLAGS register (OD5H).

6-18

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

BITC -Bit Complement

BITC dst.b

Operation: dst(b) = NOT dst(b)

This instruction complements the specified bit within the destination without affecting any other
bit in the destination.

Unaffected.

Set if the result is "0"; cleared otherwise.
Cleared to "0".

Undefined.

Unaffected.

Unaffected.

Flags:

IO<ONO

Format:

Bytes Cycles Opcode Addr Mode
(Hex) dst

opc dst|b|O 2 8 57 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = O7H
BITC R1.1 ® R1 = O5H

If the working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"
complements bit one of the destination, leaving the value 05H (00000101B) in the register R1.
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H)
is cleared.

ELECTRONICS 6-19

SAMS8 INSTRUCTION SET S3C880A/F880A

BITR - Bit Reset

BITR

Operation:

Flags:

Format:

Example:

dst.b

dst(b) = 0

The BITR instruction clears the specified bit within the destination without affecting any other bit
in the destination.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst

opc dst|b|0 2 8 77 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Given: R1 = O7H:
BITR R1.1 ® R1 = O5H

If the value of the working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit
one of the destination register R1, leaving the value 05H (00000101B).

6-20

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

BITS —Bit set

BITS dst.b

Operation: dst(b) - 1

The BITS instruction sets the specified bit within the destination without affecting any other bit in
the destination.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst|b|1 2 8 77 rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = O7H:
BITS R1.3 ® R1 = OFH

If the working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets
bit three of the destination register R1 to "1", leaving the value OFH (00001111B).

ELECTRONICS 6-21

SAMS8 INSTRUCTION SET S3C880A/F880A

BOR -Bitor

BOR dst,src.b

BOR dst.b,src

Operation: dst(0) - dst(0) OR src(b)

Flags:

Format:

Examples:

or
dst(b) - dst(b) OR src(0)

The specified bit of the source (or destination) is logically ORed with bit zero (LSB) of the
destination (or source). The resulting bit value is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc [dstibjo] s | 3 10 07 0 Rb
| opc [scibli]| dst | 3 10 07 Rb 10

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four
bits, the bit address 'b' is three bits, and the LSB address value is one bit.

Given: R1 = 07H and register 01H = 03H:

BOR R1,01H1 ® R1 = O7H, register 01H = 03H
BOR 01H2,R1 ® Register 01H = 07H, R1 = 07H

In the first example, the destination working register R1 contains the value 07H (00000111B) and
the source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically
ORs bit one of the register 01H (source) with bit zero of R1 (destination). This leaves the same
value (07H) in the working register R1.

In the second example, the destination register 01H contains the value 03H (00000011B) and the
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically
ORs bit two of the register 01H (destination) with bit zero of R1 (source). This leaves the value
07H in the register O1H.

6-22

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

BTJRF -Bit Test, Jump Relative on False

BTJRF dst,src.b

Operation: If src(b) is a"0", then PC = PC + dst

The specified bit within the source operand is tested. If it is a "0", the relative address is added to
the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRF instruction is executed.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
1) (Hex) dst src
opc src|b|0 dst 3 16/18 (@ 37 RA rb
NOTES:

1. Inthe second byte of the instruction format, the source address is four bits, the bit address 'b' is three
bits, and the LSB address value is one bit in length.
2. Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Example: Given: R1 = O7H:
BTJRF SKIP,R1.3 ® PC jumps to SKIP location

If the working register R1 contains the value 07H (00000111B), the statement "BTJRF
SKIP,R1.3" tests bit 3. Because it is "0", the relative address is added to the PC and the PC
jumps to the memory location pointed to by the SKIP. (Remember that the memory location
must be within the allowed range of + 127 to — 128.)

ELECTRONICS 6-23

SAMS8 INSTRUCTION SET S3C880A/F880A

BTJRT -Bit Test, Jump Relative on True

BTJRT

Operation:

Flags:

Format:

Example:

dst,src.b

If src(b) is a "1", then PC = PC + dst

The specified bit within the source operand is tested. If it is a "1", the relative address is added to
the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRT instruction is executed.

No flags are affected.

Bytes Cycles Opcode Addr Mode
1) (Hex) dst src

opc src|b|1 dst 3 16/18 (2 37 RA rb

NOTES:

1. Inthe second byte of the instruction format, the source address is four bits, the bit address 'b' is three
bits, and the LSB address value is one bit in length.

2. Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Given: R1 = O7H:
BTJRT SKIP,R1.1

If the working register R1 contains the value 07H (00000111B), the statement "BTJRT
SKIP,R1.1" tests bit one in the source register (R1). Because it is a "1", the relative address is
added to the PC and the PC jumps to the memory location pointed to by the SKIP. (Remember
that the memory location must be within the allowed range of + 127 to — 128.)

6-24

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

BXOR —Bit xoRr
BXOR dst,src.b
BXOR dst.b,src

Operation: dst(0) = dst(0) XOR src(b)
or
dst(b) - dst(b) XOR src(0)

The specified bit of the source (or destination) is logically exclusive-ORed with bit zero (LSB) of
the destination (or source). The result bit is stored in the specified bit of the destination. No other
bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
[opc [astibjo] s | 3 10 27 0 Rb
| opc [scibli]| dst | 3 10 27 Rb 10

NOTE: In the second byte of the 3-byte instruction format, the destination (or source) address is four bits,
the bit address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):

BXOR R1,01H1 ® R1 = O5H, register 01H = 03H
BXOR 0l1H2R1 ® Register 01H = 07H, R1 = 07H

In the first example, the destination working register R1 has the value 07H (00000111B) and the
source register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1"
exclusive-ORs bit one of the register 01H (source) with bit zero of R1 (destination). The result bit
value is stored in bit zero of R1, changing its value from 07H to O5H. The value of the source
register 01H is unaffected.

ELECTRONICS 6-25

SAMS8 INSTRUCTION SET S3C880A/F880A

CALL - call Procedure

CALL

Operation:

Flags:

Format:

Examples:

dst

SP = SP-1
@SP - PCL
SP = SP -1
@SP - PCH
PC = dst

The current contents of the program counter are pushed onto the top of the stack. The program
counter value used is the address of the first instruction following the CALL instruction. The
specified destination address is then loaded into the program counter and points to the first
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used
to return to the original program flow. RET pops the top of the stack back into the program
counter.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst
| opc | dst 3 18 F6 DA
| opc | dst | 2 18 F4 IRR
| opc | dst | 2 20 D4 1A

Given: RO = 35H, R1 =21H, PC = 1A47H, and SP = 0002H:
CALL 3521H ® SP = 0000H
(Memory locations 0000H = 1AH, 0001H = 4AH, where

4AH is the address that follows the instruction.)
CALL @RRO ® SP = 0000H (0000H = 1AH, 0001H = 49H)
CALL #40H ® SP = 0000H (0000H = 1AH, 0001H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the
stack. The stack pointer now points to the memory location 0000H. The PC is then loaded with
the value 3521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the
statement "CALL @RRO0" produces the same result except that 49H is stored in stack location
0001H (because the two-byte instruction format was used). The PC is then loaded with the value
3521H, the address of the first instruction in the program sequence to be executed. Assuming
that the contents of the program counter and stack pointer are the same as in the first example,
if the program address 0040H contains 35H and the program address 0041H contains 21H, the
statement "CALL #40H" produces the same result as in the second example.

6-26

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

CCF - Complement Carry Flag

CCF

Operation:

Flags:

Format:

Example:

C - NOTC

The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic
zero; if C = "0", the value of the carry flag is changed to logic one.

C:. Complemented.
No other flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 6 EF

Given: The carry flag = "0™
CCF

If the carry flag = "0", the CCF instruction complements it in the FLAGS register (OD5H),
changing its value from logic zero to logic one.

ELECTRONICS 6-27

SAMS8 INSTRUCTION SET

S3C880A/F880A

CLR -clear
CLR dst
Operation: dst = dst XOR dst

Flags:

Format:

Examples:

The destination location is cleared to "0".

No flags are affected.

opc dst

Given: Register 00H = 4FH, register 01H =

CLR OOH ® Register O0OH
CLR @O01H ® Register 01H

Bytes Cycles Opcode
(Hex)

2 6 BO
Bl

02H, and register 02H = 5EH:

O00H
02H, register 02H = 00H

Addr Mode
dst

R
IR

In Register (R) addressing mode, the statement "CLR O00H" clears the destination register OOH
value to O0H. In the second example, the statement "CLR @O01H" uses Indirect Register (IR)
addressing mode to clear the 02H register value to O0H.

6-28

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

COM - Complement

COM dst

Operation: dst = NOT dst

The contents of the destination location are complemented (one's complement); all "1s" are
changed to "0s", and vice-versa.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 6 60 R
61 IR

Examples: Given: R1 = 07H and register 07H = OF1H:

COM R1 ® R1 = OF8H
COM @R1 ® R1 = O7H, register 07H = OEH

In the first example, the destination working register R1 contains the value 07H (00000111B).
The statement "COM R1" complements all the bits in R1: all logic ones are changed to logic
zeros, and vice-versa, leaving the value OF8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value
of the destination register 07H (11110001B), leaving the new value OEH (00001110B).

ELECTRONICS 6-29

SAMS8 INSTRUCTION SET

S3C880A/F880A

CP - Compare
CP dst,src
Operation: dst — src

Flags:

Format:

Examples:

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags are set accordingly. The contents of both operands are unaffected by the

comparison.
C. Setif a"borrow" occurred (src > dst); cleared otherwise.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles
| opc | dst | src | 2 6
| opc | src | dst | 3 10
| opc | dst | src | 3 10

1. Given: R1 = 02H and R2 = O3H:

CPR1R2 ® Set the C and S flags

Opcode
(Hex)

A2
A3

A4
A5

A6

Addr Mode
dst src
r r
r Ir
R R
R IR
R IM

The destination working register R1 contains the value 02H and the source register R2 contains
the value O3H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the
R1 value (destination/minuend). Because a "borrow" occurs and the difference is negative, C

and S are "1".

2. Given: R1 =05H and R2 = 0AH:

CP R1,R2
JP UGE,SKIP
INC R1

SKIP LD R3,R1

In this example, the destination working register R1 contains the value O5H which is less than the
contents of the source working register R2 (OAH). The statement "CP R1,R2" generates C = "1"
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"

executes, the value 06H remains in the working register R3.

6-30

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

CPIJE - Compare, Increment, and Jump on Equal

CPIJE

Operation:

Flags:

Format:

Example:

dst,src,RA

Ifdst—src = "0",PC = PC + RA
Ir=- Ir+1

The source operand is compared to (subtracted from) the destination operand. If the result is "0",
the relative address is added to the program counter and control passes to the statement whose
address is now in the program counter. Otherwise, the instruction immediately following the
CPIJE instruction is executed. In either case, the source pointer is incremented by one before
the next instruction is executed.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

opc | src | dst | RA 3 16/18 Cc2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Given: R1 = 02H, R2 = 03H, and register 03H = 02H:
CPIJE R1,@R2,SKIP ® R2 = 04H, PC jumps to SKIP location

In this example, the working register R1 contains the value 02H, the working register R2 the
value 03H, and the register 03H contains 02H. The statement "CPIJE R1,@R2,SKIP" compares
the @R2 value 02H (00000010B) to 02H (00000010B). Because the result of the comparison is
equal, the relative address is added to the PC and the PC then jumps to the memory location
pointed to by SKIP. The source register (R2) is incremented by one, leaving a value of 04H.
(Remember that the memory location must be within the allowed range of + 127 to — 128.)

ELECTRONICS 6-31

SAMS8 INSTRUCTION SET S3C880A/F880A

CPIINE - Compare, Increment, and Jump on Non-Equal

CPIINE

Operation:

Flags:

Format:

Example:

dst,src,RA

Ifdst—src @ "0",PC = PC + RA
Ir=- Ir+1

The source operand is compared to (subtracted from) the destination operand. If the result is not
"0", the relative address is added to the program counter and control passes to the statement
whose address is now in the program counter; otherwise the instruction following the CPIINE
instruction is executed. In either case the source pointer is incremented by one before the next
instruction.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

opc |src|dst| RA 3 16/18 D2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Given: R1 = 02H, R2 = 03H, and register 03H = 04H:
CPIUNE R1,@R2,SKIP ® R2 = 04H, PC jumps to SKIP location

The working register R1 contains the value 02H, the working register R2 (the source pointer) the
value 03H, and the general register 03H contains the value 04H. The statement "CPIINE
R1,@R2,SKIP" subtracts 04H (00000100B) from 02H (00000010B). Because the result of the
comparison is non-equal, the relative address is added to the PC and the PC then jumps to the
memory location pointed to by SKIP. The source pointer register (R2) is also incremented by
one, leaving a value of 04H. (Remember that the memory location must be within the allowed
range of + 127 to —128.)

6-32

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

DA - Decimal Adjust

DA dst
Operation: dst = DA dst
The destination operand is adjusted to form two 4-bit BCD digits after an addition or subtraction
operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table indicates the
operation performed. (The operation is undefined if the destination operand was not the result of
a valid addition or subtraction of BCD digits):
Instruction Carry Bits 4-7 H Flag Bits 0-3 Number Added Carry
Before DA Value (Hex) Before DA Value (Hex) to Byte After DA
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
ADD 0 A-F 0 0-9 60 1
ADC 0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
0 0-9 0 0-9 00 = -00 0
SUB 0 0-8 1 6—F FA = - 06 0
SBC 1 7-F 0 0-9 A0 = - 60 1
1 6—F 1 6—F 9A = - 66 1
Flags: C. Setif there was a carry from the most significant bit; cleared otherwise (see table).
Z: Setif the result is "0"; cleared otherwise.
S: Setif the result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 6 40 R
41 IR
ELECTRONICS 6-33

SAMS8 INSTRUCTION SET S3C880A/F880A

DA - Decimal Adjust

DA (Continued)

Example: Given: The working register RO contains the value 15 (BCD), working register R1 contains
27 (BCD), and address 27H contains 46 (BCD):

ADD R1,RO ; C- "0",H- "0", Bits 4-7 = 3, bits 0-3 =C, R1 - 3CH
DA R1 ; R1- 3CH + 06
If an addition is performed using the BCD values 15 and 27, the result should be 42. The sum is

incorrect, however, when the binary representations are added in the destination location using
standard binary arithmetic:

0001 0101 15
+ 0010 0111 27
0011 1100 = 3CH

The DA instruction adjusts this result so that the correct BCD representation is obtained:

0011 1100
+ 0000 0110

0100 0010 = 42

Assuming the same values given above, the statements
SUB 27H,RO ; C- "0",H""0", Bits4-7 =3, bits0-3=1
DA @R1 ; @R1- 31-0

leave the value 31 (BCD) in the address 27H (@R1).

6-34 ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

DEC — Decrement

DEC

Operation:

Flags:

Format:

Examples:

dst

dst - dst-1
The contents of the destination operand are decremented by one.

C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Setif the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode
(Hex)
opc dst 2 6 00
01

Given: R1 = 03H and register 03H = 10H:

DEC R1 ® R1 = 02H
DEC @R1 ® Register 03H = OFH

Addr Mode
dst

R
IR

In the first example, if the working register R1 contains the value 03H, the statement "DEC R1"
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by

one, leaving the value OFH.

ELECTRONICS

6-35

SAMS8 INSTRUCTION SET S3C880A/F880A

DECW - becrement Word

DECW

Operation:

Flags:

Format:

Examples:

NOTE:

dst

dst = dst—1

The contents of the destination location (which must be an even address) and the operand
following that location are treated as a single 16-bit value that is decremented by one.

C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 10 80 RR
81 IR

Given: RO = 12H, R1 = 34H, R2 = 30H, register 30H = OFH, and register 31H = 21H:
DECW RRO ® RO = 12H,R1 = 33H
DECW @R2 ® Register 30H = OFH, register 31H = 20H

In the first example, the destination register RO contains the value 12H and the register R1 the
value 34H. The statement "DECW RRO0" addresses RO and the following operand R1 as a 16-bit
word and decrements the value of R1 by one, leaving the value 33H.

A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW
instruction. To avoid this problem, we recommend that you use DECW as shown in the following
example:

LOOP: DECW RRO

LD R2,R1
OR R2,RO
JR NZ,LOOP

6-36

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

DIl - Disable Interrupts

DI

Operation: SYM@©0) - 0

Bit zero of the system mode control register, SYM.O, is cleared to "0", globally disabling all
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,
but the CPU will not service them while interrupt processing is disabled.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 6 8F
Example: Given: SYM = 01H:
DI

If the value of the SYM register is 01H, the statement "DI" leaves the new value O0H in the
register and clears SYM.0 to "0", disabling interrupt processing.

ELECTRONICS 6-37

SAMS8 INSTRUCTION SET S3C880A/F880A

DIV - ivide (Unsigned)

DIV

Operation:

Flags:

Format:

Examples:

dst,src

dst = src
dst (UPPER) = REMAINDER
dst (LOWER) - QUOTIENT

The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of
the destination. When the quotient is 3 28, the numbers stored in the upper and lower halves of
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned
integers.

C: Setif the V flag is set and the quotient is between 28 and 29 —1; cleared otherwise.
Z: Set if the divisor or quotient = "0"; cleared otherwise.
S: Setif the MSB of quotient = "1"; cleared otherwise.
V: Setif the quotientis 3 28 or if the divisor = "0"; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
opc src dst 3 28/12 * 94 RR R
28/12 * 95 RR IR
28/12 * 96 RR IM

* Execution takes 12 cycles if divide-by-zero
is attempted; otherwise it takes 28 cycles.

Given: RO = 10H, R1 = 03H, R2

40H, register 40H = 80H:

DIV RRO,R2 ® RO = 03H,R1 = 40H
DIV RRO,@R2 ® RO = 03H,R1 = 20H
DIV RRO#20H ® RO = 03H,R1 = 80H

In the first example, the destination working register pair RRO contains the values 10H (R0O) and
03H (R1), and the register R2 contains the value 40H. The statement "DIV RRO0,R2" divides the
16-bit RRO value by the 8-bit value of the R2 (source) register. After the DIV instruction, RO
contains the value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of
the destination register RRO (R0) and the quotient in the lower half (R1).

6-38

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

DJNZ - becrement and Jump if Non-Zero

DJINZ r,dst

Operation: r- r-1
If rt 0,PC - PC + dst

The working register being used as a counter is decremented. If the contents of the register are
not logic zero after decrementing, the relative address is added to the program counter and
control passes to the statement whose address is now in the PC. The range of the relative
address is +127 to —128, and the original value of the PC is taken to be the address of the
instruction byte following the DIJNZ statement.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| r | opc | dst 2 12 (jump taken) rA RA
10 (no jump) r=0toF
Example: Given: R1 = 02H and LOORP is the label of a relative address:

DJINZ R1,LOOP

DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the
destination operand instead of a numeric relative address value. In the example, the working
register R1 contains the value 02H, and LOOP is the label for a relative address.

The statement "DINZ R1, LOOP" decrements the register R1 by one, leaving the value 01H.
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative
address specified by the LOOP label.

NOTE: When PP = 11H or 10H and working register area is NOT in COH-CFH, DJNZ instruction can not
be used.

ELECTRONICS 6-39

SAMS8 INSTRUCTION SET S3C880A/F880A

El —Enable Interrupts

El

Operation: SYM@©0) - 1

An El instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to
be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced
when you execute the El instruction.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 6 9F
Example: Given: SYM = 00H:
El

If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.O is the enable bit for
global interrupt processing.)

6-40 ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

ENTER -Eenter

ENTER
Operation: SP = SP -2
@SP = IP
IP = PC
PC = @IP
IP = IP+2
This instruction is useful when implementing threaded-code languages. The contents of the
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the
instruction pointer. The program memory word that is pointed to by the instruction pointer is
loaded into the PC, and the instruction pointer is incremented by two.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 20 1F
Example: The diagram below shows one example of how to use an ENTER statement.
Before After
Address Data Address Data
1P| 0050 1P| 0043
Address Data Address Data
pPC | 0040 40 | Enter 1F pPC| 0110 40 | Enter 1F
41| AddressH |01 - 41 | AddressH |01
42| AddressL |10 42 | AddressL |10
sp| 0022 43| Address H sp| 0020 —» 43| Address H
[
—» 20 IPH 00 —»110 | Routine
—» 21| IPL 50
22| Data Memory 22| Data Memory
Stack Stack

ELECTRONICS 6-41

SAMS8 INSTRUCTION SET S3C880A/F880A

EXIT —Exit

EXIT
Operation: IP - @SP
SP - SP + 2
PC = @IP
IP = P + 2
This instruction is useful when implementing threaded-code languages. The stack value is
popped and loaded into the instruction pointer. The program memory word that is pointed to by
the instruction pointer is then loaded into the program counter, and the instruction pointer is
incremented by two.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 22 2F
Example: The diagram below shows one example of how to use an EXIT statement.
Before After
Address Data Address Data
1P| 0050 [q— 1P| 0052
Address Data Address Data
PC| 0040 pPC | 0060
—» 50| PCLold 60 :l _|—> 60 | Main
51| PCH 00
SP| 0022 SP| 0022
» 140 | Exit 2F
20 IPH 00
21| IPL 50]_
22| Data Memory 22| Data Memory
Stack Stack

6-42 ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

IDLE -1die Operation

IDLE
Operation:
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle
mode can be released by an interrupt request (IRQ) or an external reset operation.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
opc 1 3 6F - -
Example: The instruction

IDLE

stops the CPU clock but not the system clock.

ELECTRONICS 6-43

SAMS8 INSTRUCTION SET

S3C880A/F880A

|NC — Increment

INC

Operation:

Flags:

Format:

Examples:

dst

dst = dst + 1
The contents of the destination operand are incremented by one.

C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode
(Hex)
| dst | opc | 1 6 re
r=20to
F
| opc | dst 2 6 20
21

Given: RO = 1BH, register 00H = OCH, and register 1BH = OFH:

INC RO ® RO = 1CH
INC OOH ® Register 0OOH = ODH
INC @RO ® RO = 1BH, register 01H = 10H

Addr Mode
dst

r

In the first example, if the destination working register RO contains the value 1BH, the statement

"INC RO" leaves the value 1CH in that same register.

The next example shows the effect an INC instruction has on the register 00H, assuming that it

contains the value OCH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the

value of the register 1BH from OFH to 10H.

6-44

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

INCW = increment Word

INCW dst

Operation: dst = dst + 1

The contents of the destination (which must be an even address) and the byte following that
location are treated as a single 16-bit value that is incremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 10 AOQ RR
Al IR

Examples: Given: RO = 1AH, R1 = O2H, register 02H = OFH, and register 03H = OFFH:

INCW RRO ® RO = 1AH, R1 =03H
INCW @R1 ® Register 02H = 10H, register 03H = OOH

In the first example, the working register pair RRO contains the value 1AH in the register RO and
02H in the register R1. The statement "INCW RRO" increments the 16-bit destination by one,
leaving the value 03H in the register R1. In the second example, the statement "INCW @R1"
uses Indirect Register (IR) addressing mode to increment the contents of the general register
03H from OFFH to 00H and the register 02H from OFH to 10H.

NOTE: A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the
following example:

LOOP: INCW RRO

LD R2,R1
OR R2,RO
JR NZ,LOOP

ELECTRONICS 6-45

SAMS8 INSTRUCTION SET S3C880A/F880A

IRET - Interrupt Return

IRET

Operation:

Flags:

Format:

Example:

IRET (Normal IRET (Fast)
FLAGS - @SP PC « IP

SP - SP +1 FLAGS - FLAGS'
PC - @SP FIS - 0

SP - SP + 2

SYM@) - 1

This instruction is used at the end of an interrupt service routine. It restores the flag register and
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the
fast interrupt status bit (FIS, bit one of the FLAGS register, OD5H) is cleared (= "0"). If a fast
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

All flags are restored to their original settings (that is, the settings before the interrupt occurred).

IRET Bytes Cycles Opcode
(Normal) (Hex)
| opc | 1 16 BF
IRET Bytes Cycles Opcode
(Fast) (Hex)
| opc | 1 6 BF

In the figure below, the instruction pointer is initially loaded with 100H in the main program
before interrupts are enabled. When an interrupt occurs, the program counter and the instruction
pointer are swapped. This causes the PC to jump to the address 100H and the IP to keep the
return address. The last instruction in the service routine normally is a jump to IRET at the
address FFH. This causes the instruction pointer to be loaded with 100H "again” and the program
counter to jump back to the main program. Now, the next interrupt can occur and the IP is still
correct at 100H.

OH

FFH IRET

100H Interrupt
Service
Routine

JP to FFH

FFFFH

Note that in the fast interrupt example above, if the last instruction is not a jump to IRET, you
must pay attention to the order of the last two instructions. The IRET cannot be immediately
proceeded by clearing the interrupt status (as with a reset of the IPR register).

6-46

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

JP —Jump

JP cc,dst (Conditional)
JP dst (Unconditional)
Operation: If cc istrue, PC - dst

The conditional JUMP instruction transfers program control to the destination address if the
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP
instruction is executed. The unconditional JP simply replaces the contents of the PC with the
contents of the specified register pair. Control then passes to the statement addressed by the

PC.
Flags: No flags are affected.
Format: (1)
Bytes Cycles Opcode Addr Mode
(2) (Hex) dst
cc | opc dst 3 10/12 3) ccD DA
cc=0toF
| opc | dst 2 10 30 IRR
NOTES:

1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.

2. In the first byte of the 3-byte instruction format (conditional jump), the condition code and the opcode
are both four bits.

3. For a conditional jump, execution time is 12 cycles if the jump is taken or 10 cycles if it is not taken.

Examples: Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:

JP C,LABEL_W® LABEL_W = 1000H, PC = 1000H
JP @O0H ® PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the
statement

"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to
that location. Had the carry flag not been set, control would then have passed to the statement
immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

ELECTRONICS 6-47

SAMS8 INSTRUCTION SET S3C880A/F880A

JR - Jump Relative

JR

Operation:

Flags:

Format:

Example:

cc,dst

If cc istrue, PC = PC + dst

If the condition specified by the condition code (cc) is true, the relative address is added to the
program counter and control passes to the statement whose address is how in the program
counter; otherwise, the instruction following the JR instruction is executed. (See the list of
condition codes).

The range of the relative address is +127 to —128, and the original value of the program counter
is taken to be the address of the first instruction byte following the JR statement.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(1) (Hex) dst
cc | opc dst 2 10/12 (2) ccB RA
cc=0toF
NOTES:
1. Inthe first byte of the two-byte instruction format, the condition code and the opcode are four bits
each.

2. Instruction execution time is 12 cycles if the jump is taken or 10 cycles if it is not taken.

Given: The carry flag = "1" and LABEL_X = 1FF7H:
JR C,LABEL X ® PC = 1FF7H
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will

pass control to the statement whose address is now in the PC. Otherwise, the program
instruction following the JR would be executed.

6-48

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

LD - Load

LD

Operation:

Flags:

Format:

dst,src

dst = src

The contents of the source are loaded into the destination. The source's contents are unaffected.

No flags are affected.

dst | opc src

src | opc dst
opc dst | src
opc src dst
opc dst src
opc src dst
opc dst | src X
opc src | dst X

Bytes Cycles

2 6
6
2 6
2 6
6
3 10
10
3 10
10
3 10
3 10
3 10

Opcode
(Hex)

rC
r8

r9
r=0toF

Cc7
D7

E4
ES

EG6
D6

F5

87

97

Addr Mode
dst src
r IM
r R
R r
r Ir
Ir r
R R
R IR
R IM
IR IM
IR R

X [r]

x [r]

ELECTRONICS

6-49

SAMS8 INSTRUCTION SET

S3C880A/F880A

LD -Load
LD
Examples:

(Continued)

Given: RO = 01H, R1 = O0AH, register OOH = 01H, register 01H = 20H,
register 02H = 02H, LOOP = 30H, and register 3AH = OFFH:

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

RO,#10H ®
RO,01H
01H,RO
R1,@R0
@RO,R1
00H,01H
02H,@00H
00H,#0AH
@O0H,#10H
@O0H,02H ®
RO,#LOOP[R1] ®
#LOOP[RO],R1 ®

®
®
®
®
®
®
®
®

RO = 10H

RO = 20H, register 01H = 20H

Register 01H = 01H, RO = 01H

R1 = 20H, RO = O1H

RO = 01H, R1 = OAH, register 01H = OAH
Register OOH = 20H, register 01H = 20H
Register 02H = 20H, register OOH = 01H
Register OOH = 0OAH

Register OOH = 01H, register 0O1H = 10H
Register OOH = 01H, register 01H = 02H, register 02H = 02H
RO = OFFH, R1 = 0OAH

Register 31H = 0AH, RO = 01H, R1 = OAH

6-50

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

LDB - Load Bit

LDB dst,src.b
LDB dst.b,src

Operation: dst(0) - src(b)
or
dst(b) - src(0)

The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the
source is loaded into the specified bit of the destination. No other bits of the destination are
affected. The source is unaffected.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | dst|b]|O | src | 3 10 47 r0 Rb
| opc [scibl1i]| dst | 3 10 47 Rb 10

NOTE: In the second byte of the instruction format, the destination (or source) address is four bits, the bit
address 'b' is three bits, and the LSB address value is one bit in length.

