INTRODUCTION S5T8809 is a superior low-power-programmable PLL frequency synthesizer which can be used in high performance / Simple application for a Wide Area Pager system. S5T8809 consists of 2 kinds of divider block including a 19-bit Shift register, 16/18-bit Latch, 13/15bits R-counter and 16/18-bit N-Counter, 32/33 Prescaler, and a phase detector block including a Phase detector, Lock detector and a Charge pump. S5T8809 also has a battery saving mode which can control each register block by serial control data from the μ -controller (MICOM) and it also boosts up signal output for fast locking. ### **FEATURES** - Maximum operating frequency: 330MHz @ 300mV_{P-P}, V_{DD1} = 1.0V, V_{DD2} = 3.0V - On-chip reference oscillator supports external crystal which oscillates up to 23MHz - Superior supply current: - $F_{FIN} = 310MHz$, $I_{DD1} = 0.8mA$ (Typ.) @ $V_{DD1} = 1.0V$, $V_{DD2} = 3.0V$ - Operating voltage: V_{DD1} = 0.95 to 1.5V and V_{DD2} = 2.0 to 3.3V - Excellent Divider range: - Ref. Divider: FRC (0): 1 / 40 to 1 / 65528 (Multiple): Default FRC (1): 1 / 5 to 1 / 32767 - Rx Divider: PBC (0): 1 / 1056 to 1 / 65535: Default PBC (1): 1 / 1056 to 1 / 262143 - · Boost-up signal output for Fast Locking - In the Standby mode, VDD1 block can be controlled by BSB Pin status - Standby current consumption: 10μA (Max.) - Programmable control the output of LD to reduce internal noise - Programmable 17 / 19-bit shift register value controlled by PBC - · Charge pump output circuitry for passive filter - Package type: 16–TSSOP (0.65mm) ### ORDERING INFORMATION | Device | Package | Operating Temperature | |-----------------|---------------|-----------------------| | S5T8809X01-R0B0 | 16-TSSOP-0044 | −25°C to +75°C | ## **BLOCK DIAGRAM** # **PIN CONFIGURATION** # **PIN DESCRIPTION** | Pin No | Symbol | Description | | |--------|------------------|---|--| | 1 | OSCI | These input / output pins generate the reference frequency. | | | 2 | osco | In case of OSCI Pin, external reference frequency can be used through the AC coup | | | 3 | V _{DD2} | The highest potential supply terminal that can be supplied up to 2.0 to 3.3V. | | | 4 | FL | Booster signal output for fast locking. | | | 5 | PDO | The output of RX phase detector terminal for passive loop filter. There are 3-kinds of output signal states according to Rx loop error. | | | 6 | V _{SS} | Ground terminal | | | 7 | Fin | Input terminal for the frequency from VCO. Output frequency from VCO was inputted through AC coupling | | | 8 | V _{DD1} | Voltage supply terminal for Oscillator and Fin block. This pin can be supplied up to 0.95 to 1.5V from V _{SS} . | | | 9 | PBC | This is an input for programmable bit control which has Schmitt Trigger architecture, Internally biased pull-up. High = 16 Bits N-Divider (Default: ND0 to ND15) Low = 18 Bits N-Divider (ND0 to ND7) cf) R-divider bits will be changed by the FRC bit of program | | | 10 | LD | The output of phase detector can be controlled by R-counter register. When the LDC bit of R-counter set to Low, the output will be disabled to reduce a noise problem, but if it is set to High, the output will be enabled to show an lock / unlock status that is the error width between to Ref. signal and the VCO output signal. | | | 11 | CLK | These pins are controlled by the μ-controller which has Schmitt Trigger architecture | | | 12 | DATA | Internally biased pull-down. The features of these pins are as follows; Clock input for 17 or 19-bit Shift Register, Serial data input (it include TEST1, FRC and LDC), and Latch | | | 13 | EN | enable input. | | | 14 | BSB | In the BS mode (set to Low), the VDD1 block will be powered off, but the internal latch data is still valid because the VDD2 is supplied continuously. This input has Schmitt Trigger architecture & internally biased pull-up. | | | 15 | FLC | This is the input pin for Fast Locking Control (FLC) which has Schmitt Trigger architecture, Internally biased pull-down. Low = The Current of PDO Charge pump output is Normal (Default: x1) High = The Current of PDO Charge pump output is increase (x 1.5) | | | 16 | TEST | This is the input pin for TEST which has Schmitt trigger architecture, Internally