

Product Description

Sirenza Microdevices' SGA-8343 is a high performance Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) designed for operation from DC to 6 GHz. The SGA-8343 is optimized for 3V operation but can be biased at 2V for low-voltage battery operated systems. The device provides high gain, low NF, and excellent linearity at a low cost. It can be operated at very low bias currents in applications where high linearity is not required.

SGA-8343

Low Noise, High Gain SiGe HBT

Product Features

- DC-6 GHz Operation
- 0.9 dB NF_{MIN} @ 0.9 GHz
- 24 dB Gmax @ 0.9 GHz
- $|\Gamma_{OPT}|=0.10 @ 0.9 \text{ GHz}$
- OIP3 = +28 dBm, P1dB = +13 dBm
- · Low Cost, High Performance, Versatility

Applications

- · Analog and Digital Wireless Systems
- · 3G, Cellular, PCS, RFID
- · Fixed Wireless, Pager Systems
- Driver Stage for Low Power Applications
- Oscillators

Symbol	Device Characteristics	Test Conditions V _{CE} =3V, I _{CQ} =10mA, 25°C (unless otherwise noted)	Test Frequency	Units	Min.	Тур.	Max.
G _{MAX}	Maximum Available Gain	Z _s =Z _s *, Z _l =Z _l *	0.9 GHz 1.9 GHz 2.4 GHz	dB		23.9 19.3 17.7	
NF _{MIN}	Minimum Noise Figure	$Z_{s} = \Gamma_{OPT}, Z_{L} = Z_{L}^{*}$	0.9 GHz 1.9 GHz 2.4 GHz	dB		0.94 1.10 1.18	
S ₂₁	Insertion Gain [1]	$Z_s = Z_L = 50\Omega$	0.9 GHz	dB	20.5	21.5	22.5
NF	Noise Figure [2]	LNA Application Circuit Board	1.9 GHz	dB		1.40	1.75
Gain	Gain [2]	LNA Application Circuit Board	1.9 GHz	dB	14.8	15.8	
OIP ₃	Output Third Order Intercept Point [2]	LNA Application Circuit Board	1.9 GHz	dBm	25.8	27.8	
P _{1dB}	Output 1dB Compression Point [2]	LNA Application Circuit Board	1.9 GHz	dBm	7.5	9.0	
h _{FE}	DC Current Gain				120	180	300
BV _{CEO}	Collector-Emitter Breakdown Voltage			V	5.7	6.0	
Rth	Thermal Resistance	junction-to-lead		°C/W		200	
V _{CE}	Operating Voltage	collector-emitter		V			4.0
I _{CE}	Operating Current	collector-emitter		mA			50

^{[1] 100%} tested - Insertion gain tested using a 50 ohm contact board (no matching circuitry) during final production test.

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2002 Sirenza Microdevices, Inc. All worldwide rights reserved.

EDS-101845 Rev D

^[2] Sample tested - Samples pulled from each wafer/package lot. Sample test specifications are based on statistical data from sample test measurements. The test fixture is an engineering application circuit board (parts are pressed down on the circuit board). The application circuit represents a trade-off between the optimal noise match and input return loss.

Junction Temperature Calculation

MTTF is inversely proportional to the device junction temperature. For junction temperature and MTTF considerations the device operating conditions should also satisfy the following expression:

$$P_{DC} < (T_1 - T_1) / R_{TH}$$

where:

 $P_{DC} = I_{CE} * V_{CE}(W)$ $T_{J} = Junction Temperature (C)$ $T_{L} = Lead Temperature (pin 2) (C)$ R_{TH}^{L} = Thermal Resistance (C/W)

Biasing Details

The SGA-8343 should be biased through a dropping resistor or with active bias circuitry to prevent thermal runaway and combat Beta variation. For passive biasing it is recommended that the voltage drop be at least 20% of $V_{\rm CE}$. A voltage divider from collector-to-base is preferred over a simple series resistor. The effect of Beta variation can be minimized by bleeding ~10*I_B through the shunt resistor.

SGA-8343 Low Noise SiGe HBT

Absolute Maximum Ratings

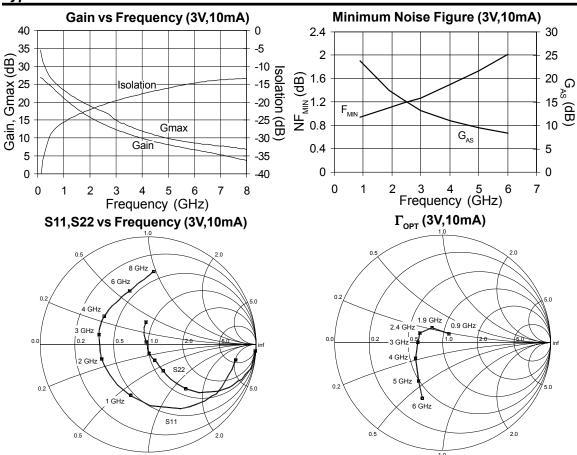
Parameter	Symbol	Value	Unit
Collector Current	I _{CE}	72	mA
Base Current	l _B	1	mA
Collector - Emitter Voltage	V _{CE}	5	V
Collector - Base Voltage	V _{CB}	12	V
Emitter - Base Voltage	V _{EB}	4.5	V
RF Input Power	P _N	5	dBm
Storage Temperature Range	T _{stor}	-40 to +150	С
Power Dissipation	P _{DISS}	350	mW
Operating Junction Temperature	T _J	+150	С

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page 1.