Examples: Given: RO = 06H and general register 0OH = O5H:

LDB RO,00H.2 ® RO
LDB OOH.O,RO ® RO

05H
04H

07H, register OOH
06H, register OOH

In the first example, the destination working register RO contains the value 06H and the source
general register OOH the value O5H. The statement "LD RO0,00H.2" loads the bit two value of the
OOH register into bit zero of the RO register, leaving the value 07H in the register RO.

In the second example, O0H is the destination register. The statement "LD 00H.0,R0" loads bit
zero of the register RO to the specified bit (bit zero) of the destination register, leaving 04H in the
general register O0H.

ELECTRONICS 6-51

SAMS8 INSTRUCTION SET S3C880A/F880A

LDC/LDE - Load Memory

LDC/LDE dst,src

Operation: dst = src

This instruction loads a byte from program or data memory into a working register or vice-versa.
The source values are unaffected. LDC refers to program memory and LDE to data memory.
The assembler makes 'Irr' or 'rr' values an even number for program memory and an odd
number for data memory.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
1. opc | ast] src | 2 12 c3 i Irr
2. opc [src|oast| 2 12 D3 Irr r
3. opc [dst|sc| xs | 3 18 E7 r XS]
4 opc |sc|dst| xs | 3 18 F7 Xsfm
5.[opc [dstisc| X | Xy | 4 20 A7 f XL
6.| opc | src | dst | XL | XLy | 4 20 B7 XL [r] ;
7. opc [astioooo| pA. | DAy | 4 20 A7 r DA
8. opc [scloooo] pA. | DAy | 4 20 B7 DA
o. opc [dstjooor| DA | DAy | 4 20 A7 r DA
10.[opc [sclooot] DAL [DAy | 4 20 B7 DA ‘
NOTES:

1. The source (src) or the working register pair [rr] for formats 5 and 6 cannot use the register pair 0-1.

2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are one byte each.

3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are two bytes each.

4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set of values, used
in formats 9 and 10, are used to address data memory.

6-52 ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

LDC/LDE - Load Memory

LDC/LDE (Continued)

Examples: Given: RO = 11H, R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory
locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:

LDC RO,@RR2 ; RO = contents of program memory location 0104H
; RO = 1AH, R2 = 01H, R3 = 04H

LDE RO,@RR2 ; RO = contents of external data memory location 0104H
; RO = 2AH, R2 = 01H, R3 = 04H

LDC (hote) @RR2,R0 : 11H (contents of RO) is loaded into program memory

; location 0104H (RR2),
; working registers RO, R2, R3 ® no change

LDE @RR2,R0 ; 11H (contents of RO) is loaded into external data memory
; location 0104H (RR2),
; working registers RO, R2, R3 ® no change

LDC RO,#01H[RR2] ; RO = contents of program memory location 0105H
; (01H + RR2),
; RO = 6DH, R2 = 01H, R3 = 04H
LDE RO,#01H[RR2] ; RO - contents of external data memory location 0105H
; (01H + RR2), RO = 7DH, R2 = 01H, R3 = 04H
LDC (o) #01H[RR2],RO : 11H (contents of RO) is loaded into program memory location
; 0105H (01H + 0104H)
LDE #01H[RR2],RO ; 11H (contents of RO) is loaded into external data memory
; location 0105H (01H + 0104H)
LDC RO,#1000H[RR2] ; RO - contents of program memory location 1104H
; (1000H + 0104H), RO = 88H, R2 = 01H, R3 = 04H
LDE RO,#1000H[RR2] ; RO - contents of external data memory location 1104H
; (1000H + 0104H), RO = 98H, R2 = 01H, R3 = 04H
LDC R0,1104H ; RO = contents of program memory location 1104H, RO = 88H
LDE R0,1104H ; RO = contents of external data memory location 1104H,
; RO = 98H
LDC (hote) 1105H,RO ; 11H (contents of RO) is loaded into program memory location

. 1105H, (1105H) - 11H

LDE 1105H,R0 ; 11H (contents of RO) is loaded into external data memory
; location 1105H, (1105H) - 11H

NOTE: These instructions are not supported by masked ROM type devices.

ELECTRONICS 6-53

SAMS8 INSTRUCTION SET S3C880A/F880A

LDCD/LDED - Load Memory and Decrement

LDCD/LDED

Operation:

Flags:

Format:

Examples:

dst,src

dst = src
- -1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then decremented. The contents of the source are unaffected.

LDCD refers to program memory and LDED refers to external data memory. The assembler
makes ‘Irr' an even number for program memory and an odd number for data memory.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

opc | dst | src | 2 16 E2 r Irr

Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = O0CDH, and
external data memory location 1033H = ODDH:

LDCD R8,@RR6 ; OCDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is decremented by one
; R8 = OCDH,R6 = 10H,R7 = 32H(RR6 = RR6-1)
LDED R8,@RR6 ; ODDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is decremented by one (RR6 - RR6 —1)

; R8 = ODDH, R6 = 10H, R7 = 32H

6-54

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

LDCI/LDEI - Load Memory and Increment

LDCI/LDEI dst,src

Operation: dst = src
m-= rm+1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then incremented automatically. The contents of the source are unaffected.

LDCI refers to program memory and LDEI refers to external data memory. The assembler
makes 'Irr* even number for program memory and odd number for data memory.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
opc | dst | src | 2 16 E3 r Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0OCDH and
1034H = OC5H; external data memory locations 1033H = ODDH and 1034H = OD5H:
LDCI R8,@RR6 ; OCDH (contents of program memory location 1033H) is loaded

; into R8 and RR6 is incremented by one (RR6 = RR6 + 1)
; R8 = OCDH, R6 = 10H, R7 = 34H

LDEI R8,@RR6 ; ODDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 = RR6 + 1)

; R8 = ODDH, R6 = 10H, R7 = 34H

ELECTRONICS 6-55

SAMS8 INSTRUCTION SET S3C880A/F880A

LDCPD/LDEPD - Load Memory with Pre-Decrement

LDCPD/

LDEPD

Operation:

Flags:

Format:

Examples:

dst,src

- rm-1
dst = src

These instructions are used for block transfers of data from program or data memory from the
register file. The address of the memory location is specified by a working register pair and is
first decremented. The contents of the source location are then loaded into the destination
location. The contents of the source are unaffected.

LDCPD refers to program memory and LDEPD refers to external data memory. The assembler
makes 'Irr' an even number for program memory and an odd number for external data memory.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

opc | src | dst | 2 16 F2 Irr r

Given: RO = 77H, R6 = 30H, and R7 = OOH:

LDCPD @RR6,R0O ; (RR6 = RR6-1)
; 77H (contents of RO) is loaded into program memory location
;. 2FFFH (3000H — 1H)
; RO = 77H, R6 = 2FH, R7 = OFFH

LDEPD @RR6,R0O ; (RR6 = RR6-1)

; 77H (contents of RO) is loaded into external data memory
; location 2FFFH (3000H — 1H)

; RO = 77H, R6 = 2FH, R7 = OFFH

6-56

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

LDCPI/LDEPI - Load Memory with Pre-Increment

LDCPI/
LDEPI dst,src
Operation: - rmr+1
dst = src
These instructions are used for block transfers of data from program or data memory from the
register file. The address of the memory location is specified by a working register pair and is
first incremented. The contents of the source location are loaded into the destination location.
The contents of the source are unaffected.
LDCPI refers to program memory and LDEPI refers to external data memory. The assembler
makes 'lIrr' an even number for program memory and an odd number for data memory.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
opc | src | dst | 2 16 F3 Irr r

Examples: Given: RO = 7FH, R6 = 21H, and R7 = OFFH:

LDCPI @RR6,R0 ; (RR6 = RR6+1)
; 7FH (contents of RO) is loaded into program memory
; location 2200H (21FFH + 1H)
; RO = 7FH, R6 = 22H, R7 = OOH

LDEPI @RR6,R0 ; (RR6 = RR6 +1)
; 7FH (contents of RO) is loaded into external data memory
; location 2200H (21FFH + 1H)

; RO = 7FH, R6 = 22H, R7 = O00H

ELECTRONICS 6-57

SAMS8 INSTRUCTION SET

S3C880A/F880A

LDW - Load word

LDW

Operation:

Flags:

Format:

Examples:

dst,src

dst = src

The contents of the source (a word) are loaded into the destination. The contents of the
are unaffected.

No flags are affected.

source

Bytes Cycles Opcode Addr Mode

(Hex) dst src

| opc | s | dst 3 10 c4 RR RR
10 cs RR IR

| opc | dst | src 4 12 Cé RR IML

05H, R7 = 02H, register 00H =

= 1AH,
03H, and register 03H = OFH:

Given: R4 = 06H,R5 = 1CH, R6
register 0O1H = O2H, register 02H =

LDW RR6,RR4 ® R6 = 06H,R7 = 1CH,R4 = 06H,R5 = 1CH

LDW O0H,02H ® Register 0OOH = 03H, register 01H = OFH,
register 02H = O3H, register 03H = OFH

LDW RR2,@R7 ® R2 = 03H, R3 = OFH,

LDW 04H,@01H ® Register 04H = 0O3H, register 05H = OFH

LDW RR6,#1234H ® R6 = 12H,R7 = 34H

LDW 02H,#0FEDH ® Register 02H = OFH, register 03H = OEDH

In the second example, please note that the statement "LDW 00H,02H" loads the contents of
the source word 02H, 03H into the destination word O0OH, 01H. This leaves the value 03H in the

general register OOH and the value OFH in the register O1H.

Other examples show how to use the LDW instruction with various addressing modes and

formats.

6-58

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

MULT - Multiply (Unsigned)

MULT dst,src

Operation: dst = dst” src

The 8-bit destination operand (the even register of the register pair) is multiplied by the source
operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination
address. Both operands are treated as unsigned integers.

Flags: C. Setif the resultis > 255; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if MSB of the result is a "1"; cleared otherwise.
V: Cleared.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
opc src dst 3 24 84 RR R
24 85 RR IR
24 86 RR IM

Examples: Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = O06H:

MULT O0H,02H ® Register OOH = O01H, register 01H = 20H, register 02H = 09H
MULT O0OH, @01H ® Register OOH = OOH, register 01H = O0COH
MULT OOH, #30H ® Register OOH = 06H, register 01H = O0OH

In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in
the register O0H of the register pair 0OH, 01H) by the source register 02H operand (09H). The
16-bit product, 0120H, is stored in the register pair 0OH, 01H.

ELECTRONICS 6-59

SAMS8 INSTRUCTION SET S3C880A/F880A

NEXT - Next

NEXT
Operation: PC - @IP
P - IP + 2
The NEXT instruction is useful when implementing threaded-code languages. The program
memory word that is pointed to by the instruction pointer is loaded into the program counter. The
instruction pointer is then incremented by two.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 14 OF
Example: The following diagram shows one example of how to use the NEXT instruction.
Before After
Address Data Address Data
1P| 0043 1P| 0045
Address Data Address Data
PC| 0120 —» 43| AddressH |01 j__,—> PC| 0130 43| Address H
44| AddressL |10 44 | Address L
45| Address H —» 45| Address H
——»120 | Next —»130 | Routine
Memory Memory

6-60

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

NOP -nNo Operation

NOP

Operation:

Flags:

Format:

Example:

No action is performed when the CPU executes this instruction. Typically, one or more NOPs are
executed in sequence in order to effect a timing delay of variable duration.

No flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 6 FF

When the instruction
NOP

is encountered in a program, no operation occurs. Instead, there happens a delay in instruction
execution.

ELECTRONICS 6-61

SAMS8 INSTRUCTION SET S3C880A/F880A

OR - Logical OR

OR

Operation:

Flags:

Format:

Examples:

dst,src

dst = dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the
destination. The contents of the source are unaffected. The OR operation results in a "1" being
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is
stored.

C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|src| 2 6 42 r r
6 43 r Ir
| opc | src | dst | 3 10 44 R R
10 45 R IR
| opc | dst | src | 3 10 46 R IM

Given: RO = 15H, R1 = 2AH, R2 = 01H, register 0OH = 08H, register 01H = 37H, and
register 08H = 8AH:

OR RO,R1 ® RO = 3FH, R1 = 2AH

OR RO,@R2 ® RO = 37H, R2 = 01H, register 01H = 37H
OR OOH,01H ® Register OOH = 3FH, register 01H = 37H
OR 01H,@00H ® Register 00H = 08H, register 01H = 0BFH
OR OOH#02H ® Register 00H = OAH

In the first example, if the working register RO contains the value 15H and the register R1 the
value 2AH, the statement "OR RO,R1" logical-ORs the RO and R1 register contents and stores
the result (3FH) in the destination register RO.

Other examples show the use of the logical OR instruction with the various addressing modes
and formats.

6-62

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

POP - Pop From Stack

POP dst

Operation: dst - @SP
SP - SP +1

The contents of the location addressed by the stack pointer are loaded into the destination. The
stack pointer is then incremented by one.

Flags: No flags affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 10 50 R
10 51 IR

Examples: Given: Register 0OH = 01H, register 01H = 1BH, SPH (OD8H) = 00H, SPL (OD9H) = OFBH,
and stack register OFBH = 55H:

POP OOH ® Register O0OH
POP @O00H ® Register O0H

55H, SP = 00FCH
01H, register 01H = 55H, SP = O00FCH

In the first example, the general register OOH contains the value 01H. The statement "POP OOH"
loads the contents of the location 00FBH (55H) into the destination register OOH and then
increments the stack pointer by one. The register 00H then contains the value 55H and the SP
points to the location 00FCH.

ELECTRONICS 6-63

SAMS8 INSTRUCTION SET S3C880A/F880A

POPUD - Pop User Stack (Decrementing)

POPUD

Operation:

Flags:

Format:

Example:

dst,src

dst = src
IR - IR-1

This instruction is used for user-defined stacks in the register file. The contents of the register file
location addressed by the user stack pointer are loaded into the destination. The user stack
pointer is then decremented.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

opc src | dst | 3 10 92 R IR

Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and
register 02H = 70H:

POPUD 02H,@00H ® Register OOH = 41H, register 02H = 6FH, register 42H = 6FH
If the general register O0H contains the value 42H and the register 42H the value 6FH, the

statement "POPUD 02H,@00H" loads the contents of the register 42H into the destination
register 02H. The user stack pointer is then decremented by one, leaving the value 41H.

6-64

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

POPUI - Pop User Stack (Incrementing)

POPUI

Operation:

Flags:

Format:

Example:

dst,src

dst = src
IR - IR+1

The POPUI instruction is used for user-defined stacks in the register file. The contents of the
register file location addressed by the user stack pointer are loaded into the destination. The user
stack pointer is then incremented.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst src
opc src dst 3 10 93 R IR
Given: Register 0OH = 01H and register 01H = 70H:
POPUI 02H,@00H ® Register 0OOH = 02H, register 01H = 70H, register 02H = 70H

If the general register O0H contains the value 01H and the register 01H the value 70H, the
statement "POPUI 02H,@00H" loads the value 70H into the destination general register 02H.
The user stack pointer (register O0OH) is then incremented by one, changing its value from 01H to
02H.

ELECTRONICS 6-65

SAMS8 INSTRUCTION SET S3C880A/F880A

PUSH - push to Stack

PUSH Src

Operation: SP - SP -1
@SP - src

A PUSH instruction decrements the stack pointer value and loads the contents of the source
(src) into the location addressed by the decremented stack pointer. The operation then adds the
new value to the top of the stack.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc src 2 10 (internal clock) 70 R

12 (external clock)

12 (internal clock)
14 (external clock) 71 IR

Examples: Given: Register 40H = 4FH, register 4FH = 0AAH, SPH = 0OH, and SPL = OOH:
PUSH 40H ® Register 40H = 4FH, stack register OFFH = 4FH,
SPH = OFFH, SPL = OFFH

PUSH @40H ® Register 40H = 4FH, register 4FH = 0AAH, stack register
OFFH = OAAH, SPH = OFFH, SPL = OFFH

In the first example, if the stack pointer contains the value 0000H, and the general register 40H
the value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to OFFFFH.
It then loads the contents of the register 40H into the location OFFFFH and adds this new value
to the top of the stack.

6-66 ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

PUSHUD - push User Stack (Decrementing)

PUSHUD

Operation:

Flags:

Format:

Example:

dst,src

IR- IR -1
dst = src

This instruction is used to address user-defined stacks in the register file. PUSHUD decrements
the user stack pointer and loads the contents of the source into the register addressed by the
decremented stack pointer.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

opc dst src 3 10 82 IR R

Given: Register 00OH = 03H, register 01H = 05H, and register 02H = 1AH:
PUSHUD @OOH,01H ® Register 0OOH = 02H, register 01H = 05H, register 02H = 05H

If the user stack pointer (register 00H, for example) contains the value 03H, the statement
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The
01H register value, O5H, is then loaded into the register addressed by the decremented user
stack pointer.

ELECTRONICS 6-67

SAMS8 INSTRUCTION SET S3C880A/F880A

PUSHUI - push User Stack (Incrementing)

PUSHUI

Operation:

Flags:

Format:

Example:

dst,src

R- IR+ 1
dst = src

This instruction is used for user-defined stacks in the register file. PUSHUI increments the user
stack pointer and then loads the contents of the source into the register location addressed by
the incremented user stack pointer.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst src

opc dst src 3 10 83 IR R

Given: Register 0OH = 03H, register 01H = 05H, and register 04H = 2AH:
PUSHUI @OO0H,01H ® Register OOH = 04H, register 01H = O05H, register 04H = 05H

If the user stack pointer (register OOH, for example) contains the value 03H, the statement
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H
register value, O5H, is then loaded into the location addressed by the incremented user stack
pointer.

6-68

ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

RCF - Reset Carry Flag

RCF

Operation:

Flags:

Format:

Example:

RCF

C-0
The carry flag is cleared to logic zero, regardless of its previous value.

C: Cleared to "0".

No other flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 6 CF

Given: C="1" or "0":

The instruction RCF clears the carry flag (C) to logic zero.

ELECTRONICS 6-69

SAMS8 INSTRUCTION SET S3C880A/F880A

RET - Return

RET

Operation:

Flags:

Format:

Example:

PC - @SP
SP - SP + 2

The RET instruction is normally used to return to the previously executed procedure at the end of
a procedure entered by a CALL instruction. The contents of the location addressed by the stack
pointer are popped into the program counter. The next statement that is executed is the one that
is addressed by the new program counter value.

No flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 14 AF

Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:
RET ® PC = 101AH, SP = OOFEH

The statement "RET" pops the contents of the stack pointer location OOFCH (10H) into the high
byte of the program counter. The stack pointer then pops the value in the location OOFEH (1AH)
into the PC's low byte and the instruction at the location 101AH is executed. The stack pointer
now points to the memory location OOFEH.

6-70

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

RL - Rotate Left

RL

Operation:

Flags:

Format:

Examples:

dst

C - dst(7)
dst (0) = dst(7)
dst(n + 1) = dst(n), n = 0-6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7
is moved to the bit zero (LSB) position and also replaces the carry flag.

C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 6 90 R
6 91 IR

Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:

RL OOH ® Register OOH = 55H, C = "1"
RL @01H ® Register 01H = 02H, register 02H = 2EH, C = "0"
In the first example, if the general register 00H contains the value OAAH (10101010B), the

statement "RL OOH" rotates the OAAH value left one bit position, leaving the new value 55H
(01010101B) and setting the carry and overflow flags.

ELECTRONICS 6-71

SAMS8 INSTRUCTION SET S3C880A/F880A

RLC - Rotate Left Through Carry

RLC

Operation:

Flags:

Format:

Examples:

dst
dst(0) - C
C - dst(7)

dst(n + 1) = dst(n),n = 0-6

The contents of the destination operand with the carry flag are rotated left one bit position. The
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

j
t

C: Setif the bit rotated from the most significant bit position (bit 7) was "1".

Z: Setif the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
rotation; cleared otherwise.

D: Unaffected.

H: Unaffected.

Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 6 10 R
6 11 IR

Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0"

54H, c ="1"
02H, register 02H = 2EH, C ="0"

RLC OOH ® Register O0OH
RLC @01H ® Register 01H

In the first example, if the general register 00H has the value 0OAAH (10101010B), the statement
"RLC OOH" rotates OAAH one bit position to the left. The initial value of bit 7 sets the carry flag
and the initial value of the C flag replaces bit zero of the register 00H, leaving the value 55H
(01010101B). The MSB of the register O0H resets the carry flag to "1", setting the overflow flag.

6-72

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

RR - Rotate Right

RR dst

Operation: C - dst(0)
dst (7) = dst (0)
dst(n) = dst(n + 1),n = 0-6

The contents of the destination operand are rotated right one bit position. The initial value of bit
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

Flags: C. Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 6 EO R
6 El IR

Examples: Given: Register OOH = 31H, register 01H = 02H, and register 02H = 17H:

RR OOH ® Register OOH = 98H, C = "1"
RR @01H ® Register 01H = 02H, register 02H = 8BH, C = "1"

In the first example, if the general register 00H contains the value 31H (00110001B), the
statement "RR O0H" rotates this value one bit position to the right. The initial value of bit zero is
moved to bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit
zero also resets the C flag to "1" and the sign flag and overflow flag are also set to "1".

ELECTRONICS 6-73

SAMS8 INSTRUCTION SET S3C880A/F880A

RRC -Rotate Right Through Carry

RRC

Operation:

Flags:

Format:

Examples:

dst
dst(7) - C
C - dst(0)

dst(n) = dst(n + 1),n = 0-6

The contents of the destination operand and the carry flag are rotated right one bit position. The
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit
7 (MSB).

\4
@]
\4

C: Setif the bit rotated from the least significant bit position (bit zero) was "1".

Z: Setif the result is "0" cleared otherwise.

S: Setif the result bit 7 is set; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
rotation; cleared otherwise.

D: Unaffected.

H: Unaffected.

Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 6 Co R
6 C1 IR

Given: Register OOH = 55H, register 01H = 02H, register 02H = 17H, and C = "0"

RRC OOH ® Register OOH = 2AH,C = "1"
RRC @01H ® Register 01H = 02H, register 02H = 0BH, C = "1"

In the first example, if the general register 00H contains the value 55H (01010101B), the
statement "RRC 0OH" rotates this value one bit position to the right. The initial value of bit zero
("1") replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the
new value 2AH (00101010B) in the destination register OOH. The sign flag and the overflow flag
are both cleared to "0".

6-74

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

SBO - select Bank 0

SBO

Operation: BANK = 0

The SBO instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,
selecting bank O register addressing in the set 1 area of the register file.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 6 4F
Example: The statement
SBO

clears FLAGS.0 to "0", selecting bank 0O register addressing.

ELECTRONICS 6-75

SAMS8 INSTRUCTION SET S3C880A/F880A

SB1 - select Bank 1

SB1

Operation: BANK - 1

The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,
selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not
implemented in some KS88-series microcontrollers.)

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 6 5F
Example: The statement
SB1

sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.

6-76 ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

SBC - subtract with Carry

SBC dst,src

Operation: dst = dst — src — ¢

The source operand, along with the current value of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the source are
unaffected. Subtraction is performed by adding the two's-complement of the source operand to
the destination operand. In multiple precision arithmetic, this instruction permits the carry
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of
high-order operands.

Flags: C. Setif a borrow occurred (src > dst); cleared otherwise.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign
of the result is the same as the sign of the source; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;
set otherwise, indicating a "borrow".
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc | dst | src | 2 6 32 r r
6 33 r Ir
| opc | src | dst | 3 10 34 R R
10 35 R IR
| opc | dst | src | 3 10 36 R IM

Examples: Given: R1 = 10H, R2 = 03H,C = "1", register 01H = 20H, register 02H = 03H, and
register 03H = OAH:

SBC R1,R2 ® R1 = OCH, R2 = 03H

SBC R1L,@R2 ® R1 = 05H, R2 = O3H, register 03H = OAH

SBC 01H,02H ® Register 01H = 1CH, register 02H = 03H

SBC 01H,@02H ® Register 01H = 15H,register 02H = 03H, register 03H = OAH
SBC 01H#8AH ® Register 01H = 95H; C, S,and V = "1"

In the first example, if the working register R1 contains the value 10H and the register R2 the
value 03H, the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value
("1") from the destination (10H) and then stores the result (OCH) in the register R1.

ELECTRONICS 6-77

SAMS8 INSTRUCTION SET S3C880A/F880A

SCF - set Carry Flag

SCF

Operation:

Flags:

Format:

Example:

cC-1
The carry flag (C) is set to logic one, regardless of its previous value.

C: Setto"1".

No other flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 6 DF

The statement
SCF

sets the carry flag to logic one.

6-78

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

SRA - shift Right Arithmetic

SRA dst

Operation: dst (7) = dst(7)
C - dst(0)
dst(n) = dst(n + 1),n = 0-6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into the

bit position 6.
7 6 0
»| C |:

Flags: C: Set if the bit shifted from the LSB position (bit zero) was "1".

Z: Setif the result is "0"; cleared otherwise.

S: Set if the result is negative; cleared otherwise.

V: Always cleared to "0".

D: Unaffected.

H: Unaffected.
Format:

Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 6 DO R
6 D1 IR

Examples: Given: Register 00H = 9AH, register 02H = 03H, register 03H = OBCH,and C = "1":

SRA OOH ® Register 0OOH = 0CDH, C = "0"
SRA @02H ® Register 02H = 0O3H, register 03H = ODEH, C = "0"

In the first example, if the general register 00H contains the value 9AH (10011010B), the
statement "SRA 00H" shifts the bit values in the register O0H right one bit position. Bit zero ("0")
clears the C flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged).
This leaves the value OCDH (11001101B) in the destination register O0H.

ELECTRONICS 6-79

SAMS8 INSTRUCTION SET S3C880A/F880A

SRP/SRPO/SRP1 - set Register Pointer

SRP

SRPO

SRP1

Operation:

Flags:

Format:

Examples:

src
src
src
If src (1) = 1andsrc (0) = Othen: RPO(3-7) - src(3-7)
If src (1) = Oand src (0) = 1then: RP1(3-7) = src (3-7)
If src (1) = Oand src (0) = Othen: RPO (4-7) - src (4-7),

RPO (3) - 0
RP1 (4-7) = src (4-7),
RP1 (3) - 1

The source data bits one and zero (LSB) determine whether to write one or both of the register
pointers, RPO and RP1. Bits 3—7 of the selected register pointer are written unless both register
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) src

opc src 2 6 31 IM

The statement
SRP #40H

sets the register pointer 0 (RPO) at location 0D6H to 40H and the register pointer 1 (RP1) at
location OD7H to 48H.

The statement "SRPO #50H" sets RPO to 50H, and the statement "SRP1 #68H" sets RP1 to
68H.

6-80

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

STOP - Stop Operation

STOP
Operation:
The STOP instruction stops both the CPU clock and the system clock causing the microcontroller
to enter Stop mode. During Stop mode, the contents of on-chip CPU registers, peripheral
registers, and I/O port control and data registers are retained. Stop mode can be released only
by an external reset operation. For the reset operation, the RESET pin must be held to Low level
until the required oscillation stabilization interval has elapsed.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
opc 1 3 TF - -
Example: The statement

STOP

halts all microcontroller operations.

ELECTRONICS 6-81

SAMS8 INSTRUCTION SET

S3C880A/F880A

SUB - subtract

SUB

Operation:

Flags:

Format:

Examples:

dst,src

dst = dst —src

The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. Subtraction is performed by adding the
two's complement of the source operand to the destination operand.

IO <uONO

set otherwise, indicating a "borrow".

opc dst |
src
| opc | src | dst |
| opc | dst | src |

Given: R1 = 12H, R2 = 03H, register 01H

SUB
SUB
SUB
SUB
SUB
SUB

In the first example, if the working register R1 contains the value 12H and the register R2

R1,R2
R1,@R2
01H,02H
01H,@02H
01H,#90H
01H,#65H

®
®
®
®
®

®

R1
R1
Register 01H
Register 01H
Register 01H
Register 01H

OFH, R2
08H, R2

Set if a "borrow" occurred; cleared otherwise.
Set if the result is "0"; cleared otherwise.
Set if the result is negative; cleared otherwise.
Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the
sign of the result is of the same as the sign of the source operand; cleared otherwise.

