

High Speed IGBT in NPT-technology

- 30% lower *E*_{off} compared to previous generation
- Short circuit withstand time 10 μs
- Designed for operation above 30 kHz
- NPT-Technology for 600V applications offers:
 - parallel switching capability
 - moderate E_{off} increase with temperature
 - very tight parameter distribution
 - high ruggedness, temperature stable behaviour

P-TO263-3-2

• Complete product spectrum and PSpice models : http://www.infineon.com/igbt/

Туре	$V_{\sf CE}$	$I_{\rm C}$	E_{off}	$T_{\rm j}$	Package	Ordering Code
SGB15N60HS	600V	15A	200µJ	150°C	TO-263AB	Q67040-S4535
Maximum Rating	s					

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	600	٧
DC collector current	I _C		Α
$T_{\rm C}$ = 25°C		30	
$T_{\rm C}$ = 100°C		15	
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	60	
Turn off safe operating area	-	60	
$V_{\text{CE}} \le 600 \text{V}, \ T_{\text{j}} \le 150^{\circ} \text{C}$			
Gate-emitter voltage static transient (t_p <1 μ s, D <0.05)	V _{GE}	±20 ±30	V
Short circuit withstand time ¹⁾	t _{SC}	10	μs
$V_{\rm GE}$ = 15V, $V_{\rm CC} \le 600$ V, $T_{\rm j} \le 150$ °C			
Power dissipation	P _{tot}	138	W
$T_{\rm C}$ = 25°C			
Operating junction and storage temperature	$T_{\rm j}$, $T_{\rm stg}$	-55+150	°C
Time limited operating junction temperature for $t < 150h$	$T_{j(tl)}$	175	
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic	-			<u> </u>
IGBT thermal resistance,	R_{thJC}		0.9	K/W
junction – case				
Thermal resistance,	R_{thJA}	TO-263AB	62	
junction – ambient				
SMD version, device on PCB ¹⁾	R_{thJA}	TO-263AB	40	

Electrical Characteristic, at T_i = 25 °C, unless otherwise specified

Development	Cumbal	Conditions	Value			11
Parameter	Symbol Conditions		min.	Тур.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{\rm GE}$ =0V, $I_{\rm C}$ =500 μ A	600	-	-	V
Collector-emitter saturation voltage	$V_{CE(sat)}$	$V_{\rm GE} = 15 \rm V$, $I_{\rm C} = 15 \rm A$				
		<i>T</i> _j =25°C		2.8	3.15	
		T _j =150°C		3.5	4.00	
Gate-emitter threshold voltage	$V_{\rm GE(th)}$	$I_{\rm C} = 300 \mu A, V_{\rm CE} = V_{\rm GE}$	3	4	5	
Zero gate voltage collector current	I _{CES}	V _{CE} =600V, V _{GE} =0V				μΑ
		<i>T</i> _j =25°C	-	-	40	
		T _j =150°C	-	-	2000	
Gate-emitter leakage current	I _{GES}	V _{CE} =0V, V _{GE} =20V	-	-	100	nA
Transconductance	g_{fs}	V _{CE} =20V, I _C =15A	-	10		S

Dynamic Characteristic

			1	1	Г
Input capacitance	C_{iss}	$V_{CE}=25V$,	-	800	pF
Output capacitance	Coss	$V_{GE}=0V$,	-	123	
Reverse transfer capacitance	Crss	f=1MHz	-	52	
Gate charge	Q _{Gate}	$V_{\rm CC}$ =480V, $I_{\rm C}$ =15A	-	76	nC
		V _{GE} =15V			
Internal emitter inductance	LE	TO-263AB	-	7	nH
measured 5mm (0.197 in.) from case					
Short circuit collector current ²⁾	I _{C(SC)}	$V_{\text{GE}} = 15 \text{V}, t_{\text{SC}} \le 10 \mu \text{s}$ $V_{\text{CC}} \le 600 \text{V},$ $T_{\text{j}} \le 150 ^{\circ} \text{C}$	-	150	A

Power Semiconductors

¹⁾ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for collector connection. PCB is vertical without blown air.
²⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