Typical Performance - Engineering Application Circuits (See App Note AN-044)

Freq (GHz)	V _s (V)	V _{CE} (V)	I _{co} (mÅ)	NF (dB)	Gain (dB)	P1dB (dBm)	OIP3 ^[3] (dBm)	S11 (dB)	S22 (dB)	Comments
0.32	3.0	2.2	3	1.75	20.2	-3	10	-11	-18	NF/S11/Gain tune, OIP3@-15dBm/tone
0.90	5.0	3.0	0	na	19.0	14.0	na	-20	na	Class F, high efficiency, I_{co} =0.5 μ A, I_{c} =16.5 m A and P_{OUT} =14dB m @ P_{N} =-5dB m
0.90	5.0	3.0	11	TBD	TBD	TBD	TBD	TBD	TBD	series feedback for better S11/NF
1.80	3.0	2.0	9	1.40	15.0	7.0	24.0	-10	-15	series feedback for better S11/NF
1.90	5.0	3.0	11	1.40	15.8	9.0	27.8	-13	-18	series feedback for better S11/NF

^[3] Pour = 0 dBm per tone, 1MHz tone spacing


Refer to the application note for additional RF data, PCB layouts, BOMs, biasing instructions, and other key issues to be considered. For the latest application note please visit our site at www.sirenza.com.

Peak RF Performance Under Optimum Matching Conditions

Freq (GHz)	V _{ce} (V)	I _{co} (mA)	NF _{MIN} ^[4] (dB)	Gmax (dB)	P1dB ^[5] (dBm)	OIP3 ^[6] (dBm)
0.90	2	10	0.90	23.7	10	25
0.90	3	10	0.94	23.9	13	29
1.90	2	10	1.05	19.1	10	25
1.90	3	10	1.10	19.3	13	29
2.40	2	10	1.15	17.4	10	25
2.40	3	10	1.18	17.7	13	29

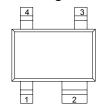
Typical Performance - De-embedded S-Parameters

Note: S-parameters are de-embedded to the device leads with $Z_s = Z_L = 50\Omega$. The device was mounted on a 0.010" PCB with plated-thru holes close to pins 2 and 4. De-embedded s-parameters can be downloaded from our website (www.sirenza.com).

Typical Performance - Noise Parameters - 3V,10mA

Frequency (GHz)	NF _{MIN} ^[7] (dB)	Γ _{οΡΤ} Mag ∠ Ang	r _n (Ω)	Gmax (dB)
0.9	0.94	0.10 ∠ 55	0.11	23.88
1.9	1.1	0.17 ∠ 125	0.10	19.33
2.4	1.18	0.23 ∠ 157	0.09	17.66
3	1.27	0.23 ∠ 179	0.09	15.01
4	1.5	0.29 ∠ -150	0.12	11.94
5	1.73	0.42 ∠ -122	0.18	9.84
6	2.02	0.55 ∠ -110	0.24	8.62

 $^{^{[7]}}$ $Z_s = \Gamma_{OPT}$, $Z_t = Z_t^*$, NF_{MIN} is a noise parameter for which the input matching circuit losses have been de-emebedded. The noise parameters were measured using a Maury Microwave Automated Tuner System. The device was mounted on a 0.010" PCB with plated-thru holes close to pins 2 and 4.


Caution: ESD sensitive

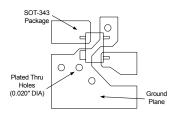
Appropriate precautions in handling, packaging and testing devices must be observed.

Pin Description

Pin #	Function	Description
1	Base	RF Input / Base Bias
2	Emitter	Connection to ground. Use via holes to reduce lead inductance. Place vias as close to ground leads as possible.
3	Collector	RF Output / Collector Bias
4	Emitter	Same as Pin 2

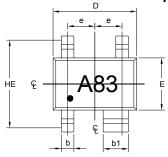
Pin Designation

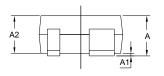
SGA-8343 Low Noise SiGe HBT


Part Number Ordering Information

ĺ	Part Number	Reel Size	Devices/Reel	
	SGA-8343	7"	3000	

Part Symbolization


The part will be symbolized with the "A83" designator and a dot signifying pin 1 on the top surface of the package.


Recommended PCB Layout

Use multiple plated-through vias holes located close to the package pins to ensure a good RF ground connection to a continuous groundplane on the backside of the board.

Package Dimensions

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONS ARE INCLUSIVE OF PLATING. 3. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH
- & METAL BURR.

 4. ALL SPECIFICATIONS COMPLY TO EIAJ SC70. 5. DIE IS FACING UP FOR MOLD AND FACING DOWN
- FOR TRIM/FORM. ie :REVERSE TRIM/FORM. 6. PACKAGE SURFACE TO BE MIRROR FINISH.

SYMBOL	MIN	MAX
E	1.15	1.35
D	1.85	2.25
HE	1.80	2.40
Α	0.80	1.10
A2	0.80	1.00
A1	0.00	0.10
Q1	0.10	0.40
е	0.65	BSC
b	0.25	0.40
b1	0.55	0.70
С	0.10	0.18
L	0.10	0.30