Always set to "1".
Cleared if there is a carry from the most significant bit of the low-order four bits of the result;

Bytes Cycles Opcode Addr Mode

(Hex) dst
2 6 22 r
6 23 r
3 10 24 R
10 25 R
3 10 26 R

21H, register 02H = 03H, register 03H =

= O03H

= 03H

1EH, register 02H = 03H

17H, register 02H = 03H

91H; C,S,and V = "1"
OBCH;Cand S = "1",V = "0"

src

r

OAH:

contains the value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the
destination value (12H), storing the result (OFH) in the destination register R1.

6-82

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

SWAP - Swap Nibbles

SWAP dst

Operation: dst(0-3) « dst(4-7)
The contents of the lower four bits and the upper four bits of the destination operand are

swapped.
7 £ 4 3 0
Flags: C: Undefined.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
opc dst 2 8 FO R
8 F1 IR

Examples: Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:

SWAP OOH ® Register OOH = OE3H
SWAP @02H ® Register 02H = 03H, register 03H = 4AH
In the first example, if the general register 00H contains the value 3EH (00111110B), the

statement "SWAP O00H" swaps the lower and the upper four bits (nibbles) in the O0H register,
leaving the value OE3H (11100011B).

ELECTRONICS 6-83

SAMS8 INSTRUCTION SET

S3C880A/F880A

TCM - Test Complement under Mask

TCM

Operation:

Flags:

Format:

Examples:

dst,src

(NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask). The TCM statement complements the destination operand, which is then ANDed with the
source mask. The zero (Z) flag can then be checked to determine the result. The destination and
source operands are unaffected.

C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|src| 2 6 62 r r
6 63 r Ir
| opc | src | dst | 3 10 64 R R
10 65 R IR
| opc | dst | src | 3 10 66 R IM

Given: RO = 0C7H, R1 = 02H, R2 = 12H, register 0OOH = 2BH, register 01H = 02H, and
register 02H = 23H:

TCM RO,R1 ® RO = OC7H,R1 = O2H,Z = "1"
TCM RO,@R1 ® RO = OC7H,R1 = O2H, register 02H = 23H,Z = "0"
TCM OOH,01H ® Register 0OOH = 2BH, register 01H = 02H,Z = "1"
TCM OOH,@01H ® Register OOH = 2BH, register 01H = 02H,

register 02H = 23H,Z = "1"

TCM O0H,#34 ® Register OOH = 2BH, Z = "0"

In the first example, if the working register RO contains the value 0C7H (11000111B) and the
register R1 the value 02H (00000010B), the statement "TCM RO,R1" tests bit one in the
destination register for a "1" value. Because the mask value corresponds to the test bit, the Z
flag is set to logic one and can be tested to determine the result of the TCM operation.

6-84

ELECTRONICS

S3C880A/F880A SAMS8 INSTRUCTION SET

TM - Test under Mask

™ dst,src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to
determine the result. The destination and source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst src
| opc |dst|src| 2 6 72 r r
6 73 r Ir
| opc | src | dst | 3 10 74 R R
10 75 R IR
| opc | dst | src | 3 10 76 R IM

Examples: Given: RO = 0C7H, R1 = 02H, R2 = 18H, register 0O0H = 2BH, register 01H = 02H, and
register 02H = 23H:

™ RO,R1 ® RO = OC7H,R1 = 02H,Z = "0"
™ RO,@R1 ® RO = OC7H, R1 = O2H, register 02H = 23H,Z = "0"
™ OOH,01H ® Register 0OOH = 2BH, register 01H = 02H,Z = "0"
™ OOH,@01H ® Register 0OOH = 2BH, register 01H = 02H,

register 02H = 23H,Z = "0"
™ OOH#54H ® Register OOH = 2BH, Z = "1"

In the first example, if the working register RO contains the value 0C7H (11000111B) and the
register R1 the value 02H (00000010B), the statement "TM RO,R1" tests bit one in the
destination register for a "0" value. Because the mask value does not match the test bit, the Z
flag is cleared to logic zero and can be tested to determine the result of the TM operation.

ELECTRONICS 6-85

SAMS8 INSTRUCTION SET S3C880A/F880A

WFI - wait for Interrupt

WFI
Operation:

The CPU is effectively halted until an interrupt occurs, except in the case that DMA transfers can

still take place during this wait state. The WFI status can be released by an internal interrupt,

including a fast interrupt .
Flags: No flags are affected.
Format:

Bytes Cycles Opcode
(Hex)
opc 1 6n 3F
(n=123..)

Example: The following sample program structure shows the sequence of operations that follow a "WFI"

statement:

Main program

El (Enable global interrupt)
—— WFI (Wait for interrupt)
(Next instruction)

\4

Interrupt occurs

Vot

Interrupt service routine

Clear interrupt flag
IRET

I: Service routine completed

6-86 ELECTRONICS

S3C880A/F880A

SAMS8 INSTRUCTION SET

XOR - Logical Exclusive OR

XOR

Operation:

Flags:

Format:

Examples:

dst,src

dst = dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever

the corresponding bits in the operands are different; otherwise, a "0" bit is stored.

C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode
(Hex)
| opc |dst|src| 2 6 B2
6 B3
| opc | src | dst | 3 10 B4
10 B5
| opc | dst | src | 3 10 B6

Given: RO = 0C7H, R1 = 02H, R2 = 18H, register 0O0H = 2BH, register 01H =
register 02H = 23H:

Addr Mode
dst src
r r
r Ir
R R
R IR
R IM
02H, and

XOR RO,R1 ® RO = OC5H, R1 = 02H

XOR RO,@R1 ® RO = OE4H, R1 = 02H, register 02H = 23H

XOR O0H,01H ® Register OOH = 29H, register 01H = 02H

XOR OOH,@01H ® Register OOH = 08H, register 01H = 02H, register 02H = 23H
XOR OOH#54H ® Register OOH = 7FH

In the first example, if the working register RO contains the value OC7H and the register R1

contains the value 02H, the statement "XOR RO,R1" logically exclusive-ORs the R1 value with

the RO value, storing the result (OC5H) in the destination register RO.

ELECTRONICS

6-87

SAMS8 INSTRUCTION SET S3C880A/F880A

NOTES

6-88 ELECTRONICS

S3C880A/F880A CLOCK CIRCUITS

CLOCK CIRCUITS

OVERVIEW

The clock frequency generated by an external crystal or ceramic resonator may range from 0.5 MHz to 8 MHz.
The maximum CPU clock frequency is 8 MHz. The X,y and X1 pins connect the external oscillation source to

the on-chip clock circuit.

A separate external L-C resonator circuit generates a clock pulse for the on-screen display (OSD) block.
SYSTEM CLOCK CIRCUIT

The system clock circuit has the following components:

— External crystal or ceramic oscillation source
— Oscillator stop and wake-up functions
— Programmable frequency divider for the CPU clock (fog¢ divided by 1, 2, 8, or 16)

— Clock circuit control register, CLKCON

—1 S3C880A/F880A

C2 XouT

NOTE: In XN, XouT pin, 10 pF load capacitor is built-in.

Figure 7-1. Main Oscillator Circuit (External Crystal or Ceramic Resonator)

ELECTRONICS 7-1

CLOCK CIRCUITS S3C880A/F880A

CLOCK STATUS DURING POWER-DOWN MODES
The two power-down modes, Stop mode and Idle mode, affect system clock oscillation as follows:

— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator started, by a reset
operation or by an external interrupt (with RC-delay noise filter).

— In Idle mode, the internal clock signal is gated off to the CPU and to all peripherals except for the OSD block,
Timer A counter, PWM, and capture (CAPA), which are inactive. Idle mode is released by a reset or by all

interrupt.
Stop
CLKCON.5, .6 Instruction CLKCON.3, .4
CLKCON.0-.2
3-Bit Signature Code®
Oscillator >
Stop
Main 1/2 M M
0SsC u »| U —» CPU Clock
1/8 X X
Oscillator
Wake-up
Noise
Filter
CLKCON.7 Al
INT Pin®
NOTES:
1. An external interrupt (with RC-delay noise filter) can be used to release Stop mode and
"wake up" the main oscillator. This interrupt type includes INTO-INT3 and CAPA input.
2. For S3F880A, the CLKCON signature code (CLKCON.0-CLKCON.2) should not be
'"101B' (because no subsystem clock is implemented)

Figure 7-2. System Clock Circuit Diagram

7-2 ELECTRONICS

S3C880A/F880A CLOCK CIRCUITS

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in set 1 at address D4H. It is read/write addressable and
has the following functions:

— Oscillator IRQ wake-up function enable/disable

— Main oscillator stop control

— Oscillator frequency divide-by value: non-divided, 2, 8, or 16

— System clock signal selection

The CLKCON register controls whether or not an external interrupt can be used to trigger a power-down mode
release. (This is called the "IRQ wake-up" function.) The IRQ wake-up enable bit is CLKCON.7.

After a reset, the external interrupt oscillator wake-up bit is set to "1", the main oscillator is activated, and the
fosc/16 (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the CPU

clock speed to fygc, fogc/2, or fogc/8.

For the S3C880A/F880A, the CLKCON.0—CLKCON.2 system clock signature code should be any value other
than '101B'". (This setting is invalid because a subsystem clock is not implemented.) The reset value for the clock
signature code is '000B'.

System Clock Control Register (CLKCON)
D4H, Set 1, R/W

MSB | 7 .6 5 4 3 2 d .0 | LSB

Oscillator IRQ wake-up enable bit: System clock selection bits: ~ (ote)
0 = Enable IRQ for main system 101B = Invalid selection
oscillator wake-up in Other value = Normal operating mode

power-down mode

1 = Disable IRQ for main system
Oscillator wake-up in
power-down mode

Divide-by selection bits for
CPU clock frequency:

00 =fosc/16

01 =fosc/8

10 =fosc/2

11 =fosc/(hon-divided)

Main oscillator stop control bits: (note)
00 = No effect

01 = No effect

10 = Stop main oscillator

11 = No effect

NOTE: Not used in S3C880A.
These setting is valid in subsystem clock operation.
S3C880A is not implemented subsystem operation function.

Figure 7-3. System Clock Control Register (CLKCON)

ELECTRONICS 7-3

CLOCK CIRCUITS S3C880A/F880A

L-C Oscillator Circuit

The L-C oscillator circuit has the following components:

— External L-C oscillator with a 5-8 MHz frequency range

— Oscillator clock divider value (CHACON.4 and CHACON.5)

— OSCy and OSCg 7 pins

— On/off control bit (DSPCON.0)

Red-green-blue (RGB) color outputs, as well as display rates and positions, are determined by the L-C clock
signal. This signal is scaled by the dot and column counter. The clock signal equals to the OSD oscillator clock

divided by the clock divider value. The clock divider value is determined by the horizontal character size settings
in the CHACON register.

The rate at which each new display line is generated is determined strictly by the H-sync input. The rate at which
each new frame (screen) is generated is determined by the V-sync input.

NOTE: For stable on screen display operation, the CPU clock frequency should faster than L-C (OSD) clock.

Cl1=20pF OSCN

.

L S3C880A/F880A

——

C2=20pF OSDourt

Figure 7-4. L-C Oscillator Circuit for OSD

7-4 ELECTRONICS

S3C880A/F880A CLOCK CIRCUITS

L-C oscillator Operating Condition

To operate the LC oscillator, the following conditions must be satisfied.

— LC oscillator operation must be enabled by setting DSPCON.0 to “1”".
— V-sync signal and H-sync signal must be input.
— LC oscillator must be operated except at the range of H-sync blanking and V-sync blanking.

H-sync Blanking Range

54— V-sync Blanking Range —»

V-sync Signal i
H-sync Signal |—| |—| |—| |—| |—| |—|

L-C OSC on

L-C OSC off

L

RELATION BETWEEN L-C OSCILLATOR AND CPU CLOCK

For normal On Screen Display, L-C oscillator less than CPU Clock + 10 % is better. For 8 MHz CPU clock, an
active L-C oscillator clock range is lower than 9MHz.

ELECTRONICS 7-5

CLOCK CIRCUITS S3C880A/F880A

NOTES

7-6 ELECTRONICS

S3C880A/F880A RESET and POWER-DOWN

RESET and POWER-DOWN

SYSTEM RESET

OVERVIEW

During a power-on reset, the voltage at V5 is High level and the RESET pin is forced to Low level. The RESET

signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This brings the
S3C880A/F880A into a normal operating status.

The RESET pin must be held to Low level for a minimum time interval after the power supply comes within
tolerance in order to allow time for internal CPU clock oscillation to stabilize. The minimum time required for
oscillation stabilization for a reset is 1 millisecond.

When a reset occurs during the normal operation (that is, when V5 and RESET are High level), the RESET pin
is forced Low and the reset operation starts. All system and peripheral control registers are set to their default
hardware reset values (see Table 8-1). In summary, the following sequence of events occurs during a reset
operation:

— Allinterrupts are disabled.

— The watchdog function (basic timer) is enabled.

— Ports P0.0-P0.5, P1.6—P1.7 and P2are set to input mode, and P0.6—P0.7, P1.0-P1.5 and P3, these ports set
to N-channel open-drain output mode.

— Peripheral control and data registers are disabled and reset to their initial control values.
— The program counter is loaded with the ROM's reset address, 0100H.

— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in the ROM
location 0100H (and 0101H) is fetched and executed.

NOTE

You can program the duration of the oscillation stabilization interval by making the appropriate settings to
the basic timer control register, BTCON, before entering Stop mode. Also, you if you do not want to use
the basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs),
you can disable it by writing '1010B' to the upper nibble of BTCON.

ELECTRONICS 8-1

RESET and POWER-DOWN S3C880A/F880A

HARDWARE RESET VALUES

Tables 8-1 through 8-3 list the reset values for CPU and system registers, peripheral control registers, and
peripheral data registers after a reset operation. The following notation is used to represent reset values:

— A"1" or a "0" shows the reset bit value as logic one or logic zero, respectively.
— An X' means that the bit value is undefined after a reset.

— A dash (=) means that the bit is either not used or not mapped.

Table 8-1. Set 1 Register Values after a Reset

Register Name Mnemonic Address Bit Values After a Reset

Dec Hex 7 6 5 4 3 2 1 0
Timer O counter TOCNT 208 DOH 0 0 0 0 0 0 0 0
Timer O data register TODATA 209 | D1H | 1 1 1 1 1 1 1 1
Timer O control register TOCON 210 | D2H | O 0 0 0 0 0 0 0
Basic timer control register BTCON 211 D3H | O 0 0 0 0 0 0 0
Clock control register CLKCON 212 | D4H| 0O | O] O|O]J]O|O]O|O
System flags register FLAGS 213 | D5H | x X X X X X 0 0
Register pointer 0 RPO 214 | D6H | 1 1 0 0 ol -1-1-
Register pointer 1 RP1 215 | D7/H | 1 1 0 0 1 - -1 -
Stack pointer (high byte) SPH 216 | D8H | x X X X X X X X
Stack pointer (low byte) SPL 217 D9H | x X X X X X X X
Instruction pointer (high byte) IPH 218 | DAH | x X X X X X X X
Instruction pointer (low byte) IPL 219 | DBH | x X X X X X X X
Interrupt request register IRQ 220 | DCH | O 0| - 0 0 0 0 0
Interrupt mask register IMR 221 | DDH | x X - X X X X X
System mode register SYM 222 | DEH | 0 | - 0 X X X 0 0
Register page pointer PP 223 | DFH | O 0 0 0 0 0 0 0

NOTE: Although it is not used for the S3C880A/F880A, bit 5 of the SYM register should always be "0". If this bit is
accidentally written to "1" by software, a system malfunction may occur.

8-2 ELECTRONICS

S3C880A/F880A

RESET and POWER-DOWN

Table 8-2. Set 1, Bank 0 Register Values after a Reset

Register Name Mnemonic Address Bit Values After a Reset
Dec Hex 7 6 5 4 3 2 1 0
Port O data register PO 224 | EOH|(O | O | O[O O|O|O|O
Port 1 data register P1 25 | EIH|{O|O|O|O|O|O|O|O
Port 2 data register P2 226 | E2ZH|(O | O | O[O | O|O| O[O
Port 3 data register P3 227 EBH | - | - | - -1 -1 - 0 0
Port 0 control register (high byte) POCONH 228 | E4H | 1 1 1 1 0| 0| 0] O
Port 0 control register (low byte) POCONL 229 E5H | O 0 0 0 0 0 0 0
Port 1 control register (high byte) P1CONH 230 | EBH | O | O | O | O 1 1 1 1
Port 1 control register (low byte) P1CONL 231 E7H 1 1 1 1 1 1 1 1
Port 2 control register (high byte) P2CONH 232 | EBH|{ O | O|O|O|O|O|O|O
Port 2 control register (low byte) P2CONL 233 E9H | O 0 0 0 0 0 0 0
Location EAH in set 1, bank 0, are not mapped.
Port 3 control register (low byte) | P3CONL | 235 | EBH | - | - | - | - | 1 | 1 | 1 1
Locations ECH-EFH in set 1, bank 0, are not mapped.
Timer A data register | TADATA | 240 [FoH [0 [o] o] o|o|o]o]o
Location F1H in set 1, bank 0, are not mapped.
Timer A control register TACON 242 F2H 0 0 0 0 0 0 0| -
STOP control register STCON 238 F3H 0 0 0 0 0 0 0 0
PWMO data register (main byte) PWMO 244 | F4H | 1 |2 | 1 (1|1 |1] 1|1
PWMO data register (extension byte) PWMOEX | 245 F5H 0 0 0 0 0 o - | -
PWML1 data register (main byte) PWM1 246 F6H 1 1 1 1 1 1 1 1
PWML1 data register (extension byte) PWM1EX | 247 F7H 0 0 0 0 0 o - | -
PWM control register PWMCON | 248 F8H 0 0 0 0 0| - 0 0
Capture A data register CAPA 249 FOH 0 0 0 0 0 0 0 0
A/D converter control register ADCON 250 | FAH | - | = | O | O | x 0| 0] O
A/D conversion data register ADDATA 251 | FBH | x X X X X X X X
Location FCH in set 1, bank 0, are not mapped.
Basic timer counter BTCNT 253 | FDH | O 0 0 0 0
External memory timing register EMT 254 | FEH | O 0 0 0 0 0 0| -
Interrupt priority register IPR 255 | FFH | X X - | x X X X X

ELECTRONICS

8-3

RESET and POWER-DOWN

S3C880A/F880A

Table 8-2. Set 1, Bank 1 Register Values after a Reset

Register Name Mnemonic Address Bit Values After a Reset

Dec | Hex 7 6 5 4 3 2 1 0
OSD fringe/border control register 1 OSDFRG1 | 224 | EOH | O 0 0 0 0 0 0 0
OSD fringe/border control register 2 OSDFRG2 | 225 | EIH | O 0 0 0 0 0 0 0
OSD smooth control register 1 OSDSMH1 | 226 | E2H | O | O | O | O | O | O | O | O
OSD smooth control register 2 OSDSMH2 | 227 | EBH | - | = | - | = | O | O | O | O
OSD space color control register OSDCOL 236 | E4AH | - | = | = | = 0 0 0 0
OSD field control register OSDFLD 237 | E5H | — | = | X 0 0 1 1 0
OSD palette color mode R 1 OSDPLTR1 (230 | EBH | O | O | O | O | O | O | O | O
OSD palette color mode R 2 OSDPLTR2 | 231 | E7H 1 1 1 1 1 1 1 1
OSD palette color mode G 1 OSDPLTG1 | 232 | E8H | 1 1 1 1 0| 0] 0] O
OSD palette color mode G 2 OSDPLTG2 | 233 | E9H | 1 1 1 1 0| 0| 0] O
OSD palette color mode B 1 OSDPLTB1 | 234 | EAH | 1 1 0 0 1 1 0 0
OSD palette color mode B 2 OSDPLTB2 | 235 | EBH | 1 1 0 0 1 1 0 0

Locations ECH-EFH in set 1, bank 1, are not mapped.

OSD character size control register CHACON 240 | FOH 0 0 0 0 0 0 0 0
OSD fade control register FADECON (241 (FAIH| O | O | O | O] O] O] O | O
OSD row position control register ROWCON (242 F2H | O | O | O] O] O] O] 0] O
OSD column position control register CLMCON (243 | FBH| O | O | O|O|O|O|O]|O
OSD background color control register | COLCON 244 | F4H 0 0 0 0 0 0 0 0
On-screen display control register DSPCON 245 | FBH | O | O[O | OO | O | O | O
Halftone signal control register HTCON 246 | FGH | O | O | O | O | O | O | O | O
V-SYNC blank control register VSBCON 252 | FTH | — | = | - 0 1 0 0 1
PWM2 data register PWM2 248 | F8H | X X X X X X X X
PWM3 data register PWM3 249 | FO9H | x X X X X X X X
PWM4 data register PWM4 250 | FAH | Xx X X X X X X X
PWM5 data register PWM5 251 | FBH | x X X X X X X X
OSD color buffer COLBUF 247 | FCH | = | = | = | x X X X X

Locations FDH-FFH in set 1, bank 1, are not mapped.

Table 8-3. Page 1 Video RAM Register Values after a Reset

Register Name

Address

Bit Values After a Reset

6

5

4

3

2

OSD video RAM

00H—FBH

X

X

X

X

X

8-4

ELECTRONICS

S3C880A/F880A RESET and POWER-DOWN

POWER-DOWN MODES

STOP MODE

Stop mode is invoked by the instruction Stop (opcode 7FH) however Stop available state must be set by value
"10100101b" in "STCON" register before Stop instruction is invoked. If Stop instruction (opcode 7FH) is executed
in Stop not available state (STCON = other value except "10100101b") CPU go to RESET address. After Stop
instruction is executed the state return to Stop not available state.

In Stop mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops
and the supply current is reduced to less than maximum 10 pA. All system functions stop when the clock
"freezes," but data stored in the internal register file is retained. Stop mode can be released in one of two ways:

by a RESET signal or by an external interrupt.

Using RESET to Release Stop Mode

Stop mode is released when the RESET signal goes inactive (High level) from active (Low level) state.

All system and peripheral control registers are reset to their default values and the contents of all data registers
are retained. A reset operation automatically selects a slow clock (1/16) because CLKCON.3 and CLKCON.4 are
cleared to '00B'. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system
initialization routine by fetching the address stored in the ROM location 0100H.

Using an External Interrupt to Release Stop Mode

Two kinds of external interrupts with an RC-delay noise filter circuit can be used to release Stop mode. One
external interrupts in the S3C880A/F880A interrupt structure that meet this requirement are INTO—INT3 (P1.0-
P1.3) and the other one is V-sync input. Which interrupt you can use to release Stop mode in a given situation
depends on the microcontroller's current internal operating mode.

Note that when Stop mode is released by an external interrupt, the current values in system and peripheral
control registers are not changed. When you use an interrupt to release Stop mode, the CLKCON.3 and
CLKCON.4 register values remain unchanged, and the currently selected clock value is used. If you use an
external interrupt for Stop mode release, you can also program the duration of the oscillation stabilization
interval. To do this, you must make the appropriate control and clock settings before entering Stop mode.

The external interrupt is serviced when a Stop mode release occurs. Following the IRET from the service routine,
the instruction immediately following the one that initiated Stop mode is executed.

ELECTRONICS 8-5

RESET and POWER-DOWN S3C880A/F880A

IDLE MODE

Idle mode is invoked by the instruction IDLE (opcode 6FH). In Idle mode, the CPU operations are halted while
selected peripherals remain active. During Idle mode, the internal clock signal is gated off to the CPU and all
peripherals except the OSD block timer A counter, PWM and capture (CAPA). Port pins retain the mode (input or
output) they had at the time Idle mode was entered.

There are two ways to release Idle mode:

1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents
of all data registers are retained. The reset automatically selects a slow clock (1/16) because CLKCON.3 and
CLKCON.4 are cleared to '00B'. If interrupts are masked, a reset is the only way to release Idle mode.

2. Activate any enabled interrupt, causing Idle mode to be released. When you use an interrupt to release Idle
mode, the CLKCON.3 and CLKCON.4 register values remain unchanged, and the currently selected clock
value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction
immediately following the one that initiated Idle mode is executed.

NOTE

Only external interrupts can be used to release Stop mode. To release Idle mode, you can use either
type of interrupt (internal or external).

200 KW: rorrmmmiiieeaaa
—D_: 0
: 0.1-10 nF :
Internal : . .
+— ecomman

External Circuit

Figure 8-1. Reset Circuit Application

8-6 ELECTRONICS

S3C880A/F880A RESET and POWER-DOWN

= pROGRAMMING TIP — Enter to Stop Mode

The following sample program shows you recommended entering Stop mode for the S3C880A/F880A.

Id STCON, #10100101b ; After this instruction is executed

; Stop instruction is available
STOP
NOP ; NOP need more than three after STOP instruction
NOP
NOP
STCON STON
< #10100101b Instruction
[}
:+ i Stop available state is released
I ! _automa_tically after STOP
Stop Available Enable i nstruction.
State Disable i
[} [}
| |
[} [}
Enable i
Stop State :
Disable :

Figure 8-2. Stop State Timing Diagram

ELECTRONICS 8-7

RESET and POWER-DOWN

S3C880A/F880A

I pROGRAMMING TIP — Initial Settings for Address Space, Vectors, and Peripherals

The following sample program shows you recommended initial settings for the S3C880A/F880A address space,

interrupt vectors, and peripheral functions. Program comments guide you through the required steps:

OSD_REG
OSD_FLG
DSP_TYP
VRAMAD
WORK1
WORK2
REMOCON

START

EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG
DW

ORG
DW

ORG
DW
DW
DW
DW
DW

ORG
DW

ORG
DW

ORG

DI
LD
LD
CLR
CLR

SB1

0C8H

OCH
OBH
OAH
3FH

02H
CAPA_INT

OBEH
TIMERA_INT

0COH
P10_INT
P11_INT
OSD ROW_INT
P12_INT
P13_INT

0D4H
V_SYNC_INT

OFCH
TIMERO_INT

0100H

BTCON,#0AAH
CLKCON,#98H
SYM
SPL

(Continued on next page)

OSD working register area

General-purpose area
General-purpose area
CAPA data save register

Capture A interrupt

Timer A interrupt

P1.0 external interrupt
P1.1 external interrupt
OSD ROW interrupt

P1.2 external interrupt
P1.3 external interrupt

V-sync interrupt

Timer O interrupt

Disable all interrupts

Disable the watchdog timer
Non-divided clock

Disable global and fast interrupts
Stack pointer low byte - "0"
Stack area will start at OFFH
Select bank 1

8-8

ELECTRONICS

S3C880A/F880A

RESET and POWER-DOWN

I pROGRAMMING TIP — Initial Settings for Address Space, Vectors, and Peripherals (Continued)

MAIN

CAPA_INT:

LD
LD
SBO
LD

LD

LD
LD
LD
LD
LD
LD
LD
LD

LD

LD
El

NOP
NOP

NOP
JP

PUSH
PUSH
PUSH

LD

POP
POP
POP
IRET

HTCON,#2AH
DSPCON,#0AOH

PWMCON,#0E9H

IPR,#0AEH

IMR,#0CCH
POCONH,#00H
POCONL,#0FFH
P1CONH,#0FFH
P1CONL,#00H
P2CONH,#00H
P2CONL,#00H
P3CONL,#00H

TACON,#54H

TADATA,#03H

T,MAIN

PP
RPO
RP1

REMOCON,CAPA

RP1
RPO
PP

(Continued on next page)

Enable OSD ROW interrupt
Enable V-sync interrupt
Disable OSD logic

Select bank O

Prescaler = 4

Enable PWM counter

Enable capture A interrupt
Interrupt priority settings

IRQ6 >7 >3 >2>0>1
Enable level 2, 3, 6, and 7 interrupts
Input mode

Push-pull output mode

Output mode

Input mode

Input mode

Input mode

Input mode

Prescaler = 6

Clock source = CPU clock / 1000
Enable timer A interrupt

Interval timer mode

4-millisecond interrupt

Jump MAIN

CAPA interrupt service

Save page pointer to stack
Save register pointer 0 to stack
Save register pointer 1 to stack

REMOCON - CAPA data
Restore register pointer 1 value
Restore register pointer 0 value
Restore page pointer value

Return from interrupt service routine

ELECTRONICS

8-9

RESET and POWER-DOWN S3C880A/F880A

I pROGRAMMING TIP — Initial Settings for Address Space, Vectors, and Peripherals (Continued)

TIMERA_INT PUSH PP ; TIMER_A interrupt service
PUSH RPO
PUSH RP1

LD TACON, #54H ; Clear pending bit

POP RP1

POP RPO

POP PP

IRET ; Return from interrupt service routine
V_SYNC_INT PUSH PP ; V_SYNC interrupt service

PUSH RPO
PUSH RP1

SB1

LD HTCON, #3AH ; Clear pending bit

POP RP1

POP RPO

POP PP

IRET ; Return from interrupt service routine
OSD ROW_INT:

PUSH PP

PUSH RPO

PUSH RP1

SB1

LD HTCON, #2BH ; Clear pending bit

POP RP1

POP RPO

POP PP

IRET
P10_INT: ; P1.0 external interrupt
P11 INT: ; P1.1 external interrupt
P12 INT: ; P1.2 external interrupt
P13_INT: ; P1.3 external interrupt
TIMERO_INT: ; Timer O interrupt

IRET ; Return from interrupt service routine

8-10 ELECTRONICS

S3C880A/F880A /0 PORTS

/O PORTS

OVERVIEW

The S3C880A/F880A and the S3C880A/F880A microcontrollers have four I/0O ports with a total of 26 pins. Up to
10 pins can be configured as n-channel open-drain outputs. Of these 10 open-drain pins, 6 pins can withstand
loads of up to 6 volts and 4 pins can withstand loads of up to 5 volts.