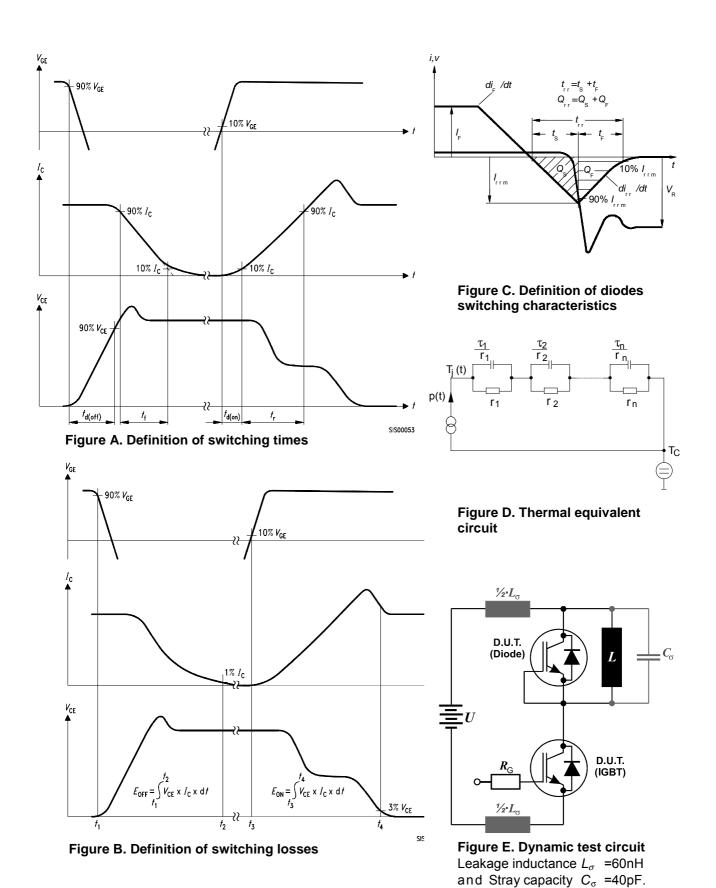
Switching Characteristic, Inductive Load, at T_j =25 °C

Parameter	Symbol Conditions -		Value			Unit
Farameter			min.	typ.	max.	Oilit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =25°C,	-	13		ns
Rise time	t _r	$V_{CC} = 400 \text{ V}, I_{C} = 15 \text{ A},$ $V_{GF} = 0/15 \text{ V},$	-	14		
Turn-off delay time	$t_{d(off)}$	$R_{\rm G}$ =21 Ω	-	209		
Fall time	t_{f}	$L_{\sigma_{1}}^{(1)} = 60 \text{ nH},$	-	12		
Turn-on energy	Eon	$C_{\sigma}^{1)}$ =40pF Energy losses include	-	0.28		mJ
Turn-off energy	E_{off}	"tail" and diode	-	0.20		
Total switching energy	Ets	reverse recovery.	-	0.48		


Switching Characteristic, Inductive Load, at T_j =150 °C

Parameter	Symbol Conditions		Value			Unit
raiametei			min.	typ.	max.	Oiiit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	T _j =150°C	-	11		ns
Rise time	t _r	$V_{\rm CC} = 400 \text{V}, I_{\rm C} = 15 \text{A},$	-	6		
Turn-off delay time	$t_{d(off)}$	$V_{\rm GE} = 0/15 V$, $R_{\rm G} = 3.3 \Omega$	-	72		1
Fall time	t _f	$L_{\sigma}^{1)}$ =60nH, $C_{\sigma}^{1)}$ =40pF Energy losses include "tail" and diode	-	35		
Turn-on energy	Eon		-	0.38		mJ
Turn-off energy	E _{off}		-	0.20		
Total switching energy	Ets	reverse recovery.	-	0.58		
Turn-on delay time	t _{d(on)}	T _j =150°C	-	12		ns
Rise time	t _r	$V_{CC} = 400 \text{V}, I_{C} = 15 \text{A},$	-	15		
Turn-off delay time	$t_{d(off)}$	$V_{\rm GE} = 0/15 V$, $R_{\rm G} = 21 \Omega$	-	235		
Fall time	t_{f}	$L_{\sigma}^{(1)} = 60 \text{ nH},$ $C_{\sigma}^{(1)} = 40 \text{ pF}$ Energy losses include "tail" and diode	-	15		
Turn-on energy	Eon		-	0.45		mJ
Turn-off energy	E _{off}		-	0.29		
Total switching energy	E _{ts}	reverse recovery.	-	0.74		

 $^{^{1)}}$ Leakage inductance L_{σ} and $\,$ Stray capacity \textit{C}_{σ} due to test circuit in Figure E.



TO-263AB (D²Pak)

	dimensions							
symbol	[m	m]	[in	ch]				
	min	max	min	max				
Α	9.80	10.20	0.3858	0.4016				
В	0.70	1.30	0.0276	0.0512				
С	1.00	1.60	0.0394	0.0630				
D	1.03	1.07	0.0406	0.0421				
Е	2.54	typ.	0.1	typ.				
F	0.65	0.85	0.0256	0.0335				
G	5.08	typ.	0.2	typ.				
Н	4.30	4.50	0.1693	0.1772				
K	1.17	1.37	0.0461	0.0539				
L	9.05	9.45	0.3563	0.3720				
М	2.30	2.50	0.0906	0.0984				
Ν	15	typ.	0.5906 typ.					
Р	0.00	0.20	0.0000	0.0079				
Q	4.20	5.20	0.1654	0.2047				
R	8° r	nax	8° max					
S	2.40	3.00	0.0945	0.1181				
Т	0.40	0.60	0.0157	0.0236				
U	10	.80	0.4252					
V	1.	15	0.0453					
W	6.3	23	0.2453					
Х	4.0	60	0.1811					
Y	9.4	40	0.3701					
Z	16	.15	0.6	358				

Preliminary Datasheet

SGB15N60HS

Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2002
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.