biased Pull-down. Low = All block will be operated as normal state (Default) High = LD and FL state will be TEST mode | | ## **ABSOLUTE MAXIMUM RATINGS** | Characteristic | Symbol | Value | Unit | |-----------------------|--------------------------------------|---------------------------------|------| | Supply Voltage | V _{DD1} to V _{DD2} | -0.3 to +4.0 | V | | Input Voltage | V _I | V_{SS} -0.3 to V_{DD} + 0.3 | V | | Power Dissipation | P _D | 350 | mW | | Operating Temperature | T _{OPR} | –25 to +75 | °C | | Storage Temperature | T _{STG} | -40 to +125 | °C | ## **ELECTRICAL CHARACTERISTICS** (Ta = 25 $^{\circ}$ C, V_{DD1} = 1.0V, V_{DD2} = 3.0V, unless otherwise specified) | Characteristic | Symbol | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------------------|------------------|--|-----------------------|------|------|------| | Operating voltage | V _{DD1} | _ | 0.95 | 1.0 | 1.5 | V | | | V _{DD2} | _ | 2.0 | 3.0 | 3.3 | | | Operating current | IDD | $F_{OSCI} = 12.8 MHz$
$F_{FIN} = 310 MHz @ 0.3 V_{P-P}$
$V_{DD1} = 1.0 V, V_{DD2} = 3.0 V, BSB=High$ | - | 0.8 | - | mA | | Standby current | ISB1 | $V_{DD1} = 0.0V, V_{DD2} = 3.0V, BSB=Low$ | _ | 0.1 | 10 | μΑ | | Input voltage | V _{IL} | - | _ | _ | 0.3 | V | | (DATA, CLK, EN, BS) | V _{IH} | - | V _{DD2} -0.3 | _ | _ | | | Input voltage | V _{IL} | _ | _ | _ | 0.2 | V | | (TEST, PBC) | V _{IH} | _ | V _{SS1} -0.2 | - | _ | | | Input current | I _{IH} | V _{IH} = V _{DD1} , BSB = High | _ | _ | 20 | μΑ | | (Fin, Xin) | I _{IL} | V _{IL} = 0V, BSB = High | _ | _ | 20 | | | Input frequency | F _{FIN} | $V_{FIN} = 0.3V_{P-P}, V_{DD1} = 1.0V$ | 40 | _ | 330 | MHz | | | Fosci | $V_{OSCI} = 0.3V_{P-P}, V_{DD1} = 1.0V$ | 7 | 12.8 | 23 | | | Output current | I _{OH1} | V _{OH} = 0.4V | 1.0 | _ | _ | mA | | (PDO, FL) | I _{OL1} | $V_{OL} = V_{DD2} - 0.4V$ | 1.0 | _ | _ | | | Output current | I _{OH2} | V _{OH} = 0.4V | 0.1 | _ | _ | mA | | (LD) | I _{OL2} | $V_{OL} = V_{DD2} - 0.4V$ | 0.1 | _ | _ | | | Setup-time
(DATA-CLK, CLK-EN) | ts | - | 2 | _ | _ | μS | | Hold time | t _H | - | 2 | _ | _ | μS | 5 ## **FUNCTIONAL DESCRIPTION** | Table 1. N-Counter Register Program Scheme (19 | |--| |--| | Bit Bit 18 (ND 17) to Bit 1 (ND 0) | | Bit 0 (LSB) | |---|--------------------------------|--| | Name | ND | PMC | | Description | N-Counter Data (ND 17 to ND 0) | Program Mode Control | | Function 18 Bit Program Data PBC = 1 : 16 bits (ND 15 to ND 0) will PBC = 1 : 18 bits (ND 17 to ND 0) will | | 0: N-Counter Program 1: Ref. R-Counter Program | Figure 1. Rx. N - Counter Register Programming Timing - Programmable N-counter consists of 5-bits Swallow Counter, Dual modulars Prescaler and 11-bits Main Counter (if [PBC = 0], than 13-bits Main Counter) - The Divide Ratio is; $$N = (P + 1) \times S + P (M - S) = PM + S;$$ P = Dual Modular Prescaler (32) S = 5-bits Swallow Counter value (0 to 31) M = 11-bits (PBC = High, 32 to 2047) or 13-bits (PBC = Low, 32 to 8291) N = Programmable N-Counter value (N > S) The Main Counter can be controlled by PBC pin, when the PBC (pin 9) state set to Low, the Programmable N-counter range will be extend to 262143 Ex 1) In case of 16-bits program [PBC = High], Fc = 325.300MHz, Multiplier = 4, Fin = 75.975MHz [Fin Freq. / Ref. Freq.] = 75.975MHz / 6.25kHz = 1256 **NOTE:** According to the above equation, 12156 / 32(P) = 379, and left = 28 that means, Swallow CNT value is "11100", Main CNT value is "379" Ex 2) In case of 18-bits program [PBC = Low], Fin = 330MHz [Fin Freq. / Ref. Freq.] = [330MHz / 6.25kHz] = 52800 NOTE: The PMC bit is program mode control bit, if [0], the N-counter will be enabled Table 2. R-Counter Register Program Scheme (19 bits) | Bit | Bit 18 ~ Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 (LSB) | |-------------|--|--------------------------|--|-----------------------------------|--------------------------------| | Name | RD | LDC | FRC | TEST 1 | PMC | | Description | Ref. R-Counter Data | Lock Detector
Control | Frequency of
Reference
Control | TEST mode control | Program mode control | | Function | 15 Bit Programmable Ref. R-Counter FRC = 0 : 13 bits (RD12 to RD0) FRC = 1 : 15 bits (RD14 to RD0) | | 0: R_CNT div.