The CPU accesses ports by directly writing or reading port registers. No special I/O instructions are required.
Table 9-1 gives you a summary of port functions:

Table 9-1. S3C880A/F880A Port Configuration Overview

Port Configuration Options Programmability

0 General I/0O port, configurable for digital input or Bit programmable
push-pull output. Pins P0.6—P0.7 are multiplexed to
support alternative function.

1 General I/O port, configurable for digital input or Bit programmable
n-channel open-drain output. Pins 1.0—P1.5 can
withstand up to 6-volt loads. Pins 1.0-P1.3 are
multiplexed to support alternative functions.

2 General I/0 port, configurable for n-channel open-drain Bit programmable
or push-pull output mode by software. Pins can withstand
up to 5-volt loads. Each pin has an alternative function.

3 General 2-bit 1/0 port, configurable for digital input or Bit programmable
n-channel open-drain output. Pins can withstand up to
5 V. P3.0-P3.1 can be alternately used as external
interrupt inputs ADCO-ADCL1.

ELECTRONICS 9-1

/0 PORTS

S3C880A/F880A

PORT DATA REGISTERS

Data registers for ports 0—3 have the structure shown in Figure 9-1. Table 9-2 gives you an overview of the port

data register locations:

Table 9-2. Port Data Register Summary

Pn.7 Pn6 Pn5 Pn4 Pn3 Pn2 Pnl Pn.O

Register Name Mnemonic Decimal Hex Location R/W
Port O data register PO 224 EOH Set 1, bank 0 R/W
Port 1 data register P1 225 E1H Set 1, bank 0 R/W
Port 2 data register P2 226 E2H Set 1, bank 0 R/W
Port 3 data register P3 227 E3H Set 1, bank 0 R/W
1/0 Port n Data Register (n = 0-3)
MSB T .6 5 4 3 2 1 .0 LSB

Port O

Figure 9-1. Port Data Register Format

Port 0 is a bit-programmable general I/O port. Port 0 is accessed directly by writing or reading the port 0 data
register, PO (EOH, set 1, bank 0).

The port 0 pins are configured by bit-pair settings in the POCONH and POCONL registers. POCONH controls /O
for the upper byte pins and POCONL controls 1/O for the lower byte pins.

9-2

ELECTRONICS

S3C880A/F880A

/0 PORTS

Port 0 Control Register, High Byte (POCONH)
E4H, Set 1, Bank 0, R/'W

MSB 7 .6 5 A4 3 .2 1 .0 LSB

P0.7/ADC2 PO0.6/ADC2 P0.5 P0.4
POCONH Pin Configuration Settings:
00 | Input mode
01 | Input mode (P0.4-P0.5), ADC input mode (P0.6-P0.7)
10 | Push-pull output mode (P0.4-P0.5), open-drain output mode (P0.6-P0.7)
11 | Push-pull output mode (P0.4-P0.5), open-drain output mode (P0.6-P0.7)

Figure 9-2. Port 0 High-Byte Control Register (POCONH)

MSB

Port 0 Control Register, Low Byte (POCONL)
E5SH, Set 1, Bank 0, R/W

7 .6 5 A4 3 .2 1 .0 LSB

PO.3 P0.2 PO.1 PO.0

POCONL Pin Configuration Settings:

00 | Input mode

01 | Input mode

10 | N-channel open-drain output mode (5V load capacity)
11 | Push-pull output mode

Figure 9-3. Port 0 Low-Byte Control Register (POCONL)

ELECTRONICS

9-3

/0 PORTS

S3C880A/F880A

PORT 1

Port 1 is a bit-programmable general I/O port. Port 1 is accessed directly by writing or reading the port 1 data

register, P1 (E1H, set 1, bank 0). The upper byte (P1.4-P1.7) and the lower byte (P1.0—P1.3) are controlled by
the PLCONH and P1CONL registers, respectively. PLCONH is located at E6H in set 1, bank 0 and PLCONL is
located at E7H in set 1, bank 0.

Port 1 Control Register, High Byte (PLCONH)
E6H, Set 1, Bank 0, R/'W

MSB 7 .6 5 A4 .3 .2 1 .0 LSB

P1.7/TOCK P1.6 P1.5 P1.4

P1CONH Pin Configuration Settings:

00 | Input mode

01 | Inputmode (P1.4-P1.6), Timer O clock input: TOCK (P1.7)

10 | P1.4-P1.5: N-channel open-drain mode (6V load capacity),
P1.6-P1.7: Push-pull output mode

11 | P1.4-P1.5: N-channel open-drain mode (6V load capacity),
P1.6-P1.7: Push-pull output mode

Figure 9-4. Port 1 High-Byte Control Register (P1LCONH)

Port 1 Control Register, Low Byte (P1CONL)
E7H, Set 1, Bank 0, R/'W

MSB 7 .6 5 A4 3 .2 1 .0 LSB

P1.3/INT3 P1.2/INT2 P1.1/INT1 P21.0/INTO

P1CONL Pin Configuration Settings:

00 | Input mode: Interrupt disabled

01 | Input mode: Interrupt on rising edge

10 | Input mode: Interrupt on falling edge

11 | N-channel open-drain output mode (6V load capacity)

Figure 9-5. Port 1 Low-Byte Control Register (PLCONL)

9-4

ELECTRONICS

S3C880A/F880A

/0 PORTS

PORT 2

Port 2 is a bit-programmable general 1/O port. Port 2 is accessed directly by writing or reading the port 2 data

register, P2 (E2H, set 1, bank 0). The upper byte (P2.4-P2.7) and the lower byte (P2.0—P2.3) are controlled by
the P2CONH and P2CONL registers, respectively.

A reset clears the port 2 control registers to '00H', configuring the port 2 pins to normal input mode (P2.0—P2.3)
and input mode (2.4—P2.7). You use P2CONH and P2CONL register settings to configure individual port 2 pins:

Port 2 Control Register, High Byte (P2CONH)
E8H, Set 1, Bank 0, R/'W

MSB 7 .6 5 A4 3 2 1 .0 LSB

P2.7/0SDHT P2.6/TO P2.5/PWMO P2.4/PWM4

P2CONH Pin Configuration Settings:

00 | Input mode

01 | N-channel open-drain output mode (5V load capacity)

10 | Push-pull output mode

11 | P2.4: PWM4 output mode (open-drain type)

P2.5: PWMS5 output mode (push-pull circuit type)

P2.6: Timer 0 output mode (PWM or Interval; open-drain type)
P2.7: OSD half-tone output mode (push-pull circuit type)

Figure 9-6. Port 2 High-Byte Control Register (P2CONH)

Port 2 Control Register, Low Byte (P2CONL)
E9H, Set 1, Bank 0, R/W

MSB 7 .6 5 A4 3 .2 1 .0 LSB

P2.3/PWM3 P2.2/PWM2 P2.1/PWM1 P2.0/PWM5

P2CONL Pin Configuration Settings:

00 | Normal input mode

01 | N-channel open-drain output mode with 5V load capacity
10 | PWM output mode: N-channel open-drain type

11 | Push-pull output mode

Figure 9-7. Port 2 Low-Byte Control Register (P2CONL)

ELECTRONICS

9-5

/0 PORTS

S3C880A/F880A

PORT 3

Port 3 is a bit-programmable general I/O port. Only two bits are used. Port 3 is accessed directly by writing or
reading the port 3 data register, P3 (E3H, set 1, bank 0).

A reset operation sets the P3 data register to '00H', and the port 3 control register to ‘OFH’, configuring the port 3

pins to output (open-drain) mode.

MSB

Port 3 Control Register (P3CON)
EBH, Set 1, Bank 0, R/'W

.6 5 A4 3 2 1

No effect P3.1/ADC1 P3.0/ADCO

P3CON Pin Configuration Settings:

LSB

00
01
10
11

Input mode
ADC input mode
Input mode

N-channel open-drain output mode (with 5V load capacity)

Figure 9-8. Port 3 Control Register (P3CON)

9-6

ELECTRONICS

S3C880A/F880A

/0 PORTS

I~ PROGRAMMING TIP — Configuring I/0 Port Pins to Specification

The following sample program shows you how to configure the S3C880A/F880A 1/O ports to specification. The

following parameters are given for ports 0, 1, 2, and 3:

— Set P0.0 and P0.1 to input mode

— Set P0.2 and P0.3 to output mode

— Set P0.4 and P0.5 to input mode

— Set P0.6 and P0.7 to open-drain output mode
— Set P1.0-P1.1 to interrupt rising edge mode
— Set P1.2-1.5 to open-drain output mode

— Set P1.6— P1.7 to push-pull output mode

— Set P2.0 and P2.1 to open-drain output mode
— Set P2.2-P2.4 to input mode

— Set P2.6-2.7 to push-pull output mode

— Set P2.5 to PWMO output mode

— Set P3.0-P3.1 to ADC input mode

SBO ;

LD POCONH,#0FOH ;
LD POCONL,#0FOH ;
LD P1CONH,#0FFH ;
LD P1CONL,#0F5H ;
LD P2CONH,#0ACH ;
LD P2CONL,#05H ;
LD P3CONL,#05H ;

Select bank 0

P0.4, PO.5 = Input mode

P0.6, P0.7 = Open-drain output mode
P0.0, PO.1 = Input mode

P0.2, P0.3 = Output mode

P1.6-1.7 -
P1.2-15 -
P1.0,P1.1 =

Push-pull output mode
Open-drain output mode
Interrupt rising edge mode

P2.4 - Input mode

P2.6, 2.7 = Push-pull output mode
P2.5 = PWMO output mode

P2.0, P2.1 - Open-drain output mode
P2.2, P2.3 = Input mode

P3.0, P3.1 = ADC input mode

ELECTRONICS

9-7

/0 PORTS

S3C880A/F880A

I pPROGRAMMING TIP — Clearing Port O Interrupt Pending Bits

This sample program shows you how to clear the interrupt pending bits for port 1. The program parameters are

as follows:

— Enable only the interrupt level 1 (IRQ1) for P1.0-P1.1

— Set the interrupt priorities as P1.0 > P1.1

ORG 0COH
VECTOR EXT_INT_P10
VECTOR EXT_INT_P11

ORG 0100H

RESET DI
SBO
LD BTCON,#0AAH
LD CLKCON,#98H
CLR SPL
LD IMR,#06H
LD IPR,#11H
LD P1CONL,#0AH
SRP #0COH
El
MAIN NOP
NOP

JP T,MAIN

(Continued on next page)

Disable all interrupts

Select bank 0

Disable the watchdog timer
Non-divided clock

Stack pointer low byte - "0"
Stack area starts at OFFH

Enable IRQ1 and IRQ2 interrupts
IRQ1 > IRQ2
P1.0, P1.1 = Input mode; falling edge interrupts

Set register pointer to 0COH
Enable interrupts

9-8

ELECTRONICS

S3C880A/F880A

/0 PORTS

I pPROGRAMMING TIP — Clearing Port 1 Interrupt Pending Bits (Continued)

EXT_INT_P10: P1.0 external interrupt service
PUSH PP Save page pointer to stack
PUSH RPO Save register pointer 0 to stack
PUSH RP1 Save register pointer 1 to stack
POP RP1 Restore register pointer 1 value
POP RPO Restore register pointer 0 value
POP PP Restore page pointer value
IRET Return from interrupt service routine
EXT_INT_P11: P1.1 external interrupt service
PUSH PP
PUSH RPO
PUSH RP1
POP RP1
POP RPO
POP PP
IRET
ELECTRONICS 9-9

/0 PORTS S3C880A/F880A

NOTES

9-10 ELECTRONICS

S3C880A/F880A BASIC TIMER and TIMER O

BASIC TIMER and TIMER O

MODULE OVERVIEW

The S3C880A/F880A microcontrollers have two default timers: an 8-bit basic timer (BT) and an 8-bit general-
purpose timer/counter, called timer 0 (TO).

The basic timer (BT) has two alternative functions: 1) it can be used as a watchdog timer that provides an
automatic reset mechanism in the event of a system malfunction, and 2) it can be used to signal the end of the
required oscillation stabilization interval after a reset or a Stop mode release. The components of the basic timer
are:

— Clock frequency divider (fogc divided by 4096, 1024, or 128) with multiplexer

— 8-bit basic counter, BTCNT (set 1, bank 0, FDH, read-only)

— Basic timer control register, BTCON (set 1, D3H, read/write)

— Clock frequency divider (fosc divided by 4096, 256, or 8) with multiplexer

— 8-bit counter (TOCNT), 8-bit comparator, and 8-bit reference data register (TODATA)
— Timer 0 match interrupt (TOINT) generation

— Timer 0 control register, TOCON (set 1, D2H, read/write)

ELECTRONICS 10-1

BASIC TIMER and TIMER O S3C880A/F880A

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, clear the basic timer counter
and frequency dividers, and enable or disable the watchdog timer function. It is located in set 1, address D3H,
and is read/write addressable using Register addressing mode only.

A reset clears BTCON to '00H'. This enables the watchdog function and selects a basic timer clock frequency of
fosc/4096. To disable the watchdog function, you must write the signature code '1010B' to the basic timer

register control bits BTCON.7-BTCON.4.

The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared during the normal operation by writing
a"1"to BTCON.1. To clear the frequency dividers for both the basic timer input clock and the timer 0 clock, you
should write a "1" to BTCON.O.

Basic Timer Control Register (BTCON)
D3H, Set 1, R/IW

MSB 7 .6 5 A4 3 .2 1 .0 LSB

Watchdog timer enable bit: Divider clear bit for basic timer and TO:
1010B = Disable watchdog function 0 = No effect
Other value = Enable watchdog function 1 = Clear divider

Basic timer counter clear bit:
0 = No effect
1 = Clear basic timer counter

Basic timer input clock selection bits:
00 = fosc/4096

01 =fosc/1024

10 = fosc/128

11 = fosc/16

Figure 10-1. Basic Timer Control Register (BTCON)

10-2 ELECTRONICS

S3C880A/F880A BASIC TIMER and TIMER O

BASIC TIMER FUNCTION DESCRIPTION

Watchdog Timer Function

The basic timer overflow signal can be programmed to generate a reset by setting the BTCON.7-BTCON.4 bits
to any value other than '1010B'. (The '1010B' value disables the watchdog function.) A reset clears the BTCON
register to '00H', automatically enabling the watchdog timer function. A reset also selects the CPU clock (as
determined by the CLKCON register setting) divided by 4096 as the BT clock.

With every overflow of the basic timer counter, a reset occurs. During the normal operation, this overflow-
generated reset should be prevented from occurring. To do this, the basic timer counter value must be cleared by
software (write BTCON.1 to "1") in regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the basic timer counter clear
operation may not be executed and a basic timer overflow will occur, initiating a system reset. In other words, in
normal operating condition the basic timer overflow loop (a bit 7 overflow of the 8-bit BT counter) is always
broken by a clear counter instruction.

An application program can use the basic timer as a watchdog timer to trigger an automatic system reset in case
a malfunction occurs.

Oscillation Stabilization Interval Timer Function

The basic timer determines the oscillation stabilization interval after a reset or the release of Stop mode by an
external interrupt. Whenever a reset or an external interrupt occurs during Stop mode, the oscillator begins
operating. The basic timer value then starts increasing at the rate of f55-/4096 (in the case of a reset), or at the

rate of the preset clock source (in the case of an external interrupt).

When bit 4 of the BT counter is set to “1”, a signal is generated to indicate that the stabilization interval has
elapsed. This allows the clock signal to be gated on to the CPU so that it can resume normal operation. In
summary, the following events occur when Stop mode is released:

1. During Stop mode a power-on reset or an external interrupt occurs to trigger a Stop mode release, and
oscillation starts.

2. If a power-on reset occurrs, the basic timer counter increases at the rate of f5-/4096. If an external interrupt
is used to release Stop mode, the basic timer value increases at the rate of the preset clock source.

Clock oscillation stabilization interval begins and continues until bit 3 of the basic timer counter overflows.
When bit 4 of BTCNT is set to “1”, the normal CPU operation resumes.

ELECTRONICS 10-3

BASIC TIMER and TIMER O

S3C880A/F880A

VDD

RESET

Internal
Reset
Release

Oscillator
(Xour)

BTCNT
clock

BTCNT
value

Oscillation Stabilization Time

v

Normal Operating mode

|
~

o

oo

<

g

lw)

[} [}
Oscillator Stabilizatign Tlime

00000B

NOTE:
Power-on-reset is 4096

trsT= RC (R is external resistor and C is on chip capacitor)

10000B

-

twAIT = (4096x16)/fosc
4 —>

Basic timer increment and
CPU operations are IDLE mode

Duration of the oscillator stabilization wait time, twaIT, when it is released by a

X 16/fosc.

Figure 10-2. Oscillation Stabilization Time on RESET

10-4

ELECTRONICS

S3C880A/F880A

BASIC TIMER and TIMER O

Normal

STOP Mode

Oscillation Stabilization Time

Operating <
Mode

Normal
Operating
Mode

VDD

STOP
Instruction
Execution

STOP Mode
/ Release Signal

External
Interrupt

S

)

RESET

STOP

Release
Signal

Oscillator
(Xour)

BTCNT
clock

BTCNT _
Value

00000B

NOTE:

twAIT

<
.

|-
Ll

Basic Timer Increment

interrupt is determined by the setting in basic timer control register, BTCON.

10000B

Duration of the oscillator stabilzation wait time, twaAIT, it is released by an

BTCON.3 | BTCON.2 twalT twAIT (When fosc is 8 MHz)
0 0 (4096 x 16)/fosc 10.92 ms
0 1 (1024 x 16)/fosc 2.7ms
1 0 (128 x 16)/fosc 0.341 ms
1 1 Invalid setting —

Figure 10-3. Oscillation Stabilization Time on STOP Mode Release

ELECTRONICS

BASIC TIMER and TIMER O S3C880A/F880A

TIMER 0 CONTROL REGISTER (TOCON)

The timer O control register, TOCON, is used to select the timer O operating mode (interval timer) and input clock
frequency, clear the timer O counter, and enable the TO match interrupt. It also contains a pending bit for TO
match interrupt. It is located in set 1, address D2H, and is read/write addressable using register addressing mode.

A reset clears TOCON to '00H'. This sets timer 0 to normal interval timer mode, selects an input clock frequency
of fosc/4096, and disables the TO match interrupt. The TO counter can be cleared at any time during the normal

operation by writing a "1" to TOCON.3.

To enable the TO match interrupt (TOINT, IRQO, vector FCH), you must set TOCON.1 to "1". The interrupt service
routine must clear the pending condition by writing a "0" to the TO interrupt pending bit, TOCON.O.

Timer 0 Control Register (TOCON)
D2H, Set 1, RIW

MSB 7 .6 5 A4 3 .2 1 .0 LSB

TO input clock selection bits: TO interrupt pending bit:
00 = fosc/4096 0 = No TO interrupt pending
01 = fosc/256 0 = Clear TO pending bit (write)
10 = fosc/8 1 =TO interrupt is pending
11 = External clock (TOCK) . .
(Max fosc/8) TO |nt_errupt ene_lble bit:
0 = Disable TO interrupt
TO operation mode 1 = Enable TO interrupt
selection bits: No effect

00 = Interval mode
01 = PWM mode
10 = PWM mode
11 = PWM mode

TO counter clear bit:
0 = No effect
1 = Clear the TO counter (when write)

Figure 10-4. Timer 0 Control Register (TOCON)

10-6 ELECTRONICS

S3C880A/F880A BASIC TIMER and TIMER O

TIMER 0 FUNCTION DESCRIPTION

TO Interrupts (IRQO, Vector FCH)

The TO module can generate one interrupt: the timer O match interrupt (TOINT). TOINT is also in the level IRQO,
vector address: FCH. The TOINT pending condition must be cleared by software by writing a "0" to the TOCON.0
pending bit.

Interval Timer Mode

In interval timer mode, a match signal is generated when the counter value is identical to the value written to the
TO reference data register, TODATA. The match signal generates a TO match interrupt (TOINT, vector FCH) and
then clears the counter. If, for example, you write the value '10H' to TODATA, the counter will increment until it
reaches '10H'. At this point, the TO interrupt request is generated, the counter value is reset and counting
resumes.

IRQO
(TOINT)

Interrupt _T
Enable/Disable (
PND

TOCNT
R (Clear)
CLK —» Counter +“—
Match
Comparator

v

Data Register
TODATA

Figure 10-5. Timer O Function Diagram (Interval Timer Mode)

ELECTRONICS 10-7

BASIC TIMER and TIMER O S3C880A/F880A

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the TO
pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written
to the TO data register. In PWM mode, however, the match signal does not clear the counter (it runs
continuously, overflowing at 'FFH', and continuing incrementing from '00H").

Although it is possible to use the match signal to generate a TOINT interrupt, an interrupt is typically not used in
PWM-type applications. Instead, the pulse at the TO pin is held to Low level as long as the reference data value
is less than or equal to the counter value; the pulse is then held to high level for as long as the data value is
greater than the counter value. One pulse width is equal to ts X 256. (See figure 10-6)

IRQO
(TOINT)
Interrupt T
Enable/Disable
PND
TOCNT
CLK —» Counter
Match .
Comparator CTL —] 7O pin
¢ High level when data > counter;
Low level when data < counter
Data Register TOCON

TODATA

NOTE: When timer 0 is configured to operate in PWM mode,
interrupts are typically not used.

Figure 10-6. Timer 0 Function Diagram (PWM Mode)

10-8 ELECTRONICS

S3C880A/F880A BASIC TIMER and TIMER O

RESET or

STOP

Basic Timer Control Register

Bit 3, 2 ' (Write '1010xxxxB' to disable)
Data Bus

1/4096 *
Py BTCNT RESET
1/1024 _Bi i
XN 0—»| DIV » | MUX —»| 8-Bit Basic Counter Overflow
1/128 (Read-Only)

R
Data Bus
R

1/4096
114096, 4
1/256 TOCNT
| DIV |———» ! Clear Interrupt
1/8 MUX —» 8-Bit Counter R Enable
(Read-Only) Match
TOCK —— » A
8-Bit Comparator CTL Bit 3 IRQO
TO (PWM & Interval)
TODATA
Timer O Data Register
(Read/Write)
t |:| Basic Timer Counter Register

|:| Timer 0 Counter Register
Data Bus

NOTE: During a power-on reset operation, the CPU is idle during the required oscillation
stabilization interval (until bit 4 of the basic timer counter is set to "1").

Figure 10-7. Basic Timer and Timer 0 Block Diagram

ELECTRONICS 10-9

BASIC TIMER and TIMER O S3C880A/F880A

I PROGRAMMING TIP — Configuring the Basic Timer

This example shows how to configure the basic timer to sample specifications:

ORG 0100H
RESET DI ; Disable all interrupts
SBO ; Select bank 0
LD BTCON,#0AAH ; Disable the watchdog timer
LD CLKCON,#98H ; Non-divided clock
CLR SYM ; Disable global and fast interrupts
CLR SPL ; Stack pointer low byte - "0"
; Stack area starts at OFFH
SRP #0COH ; Set register pointer = 0COH
El ; Enable interrupts
MAIN LD BTCON,#52H ; Enable the watchdog timer
; Basic timer clock: f55-/4096
; Clear basic timer counter
NOP
NOP

JP T,MAIN

10-10 ELECTRONICS

S3C880A/F880A

BASIC TIMER and TIMER O

I PROGRAMMING TIP — Configuring Timer O

This sample program sets timer O to interval timer mode, determining the frequency of the oscillator clock, and
the execution sequence which follows a timer O interrupt. The program givens are as follows:

— Timer 0 is used in interval mode; the timer interval is set to 4 milliseconds
— Oscillation frequency is 6 MHz

— General register 60H (page 0) -

60H + 61H + 62H + 63H + 64H (page 0) is executed after a timer O

interrupt
ORG OFCH ; Timer O interrupt (match)
VECTOR TOINT
ORG 0100H
RESET DI ; Disable all interrupts
SBO ; Select bank 0
LD BTCON,#0AAH ; Disable the watchdog timer
LD CLKCON,#98H ; Non-divided clock
CLR SYM ; Disable global and fast interrupts
CLR SPL ; Stack pointer low byte - "0"
; Stack area starts at OFFH
LD TOCON,#42H ; 01000010B
i Input clock is fosc/256
; Interval timer mode
; Enable the timer 0 interrupt
LD TODATA #5DH ; Set timer interval to 4 milliseconds
; (6 MHz/256) + (93 + 1) = 0.25 kHz (4 ms)
SRP #0COH ; Set register pointer = 0COH
El ; Enable interrupts
TOINT PUSH PP ; Save page pointer to the stack
PUSH RPO ; Save RPO to stack
SBO ; Select bank 0
LD PP #00H ; Page pointer = O0O0H (select page 0)
SRPO #60H ; RPO = 60H
INC RO ; RO- RO+1
ADD R2,R0 i R2 = R2+RO
ADC R3,R2 : R3 = R3+R2+Cary
ADC R4,R0 : R4 = R4 +RO+ Carry
CP RO,#32H ; 50 © 4 = 200 ms
JR ult,NO_200MS_SET
BITS R1.2 ; Bit setting (61.2H)
NO_200MS_SET:
LD TOCON,#42H ; Clear pending bit
POP RPO ; Restore register pointer 0 value
POP PP ; Restore page pointer value
IRET ; Return from interrupt service routine
ELECTRONICS 10-11

BASIC TIMER and TIMER O S3C880A/F880A

NOTES

10-12 ELECTRONICS

S3C880A/F880A TIMER A

11 e

OVERVIEW

The S3C880A/F880A microcontrollers have an 8-bit timer/counter (timer A). Each timer has a control register, an
8-bit counter register, an 8-bit data register, an 8-bit comparator. Timer A runs continuously. Counter register
addresses are not mapped and they cannot, therefore, be read or written.

TIMER CLOCK INPUT

Timer A has different clock input options. You can select the non-divided CPU clock or the CPU clock divided by
1000. The selected clock input frequency for each timer can be scaled using the 4-bit prescaler that is located in
bits 4—7 of the TACON register.

TIMER A INTERRUPT CONTROL

Timer A generate a match signal when the count value is equal to the referenced data value in the TADATA.
When the interrupt enable bit is set for timer A, an interrupt is generated whenever a match is detected. The
corresponding count register is then cleared and counting resumes. To enable the timer A interrupt, you should
set TACON.2 to "1".

The timer A interrupt pending bit is TACON.1. When a timer A pending bit read operation shows a "0" value, no
interrupt is pending; when it is "1", an interrupt request is pending. When the request is acknowledged by the
CPU and the service routine starts, the pending bit must be cleared by the interrupt service routine. To do this,
you must write a "0" to the appropriate bit location.

ELECTRONICS 11-1

TIMER A

S3C880A/F880A

TIMER A FUNCTION DESCRIPTION

When a match occurs, the timer is reset to zero.

CPU
CLK

1+ 1000

TACON.3

M .
4-Bit

)lz —» Prescaler TA Counter

¢ 8-Bit

Comparator

T 8-Bit

TADATA

TACON.1
TACON.2
R Timer A
Interrupt
PND —Ll)'
(IRQ6,BEH)

Match

Figure 11-1. Timer A Block Diagram

11-2

ELECTRONICS

S3C880A/F880A TIMER A

TIMER A CONTROL REGISTER (TACON)

The timer A control register, TACON, is located at F2H in set 1, bank 0. All bits are read/write addressable. The
TACON register settings control four functions:

— Interrupt enable/disable

— Interrupt pending control (read for status, write to clear)

— Clock source selection

— Prescaler (4-bit) for timer clock input

TACON.1 is the pending flag for the timer A interrupt (IRQ6, vector BEH). Application software can poll the TAIP
bit to detect timer A interrupt requests. When an interrupt request is acknowledged, the interrupt service routine
must clear TACON.1 by writing a "0" to the bit location.

Note that there are two clock source selections for timer A: the CPU clock divided by 1000 or the non-divided
CPU clock.

A reset clears TACON to '00H', selecting the CPU clock/1000, and disabling the timer A interrupt.

Timer A Control Register (TACON)
F2H, Set 1, Bank 0, R/W

MSB 7 .6 5 A4 3 .2 1 .0 LSB

4-bit prescaler for timer A clock Not used

0000 | Divide input by 1 (non-divided)
0001 | Divide input by 2

Timer A interrupt pending bit:
0 = No interrupt pending (when read)
0 = Clear pending bit (when write)

' 1 = Interrupt is pending (when read)
1111 | Divide input by 3-15 1 = No effect (when write)

Timer A interrupt enable:
0 = Disable interrupt
1 = Enable interrupt

Timer A clock source selection bit:
0 = CPU clock divided by 1000
1 = Non-divided CPU clock

Figure 11-2. Timer A Control Register (TACON)

ELECTRONICS 11-3

TIMER A

S3C880A/F880A

I PROGRAMMING TIP — Configuring Timer A

This example sets timer A to normal interval mode, determining the oscillation frequency of the timer clock, the
execution sequence that follows a timer A interrupt. The program parameters are:

The timer interval is set to 10 milliseconds
Oscillation frequency = 6 MHz

General register 70H (page 0) = 70H + 71H + 72H + 73H + 74H (page 0) is executed after a timer A

interrupt

ORG OBEH
VECTOR TAINT
ORG 0100H

RESET DI
SBO
LD BTCON,#0AAH
LD CLKCON,#98H
CLR SYM
CLR SPL
LD TACON,#54H
LD TADATA #59H
SRP #0COH
El

TAINT PUSH PP
PUSH RPO
SBO
LD PP #00H
SRPO #70H
INC RO
ADD R2,R0O
ADC R3,R2
ADC R4,R0
CP RO,#64H
JR ult,NO_1SEC SET
BITS R1.2

(Continued on next page)

Timer A interrupt

Disable all interrupts

Select bank 0

Disable the watchdog timer
Non-divided clock

Disable global and fast interrupts
Stack pointer low byte = "0"
Stack area starts at OFFH

01010100B

PS - 5 (divide-by-6)

CPU clock/1000

Select interval mode for timer A

10-ms interval time

(6 MHz/1000) + (59 + 1) = 100 Hz (10 ms)
Set register pointer = 0COH

Enable interrupts

Save page pointer to stack

Save register pointer 0 to stack
Select bank 0

Page pointer = 00H (select page 0)
RPO - 70H

RO - RO+1

R2 = R2 + RO

R3 - R3 + R2 + Carry

R4 - R4 + RO + Carry

100 © 10 ms = 1000 ms (1 second)

Bit setting (71.2H)

11-4

ELECTRONICS

S3C880A/F880A TIMER A

I PROGRAMMING TIP — Configuring Timer A (Continued)

NO_1SEC_SET:
LD TACON,#54H ; Clear pending bit
POP RPO ; Restore register pointer 0 value
POP PP ; Restore page pointer value
IRET ; Return from interrupt service routine

ELECTRONICS 11-5

TIMER A S3C880A/F880A

NOTES

11-6 ELECTRONICS

S3C880A/F880A PWM and CAPTURE

1 2 PWM AND CAPTURE

PWM/CAPTURE MODULE

The S3C880A/F880A microcontrollers have two 14-bit PWM circuits and four 8-bit PWM circuits. The 14-bit
circuits are called PWMO and PWMZ1,; the 8-bit circuits are PWM2—-PWMS5. The operation of all the PWM circuits
is controlled by a single control register, PWMCON. PWMCON also contains a 3-bit prescaler for adjusting the
PWM frequency (cycle).

The capture function, called capture A, is integrated in this block. Using PWMCON settings, you can enable the
capture A interrupt and select the desired triggering edge for data capture on the CAPA input pin.

The PWM counter is a 14-bit incrementing counter. It is used by the 14-bit PWM circuits. To start the counter and
enable the PWM circuits, you must set PWMCON.5 to "1". If the counter is stopped, it retains its current count
value; when re-started, it resumes counting from the retained count value.

A 3-bit prescaler controls the clock input frequency to the PWM counter. By modifying the prescaler value, you
can divide the input clock by one (non-divided), two, three, four, five, six, seven, or eight. The prescaler output is
the clock frequency of the PWM counter.

ELECTRONICS 12-1

PWM and CAPTURE S3C880A/F880A

PWM CONTROL REGISTER (PWMCON)

The control register for the PWM module, PWMCON, is located at the register address F8H in set 1, bank 0. Bit
settings in the PWMCON register control the following functions:

— 3-bit prescaler for scaling the PWM counter clock
— Stop/start (or resume) the PWM counter operation

— Capture A interrupt enable and capture A edge selection

A reset clears all PWMCON bits to logic zero, disabling the entire PWM module.

PWM Control Register (PWMCON)
F8H, Set 1, Bank 0, R/W

MSB 7 .6 5 A4 .3 .2 1 .0 LSB

|

3-bit prescaler for PWM Capture function control bits:
cgu?t%r clock: 00 = Disable capture function
T 01 = Capture on falling edges
0 0 0 | Non-divide 10 = Capture on rising edges
0 0 1 | Divide by 2 11 = Capture on both edges
0 1 0 | Divide by 3
0 1 1 | Divide by 4 Not used
100 D!v!de by 5 Capture interrupt enable bit:
1 0 1 | Divide by 6 N :

o 0 = Disable capture interrupt
110 Divide by 7 1 = Enable capture interrupt
11 1| Divideby8

PWM counter enable bit:
0 = Stop counter
1 = Start (resume) counting

Figure 12-1. PWM Control Register (PWMCON)

12-2 ELECTRONICS

S3C880A/F880A PWM and CAPTURE

PWM2-PWM5

The S3C880A/F880A microcontrollers have four 8-bit PWM circuits, called PWM2-PWM5. These 8-bit circuits
have the following components:

— 14-bit counter with 3-bit prescaler

— 8-bit comparators

— 8-bit PWM data registers (PWM2-PWM5)

— PWM output pins (PWM2—-PWM5)

The PWM2—-PWMS5 circuits are controlled by the PWMCON register (F8H, set 1, bank 0).

Data Bus

t4

&

8-bit PWM2-PWM5
Registers

$4

8-bit PWM2-PWM5 "1" When Reg > Count . PWM2-PWM5

(=

Comparators "0" When Reg < Count Output pins

- PWM2-PWM5
1 PWMo/1 Logic ——] Output pins

=)

CPU . Lower 8-bit of Upper 6-bit of

CLK T_D7 3-bit P.S. | 14-pit Counter 14-bit Counter

PWMCON.5 L
PWMCON.1 ﬁ | —» IRQ3 (02H)

L <|2|7 <|6|7 PWMCON.3
Capture Register

CAP Input

PWMCON.O Data Bus

Figure 12-2. Block Diagram for PWM2—-PWM5

ELECTRONICS 12-3

PWM and CAPTURE S3C880A/F880A

PWM2-PWMS FUNCTION DESCRIPTION

All the four 8-bit PWM circuits function identically: each has its own 8-bit data register and 8-bit comparator. Each
circuit compares a unique data register value to the lower 8-bit value of the 14-bit PWM counter.

The PWM2-PWMS5 data registers are located in set 1, bank 1, at locations FBH-FBH, respectively. These data
registers are read/write addressable. By loading specific values into the respective data registers, you can
modulate the pulse width at the corresponding PWM output pins, PWM2—-PWM5.

The level at the output pins toggles High and Low at a frequency equal to the counter clock, divided by 256 (28).
The duty cycle of the PWMO0 and PWML1 pins ranges from 0% to 99.6%, based on the corresponding data
register values.

To determine the PWM output duty cycle, its 8-bit comparator sends the output level High when the data register
value is greater than the lower 8-bit count value. The output level is Low when the data register value is less than
or equal to the lower 8-bit count value. The output level at the PWM2-PWMS5 pins remains at Low level for the
first 256 counter clocks. Then, each PWM waveform is repeated continuously, at the same frequency and duty
cycle, until one of the following three events occurs:

— The counter is stopped
— The counter clock frequency is changed
— A new value is written to the PWM data register

12-4 ELECTRONICS

S3C880A/F880A PWM and CAPTURE

STAGGERED PWM OUTPUTS

The PWM2-PWMS5 outputs are staggered in order to reduce the overall noise level on the pulse width modulation
circuits. If you load the same value to the PWM2-PWM5 data registers, a match condition (data register value is
equal to the lower 8-bit count value) will occur on the same clock cycle for all the four 8-bit PWM circuits. The
output of PWM3, PWM4, and PWM5 are delayed by one-half of a counter clock for subsequent clock cycles (see
Figure 12-4).

Counter
Value >
(HEX)
OH 100H 200H 300H
Counter
Cock M mM m —m—-—-""1 m —m —-—-—"""M["1 /@ /@ —----
(8 MHz)
PWM ="0"
125 ns
PWM ="1" i
12.5 s
PWMn = 80H — —
125 ns [4—»
PWMn = FFH
PWM Cycle
25 s
NOTES:
1. A counter clock value of 8 MHz is assumed for all timing values.
2.'n' = 2-5, for PWM2-PWM5

Figure 12-3. PWM Waveforms for PWM2-PWM5

ELECTRONICS 12-5

PWM and CAPTURE

S3C880A/F880A

OH (After RESET) 100H
CPU { """

Clock
PWM2 4
PWM3 |« 1/2-Clock Delay

Match occurs;
PWM2 toggles to high level ~ ——=-----

PWM4 |« 1/2-Clock Delay
PWM5

|« 1/2-Clock Delay

Figure 12-4. PWM Clock to PWM2-PWM5 Output Delays

12-6

ELECTRONICS

S3C880A/F880A PWM and CAPTURE

PWMO-PWM1

The S3C880A/F880A pulse width modulation (PWM) module has two 14-bit PWM circuits (PWMO0 and PWM1).
The 14-bit PWM circuits have the following components:

— 14-bit counter with 3-bit prescaler (an 8-bit counter with 6-bit extension is used for 14-bit output resolution)
— 8-bit comparator and extension cycle circuit

— 8-bit reference data registers (PWMO0, PWM1)

— 6-bit extension data registers (PWMOEX, PWM1EX)

— PWM output pins (PWMO0, PWM1)

The PWMO and PWML1 circuits are enabled by the PWMCON register (F8H, set 1, bank 0).

PWM COUNTER
The PWM counter is a 14-bit increasing counter comprised of a lower byte counter and an upper byte counter.

To determine the PWM module's base operating frequency, the lower byte counter is compared to the PWM data
register value. In order to achieve higher resolutions, the lower six bits of the upper byte counter can be used to
modulate the "stretch" cycle. To control the "stretching" of the PWM output duty cycle at specific intervals, the
6-bit extended counter value is compared with the 6-bit value (bits 2—7) that you write to the module's extension
register.

PWM DATA AND EXTENSION REGISTERS

Two PWM (duty) data registers, located in set 1, bank 0, determine the output value generated by each 14-bit
PWM circuit. PWMO and PWM1 are read/write addressable.

— 8-bit data registers PWMO (F4H) and PWM1(F6H)
— 6-bit extension registers PWMOEX (F5H) and PWM1EX (F7H) of which only bits 2—7 are used

To program the required PWM output, you should load the appropriate initialization values into the 8-bit data
registers (PWMO, PWM1) and the 6-bit extension registers (PWMOEX, PWM1EX). To start the PWM counter, or
to resume counting, you should set PWMCON.5 to "1".

A reset operation disables all PWM output. The current counter value is retained when the counter stops. When
the counter starts, counting resumes at the retained value.

PWM CLOCK RATE

The timing characteristics of both 14-bit output channels are identical, and are based on the maximum 8-MHz
CPU clock frequency. The 2-bit prescaler value in the PWMCON register determines the frequency of the
counter clock. You can set PWMCON.6 and PWMCON.7 to divide the CPU clock frequency by 1 (non-divided),
2,3,4,5,6,7,0r8.

Because the maximum CPU clock rate for the S3C880A/F880A microcontrollers is 8 MHz, the maximum base
PWM frequency is 31.25 kHz (8 MHz divided by 256). This assumes a non-divided CPU clock.

ELECTRONICS 12-7

PWM and CAPTURE S3C880A/F880A
Table 12-1. PWMO and PWM1 Control and Data Registers
Register Name Mnemonic Address (Set 1, Bank 0) Function
PWMO data registers PWMO F4H 8-bit PWMO basic cycle frame value
PWMOEX F5H 6-bit extension ("stretch™) value
PWM1 data registers PWM1 F6H 8-bit PWM1 basic cycle frame value
PWM1EX F7H 6-bit extension ("stretch™) value
PWM control register PWMCON F8H PWMO counter stop/start (resume),
and 3-bit prescaler for CPU clock; also
contains capture A control settings

PWMO AND PWM1 FUNCTION DESCRIPTION

The PWM output signal toggles to Low level whenever the lower 8-bit counter matches the reference value
stored in the module's data register (PWMO, PWM1). If the value in the PWM data register is not zero, an
overflow of the lower counter causes the PWM output to toggle to High level. In this way, the reference value
written to the data register determines the module's base duty cycle.

The value in the 6-bit extension counter (the lower six bits of the upper counter) is compared with the extension
settings in the 6-bit extension data register (PWMOEX, PWM1EX). This 6-bit extension counter value (bits 2—7),
together with extension logic and the PWM module's extension register, is then used to "stretch" the duty cycle of
the PWM output. The "stretch" value is one extra clock period at specific intervals, or cycles (see Table 12-2).

If, for example, the value in the extension register is '1', the 32nd cycle will be one pulse longer than the other 63
cycles. If the base duty cycle is 50%, the duty of the 32nd cycle will therefore be "stretched" to approximately
51% duty. For example, if you write 80H to the extension register, all odd-numbered pulses will be one cycle
longer. If you write FCH to the extension register, all pulses will be stretched by one cycle except the 64th pulse.
PWM output goes to an output buffer and then to the corresponding PWMO and PWM1 output pin. In this way,
you can obtain high output resolution at high frequencies.

Table 12-2. PWM Output "Stretch" Values for Extension Registers PWMOEX and PWM1EX

PWMOEX/PWM1EX Bit

"Stretched" Cycle Number

7

SO F N W b~ 01 O

16, 48
32

Not used

Not used

1,3,5,7,9,%,55,57, 59, 61, 63
2,6, 10, 14, ¥, 50, 54, 58, 62
4,12, 20, Y4, 44, 52, 60

8, 24, 40, 56

12-8

ELECTRONICS

S3C880A/F880A

PWM and CAPTURE

CPU CLK

v

3-bit P.S.

PWMCON.5

8-bit PWM2-PWM5
Registers

8-bit PWM2-PWM5
Comparators

"1" When Reg > Count
"0" When Reg < Count

Match when
Reg = Count

Lower 8-bit of
14-bit Counter

Upper 6-bit of
14-bit Counter

RRERN!

PWMO,PWM1
Output pins

Extension Logic

ed TTTTT

Bit 7

Bit2 ||

6-bit Extension Registers
(PWMOEX, PWM1EX)

Figure 12-5. Block Diagram for PWMO and PWM1

ELECTRONICS

12-9

PWM and CAPTURE S3C880A/F880A

I PROGRAMMING TIP — Programming PWMO to Sample Specifications

This example shows how to program the 14-bit pulse-width modulation module, PWMO. The program parameters
are as follows:

— The oscillation frequency of the main crystal is 6 MHz

— PWMO data is in the working register RO

— PWMOEX (PWMO extension value) is in the working register R1, bits 2—7

The program performs the following operations:

1. Setthe PWMO frequency to 23.437 kHz

2. IfR3.0 = "1",then PWM = PWM + 12H
(If an overflow occurs from RO, then RO = OFFH and R1 = OFCH.)

3. IfR3.0 = "0", then PWM - PWM - 11H
(If an underflow occurs from RO, then RO = 00H and R1 -~ O0OH.)

PWMCON «— #20H | PWM Control Register Setting

R1 <« R1-#20H R1 <« R1+ #48H

N Y Y

R1 <« R1-#20H N RO «— R1+#01H
Y
Borrow?
RO <« Min. value N RO <— Max. value
R1 <— Min. value N R1 <— Max. value
v P
PWMOEX <« R1
PWMO <— RO

Figure 12-6. Decision Flowchart for PWMO Programming Tip

12-10 ELECTRONICS

S3C880A/F880A

PWM and CAPTURE

I pPROGRAMMING TIP — Programming PWMO to Sample Specifications (Continued)

LD

BTJIRF

pwmO_inc:

ADD
JR
INC
JR
LD
LD
JR

pwmOQ_dec:
SUB
JP
SUB
JR
CLR
CLR

pwmOQ_data_end:
LD
LD

PWMCON,#20H

pwmO_dec,R3.0

R1,#48H
NC,pwmQ_data_end
RO
NZ,pwmQ_data_end
RO,#0FFH
R1,#0FCH
T,pwmO0_data_end

R1,#44H
NC,pwmQ_data_end
RO,#01H
NC,pwmQ_data_end
RO

R1

PWMOEX,R1
PWMO,RO

PS - 0 (Select 23.437-kHz PWM frequency)
Enable the PWM counter

If R3.0 = "0", then jump to pwmO0_dec

If R3.0 = "1", then add 48H to the PWM data

If no carry, go to pwmQ_data_end

RO - RO + 1

If no overflow, jump to pwmO_data_end for update
If overflow, set OFFH to RO

Set OFCH to R1

Jump to pwmO_data_end unconditionally

R3.0 = "0", so subtract 44H from PWM data

If no borrow, jump to pwmO_data_end for update
Decrement RO (RO - RO - 1)

If no borrow, jump to pwmO_data_end

Clear data RO

Clear data R1

Load new value to PWMOEX (bits 2—7)
Load new value to PWMO

ELECTRONICS

12-11

PWM and CAPTURE S3C880A/F880A

CAPTURE UNIT

An 8-bit capture unit is integrated in the PWM module. The capture unit detects incoming signal edges and can
be used to measure the pulse width of the incoming signals. PWMCON register settings control the capture unit,
which has the following components:

— 8-bit capture data register (CAPA)

— Capture input pin (CAPA/Pin 36)

— 8-bit capture interrupt (IRQ3, vector 02H)

The capture unit captures the upper 8-bit value of the 14-bit counter when a signal edge transition is detected at
the CAPA pin. The captured value is then dumped into the capture A data register, also called CAPA, where it
can be read.

Using PWMCON.0 and PWMCON.1 settings, you can set edge detection at the CAPA pin for rising edges, falling
edges, or for both signal edge types.

You can also use signal edges at the CAPA pin to generate an interrupt. PWMCON.3 is the capture A interrupt
enable bit.

The capture interrupt is in the level 3 (IRQ3) and its vector address is 02H.

Using the capture A interrupt, you can read the contents of the CAPA data register from edge to edge and use
the values to calculate the elapsed time between pulses.

CPU : Lower 8-bit of Upper 6-bit of
3-bit P.S. pp
CLK T_D_> 14-bit Counter [®| 14-bit Counter

PWMCON.5 ¢
PWMCON.1 |—> IRQ3 (02H)
L <|2|7 <|6|7 PWMCON.3
Capture Register
CAP Input
PWMCON.0

Data Bus

Figure 12-7. Block Diagram for Capture A

12-12 ELECTRONICS

S3C880A/F880A PWM and CAPTURE

I pROGRAMMING TIP — Programming the Capture Module to Sample Specifications

This example shows you how to program the S3C880A/F880A capture A module. The sample parameters are as
follows:

— The main oscillator frequency is 6 MHz

— Timer A interrupt occurs every 2 ms

— The following waveform is currently being input at the capture (CAPA) pin:

— L —P—— tH —P

— The following registers are assigned for program values:

Register 70H LDR ; First captured count value

Register 71H ; Second captured count value

Register 72H ; Third captured count value

Register 73H DWNCNT ; Down-counter; decremented by 1 with each timer A interrupt
Register 74H CAPCNT ; Capture counter

Register 77H FLAG ; Flags

Here is some additional information about the sample program:

1. If4.35ms < ty, tL < 4.6 ms, then set bit zero (LDR) in the register 77H; otherwise clear the zero bit (LDR)
in the register 77H.

2. If the interval between two rising signal edges (capture trigger) is > 30 ms, disregard the capture setting.

Figures 12-4 and 12-5 show decision flowcharts for the sample program.

ELECTRONICS 12-13

PWM and CAPTURE

S3C880A/F880A

C

Main Routine)

v

Timer A Setting
Capture Unit Setting

Y (zero)

Flag «— O
CAPA < Rising Enable

N (not zero)

v

Main JOB

C Timer A Interrupt)

v

Back up the PP, PRO

Y (zero)

N (not zero)

DWNCNT <«— DWNCNT - #1H

Other JOB

v

Restore PP, RPO

RET

Figure 12-8. Decision Flowchart (Main Routine and Timer A Interrupt)

12-14

ELECTRONICS

S3C880A/F880A PWM and CAPTURE

(Capture A Interrupt)

v

Save PP, RPO

v

CAPCNT «— CAPCNT +1

"1" /\ "O"
Flag = 0?

Y (#01) Flag €«— "1"
v DWNCNT < #OFH
R1 <«— 2nd capture CAPCNT <— #00H

v

RO <« 1st capture
CAPA <« Interrupt on both edges

Y (#02)

R2 <« 3rd capture

v

SUB R2, R1
SUB R1, RO

|-
Ll

4.35 ms<R1
R2 < 4.6 ms

v

LDR «— "0"

v

CAPA <« Disable

LDR < "1"

I >
Lagh

Restore PP, RPO

RET

Figure 12-9. Decision Flowchart for Capture A Interrupt

ELECTRONICS 12-15

PWM and CAPTURE

S3C880A/F880A

I pPROGRAMMING TIP — Programming the Capture Module to Sample Specifications

LDR EQU
DWNCNT EQU
CAPCNT EQU
FLAG EQU

CLR
LD

LD

EXEC_MAIN:
SRPO
CP
JP
BITR
LD

MAIN:
JP

TAINT PUSH
PUSH
SRPO
cP
JP
DEC

TA_EXEC:

POP
POP
IRET

~Nbh WO

PP
TACON, #54H

TADATA,#01H

#70H
RDWNCNT,#00H
NE,MAIN
R7.FLAG
PWMCON,#0AH

T,exec_main

PP

RPO

#70H
RDWNCNT,#00H
EQ,ta_exec
RDWNCNT

RPO
PP

(Continued on next page)

Select page 0
PS - 5, interval mode
Enable timer A interrupt

2-ms interval (6 MHz /1000 + 6 + 2 = 0.5 kHz = 2 ms)

RPO - 70H

Down-counter = "0"?

If not zero, then jump to MAIN
Clear the 'FLAG'

Enable capture A interrupt
Trigger interrupt on rising edges
Other job...

For looping

Save page pointer

Save register pointer 0
RPO - 70H

R3 (down-counter) = "0"?

If not zero, then decrement R3 by 1

Restore register pointer 0
Restore page pointer

Return from timer A interrupt service routine

12-16

ELECTRONICS

S3C880A/F880A

PWM and CAPTURE

I PROGRAMMING TIP — Programming the Capture Module to Sample Specifications (Continued)

CAPINT PUSH
PUSH
SRPO
INC
BTJIRT
BITS
CLR
LD
LD

LD

CAP_END POP
POP
IRET

CAP_ONE CP
JP
LD
JR

CAP_CON2 CP
JP

CAP_CON4 BITR
CAP_CON5 LD
JR

PP
RPO
#70H
RCAPCNT

cap_one,R7.FLAG

R7.FLAG
RCAPCNT
RDWNCNT,#0FH
RO,CAPA

PWMCON,#0BH

RPO
PP

RCAPCNT,#01H
NE,cap_con2
R1,CAPA
T,cap_end

RCAPCNT,#02H
EQ,cap_con3

R7.LDR
PWMCON,#00H
T,cap_end

(Continued on next page)

Save the page pointer to stack

Save register pointer 0 to stack

RPO - 70H

Increment the capture counter

R7.FLAG - "1", then jump to cap_one
Set R7.FLAG

Clear capture counter

Down-counter - 15 (for counting 30 ms)
RO - 1st captured count value

CAPA =0F9H, page 0

Enable capture interrupt

Trigger interrupt on both rising and falling edges

Restore the register pointer 0 value
Restore the page pointer value

CAPCNT = #01H?

R1 - 2nd captured count value

CAPCNT = #02H?

Clear the LDR bit in R7
Disable the capture module

ELECTRONICS

12-17

PWM and CAPTURE S3C880A/F880A

I PROGRAMMING TIP — Programming the Capture Module to Sample Specifications (Concluded)

CAP_CON3 LD R2,CAPA ; R2 = 3rd capture count value
SUB R2,R1 ; R2 = (3rd capture value — 2nd capture value)
SUB R1,RO ; R1 = (2nd capture value — 1st capture value)
CP R1,#24H ; 24H = 4.6 ms
JP UGT,cap_con4 ; If High signal period > 4.6 ms, then go to cap_con4
CP R2#24H ;
JP UGT,cap_con4 ; If Low signal period > 4.6 ms, then go to cap_con4
CP R1,#22H ; 22H = 4.35ms
JP ULT,cap_con4 ; If High signal period < 4.35 ms, then go to cap_con4
CP R2#22H ;
JP ULT,cap_con4 ; If Low signal period < 4.35 ms, then go to cap_con4
BITS R7.LDR ; Set bit 'LDR'
JP T,cap_con5 ; Jump to cap_con5 unconditionally

12-18 ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

1 3 ON-SCREEN DISPLAY (OSD)

OVERVIEW

The on-screen display (OSD) module displays channel number, the time, and other information on a display
screen. The OSD character display module has 252 locations and supports a set of maximum 1024 characters.
(Two characters are reserved: O0H for the blank function and 01H for the test pattern.) There are sixty four
display colors.

PATTERN GENERATION SOFTWARE

For application development using the S3C880A/F880A microcontrollers, Samsung provides OSD pattern
generation software (OSDFONT.exe). You can customize standard OSD patterns contained in this file.

Table 13-1. OSD Function Block Summary

OSD Function Block Function Description

Video RAM (note) Located in register page 1, the video RAM contains 252 "word" lines. Each line is
14 bits long. Each 14-bit RAM address stores an 10-bit character code, a character
halftone or character background color display control bit, and a 3-bit color code.
Video RAM locations can be read or written: 00H-BFH can be accessed using any
addressing mode; COH—-FBH can be accessed using Indirect Register or Indexed
addressing mode only.

Character ROM The character ROM contains an 18-dot © 16-dot matrix data for 1024 characters. It
is synchronized with the internal dot clock. The ROM outputs the dot matrix data for
each character. The function of two characters is pre-determined: O0H is used for
blank (no-display) data and 01H is for a factory test pattern.

Output control logic Output control logic receives input from the Character ROM, OSD control registers,
and fade control circuits. It then decides what to display on the screen and what
color the display should be. On the basis of truth table calculations, the final OSD
signals (blue, green, red, blank, and H/T) are output from the OSD block at pins
22-25, 21.

NOTE: The video RAM can be cleared only by “LD” instruction.

ELECTRONICS 13-1

ON-SCREEN DISPLAY S3C880A/F880A

INTERNAL OSD CLOCK

Red-green-blue (RGB) color outputs, as well as display rates and positions, are determined by the clock signal,
DOT_CLK. This signal is generated by the L-C oscillator and is scaled by the dot and column counter. DOT_CLK
equals the OSD oscillator clock divided by the clock divider value. The clock divider value is set by the horizontal
character size settings in the CHACON register.

The rate at which each new display line is generated is determined by H-sync input. The rate at which each new
frame (screen) is generated is determined by V-sync input. For stable on screen display operation, the CPU clock
frequency should faster than OSD clock.

OSD VIDEO RAM

The OSD video RAM contains 252 word lines. Each line is 14 bits long. Of these 14 bits, eight are character
display codes (bits 0-9). Bit 13 is the character halftone or character background color display control bit and bits
10-12 are used to determine the red, green, and blue components of the character color.