= 8 × RD
1: R_CNT div.
= RD (15bit) | Mainly for
the product
Test | 0: ND Program
1: RD Program | - The Input Reference Frequency (X-tal Oscillator) will be divided by 1/8 Prescaler, and then divided by preprogrammed R-counter value once more. - Programmable R-Counter consists of Fixed 1/8 Prescaler, 13 / 15-bits Programmable Counter When FRC = 0, Fixed 1/8 Prescaler and 13-bits counter (Min. Divide value: 5) are enabled RD = 8, R = 40 (= 8 × 5) to 65528 [Multiple 8] When FRC = 1, Fixed 1/8 Prescaler is disabled, but using 15-bits counter (Min. Divide value: 5) RD = R = 5 to 32767 [All value] 7 ## **CONTROL MODE FOR R-COUNTER REGISTER** | LDC | LDC Pin State | Description | |-----|------------------|--| | 0 | Low | LDC function is independent of the other Control Bit | | 1 | Normal Operation | | | FRC | R-Counter Value | Description | |-----|--|--| | 0 | $8 \times R$ _cnt value (OSCI / $8 \times R$),
Use 13 bits R-Counter | FRC function is independent of the other Control Bit | | 1 | R-cnt value (OSC / R),
Use 15 bits R-Counter | | | TEST1 | TEST | LD state | FL state | Description | |-------|------|------------|------------|---| | 0 | 0 | Normal | Normal | FRC is independent of the other control bit | | 1 | 0 | Normal | Normal | Test is internal register control bit but, Test is external control pin | | 0 | 1 | Fn (N-CNT) | High state | Test is related with Test, | | 1 | 1 | Fr (N-CNT) | Normal | when Test = High → Test Mode | Figure 2. Ref. R-Counter Register Programming Timing Ex 1) FRC = 0, In case of 13bits Program, Fosc = 12.8MHz and 1/8 prescaler is used [(Osc. Freq. / Prescaler) / Ref. Freq.] = [(12.8MHz / 8) / 6.25kHz] = 256 Ex 2) FRC = 1, In case of 15bits Program, Fosc = 12.8MHz and 1/8 prescaler is used [Osc. Freq. / Ref. Freq.] = [12.8MHz / 6.25kHz] = 2048 NOTE: The PMC bit is Program Mode Control Bit, if [1], the R-Counter will be Enabled Figure 3. The architecture of R-Count Divider 9 Figure 4. Serial DATA Input Timing ### PHASE DETECTOR / LOCK DETECTOR Figure 5. Phase Detector / Lock Detector Figure 6. Phase Detector / Lock Detector / Fast Lock Output Waveforms ### NOTES: - 1. Phase detector always compares the Phase difference of N-counter with R-counter, and generates High or Low State as much as the phase difference - 2. The LD output is set to Low level same as Phase detector error width ### **FAST LOCK** The Fast lock can give faster Acquisition time when the S5T8809 starts up. If Fast Lock signal was generated one time, this circuitry do not operate again even though PLL goes into unlock state. S5T8809 has two did of Fast lock; one is to control the Loop band width of Loop filter, the other is to control the charge pump current. Figure 7. # **NOTES**