13-2 ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY
Register Data Bus
Register Address Bus
fosb ™ Color
Column Buffer
Address
A4 p A4 || e
H-SYNC—»[o o RN
Polarity Dot and Column Row Video RAM
Selector Counter Address (252 x 14 Bits)
XOR (4)
V-SYNC—p >
ROW interrupt CHAR
(IRQ2, 0C4H) CODE (10)
N
ROWINT
*> Q
Line and Row | Character T 5
Counter Line Address (5) Generator 2 g
> ROM S 2
(1024 x 18 x 16) L9
E g
@
Character Out
Line (16-Dot)
Count (6
(6) U4 U4
—»| Dot Clock
> Output Control
Logic
>
Red Green Blue Blank Halftone

Figure 13-1. On-Screen Display Function Block Diagram

ELECTRONICS

13-3

ON-SCREEN DISPLAY

S3C880A/F880A

Color Buffer
(FCH), Bits 0-5

Row 0, Column 0

Row 0, Column 1

Row 0, Column 2

Row 0, Column 3

Row 11, Column 18

Row 11, Column 19

Row 11, Column 20

Data Bus 00H = Row 0, Column 0
01H = Row 0, Column 1
i
FBH = Row 11, Column 20
Bit 3 Bit 2 Bit 1 Bit 0 | Bit 4-5
H/T and BGRND R G B | VRAM Data Bus
Color Code VRAM (Bit8-9) 8-Bit
¥ MSB(Bit 9) LSB(Bt 0)
H/T and ! | _
BGRND i R i G B Character Code (10-Bit)
H/T and : _
BGRND! R ! © B Character Code (10-Bit)
HIT and | : _
BGRND ! R : G B Character Code (10-Bit)
H/T and ! : _
BGRND i R i G B Character Code (10-Bit)
H/T and ! | _
BGRND i R i G B Character Code (10-Bit)
H/T and : _
BGRND! R ! © B Character Code (10-Bit)
H/T and , : _
BGRND ! R ! G B Character Code (10-Bit)
*--------- 10-Bit - --------
o ittt 14-Bit-=—-—==——==——mmmmmmm oo

Figure 13-2. On-Screen Display Video RAM Data Organization

13-4

ELECTRONICS

S3C880A/F880A

ON-SCREEN DISPLAY

OSD CONTROL REGISTER OVERVIEW

Seven control registers are used to control specific functions of the on-screen display module:

There are seven control registers for OSD functions and one color buffer register:

DSPCON
CHACON
FADECON
ROWCON
CLMCON
COLCON
HTCON
COLBUF
VSBCON

OSDFRG1/2

OSDSMH1/2

OSDCOL
OSDFLD

OSDPLTR1/2

OSDPLTG1/2

OSDPLTB1/2

Display control register

Character size and fade control register

Fade control register

Row display position and inter-row spacing control register
Column display position and inter-column spacing control register
Background color control register

Halftone signal control register

Character color buffer register

V-sync blank time control register

Fringe or border control registers

Smooth display control registers

OSD factor control register

Field control register

Palette color mode Red 1/2

Palette color mode Green 1/2

Palette color mode Blue 1/2

These registers are described in this section within the context of the OSD hardware module description. For
detailed quick-reference descriptions of the control register bit settings, please refer to Section 4, "Control

Registers."

ELECTRONICS

13-5

ON-SCREEN DISPLAY

S3C880A/F880A

DISPLAY CONTROL REGISTER (DSPCON)

Settings in the display control register, DSPCON (F5H, set 1, bank 1), are used to enable and disable the
on-screen display to select halftone or background color for character displays, choose the polarity for H-sync
and V-sync signal synchronization, and as OSD ROW counter which is read-only (bit4—bit7).

Display Control Register (DSPCON)
F5H, Set 1, Bank 1, R/IW

MSB .6 .5 4 .3 2 A .0 LSB
OSD Row counter (Read-only) Display enable bit:

0000 | Rowo 0 = Disable OSD (turn off L-C osc)
0001 | Row1 1 = Enable OSD (turn on L-C osc)
0010 | Row2
0011 | Row3 Halftone or background color selection bits
0100 | Row4 (for character data in bit 13 of video RAM):
0101 | Rows 00 = Character background color
0110 | Row6 01 = Not used
0111 | Row7 10 = Halftone output
1000 | Row8 11 = Character halftone and background color
1001 | Row9
1010 | Rowl0
1011 | Row11 Clock edge selection for H/V-sync polarity:

1100-1111: Not used

0 = Rising edges
1 = Falling edges

Figure 13-3. OSD Display Control Register (DSPCON)

NOTE

Refer to the PROGRAMMING TIP — Row Interrupt Function of 13-24.

13-6

ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

OSD Enable/Disable

The DSPCON.O0 setting enables or disables the on-screen display module. To enable the OSD (turn L-C
oscillation on), set DSPCON.0 to "1"; to disable OSD (turn L-C oscillation off), clear DSPCON.0 to "0". When you
do not use the display module, we recommend that you keep DSPCON.O0 cleared to "0" in order to reduce
possible noise generation by the L-C oscillator.

The DSPCON.0 settings determine the on/off condition of L-C oscillation, synchronized with Vsync input. And the
OSD output can be turned on or off in OSD row units when L-C oscillation is on. At the point the value of
DSPCON.0 is changed from “1” to “0” in the middle of a frame, OSD is disabled (OSD output is off). In this
condition, L-C oscillation becomes off at the next Vsync input. When the value is shifted from “0” to “1”, OSD is
enabled (OSD output is on) and L-C oscillation returns to “on” at the following Vsync input.

H-Sync and V-Sync Polarity Selection

DSPCON.3 selects the triggering edge of H-sync and V-sync inputs to the OSD block. Incoming sync pulses
enter a polarity option circuit that is controlled by the SYNC bit. If DSPCON.3 ="0", rising edges are selected; if
it is "1", falling edges are selected.

Character Halftone or Character Background Color Selection

DSPCON.2 and DSPCON.1 let you select a halftone or background color display for individual characters.
(Which characters are displayed as halftones, or with character background color, or with character halftone, or
with character background color, or with character halftone and background color, depends on the bit 13 settings
in the character video RAM data)

When DSPCON.2-.1 = "00", the character background color option is selected; when DSPCON.2-.1 = "10", the
character halftone function is selected; when DSPCON.2-.1 ="11", the character halftone and background color
option are selected; but DSPCON.2-.1 = "01" is not used.

ROW Counter Function

DSPCON.4-DSPCON.7 to the OSD ROW read data. OSD ROW counter indicates the OSD ROW currently
displayed. One ROW comprises one character (18 lines) and inter-ROW space (ROWCON.2-.0).
The Row counter value for the first ROW after a Vsync input is set to “0".

ELECTRONICS 13-7

ON-SCREEN DISPLAY S3C880A/F880A

CHARACTER SIZE CONTROL REGISTER (CHACON)

Using the character size control register, CHACON, you can specify four different standard character sizes in
both vertical and horizontal directions. You also use the CHACON register to select rows (0-11) for the character
fade function (see Figure 13-5).

Vertical character size is defined by bits 6 and 7 of the CHACON register; horizontal direction is defined by bits 4
and 5. There are four basic character size settings: "1, "2, " 3, and " 4. Size " 1' is the smallest and " 4' is the
largest. For example, to display a “ 1' (horizontal) by " 1' (vertical) size character, you should clear CHACON.4—
CHACON.7 to "0". To display a ” 4' by " 4' size character, you should set bits 4-7 to '1111B".

You can also combine different vertical and horizontal size selections to produce flattened or elongated
characters (see Figure 13-5).

"1 dot" is a minimum unit of character size. 1 character is composed of 16 dots in width and 18 dots in length. 1
dot in width is 1 fosd clock and 1 dot in length is 1 H-sync line. 1 dot of 1x1 character size (minimum unit) is
composed of 1 fosd clock and 2 H-sync line (even + odd field).

Character size in width is increased by 1 clock. So x1, x2, x3, and x4 in width are the same as 1, 2, 3 and 4
clock, respectively. Character size in length is increased by 2 H-sync line (even field + odd field), so x1 and x2 in
length are the same as 2 H-sync line (even field + odd field) and 4 H- sync line (even field + odd field + even
field + odd field), respectively. Half dot in width is 1/2 fosd clock, and 1/2 dot in length is 1 H-sync line (even or
odd field).

In the fringe and boarder function, 1/2 dot setting can be used. So, please be more careful in using the 1/2 dot to
prevent the blink. (Because the character size is changed in 1 dot unit or set to 1/2 dot in fringing or boarder
function, blinking can occur in interlace scan, so care must be taken when 1/2 dot is used for width.)

OSD Character Size Control Register (CHACON)
FOH, Set 1, Bank 1, R/W

MSB 7 .6 5 A4 3 .2 1 .0 LSB

Vertical character Horizontal character Fade row address selection bits:

size selection bits: size selection bits: 0000 = Row O 0110 = Row 6
00 = 'x1' size 00 ='x1' size 0001 = Row 1 0111 =Row 7
01 ='x2' size 01 ='x2' size 0010 = Row 2 1000 = Row 8
10 = 'x3' size 10 = 'x3' size 0011 =Row 3 1001 = Row 9
11 = 'x4' size 11 = 'x4' size 0100 = Row 4 1010 = Row 10
0101 =Row 5 1011 = Row 11

Figure 13-4. OSD Character Size Control Register (CHACON)

13-8

ELECTRONICS

S3C880A/F880A

ON-SCREEN DISPLAY

Horizontal = x4
Vertical = x4

Horizontal = x1
Vertical = x1

Horizontal = x3
Vertical = x3

Horizontal = x3
Vertical = x2

Horizontal = x2
Vertical = x2

Horizontal = x2
Vertical = x3

Figure 13-5. OSD Character Sizing Dimensions

ELECTRONICS

13-9

ON-SCREEN DISPLAY S3C880A/F880A

FADE-IN AND FADE-OUT CONTROL REGISTER (FADECON)

The OSD block lets you program fade-in and fade-out displays. A fade-in display is one in which a character
matrix is displayed incrementally until the complete character "appears". A fade-out display shows the complete
character matrix first and then decrements the matrix line-by-line until the character "disappears” from the
display field.

The address of the character display (and the specific line) to be faded-in or faded-out is selected by writing bit
values into the CHACON and FADECON registers. Bits 3-0 in the CHACON register specify the 4-bit video RAM
address of one of the twelve rows (0-11) of the fade display. Bits 0—4 in the FADECON register specify the 5-bit
line address within the selected row.

Fade direction is controlled by FADECON.5. There are two choices of fade direction: before (FADECON.5 = "0")
and after (FADECON.5 ="1"). When you select fade before, the character matrix is faded starting with line 0.
When you select fade after, the matrix is faded starting with inter-row space line 6. (The inter = row space line 6
start position is only a suggestion, however, as the fade interval is assignable by software.) To enable the fade
function, you should set FADECON.6 to "1". (FADECON.7 is not used).

NOTE

To avoid confusion in determining fade row and line addresses in the CHACON and FADECON
registers, please note that line is a horizontal value that encompasses the entire character display field
while row is a horizontal value for the character display matrix.

OSD Fade Control Register (FADECON)
F1H, Set 1, Bank 1, R/W

MSB 7 .6 5 A4 3 .2 1 .0 LSB

Not used

. . Fade row address selection bits:
Fade function enable bit:

0 = Fade before matrix
1 = Fade after matrix

01010 = Line 10
01100 = Line 12
01110 = Line 14
10000 = Line 16

¢ : 00000 = Line 0 00001 = Line 1
0 = Fade disable 00010=Line2 00011 = Line 3
1 = Fade enable 00100 = Line 4 00101 = Line 5

Fade direction selection bit: 00110 = Line 6 00111 = Line 7
01000 = Line 8 01001 = Line 9

01011 = Line 11
01101 = Line 13
01111 = Line 15
10001 = Line 17

10010 = Inter-row space Line 0 (1H)
10011 = Inter-row space Line 1 (2H)
10100 = Inter-row space Line 2 (3H)
10101 = Inter-row space Line 3 (4H)
10110 = Inter-row space Line 4 (5H)
10111 = Inter-row space Line 5 (6H)
11000 = Inter-row space Line 6 (7H)
11001-11111 = Not used

Figure 13-6. OSD Fade Control Register (FADECON)

13-10

ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

ROW Line
A 12 ¢

13
14
15
16
17
n-1 18 (Inter-row space Line 0)
19 (Inter-row space Line 1)
20 (Inter-row space Line 2)
21 (Inter-row space Line 3)

OCO~NOUITRWNELO

PRRRRRE R
OUTRWNRFO

17

18 (Inter-row space Line 0)
19 (Inter-row space Line 1)
20 (Inter-row space Line 2)
21 (Inter-row space Line 3)

~NOoOUOARAWNERO

Figure 13-7. Line and Row Addressing Conventions when ROWCON.2-.0 = "100"

ELECTRONICS 13-11

ON-SCREEN DISPLAY S3C880A/F880A

COLUMNS 0-20

v

TT-0 SMOd

om|IT(X|Z2

(P00« |Z(T

Line=0

Line =12

Fade After (Fade Line = 13, Fade Line = No Display)

CHACON <« 05H (Fade Row =5)
FADECON < 6DH (Fade Line = 13;
Fade After Selected)

Figure 13-8. OSD Fade Function Example: Fade After

13-12 ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

COLUMNS 0-20

v

TT-0 SMOY

v|Z|<|0|op
O|z|x|zrm|w

Line=5

Line =17

Fade Before (Fade Line =5, Fade Line = Display)

CHACON <« 06H (Fade Row = 6)
FADECON < 45H (Fade Line =5;
Fade Before Selected)

Figure 13-9. OSD Fade Function Example: Fade Before

ELECTRONICS 13-13

ON-SCREEN DISPLAY

S3C880A/F880A

DISPLAY POSITION CONTROL

The on-screen display has 252 character display positions. There are 21 horizontal columns and 12 vertical rows.
Positions can be numbered sequentially from 0-251 (decimal) or from 0—FB (hexadecimal), as shown in Figures
13-11 and 13-12. To control display position, you can adjust the top and left margins and the inter-column and

inter-row spacing between characters on the screen.

TT-0 SMOY

COLUMNS 0-20

-
>

DECIMAL

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

v

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

180

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Figure 13-10. 252-Byte On-Screen Character Display Map (Decimal)

TT-0 SMOY

COLUMNS 0-20

v

HEXADECIMAL

0

1

2

3

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

oF

A0

Al

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

BO

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

Co

C1

Cc2

C3

Cc4

C5

C6

Cc7

Cs

C9

CA

CB

CcC

CD

CE

CF

DO

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

EO

El

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

FO

F1

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

Figure 13-11.

252-Byte On-Screen Character Display Map (Hexadecimal)

13-14

ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

ROW CONTROL REGISTER (ROWCON)

The row control register, ROWCON, controls the top margin and inter-row spacing. Top margin is the distance (in
H-sync pulses) to the top row of a character display from the top edge of its display frame. Inter-row spacing is
the distance (in H-sync pulses) between two rows of displayed characters. The inter-row spacing value you select
is applied equally to all rows in the display.

OSD Row Control Register (ROWCON)
F2H, Set 1, Bank 1, R/IW

MSB 7 .6 5 A4 3 .2 1 .0 LSB

Inter-row spacing control bits
(OH-7H in H-sync pulses):

Top margin display position control bits
(4 x TMG value of 0-31 dots):

00000 = Top margin = OH 000 = No inter-row spacing (OH)
00001 = Top margin = 4H 001 = Inter-row spacing = 1H

11111 = Top margin = 124H 111 = Inter-row spacing = 7H

Figure 13-12. OSD Row Control Register (ROWCON)

COLUMN CONTROL REGISTER (CLMCON)

The column control register, CLMCON, controls the left margin and inter-column spacing. Left margin is the
distance to the character display from the left edge of the display frame. Inter-column spacing is the distance (0—
7 dots) between space separating the characters displayed in a row. The inter-column spacing value that you
select is applied equally to all columns in the display.

OSD Column Control Register (CLMCON)
F3H, Set 1, Bank 1, R/W

2 1 .0 LSB

MSB 7 .6 5 A4 3

Left margin display position control value
(16 + 4 x LMG value of 0-31 dots):

00000 = Left margin = 16 dots clock
00001 = Left margin = 16 + 4 x 1 dot clock

11111 = Left margin = 16 + 4 x 31 dot clock

Inter-column spacing control value
(0-7 dots):

000 = No inter-column spacing
001 = Inter-column spacing = 1 dot

111 = Inter-column spacing = 7 dots

Figure 13-13. OSD Column Control Register (CLMCON)

ELECTRONICS

13-15

ON-SCREEN DISPLAY S3C880A/F880A

P
Top Margin
e e]
Inter-Row Space t
| N | | o S
[L]]
Left_ >
Margin <—|
Inter-Column Space

Figure 13-14. OSD Display Formatting and Spacing Conventions

Calculating Row and Column Spacing
Inter-row spacing and inter-column spacing are controlled by the ROWCON and CLMCON registers. You can
select from zero to seven dots of spacing.

For inter-row spacing, the desired spacing value (0-7) is written to bits 0-2 of the ROWCON register. For inter-
column spacing, the desired spacing value (0-7) is written to bits 0-2 of the CLMCON register.

Calculating Margin Settings

By writing a value to ROWCON.3-ROWCON.7, you can set the top margin at 4~ the top margin dot value
(TMG). Because TMG is a 5-bit value, you can select any dot value in the range 0-31.

By writing a value to CLMCON.3-CLMCON.7, you can set the left margin at 16 + 4 ° the left margin dot value
(LMG). Because LMG is a 5-bit value, you can select any dot value in the range 0—-31. The zero position for the
left margin is always 16 dots.

— Top margin =4~ (top margin register value) H

— Left margin = 16 + 4~ (left margin register value) dot clock

— Inter-column space = (Register value) dot clock

— Inter-row space = (Register value) H

13-16 ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

CHARACTER COLOR CONTROL REGISTER (COLBUF)

The color of the character matrix display is controlled by manipulating a 5-bit value in the OSD video RAM. You
can modify the character color selection bits only by addressing the OSD color buffer register, COLBUF (FCH,
set 1, bank 1). The color selection bits are COLBUF.2, COLBUF.1, COLBUF.0 and COLBUF.3 (H/T and
BGRND). These four bits comprise the RGB value (bit 10, 11, 12) and H/T and BGRND enable bit (bit 13) of the
character data stored in the video RAM.

When programming the display RAM values for a character display, you must first load a 3-bit color value into
the color buffer. This color setting is automatically appended to each 10-bit character code as it is written to the
OSD RAM addresses. If only one COLBUF value is loaded, all characters in the screen display will, of course, be
the same color. To change the display color of successive characters, modify the COLBUF value before you load
the address data for a specific row and column into the video RAM.

OSD Character Color Buffer (COLBUF)
FCH, Set 1, Bank 1, R/W

MSB 7 .6 5 A4 3 2 1 .0 LSB

Not used Character color selection bits
(.2 =red, .1 = green, .0 = blue)

Video RAM bit 9 enable bit: ch " I

0 = Disable VRAM bit 9 21110 aracter color
1 = Enable VRAM bit 9 OSDCOL.0=0 | OSDCOL.0=1
Video RAM bit 8 ble bit 0j]0]O0 Black Color Mode 0

ideo it 8 enable bit:
0 = Disable VRAM bit 8 0|01 Blue Color Mode 1
1 = Enable VRAM bit 8 of1]0 Green Color Mode 2
1|1 lor M

H/IT and BGRND enable bit: | Cyan Color Mode 3
0 = Disable H/Tand BGRND | 1[0 | 0 Red Color Mode 4
1 = Enable H/T and BGRND 1]10(1 Magenta Color Mode 5
(VRAM bit 13) 11110 Yellow Color Mode 6
1111 White Color Mode 7

Figure 13-15. OSD Character Color Buffer Register (COLBUF)

ELECTRONICS 13-17

ON-SCREEN DISPLAY S3C880A/F880A

BACKGROUND COLOR CONTROL

The background color control register, COLCON, lets you select background colors for both the display frame
and characters:
— Frame background is the full-screen display field upon which the character display is imposed.

— Character background is a color field that surrounds the individual character. To enhance readability, the
background is usually a color that contrasts or highlights the characters in a pleasing manner.

Character
Background
Off\
Wide Screen WidelYScreen Wide Screen
Color TV Color TV Color TV
Frame Character No Character
Background Background Background
Color Color Color

Figure 13-16. Background Color Display Conventions

13-18 ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

OSD Background Color Control Register (COLCON)
F3H, Set 1, Bank 1, R/IW

MSB 7 .6 5 A4 3 .2 1 .0 LSB

Frame background color enable bit: Character color selection bits
0 = Disable frame background color (See table)
(No color is displayed)

1 = Enable frame background color Character background color enable bit:

0 = Disable character background color
(No color is displayed)
1 = Enable character background color

Frame background color selection bit:

2or3|60or2l 50r1l.40ro0 Frame Character Background color
OSDCOL.0=0 | OsSDCOL.0=1
0 X X X No background display
1 0 0 0 Black Color Mode 0
1 0 0 1 Blue Color Mode 1
1 0 1 0 Green Color Mode 2
1 0 1 1 Cyan Color Mode 3
1 1 0 0 Red Color Mode 4
1 1 0 1 Magenta Color Mode 5
1 1 1 0 Yellow Color Mode 6
1 1 1 1 White Color Mode 7

Figure 13-17. OSD Background Color Control Register (COLCON)

ELECTRONICS 13-19

ON-SCREEN DISPLAY

S3C880A/F880A

V-SYNC BLANK CONTROL REGISTER (VSBCON)

VSBCON sets the blank area, which stops the L-C oscillator during the defined time from the V-sync input time.
Unit of V-sync blank time is 1 H-sync. It can be set up to a maximum of 31 H-syncs. If VSBCON.4 is set from“0”
to “1001B”, blank time is always 9 H-syncs regardless of the setting value.

V-sync Blank Control Register (VSBCON)
F7H, Set 1, Bank 1, R/IW

MSB 7

.6 5

4

.3 2 1 .0

Not used

NOTE:

Frame background is disabled during the V-sync blank time.

V-sync blank time control bit:

00000

00001

00010
[}

01001

01010

01011
[}

11110
11111

9 Horizontal sync
9 Horizontal sync
9 Horizontal sync

9 Horizontal sync
10 Horizontal sync
11 Horizontal sync

30 Horizontal sync
31 Horizontal sync

LSB

Figure 13-18. V-sync Blank Control Register (VSBCON)

13-20

ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

V-SYNC BLANK AND TOP MARGIN TIMING DIAGRAM

The following is a timing diagram simplified with external V-sync input and H-sync input signals. V-sync blank
and top margin are controlled by VSBCON and ROWCON VSBCON .4-.0 = 01011B (V-sync blank time = 11
Horizontal sync). ROWCON.7—.3 = 00100B (top margin control value = 16, top margin = 5).

V-sync
: blank

| |

V-sync input

. :0123456789101112131415161718192021
H-line count

0 1 23456 7 8 910111213141516 0 1 2 3 4

Internal V-sync

|

|

|

|

|

1l
.l

|

'

:‘ V-sync blank time on chip J‘ Top margin _ Row O
> L | Ll
IA ! |-
f ROWCON.7-.3 (Top margin control value) 'f
V-sync interrupt Row 0 interrupt

Figure 13-19. V-sync Blank and Top Margin Timing Diagram

ELECTRONICS 13-21

ON-SCREEN DISPLAY S3C880A/F880A

HALFTONE SIGNAL CONTROL REGISTER (HTCON)

The halftone function lets you output halftone control signals to peripherals such as a chroma-IC. You can select
halftone output for character back ground periods (as selected by bit 13 in the video RAM) or for frame periods
(regardless of the bit 13 setting). The halftone signal control register, HTCON, has the following functions:

— Halftone option selection (character or frame)
— Halftone display enable/disable

— V-sync interrupt enable and pending control
— Polarity selection of RGB and halftone outputs

Bits 4 and 5 are used for OSD Row interrupt function.

OSD ROW Interrupt Control

The S3C880A/F880A has a total of 12 OSD display rows. When enabled, an OSD ROW interrupt occurs in the
first line of each row. Up to 12 OSD ROW interrupts can be generated, while this number can be reduced
according to different settings in top margin (ROWCON.7-.3), inter row space (ROWCON.2-.0), vertical
character size (CHACON.7-.6), and Vsync blank time (VSBCON). The ROW counter of DSPCON.7-.4 informs
the order of an OSD ROW interrupt occurring within a frame. An OSD ROW interrupt is generated at the
beginning of a ROW (for ROWO through ROW11).

OSD ROW interrupt allow different controls to each ROW. If the OSD control register is adjusted in the N-th row
area, the new value is applied from (N+1)th row. That is, if the OSD control register is adjusted in the first OSD
ROW interrupt (DSPCON.7-.4 = 0000B) service routine, the new value is applied from ROWL1. A change in the
12 th OSD ROW interrupt service routine affects the rows from ROWO.

NOTE: OSD output enable/disable (DSPCON.0) settings are immediately applied. Top margin (ROWCON.7-.3) and
VSBCON are applied in accordance with Vsync input signals.

Halftone Option Selection
In character periods only (HTCON.2 = “0"), the character specified in COLBUF.3 may have the halftone function
according to the condition of DSPCON.2—.1 (DSPCON.2—-.1 = "10" or DSPCON.2—.1 = "11").

In all frame periods (HTCON.2 = “1"), the entire section can have the function, regardless of the COLBUF.3
condition.

13-22 ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

Halftone Signal Control Register (HTCON)
F3H, Set 1, Bank 1, R/W

MSB 7 .6 5 A4 .3 .2 1 .0 LSB

Halftone signal output V-sync interrupt pending bit:

polarity selection bit: @ 0 = No interrupt pending (when read)
0 = Active high level 0 = Clear pending bit (when write)
1 = Active low level 1 = Interrupt is pending (when read)

RGB polarity selection bit: @ 1 = No effect (when write)

0 = Active high level

! V-sync interrupt enable bit:
1 = Active low level

0 = Disable the V-sync interrupt
1 = Enable the V-sync interrupt

OSD Row interrupt enable bit:
0 = Disable the OSD Row interrupt

1 = Enable the OSD Row interrupt Halftone option selection bit:

0 = Character back ground periods only

OSD Row interrupt pending bit: (when bit 3 of COLBUF is set to "1")

0 = No interrupt pending (when read) | 1 = All frame periods (disregard COLBUF "Bit 3")
0 = Clear pending bit (when write)

1 = Interrupt is pending (when read)
1 = No effect (when write)

Halftone control signal enable bit:
0 = Disable halftone signal
1 = Enable halftone signal

NOTES:
1. The HTCON.7 setting applies to halftone output only. The active high setting ("0") means
that the normal halftone signal output is Low level. when you select the active low setting ("1"),
the normal halftone signal output is High level.
2. The active high setting ("0") for HTCON.6 means that the normal RGB polarity is Low level.
When you select the active low setting ("1"), the normal RGB polarity is High level.
3. Incase HTCON.2 = 1, character halftone and background color (DSPCON.2-.1 = "11B") do not operate.

Figure 13-20. Halftone Signal Control Register (HTCON)

ELECTRONICS 13-23

ON-SCREEN DISPLAY S3C880A/F880A

Background Color and Halftone Function Mode

» Character Color: Red

—» Background Color: Blue

SCAN

» Frame background color: Green

COLCON.7 ="0", If OSDCOL.0 = "0", COLCON = 29H, HTCON.3-.2 ="10b"
Frame background: Disable, Frame halftone: Disable, Character background: Enable with Blue color,
Character background halftone: Enable

R

G

B

Blank

OSDHT

If OSDCOL.0 ="0", COLCON = A1H, HTCON.3-.2 ="11b"
Frame background: Enable with Green coler, Frame halftone: Enable,
Character background: Enable with Blue color, Character background halftone: Enable

R

G

Blank

OSDHT

Figure 13-21. Halftone or Character Backgound Signal Output

13-24 ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

OSD FIELD CONTROL REGISTER (OSDFLD)

OSD field control register helps recognizing whether the current field is an EVEN field or an ODD one, ina TV
signal frame. This control register must be defined for a current field recognition of V-sync and H-sync entering
the S3C880A/F880A. In order to recognize an even field, OSDFLD.0-.3 defines the range starting from the point
of

V-sync edge, where H-sync must be present. If H-sync exits within the range, the field is recongnized as an
EVEN field.

OSDFLD.4 defines when H-sync must be detected. If it is set to “0”, the existence of H-sync is detected within
the range set by OSDFLD.0-.3 before V-sync is input. If it is set “1”, it is detected after V-sync is input.

OSDFLD.5 describes whether the current, field input by the field control which is set by OSDFLD.0-.3 and
OSDFLD.4 is an EVEN field or an ODD one.

OSD Field Control Register (OSDFLD)
E5H, Set 1, Bank 1, R/IW

MSB 7 .6 5 A4 3 .2 1 .0 LSB

Not used Even field range:

Field data (read only): 0000 = Not used
0 = Even field 0001 = fcpu/l6 x 1
1 = Odd field 0010 = fcpu/16 x 2
0011 =fcpu/16 x 3
H-sync detect position select: 0100 = fcpu/16 x 4
0 = Detect H-sync before V-sync 0101 = fcPu/16 X 5
1 = Detect H-sync after V-sync 0110 = fcpu/16 x 6
0111 =fcpu/l6 x 7
1000 = fcpu/16 x 8
1001 = fcpu/16 x 9
1010 = fcpu/16 x 10
1011 = fcpu/16 x 11
1100 = fcpu/16 x 12
1101 = fcpu/16 x 13
1110 = fcpu/16 x 14
1111 = fcpu/16 x 15

Figure 13-22. OSD Field Control Register (OSDFLD)

ELECTRONICS 13-25

ON-SCREEN DISPLAY S3C880A/F880A

Field Detect by OSDFLD Control
When control register set is OSDFLD.0-.3 = “1010B”, OSDFLD.4 =0

V-sync input

[}
[}
[}
[}
[}
[}
[}
:
H-sync input i
[}
[}
[}
[}
[}
[}
[}
[}
[}

|_| Even filed
|_| Odd filed

H-sync input |_|

Figure 13-23. Field Detect in Before V-sync

V-sync input

H-sync input |_|
V-sync input |_|

Even filed

|_| Odd filed

fcpu/
16 x 10

Figure 13-24. Field Detect in After V-sync

13-26 ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

OSD PALETTE COLOR CONTROL

OSD Palette Color Mode Registers (OSDPLTR, OSDPLTG, OSDPLTB)

OSD palette color mode register R, G, B controls the color of OSD R, G, B output. OSDPLTR1, OSDPLTR?2,
OSDPLTG1, OSDPLTG2, OSDPLTB1, and OSDPLTB2 are composed of 8 bits each, in which the combinations
of bit0-bitl, bit2-bit3, bit4-bit5, bit6-bit7 of OSDPLTX1 (X = R, G, B) define color mode 0 to 3 and bit0-bitl, bit2-
bit3, bit4-bit5, bit6-bit7 of OSDPLTX2 (x = R, G, B) define color mode 4 to 7, respectively.

Each color mode can express upto 64 color by combing the six registers (OSDPLTR1, OSDPLTR2, OSDPLTG1,
OSDPLTG2, OSDPLTB1, OSDPLTB2). As one color mode can select one color out of 64 choices, and there are
8 color modes, a total of 8 colors can be displayed at time. For example, when combining color mode 0, each of
OSDPLTR1.0-1, and OSDPLTB1.0-1 can produce 4 kids of red level, which can be multiplied upto 64
combinations.

Each 2 bits define a color mode make 4 color levels available. When the standard lighting is 100%, the value
"00B" means disabled, "01B" means 33% and "10B" means 66% of the standard light level.

OSD Palette Color Mode Register R1 (OSDPLTR1)
E6H, Set 1, Bank 0, R/W

MSB 7 .6 5 A4 3 2 1 .0 LSB

OSD mode 3 red level OSD mode 0 red level
00 = Disable 00 = Disable
01 =33% 01 =33%
10 = 66% 10 = 66%
11 = 100% 11 = 100%
OSD mode 2 red level OSD mode 1 red level
00 = Disable 00 = Disable
01 =33% 01 =33%
10 = 66% 10 = 66%
11 = 100% 11 = 100%

Figure 13-25. OSD Palette Color Mode Register R1 (OSDPLTR1)

ELECTRONICS 13-27

ON-SCREEN DISPLAY

S3C880A/F880A

OSD Palette Color Mode Register R2 (OSDPLTR2)
E7H, Set 1, Bank 1, R/W

MSB 7 .6 5 A4

3 .2 1 .0 LSB

OSD mode 7 red level
00 = Disable

01 =33%

10 = 66%

11 = 100%

OSD mode 6 red level
00 = Disable

01 =33%

10 = 66%

11 = 100%

OSD mode 4 red level

00 = Disable
01 =33%
10 = 66%
11 = 100%
OSD mode 5 red level
00 = Disable
01 =33%
10 = 66%
11 = 100%

Figure 13-26. OSD Palette Color Mode Register R2 (OSDPLTRZ2)

13-28

ELECTRONICS

S3C880A/F880A

ON-SCREEN DISPLAY

OSD Palette Color Mode Register G1 (OSDPLTG1)
E8H, Set 1, Bank 0, R/W

MSB 7 .6

.5

4

3 .2 1 .0 LSB

OSD mode 3 green level

00 = Disable
01 =33%
10 = 66%
11 = 100%

OSD mode 2 green level

00 = Disable
01 =33%
10 = 66%
11 = 100%

OSD mode 0 green level

00 = Disable
01=33%
10 = 66%
11 = 100%
OSD mode 1 green level
00 = Disable
01=33%
10 = 66%
11 = 100%

Figure 13-27. OSD Palette Color Mode Register G1 (OSDPLTG1)

OSD Palette Color Mode Register G2 (OSDPLTG2)
E9H, Set 1, Bank 0, R/W

MSB 7 .6

.5

4

3 2 1 .0 LSB

OSD mode 7 green level

00 = Disable
01 =33%
10 = 66%
11 = 100%

OSD mode 6 green level

00 = Disable
01 =33%
10 = 66%
11 = 100%

OSD mode 4 green level

00 = Disable
01 =33%
10 = 66%
11 = 100%
OSD mode 5 green level
00 = Disable
01 =33%
10 = 66%
11 = 100%

Figure 13-28. OSD Palette Color Mode Register G2 (OSDPLTG2)

ELECTRONICS

13-29

ON-SCREEN DISPLAY

S3C880A/F880A

OSD Palette Color Mode Register B1 (OSDPLTB1)
EAH, Set 1, Bank 0, R/'W

MSB 7 .6 5 A4

.3 .2 1 .0 LSB

OSD mode 3 blue level
00 = Disable

01 =33%

10 = 66%

11 = 100%

OSD mode 2 blue level
00 = Disable

01 =33%

10 = 66%

11 = 100%

OSD mode 0 blue level

00 = Disable
01 =33%
10 = 66%
11 = 100%
OSD mode 1 bluelevel
00 = Disable
01 =33%
10 = 66%
11 = 100%

Figure 13-29. OSD Palette Color Mode Register B1 (OSDPLTB1)

OSD Palette Color Mode Register B2 (OSDPLTB2)
EBH, Set 1, Bank 0, R/'W

MSB 7 .6 5 A4

3 .2 1 .0 LSB

OSD mode 7 blue level
00 = Disable

01 =33%

10 = 66%

11 = 100%

OSD mode 6 blue level
00 = Disable

01 =33%

10 = 66%

11 = 100%

OSD mode 4 blue level

00 = Disable
01 =33%
10 = 66%
11 = 100%
OSD mode 5 bluelevel
00 = Disable
01 =33%
10 = 66%
11 = 100%

Figure 13-30. OSD Palette Color Mode Register B2 (OSDPLTB?2)

13-30

ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

OSD SPACE COLOR CONTROL REGISTER (OSDCOL)

RGB output selection

S3CB880A/F880A has two RGB output mode: digital mode and analog mode.

In Digital mode, OSDCOL.0 must be set to 0. RGB output has two levels, VSS and VDD. Eight colors can be
produced: black, blue, green, cyan, red, magenta, yellow and white. OSD palette color control registers,
OSDPLTR1, OSDPLTR2, OSDPLTG1, OSDPLTG2, OSDPLTB1, and OSDPLTB2, are not used in this mode.

In analog mode, OSDCOL.0 must be set to 1. R.G.B output color bright can be selected among four levels
respectively. 64 colors can be selected by setting OSD palette color control registers, OSDPLTR1, OSDPLTR?2,
OSDPLTG1, OSDPLTG2, OSDPLTB1, and OSDPLTB2. In one display row you can select 8 colors, color mode
0-7, by setting COLBUF.2—.0. The color selected by color mode 0—7 can be changed in every display row.

Inter-row space halftone
Inter-row spacing is the distance (in H-sync pulses) between two rows of displayed characters and can be
changed by setting ROWCON.2-.0. Also halftone character can be changed for this inter-row spacing.

For OSDCOL.1=0, halftone function of inter-row space region is the same as that of the character background
region. That is, if the halftone function of character background region is enabled by setting HTCON.3 to “1”, the
halftone function of inter-row space region is enabled. When HTCON.3 is set to “1”, halftone function of
character background is enabled regardless of the value of HTCON.2.

For OSDCOL=1 (depend on frame background halftone), inter-row space halftone function is enabled when the
value of HTCON.3 and HTCON.2 are set to "1".

Inter-row space color

Inter-row space color depends on the character background color and frame background color by COLCON.
When OSDCOL.2 is “0", inter-row space color depends on the current character background color; when
OSDCOL.2 is “1", inter-row space color depends on the current frame background color.

Fringe dot size selection

1 dot (when OSDCOL.3 is “0") is a fringe size, which is set by OSDFRG1 and OSDFRG2.

For 1/2 dot fringe size (when OSDCOL.3 is “1"), fringe function is set by 1/2 dot unit. In the interlaced scan, even
field line and odd field line are added to form 1 dot of length. If character size of length is x1 or x3 in the 1/2 dot
fringe size, blinking can occur. So, 1 dot fringe size method is recommended.

Inter character smoothing control

If inter character smoothing is enabled (when OSDCOL .4 is “1"), adjacent character is considered as one
character and smoothing function is enabled.

ELECTRONICS 13-31

ON-SCREEN DISPLAY S3C880A/F880A

OSD Space Color Control Register (OSDCOL)
E4H, Set 1, Bank 0, R/'W

MSB 7 .6 5 A4 3 .2 1 .0 LSB

Not used RGB output selection bit:
0 = Digital RGB output (Disable palette color mode)
Inter character smoothing control bit ("t): 1 = Analog RGB output (Enable palette color mode)

0 = Disable inter character smoothing

1 = Enable inter character smoothing Inter-row space halftone

0 = Depend on character background halftone
Fringe dot size 1 = Depend on frame background halftone

selection bit:
0=1dot Inter-row space color
1=1/2dot 0= Depend on character background color

1 = Depend on frame background color

Figure 13-31. OSD Space Color Control Register (OSDCOL)

13-32 ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

OSD BORDER/FRINGE FUNCTION

Fringing Function

The fringing function is used to display a character with a fringe (fringe means shadowed character at bottom and
right direction) width is 1 or 1/2 dot in a different color from that of the character. For all character size, fringe
width is 1 or 1/2 dot by set of OSDCOL.3. When a character is displayed with the maximum of 18 vertical dots
and 16 horizontal dots, the fringe exceeds right and bottom of the character display area. The exceeded fringe
can be displayed; however , display characters have higher priority to fringe. In this case, If you want to display
both fringe and character, you should set inter-row space and inter-column space. When 1dot fringe function is
selected, you should set minimum two dots of inter-row space or inter-column space. When 1/2 dot fringe
function is selected, you should set minimum one dot of inter-row space or inter-column space.

Fringing is enabled for each line by setting each bit of OSDFRG1 and OSDFRG2 to “1” when OSDFRG2.7="1".

Three bits of OSDFRGZ2.6-.4 are control Border color. A color for fringe is specified common to selected row and
a color for fringe to each row are controlled differently.

NOTE: When Vertical size x1 and x3 in 1/2 fringe enabled, the flickering may be generated. Because vertical 1 dot
means even and odd field, that is 1/2 dot is even or odd field area. So interlace scan TV system, you can
see the flickering.

Border Function

The Border function is used to display a character with a Border (Border means shadowed at all character
boundary) width is 1/2 dot in a different color from that of the character. For all character size, Border width is 1/2
dot. When a character is displayed with the maximum of 18 vertical dots and 16 horizontal dots, the fringe
exceeds right and bottom of the character display area. The exceeded Border can be displayed; however ,
display characters have higher priority to fringe. In this case, If you want to display both Border and character,
you should set inter-row space and inter-column space over minimum one dot. Border is enabled for each line by
setting each bit of OSDFRG1 and OSDFRG2 to “1” when OSDFRG2.7="0".

Three bits of OSDFRG2.6-.4 are control Border color. A color for Border is specified common to selected row
and a color for fringe to each row are controlled differently.

NOTE: When Vertical size x1 and x3, the flickering may be generated. Because vertical 1 dot means even and odd field,
that is 1/2 dot is even or odd field area. So interlace scan TV system, you can see the flickering.

ELECTRONICS 13-33

ON-SCREEN DISPLAY S3C880A/F880A

OSD Fringe/Border Control Register 1 (OSDFRG1)
EOH, Set 1, Bank 1, R/'W

MSB 7 .6 5 A4 .3 .2 1 .0 LSB

Fringe/Border function enable bit:
0 = Disable fringe/border function at row n (n = 0-7)
1 = Enable fringe/border function at row n (n = 0-7)

Figure 13-32. OSD Fringe/Border Control Register 1 (OSDFRG1)

OSD Fringe/Border Control Register 2 (OSDFRG2)
E1H, Set 1, Bank 1, R/W

MSB 7 .6 5 A4 3 .2 1 .0 LSB

Fringe or Border selection bit: Fringe/Border function enable bit:
0 = Border function select 0 = Disable fringe/border function at row n (n = 8-11)
1 = Fringe function select 1 = Enable fringe/border function at row n (n = 8-11)

Fringe/Border color selection bits:
(.6 =red, .5 = green, .4 = blue)

6l 5l 4 Fringe/Border Color
OSDCOL.0=0 | OSDCOL.0=1
ojof|o0 Black Color Mode 0
0]0|1 Blue Color Mode 1
oj1|o0 Green Color Mode 2
0O]1(1 Cyan Color Mode 3
11010 Red Color Mode 4
11011 Magenta Color Mode 5
11110 Yellow Color Mode 6
111 White Color Mode 7

Figure 13-33. OSD Fringe/Border Control Register 2 (OSDFRG2)

13-34 ELECTRONICS

S3C880A/F880A

ON-SCREEN DISPLAY

OSD SMOOTH FUCNTION

Smoothing function

The smoothing function is used to make characters look smooth. Enabling smoothing displays 1/4 dot between
two dots connecting corner to corner within a character. Smoothing is enabled by setting each bit of OSDSMH1
and OSDSMH2 to “1”". A smooth is specified common to selected row.

OSD Smooth Control Register 1(OSDSMH1)
E2H, Set 1, Bank 1, R/W

MSB 7 .6 5

4

3

2 1 .0

LSB

Row 7 smooth function enable bit:
0 = Disable smooth function at Row 7
1 = Enable smooth function at Row 7

Row 6 smooth function enable bit:
0 = Disable smooth function at Row 6
1 = Enable smooth function at Row 6

Row 0 smooth function enable bit:
0 = Disable smooth function at Row 0
1 = Enable smooth function at Row 0

Row 1 smooth function enable bit:
0 = Disable smooth function at Row 1
1 = Enable smooth function at Row 1

Row 5 smooth function enable bit:
0 = Disable smooth function at Row 5
1 = Enable smooth function at Row 5

Row 4 smooth function enable bit:
0 = Disable smooth function at Row 4
1 = Enable smooth function at Row 4

Row 2 smooth function enable bit:
0 = Disable smooth function at Row 2
1 = Enable smooth function at Row 2

Row 3 smooth function enable bit:
0 = Disable smooth function at Row 3
1 = Enable smooth function at Row 3

Figure 13-34. OSD Smooth Control Register 1 (OSDSMH1)

ELECTRONICS

13-35

ON-SCREEN DISPLAY

S3C880A/F880A

OSD Smooth Control Register 2 (OSDSMH2)
E3H, Set 1, Bank 1, R/'W

MSB 7 .6 .5 4 .3 2 A .0 LSB
Not used Row 8 smooth function enable bit:
0 = Disable smooth function at Row 8
1 = Enable smooth function at Row 8
Row 9 smooth function enable bit:
0 = Disable smooth function at Row 9
1 = Enable smooth function at Row 9
Row 10 smooth function enable bit:
0 = Disable smooth function at Row 10
1 = Enable smooth function at Row 10
Row 11 smooth function enable bit:
0 = Disable smooth function at Row 11
1 = Enable smooth function at Row 11
Figure 13-35. OSD Smooth Control Register 2 (OSDSMH2)
1 1 1 1
r'—"i 1 1 i—':'-i 1
=] | O | O
L-I O L-I '-_I'_-I I-I::F—E: -I::Hl |!:l::r%:
A 5 HH. - u
i: 8 I:Lil—izlli [llji:rl I:LFHE -
o d L] = rrFl:_ e r"::F'H:_ N
= H] []
r_| N r_| |_-I :rl—F | | —-l_ll _-!_,—i__ | | :
o o5 il ajin B e ek i N u
— | | M— — | [] | | M— | 1 | |
T LHJ
[

(a) Smoothing

(b) Bordering

(c) Priority of Smoothing
and Bordering

(d) Fringing (1 dot)

Figure 13-36. Smoothing/Fringing/Priority of Smoothing and Fringing

13-36

ELECTRONICS

S3C880A/F880A ON-SCREEN DISPLAY

=" PROGRAMMING TIP — Row Interrupt Function

This example shows the effect of the control register setting excluding the HTCON.5,4,1,0 and DSPCON 3,0
occurs in the next row. The sample program should meet the following specifications:

1. The character size of the row 2 must be double-sized (" 2).

2. The character size of the other rows must be normal (" 1).

(OSD Row interrupt)

(V-sync interrupt)
v

SB1 SB1
DSPCON «— #01H PUSH RO

v

CHACON «— #00H

v

v

RO «— DSPCON

HTCON «— #32H

v

v

AND RO, #0FOH

v

RO = 10H

No

Yes

i

CHACON «— #50H

CHACON «— #00H

ve

POP RO

v

HTCON «— #23H

v

Figure 13-37. Decision Flowchart for Row Interrupt Function Programming Tip

ELECTRONICS

13-37

ON-SCREEN DISPLAY

S3C880A/F880A

I pPROGRAMMING TIP — Row Interrupt Function (Continued)

Vsync_int:
SB1
LD

DSPCON,#01H

;This is Vsync interrupt service routine.

Interrupt_end:
LD
IRET

Row_int:

SB1
PUSH
LD
AND
CP
JR

LD

JR

No_char_change:
LD

Row _interrupt_end:
POP
LD
IRET

HTCON, #32H

RO

R0O,DSPCON
RO,#0FOH

RO,#10H

NE, No_Char_Change
CHACON,#50H

t, Row_interrupt_end

CHACON, #00H

RO
HTCON, #23H

Select bank 1
OSD on, H/V sync rising edge

Pending bit clear

Select bank 1

Stack = RO

RO - DSPCON data
11110000b, bit0-bit3 clear
Row 1 interrupt?

Double size character at row 2

X1 size character except row 2

Pending bit clear

13-38

ELECTRONICS

S3C880A/F880A

ON-SCREEN DISPLAY

= pROGRAMMING TIP — Writing Character Code and Color Data to the OSD Video RAM

This example shows how to write character code and color data to the OSD video RAM. The sample program
performs the following operations:

1. Write red character 'A' (code 0A, for example) to the video RAM from address O0H to 77H.
2. Write green character 'B' (code 0B, for example) to the video RAM from address 78H to OFBH.

SB1
LD
LD
LD
SRPO
LD
CLR
OSDLP1 LD
INC
CP
JP
LD
OSDLP2 LD
INC
CP
JP
SBO

DSPCON,#0F9H

OSDCOL,#0
PP #11H
#0COH
COLBUF,#04H
RO

@RO,#0AH

RO

RO#77H
ULE,OSDLP1
COLBUF,#02H
@RO,#0BH

RO

RO,#0FBH
ULE,OSDLP2

Select bank 1

OSD module on; negative sync trigger is selected
Digital RGB selection

Select OSD video RAM page (page 1)

Select common working register area

Load color buffer (red color)

Load starting address (O0H) to RO

Write red character A to video RAM address 00H-77H

Load green color code (02H) to the color buffer
Write green character B to RAM address 78H-0FBH

Select bank 0

=" PROGRAMMING TIP — OSD Fade Function; Line and Row Counters

This example is a continuation of the previous OSD example in which character code and color data were written
to the video RAM. Assuming a timer A interrupt interval of 2 milliseconds, the sample program should meet the

following specifications:

If bit fade (R4.0) is set, then enable the fade function.
2. Interval time between two lines = 20 ms. (The flag 'INTVAL' is set at 20-ms intervals in the timer A service

routine.)

3. Fade direction is 'fade after'.

ELECTRONICS

13-39

ON-SCREEN DISPLAY S3C880A/F880A

FADECON

F_STRT < "1" Yes (Initial)

(Exit)

v

ROWCNT <— #00H
LINECNT «— #O00H
F STRT <4 "1"

LINECNT < LINECNT + #1
INTVAL <« "1"

Y (= #19) N (< #19)

LINECNT <«— #O00H
ROWCNT <— ROWCNT +1
“«—
N (< #12)
OWCNT = #117% |
v
Enable Fade

Fade €+— 0

Disable Fade Function
OSD ON

Figure 13-38. Decision Flowchart for Fade Function Programming Tip

13-40 ELECTRONICS

S3C880A/F880A

ON-SCREEN DISPLAY

=¥ pROGRAMMING TIP — OSD Fade Function; Line and Row Counters (Continued)

ROWCNT EQU 6

LINECNT EQU 7

FADE EQU 0

F STRT EQU 1

INT._ CNT EQU 5

INTVAL EQU 2
SB1
LD PP,#11H
SRPO #OCOH
BTJRF EXIT1,R4.FADE
BTJRT FAD1,R4.F STRT
BTJRF EXIT,R4.INTVAL
INC RLINECNT
BITR R4.INTVAL
CP RLINECNT #13H
JP ULT,FAD2
CLR RLINECNT
INC RROWCNT
CP RROWCNT #0DH
JP ULT,FAD2
LD R1,#0F1H
LD R2,@R1
BITR R2.6
LD @R1,R2

FAD3 LD DSPCON,#0F9H
JR T,EXIT

(Continued on next page)

Select bank 1

Select OSD video RAM page (page 1)
RPO - 0COH (common working register area)
If flag FADE = "0", then jump to EXIT1
If F_STRT = "1", then jump to FAD1

If INTVAL = "1", then jump to EXT

Line counter - line counter + 1
INTVAL = "0"

Line counter 3 19?

If line counter < 19, then jump to FAD2
Line counter - "0"

Row counter —= row counter + 1

Row counter < 117

Ifrow £ 12, then jump to FAD2

If row > 12, then finish the fade function

Fade disable

OSD module on

ELECTRONICS

13-41

ON-SCREEN DISPLAY

S3C880A/F880A

¥ pPROGRAMMING TIP — OSD Fade Function; Line and Row Counters (Continued)

FAD1

FAD2

EXIT1

EXIT

TAINT

TAl

CLR
CLR
BITS

LD
AND
OR
LD
INC
LD
OR
LD
JR

BITS

SBO

PUSH
PUSH
LD
SRPO
INC
CP

JP
CLR
BITS

NOP
POP

POP
IRET

RROWCNT
RLINECNT
R4.F_STRT

R2,CHACON
R2 #0FOH
R2,RROWCNT
CHACON,R2
R1
R2,RLINECNT
R2,#60H
FADECON,R2
T,FAD3

R4.F_STRT

PP
RPO

PP#11

#0COH
RINT_CNT
RINT_CNT #0AH
ULE,TA1
RINT_CNT
R4.INTVAL

RPO
PP

Row counter (R6) - OH
Line counter (Rn) = OH

R2 - CHACON

Clear the fade row address

Load new fade row address to R2
CHACON - R2

R1 - OF1H (fade line address)

R2 - new fade line address

Enable fade function, select fade after

Select bank 0

Select video RAM page (page 1)

RPO - OCOH

Interval counter - interval counter + 1
Interval counter £ 10? (Has 20 ms elapsed?)
If yes, then jump to TA1

20 ms has elapsed, so clear interval counter
INTVAL = "1"

13-42

ELECTRONICS

S3C880A/F880A

ON-SCREEN DISPLAY

I PROGRAMMING TIP — Manipulating OSD Character Colors; Halftone Function

This example is a continuation of the previous OSD examples. Following the second sample program, red
character A is in the video RAM address 00H-77H and green character B has been written to addresses 78H—
OEFH. The program performs the following additional actions:

1. Change the color of character 'A' to white.

2. Change the color of character 'B' to its complementary color.

3. Enable the halftone function for character 'B'.

SB1
LD
SRPO
LD

CLR
OSDLP1 LD

INC
CP
JP
LD
COM
AND
LD

LD

PP #11H
#0COH
COLBUF,#0FH

RO
@RO,#0AH
RO

RO#77H
ULE,OSDLP1
R2,COLBUF
R2

R2 #0FH
COLBUF,R2

DSPCON,#0F9H

(Continued on next page)

Select bank 1

Select video RAM page (page 1)

RPO - 0COH (common working register area)
Color buffer = white color code (07H), character
background enable

RO (video RAM address) - OOH

Video RAM (00H-77H) - white 'A'

R2 - color buffer (color of character in address 78H)
R2 - (notR2)

Mask out bit 7 through bit 3 of R2

Color buffer = complementary color of the character
in address 78H

OSD module on; negative sync trigger selected

ELECTRONICS

13-43

ON-SCREEN DISPLAY

S3C880A/F880A

I PROGRAMMING TIP — Manipulating Character Colors; Halftone Function (Continued)

halftone CALL

halftonel PUSH
PUSH
PUSH
SB1
LD
SRPO
CLR

loop_halftone
LD

LD
LD
INC
CP
JP
tm
JR
LD

LD

JP

end_halftone
POP
POP
POP
RET

halftonel

PP
RPO
FLAGS

PP #11H
#20H
RO

HTCON,#02H

DSPCON,#09H
R1,@R0

RO

RO,#0FBH
UGT,end_halftone
COLBUF,#08H
Z,loop_halftone
HTCON,#0AH

DSPCON,#0DH

t,loop_halftone

FLAGS
RPO
PP

Halftone signal control

Stack = PP

Stack = RPO

Save flags to stack

Select bank 1

Page 1 selected

RPO - 20H (working register area)
RO - OOH

Disable halftone control register

Enable V-sync interrupt

Enable OSD; select negative sync trigger
Video RAM zero address

Video RAM end?
Check COLBUF.3 (character background enable?)

Enable halftone

Enable V-sync interrupt
Halftone output mode
Select negative sync trigger
No line is double size

Restore flag values from stack
Restore register pointer 0 value
Restore page pointer

Return

13-44

ELECTRONICS

S3C880A/F880A

ON-SCREEN DISPLAY

I pROGRAMMING TIP — OSD Character Size, Background Color, and Display Position

This example is a continuation of the previous OSD examples. It performs the following additional actions:

Change the character size to horizontal * 3 and vertical ~ 2.

2. Enable character background color to the complementary color of the character code in address OEFH of the

video RAM.

Enable the frame background; select the color cyan.

Set top margin to 16H, inter-row spacing to 1H, left margin to 24 dots, and inter-column spacing to three (3)

dots.

SB1
LD
SRPO
LD
LD
LD
LD
LD
LD
COM
AND
OR
LD
LD
SBO

PP #11H

#0COH
COLCON,#0
CHACON,#60H
FADECON,#00H
ROWCON,#21H
CLMCON, #1BH
R3,COLBUF

R3

R3,#07H
R3,#0B8H
COLBUF,R3
DSPCON,#09H

Select bank 1

Select video RAM page (page 1)

Select common working register area

Digital RGB selection

Horizontal “ 3, vertical * 2 for character size
Disable the fade function

Top margin -~ 16H, inter-row space - 1H
Left margin = 24 dots, inter-column space -~ 3 dots
R3 - color of the character in address OEFH
R3 - notR3

Mask out bit 7 through bit 3 of R3

R3 - cyan frame background color

Enable character and frame background color
Falling edge sync trigger, OSD on

Select bank O

I PROGRAMMING TIP — Helpful Hints About COLBUF and OSD Character Code 0

When working with the OSD module, please note the somewhat unusual characteristics of the color buffer

register (COLBUF) and the OSD character code O:

— The color buffer register, COLBUF (F7C, set 1, bank 1) provides a somewhat unusual method for
manipulating character color data.

— OSD character code 0 produces a no-display and no-background condition, regardless of the font coding

used.

ELECTRONICS

13-45

ON-SCREEN DISPLAY S3C880A/F880A

NOTES

13-46 ELECTRONICS

S3C880A/F880A A/D CONVERTER

ANALOG-TO-DIGITAL CONVERTER

OVERVIEW

The 8-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at
one of the four input channels to equivalent 8-bit digital values. The analog input level must lie between the V

and Vgg values. The A/D converter has the following components:

— Analog comparator with successive approximation logic
— DI/A converter logic (resistor string type)

— ADC control register (ADCON)

— Four multiplexed analog data input pins (ADCO0-ADC?3)
— 8-bit A/D conversion data output register (ADDATA)

To initiate an analog-to-digital conversion procedure, you write the channel selection data in the A/D converter
control register ADCON to select one of the four analog input pins (ADCn, n = 0-3) and set the conversion start
or enable bit, ADCON.O. The read-write ADCON register is located at address FAH.

During a normal conversion, A/D C logic initially sets the successive approximation register to 80H (the
approximate half-way point of an 8-bit register). This register is then updated automatically during each
conversion step. The successive approximation block performs 8-bit conversions for one input channel at a time.
You can dynamically select different channels by manipulating the channel selection bit value (ADCON.5-4) in
the ADCON register. To start the A/D conversion, you should set a the enable bit, ADCON.O. When a conversion
is completed, ADCON.3, the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into
the ADDATA register where it can be read. The A/D converter ten enters an idle state. Remember to read the
contents of ADDATA before another conversion starts. Otherwise, the previous result will be overwritten by the
next conversion result.

NOTE

Because the ADC does not use sample-and-hold circuitry, it is important that any fluctuations in the
analog level at the ADCO-ADC3 input pins during a conversion procedure be kept to an absolute
minimum. Any change in the input level, perhaps due to circuit noise, will invalidate the result.

ELECTRONICS 14-1

A/D

CONVERTER

S3C880A/F880A

USING A/D PINS FOR STANDARD DIGITAL INPUT

The ADC module's input pins are alternatively used as digital input in port 0 and port 3. The ADCO-ADC1 share
pin names are P3.0-P3.1 and ADC2—ADC3 share pin names are P0.6—P0.7, respectively.

A/D CONVERTER CONTROL REGISTER (ADCON)

The A/D converter control register, ADCON, is located at address FAH. Only bits 5-0 are used in the

S3CB880A/F880A implementation. ADCON has three functions:

Bits 5—4 select an analog input pin (ADC0-ADC3).
Bit 3 indicates the status of the A/D conversion.

Bit 2-1 select a conversion speed.
Bit O starts the A/D conversion.

Only one analog input channel can be selected at a time. You can dynamically select any one of the four analog
input pins (ADCO—ADC3) by manipulating the 2-bit value for ADCON.5—ADCON.4.

A/D Converter Control Register (ADCON)

FAH, Set 1, Bank 0, R/'W

MSB 7 .6

5 A4 3 2 1

Not used

Analog input pin selection bits:

00 = ADCO (P3.0)
01 = ADC1 (P3.1)
10 = ADC2 (P0.6)
11 = ADC3 (P0.7)

00 = fosc/16
01 = fosc/8
10 = fosc/4
11 = fosc/2

LSB

Conversion start bit:
0 = No effect
1 = A/D conversion start

Clock source selection bit:

End-of-conversion status bit: (Read only)

0 = A/D conversion is in progress

1 = A/D conversion complete

Figure 14-1. A/D Converter Control Register (ADCON)

14-2

ELECTRONICS

S3C880A/F880A A/D CONVERTER

INTERNAL REFERENCE VOLTAGE LEVELS

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input
level must remain within the range AVgg to AVgee (usually, AVgee = Vpp).

Different reference voltage levels are generated internally along the resistor tree during the analog conversion
process for each conversion step. The reference voltage level for the first bit conversion is always 1/2 AVpee

A/D Converter Control Register

ADCON (FAH)

ADCON .5-4 ADCON .0 (ADEN) 4
Control ADCON .2-1
Circuit ADCON .3
Clock (EOC Flag)
M
u Selector
Apcorzo [l—>| |
. T A4
ADCLP3.1 ! Successive
P >—> Approximation
Apc2/Po.6 [l—> E = Circuit
X Analog
apcsro.7 [—>| ¢ Comparator
R
l Conversion
\ 4 Result
L 0 AVREF ADDATA
D/A Converter | o AVss (FBH)
To Data Bus

Figure 14-2. A/D Converter Circuit Diagram

ADDATA (FBH) | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Figure 14-3. A/D Converter Data Register (ADDATA)

ELECTRONICS 14-3

A/D CONVERTER S3C880A/F880A

Conversion P tcon = 50 CPU Clock >:
Start !
[}
:
EOC
[}
:
ADDATA > ><
Previous | valid
Value Value Remains Undetermined Data

Figure 14-4. S3C880A/F880A A/D Converter Timing Diagram

CONVERSION TIMING

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 18 clocks to step-up A/D
conversion. Therefore, total of 50 clocks are required to complete an 8-bit conversion: With an 10 MHz CPU
clock frequency, one clock cycle is 100 ns. If each bit conversion requires 4 clocks, the conversion rate is
calculated as follows:

4 clocks/bit x 8-bits + step-up time (18 clock) = 50 clocks
50 clock x 100 ns =5 s at 10 MHz, 1 clock time = CPU clock

INTERNAL A/D CONVERSION PROCEDURE

1. Analog input must remain between the voltage range of AVss and AVREE.

2. Configure the analog input pins to input mode by making the appropriate settings in P3CONL and POCONH
registers.

3. Before the conversion operation starts, you must first select one of the four input pins (ADC0-ADC3) by
writing the appropriate value to the ADCON register.

4. When conversion has been completed, (50 CPU clocks have elapsed), the EOC flag is set to “1”, so that a
check can be made to verify that the conversion was successful.

5. The converted digital value is loaded to the output register, ADDATA, than the ADC module enters an idle
state.

6. The digital conversion result can now be read from the ADDATA register.

14-4 ELECTRONICS

S3C880A/F880A A/D CONVERTER

VDD
Reference % R
Voltage AV l AVREF
Input VDD j; 104
Analog %
. ADCO-ADC3
Input Pin l 101
; S3F880A
AVss
Vss
NOTE: The symbol 'R’ signifies an offset resistor with a value of from 50to 10 0 Ohm.

Figure 14-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy

=" PROGRAMMING TIP — Configuring A/D Converter

LD P3CONL,#00000101B ; P3.1-0 A/D Input MODE

LD POCONH,#01010000B ; P0.7-6 A/D Input MODE

LD ADCON,#00000001B ; channel ADCO: P3.0/conversion start
ADO_CHK: TM ADCON,#00001000B ; A/D conversion end ? ® EOC check

JR Z,AD0_CHK : No

LD ADOBUF,ADDATA ; Conversion data

LD ADCON,#00010001B ; channel ADC1: P3.1/conversion start
AD1_CHK: TM ADCON,#00001000B ; A/D conversion end ? ® EOC check

JR Z,AD1_CHK : No

LD AD1BUF,ADDATA : Conversion data

ELECTRONICS

14-5

A/D CONVERTER S3C880A/F880A

NOTES

14-6 ELECTRONICS

S3C880A/F880A

ELECTRICAL DATA

1 5 ELECTRICAL DATA

OVERVIEW

In this section, S3C880A/F880A electrical characteristics are presented in tables and graphs. The information is
arranged in the following order:

Absolute maximum ratings

D.C. electrical characteristics

I/O capacitance

A.C. electrical characteristics

Input timing measurement points for tye1 and tygE2
Data retention supply voltage in Stop mode

Stop mode release timing when initiated by RESET
Main oscillator and L-C oscillator frequency

Clock timing measurement points for XN

Main oscillator clock stabilization time (tsT)

A/D converter electrical characteristics
Characteristic curves

ELECTRONICS

15-1

ELECTRICAL DATA S3C880A/F880A
Table 15-1. Absolute Maximum Ratings
(To= 25°C)
Parameter Symbol Conditions Rating Unit
Supply Voltage Vb — -0.3 to +6.0 V
Input Voltage Vi, P1.0-P1.5 (open-drain) -03to+7 \Y
Vo Al port pins except V|, -0.3 to Vpp +0.3
Output Voltage Vo All output pins -03 to Vpp +0.3 \%
Output Current loH One I/O pin active -18 mA
High
All I/O pins active - 60
Output Current oL One I/O pin active + 30 mA
Low
Total pin current for port 1 + 100
Total pin current for ports 0, 2, and 3 + 100
Operating Ty - —-20 to +85 °C
Temperature
Storage Tste - —65 to + 150 °C
Temperature
Table 15-2. D.C. Electrical Characteristics
(T = —20°C to +85°C, Vpp = 45V to 5.5V)
Parameter Symbol Conditions Min Typ Max Unit
Input High A All input pins except V., 0.8 Vpp - Vb \Y
Voltage \ XiN, XouT 2.7V
Input Low Voltage Vi1 All input pins except V, , - - 0.2 Vpp \%
ViLz Xin, XouT 1.0V
Output High Vou lon = — 500 pA Vpp—0.8 - - \Y
Voltage P0.0-P0.5, P1.6-P1.7, P2
R, G, B (digital level), Vblank
Output Low Vou1 lop =4 mA - - 05 Vv
Voltage P0.0-P0.5, P1.6-P1.7
VoL lop =10 mA - - 0.8
P1.4-P1.5
Vous loL =2 mA - - 0.5
P1.0-P1.3, P3.0-P3.1, P0.6—
PO.7
Vora lo =1 mA - - 0.4 \Y
R, G, B (digital level), Vblank, P2
15-2 ELECTRONICS

S3C880A/F880A

ELECTRICAL DATA

Table 15-2. D.C. Electrical Characteristics (Continued)

(T, = —20°C to +85°C,Vpp = 45V to 55V)

Parameter Symbol Conditions Min Typ Max Unit
Leakage Current All input pins except I |5,
and I 3
ILiH2 Vin = Vpp» OSCyy, OSCoyr 10
ILiHs Vin = Vops Xin, XouTt 2.5 10 20
Input Low TR Viy=0V - - -1 HA
Leakage Current All input pins except I 5,
I)3, and RESET
L2 Vin=0V, -10
OSC\: OSCqyt
Output High lLoH1 Vout = Vbp - - 1 HA
Leakage Current All output pins except || 51y»
lLoHz Vour=6V 10
P1.0-P1.5
Output Low lLoL Vour=0V - - -1 HA
Leakage Current All output pins
Supply Current Ibp1 Normal mode; - 7 20 mA
(note) Vpp=45V to 55V
8-MHz CPU clock
Ibp2 Idle mode; 4 10
Vpp =45V to 55V
8-MHz CPU clock
Ibp3 Stop mode; 1 10 MA

Vpp =45V to 55V

NOTE: Supply current does not include the current drawn through internal pull-up resistors or external output current loads.

ELECTRONICS

ELECTRICAL DATA S3C880A/F880A
Table 15-3. Input/Output Capacitance
(Th = —20°Cto +85°C,Vpp =0V)
Parameter Symbol Conditions Min Typ Max Unit
Input Cin f = 1 MHz; unmeasured pins - - 10 pF
capacitance are connected to Vgg
Output Cout
capacitance
I/O capacitance Co
Table 15-4. A.C. Electrical Characteristics
(T = —20°C to +85°C,Vpp = 45V to 55V)
Parameter Symbol Conditions Min Typ Max Unit
V-sync Pulse tyw - 4 - - ps
Width
H-sync Pulse thw - 3 - - ps
Width
Noise Filter INT=21 P1.0-P1.3, H-sync, V-sync - 350 - ns
N RESET - 1000
tNEs Glitch filter (oscillator block) - 25
tnra CAPA - 5 - tcapa
Table 15-5. Analog R,G,B Output
(TA = —20°C to +85°C,Vpp = 4.75V to 5.25V)
Output Voltage (50 kWload) Remark
Vpp=4.75V Vpp = 5.00 V Vpp =5.25V
Data =11 400V+030V 420V +030V 440V +030V
Data = 10 3.10V+025V 3.35V+025V 3.40V+025V
Data =01 190V +0.20V 200V +0.20V 210V +0.20V
Data = 00 0.00V-0.65V 0.00V-0.75V 0.00V-0.75V

15-4

ELECTRONICS

S3C880A/F880A ELECTRICAL DATA
< 1tcpu >
INF1L
< > <4“——INF2H—Pp
INF2
\ 0.8 VbD Slx
K 7 0.2 VbD K
Figure 15-1. Input Timing Measurement Points for ty; and tyg,
Table 15-6. Data Retention Supply Voltage in Stop Mode
(T, = —20°Cto + 85°C)

Parameter Symbol Conditions Min Typ Max Unit
Data Retention VbbDRr Stop mode 2 - 6 \Y
Supply Voltage
Data Retention IbDDR Stop mode, Vpppr = 2.0V - - 5 HA
Supply Current

NOTES:

1. Supply current does not include the current drawn through internal pull-up resistors or external output current loads.
2. During the oscillator stabilization wait time (t,,5,7), all the CPU operations must be stopped.

RESET
Occurs Oscillation
+ Stabilization
<4—1—— Stop Mode > <> Time
. + Normal
|<— Data Retention Mode —>| <—>| < Qperating Mode
VDD | L
* VDDDR
Execution of
STOP Instrction
RESET /
0.2 Voo —7 tWAIT
<>
NOTE: twaIT is the same as 4096 x 16 x 1/fosc
Figure 15-2. Stop Mode Release Timing When Initiated by a RESET
ELECTRONICS 15-5

ELECTRICAL DATA S3C880A/F880A
Table 15-7. Main Oscillator and L-C Oscillator Frequency
(TA = —20°C + 85°C,Vpp = 45V to 5.5V)
Oscillator Clock Circuit Conditions Min Typ Max Unit
Crystal XIN XouT OSD block active 5 6 8 MHz
OSD block inactive 0.5
Ceramic XN XouT OSD block active 5 MHz
OSD block inactive 0.5
External Clock XN XouT OSD block active 5 MHz
OSD block inactive 0.5 6
L-C Oscillator |OSC|N OSCOUT| Recommend value; 5 6.5 MHz
T Cl1=C2=20pF
CPU Clock Frequency - 0.032 6.0 8 MHz
< 1/fosc »
— XL ————p 4 —tXH———p
XIN 2.7V
N 7 K 1.0V
Figure 15-3. Clock Timing Measurement Points for X
15-6 ELECTRONICS

S3C880A/F880A

ELECTRICAL DATA

Table 15-8. Main Oscillator Clock Stabilization Time

(Th = —20°C +85°C, Vpp = 45V to 5.5V)

Oscillator Symbol Test Condition Min Typ Max Unit
Crystal - Vpp = 45V to 6.0V - - 20 ms
Ceramic (Oscillation stabilization occurs when 10

Vpp is equal to the minimum
oscillator voltage range.)
External Clock XN input High and Low level width 65 - 100 ns
(tr tx)
Release Signal Setup tsrREL Normal operation - 1000 - ns
Time
Oscillation twart CPU clock = 8 MHz; Stop mode - 8.3 - ms
Stabilization Wait released by RESET
Time CPU clock = 8 MHz; Stop mode 2
released by an interrupt
NOTES:

1. Oscillation stabilization time is the time required for the CPU clock to return to its normal oscillation frequency after a
power-on occurs, or when Stop mode is released.

2. The oscillation stabilization interval is determined by the basic timer (BT) input clock setting.

Table 15-9. A/D Converter Electrical Characteristics

(To = —20°C to +85°C,Vpp =45V to 55V, Vgg= 0V)

Parameter Symbol Test Conditions Min Typ Max Unit
Absolute Vpp=5.12V - - +2 LSB
Accuracy CPU CLOCK =8 MHz

AVgep =5.12V
AVgg=0V
Conversion tcon fosc = 8 MHz 25 - - us
Time
Analog Input Voltage ViaN - AVgg - AVger \Y%
Analog Input Impedance Ran - 2 - - MwW
ADC Reference Voltage AVger - 25 - Vbp \Y%
ADC Reference Ground AVgs - Vss - Vgg +0.3 \Y%
Analog input current lapn' |AVRer = Vpp =5V - - 10 uA
ADC block current) laoc |AVRer = Vpp =5V — 1 3 mA
AVgeg = Vpp =5V - 100 500 nA
Power down mode
NOTES:
1. 'Conversion time'is the time required from the moment a conversion operation starts until it ends.
2. lapc is operating current during A/D conversion.
ELECTRONICS 15-7

ELECTRICAL DATA S3C880A/F880A

NOTES

15-8 ELECTRONICS

S3C880A/F880A MECHANICAL DATA

1 6 MECHANICAL DATA

OVERVIEW

The S3C880A/F880A microcontrollers are available in 42-pin SIP package (42-SDIP-600), 44-pin QFP package
(44-QFP-1010B) .

#42 #22 Y 0-15°
Y i I e s I e I e s I e e s e s e e e e e Y I I | y f
I
o <
1) O 42-SDIP-600 O
o —
<
—
A A S i [S S Y
#1 #21
39.50 MAX S %
<l | -
< » H| =
39.10 + 0.20 o ©
< > n| Q
/ \l A A
A
l at v
: U : : A A
I IR A 4
[} [} [}
|| 0.50 * 0.10 Z| 8
T = <
(1.77) 1.00 + 0.10 1.78 a2l o
« >ie — S| @
™
NOTE: Dimensions are in millimeters.

Figure 16-1. 42-Pin SDIP Package Dimensions (42-SDIP-600)

ELECTRONICS 16-1

MECHANICAL DATA S3C880A/F880A

P 13.20 0.3 .
0-8
10.00 +0.2 +0.10
< > ¥-0.15 -0.05
A O0O0PO0BP0BOANO
A
CT— — 11
CT— — 11
o—] — 11
o o CT— — 11
+ + o—] 11
2l |Is o — 44-QFP-1010B — (2] 0.10 MAX
™ o | — 11
o ‘-' CT— — 11
o—] — o
CT— O — N
#44 CIT— — C ?I
" T T T 8
1| i | o
i ! N A &
4 HH H:HHHHH N[
#1 Do +0.10: 4
0.35 -0.05
< 0.05 MIN
0.80 (1.00) | B
< <P || 205010
2.30 MAX
<P
NOTE: Dimensions are in millimeters.

Figure 16-2. 44-Pin QFP Package Dimensions (44-QFP-1010B)

16-2 ELECTRONICS

S3C880A/F880A S3C880A/F880A MTP

1 ; S3F880A MTP

OVERVIEW

The S3C880A/F880A single-chip CMOS microcontroller is the MTP flash ROM version. It has an on-chip flash
ROM instead of a masked ROM. The flash ROM is accessed by serial data format.

N
PWMO/P2.5] 1 42 (3 P0.0
PWM1/P2.1 . 2 Q 41 3 PO.1
PWM2/P2.2(SCLK) & 3 40 (2 P0.2
PWM3/P2.3(SDAT) . 4 Q 39 [P0.3
PWM4/P2.4] 5 38 (3 P0.4
PWM5/P2.0 . 6 37 (3 Vss/Vss
To/P2.6 T 7 36 (3 CAP.A
TOCK/P1.7 . 8 35 (3 PO.5
ADCO/P3.0 9 34 (3 VbD/VDD
ADC1/P3.1 . 10 S3F880A 33 [RESET/RESET
ADC2/P0.6 . 11 32 (3 Xout
ADC3/P0.7] 12 (42'SD|P) 31 = XN
TESTTEST] 13 30 [Vss1
INTO/P1.0 . 14 29 (3 OSCout
INT1/P1.1 = 15 28 (3 OSCIN
INT2/P1.2 &3] 16 27 (3 V-sync
INT3/P1.3 . 17 26 (3 H-sync
P1.4] 18 Q 25 (3 Vblank
P1.5 . 19 24 (3 Vred
P1.6 ™ 20 23 1 Vgreen
OSDHT/P2.7] 21 22 (3 Vblue

Figure 17-1. S3F880A Pin Assignment (42-SDIP)

ELECTRONICS 17-1

S3C880A/F880A MTP S3C880A/F880A

'_
o ™
Z = 3 E
= < & 09 %
278 PLSNOOT®
1258 dcddd
>SI>>>>a0aoan
SN OMOANTOMM”ONNOLWS
ITFTTTTOOOOO™M
VSS2IVSS . 4 33 = P1.2/INT2

P04 5 O 3 3 PLL/INTL

P03 3 31 /= PL1L.0/INTO

s S3CBBO0A s e

. 5 29 .

P0.0 & S3F880A 28 =3 P0.6/ADC2
P2.5/PWMO0] 7 »7 £ P3.1/ADC1
P2.1/PWM1] g (44-QFP) 26 — P3.0/ADCO
P2.2/PWM2] g 25 /= P1.7/TOCLK
P2.3/PWM3] ¢ 54 B3 P2.6/TO
P2.4/PWM4 T 11 23 |3 P2.0/PWM5

NMTWOHONO0O O N
e N NN
NONYXYOAdNMEFEOAWN
SEJOOQOOQOWMWEEE
SeQoooqWzzZ
aap<<<<IESTR
TR EREE
Y Foaacai aoo

Figure 17-2. S3F880A Pin Assignment (44-QFP)

17-2 ELECTRONICS

S3C880A/F880A

S3C880A/F880A MTP

Table 17-1. Descriptions of Pins Used to Read/Write the Flash ROM (S3F880A)

Main Chip During Programming
Pin Name Pin Name Pin No. I/O Function
P2.3 (Pin 4) SDAT 4 /0 Serial data pin (output when reading, Input when writing)
Input and push-pull output port can be assigned
P2.2 (Pin 3) SCLK 3 /0 Serial clock pin (Input only pin)
TEST Vpp 13 I 0 V: operating mode
(TEST) 5 V: test mode
12.5 V: flash ROM writing mode
RESET RESET 33 I 5 V: operating mode, 0 V: flash ROM writing mode
Vpp/Vss Vpp/Vss 34/30, 37 I Logic power supply pin.

ELECTRONICS

17-3

S3C880A/F880A DEVELOPMENT TOOLS

1 8 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for
S3C7, S3C8, S3C9 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2.
Samsung also offers support software that includes debugger, assembler, and a program for setting options.

SHINE

Samsung Host Interface for in-circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked
help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be
sized, moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates
object code in standard hexadecimal format. Assembled program code includes the object code that is used for
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and
an auxiliary definition (DEF) file with device specific information.

SASM88

The SASM88 is an relocatable assembler for Samsung's S3C8-series microcontrollers. The SASM88 takes a
source file containing assembly language statements and translates into a corresponding source code, object
code and comments. The SASM88 supports macros and conditional assembly. It runs on the MS-DOS operating
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked
with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code.(OBJ file) by
HEX2ROM, the value 'FF' is filled into the unused ROM area up to the maximum ROM size of the target device
automatically.

ELECTRONICS 18-1

DEVELOPMENT TOOLS

S3C880A/F880A

TARGET BOARDS

Target boards are available for all S3C8-series microcontrollers. All required target system cables and adapters
are included with the device-specific target board.

IBM-PC AT or Compatible

T RS-232C SMDS2+
v
<+—> PROM/OTP Writer Unit
<+—> RAM Break/Display Unit
é +“—> Trace/Timer Unit
<+“—> SAMS8 Base Unit 4—2[;
<+—> Power Supply Unit

Target
Application
System

Probe

A
[}
[}
i
[}
: Adapter
|
v

TB880A
Target
Board

Eva
Chip

Figure 18-1. SMDS Product Configuration (SMDS2+)

18-2

ELECTRONICS

S3C880A/F880A DEVELOPMENT TOOLS

TB880A TARGET BOARD

The TB880A target board is used for the S3C880A/F880A microcontrollers. It is supported with the SMDS2+. The
TB880A target board can also be used for S3C880A/F880A.

TB880A

Idle Stop

To User_Vcc
off [OO O|0on) 74HC10 ()«J,)

+
RESET MDS |O O O | EPROM

;@5 >74HC4050 >74HC4050 > 27C512

Vcc
1]

GND
]

25
J101
S
g 1 42
c 1
5
O CN
£ o S
< 3
o 144 QFP 2
S c
— S3ES8800 8
1 EVA Chip =
a
o
L-C clock ~
21 22
External
Triggers
©) cm
@ ch2 sups2| O OO | sups2+
SM1342A

Figure 18-2. TB880A Target Board Configuration

ELECTRONICS 18-3

DEVELOPMENT TOOLS S3C880A/F880A

Table 17-1. Power Selection Settings for TB880A

'To User_Vcc' Settings Operating Mode Comments
To User Ve The SMDS2+ main board
- — supplies V- to the target
Off |§m on TB8BOA | | Vec—» Target board (evaluation chip) and
—> | e the target system
r «— Vss e target system.
V|CC
SMDS2+
To User Ve The SMDS2+ main board
- — External supplies V¢ only to the target
off m§| on TBEBOA Vec—p| Jarget board (evaluation chip). The
—> System target system must have it
r “«— Vss—» arget syste ust have its
own power supply.
V|CC
SMDS2+

NOTE: The following symbol in the 'To User_Vcc' Setting column indicates the electrical short (off) configuration:

o o5

18-4 ELECTRONICS

S3C880A/F880A

DEVELOPMENT TOOLS

SMDS2+ Selection (SAMS)

In order to write data into program memory that is available in SMDS2+, the target board should be selected to
be for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.

Table 17-2. The SMDS2 + Tool Selection Setting

'SW1' Setting

Operating Mode

swos2| XY svoser

R/W <4+ R/W —»

SMDS2+

Target
System

OSD Font ROM Selection

Table 17-3. OSD Font ROM Selection Setting

'SW2' Setting

Comments

MDS EPROM

EPROM (27C512) is used for OSD font ROM

X
d
mj Not use

MDS EPROM

ELECTRONICS

18-5

DEVELOPMENT TOOLS S3C880A/F880A

Table 17-4. Using Single Header Pins as the Input Path for External Trigger Sources

Target Board Part Comments

External

. Connector from
Triggers

External Trigger
@ Chi Sources of the

Application System
© cne I I

You can connect an external trigger source to one of the two
external trigger channels (CH1 or CH2) for the SMDS2+ breakpoint
and trace functions.

18-6 ELECTRONICS

S3C880A/F880A DEVELOPMENT TOOLS
J101
PWMO/P2.5 T | 1 42 | &= P0.0
PWM1/P2.1 | 2 41| @ Po.1
PWM2/P2.2 (SCLK) | 3 40 | @ PO.2
PWM3/P2.3 (SDAT) [| 4 39 | @ PO.3
PWM4/P2.4 T | 5 38| & P0.4
PWM5/P2.0 . | 6 37 | @ Vss
To/P2.6 . |7 36 | 3 CAP.A
TOCK/P1.7 . | 8 o 35| [P05
ADCO/P3.0 & |9 = 34 | B3 Vbb/VDD
ADC1/P3.1 | 10 B} 33 | @ RESET/RESET
ADC2/P0.6 | 11 > 32| @ NC
ADC3/P0.7 . | 12 % 31| B NC
Vss (] | 13 o 30 | B2 Vss
INTO/P1.0 . | 14 o 29 | @ OSCout
INTL/P1.1 T | 15 3 28 | =@ OSCiN
INT2/P1.2 . | 16 3 27 | B V-sync
INT3/P1.3 T | 17 5] 26 | 2 H-sync
PlL4 |18 25 | 3 Vblank
P15 |19 24 | &3 Vred
P16 O |20 23 | B Vgreen
OSDHT/P2.7 T | 21 22 | &= Vblue
NC = NC
NC = NC
NC = NC
NC = NC
Figure 17-3. 50-Pin DIP Connector J101 for TB880A
Target Board Target System
. J101 1 12
o (1 50 1 50
i)
. S 42-SDIP
T — Part Name: AP42SD — s} .
g — Order Cods: SM6538 — 8 —» Conversion
S @ PCB
g (7]
3
S |25 26 25 26
2 22

Figure 17-4. S3C880A/F880A Probe Adapter for 42-SDIP Package

ELECTRONICS

18-7

DEVELOPMENT TOOLS S3C880A/F880A

NOTES

18-8 ELECTRONICS

	S3C880A,F880A
	01-Product Overview
	02-Address Space
	03-Addressing Modes
	04-Control Registers
	05-Interrupt Structure
	06-SAM8 Instruction Set
	07-Clock Circuits
	08-RESET and Power-Down
	09-I/O Ports
	10-Basic Timer and Timer0
	11-Timer A
	12-PWM and Capture
	13-OSD
	14-ADC
	15-Electrical Data
	16-Mechanical Data
	17-S3F880A MTP
	18-Development Tools

