
S3CB519/FB519 PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

OVERVIEW

The S3CB519/FB519 single-chip CMOS microcontroller is designed for high performance using Samsung’s new
8-bit CPU core, CalmRISC.

CalmRISC is an 8-bit low power RISC microcontroller. Its basic architecture follows Harvard style, that is, it has
separate program memory and data memory. Both instruction and data can be fetched simultaneously without
causing a stall, using separate paths for memory access. Represented below is the top block diagram of the
CalmRISC microcontroller.

PRODUCT OVERVIEW S3CB519/FB519

1-2

BBUS[7:0]

20

Program Memory Address
Generation Unit

PC[19:0]

Hardware
Stack

HS[0]

HS[15]

8

8

R0

R3

R1

R2

ALU

ABUS[7:0]

ALUL ALUR

PA[19:0]

PD[15:0]

IDL0

IDL1

SR0SR1

ILHILX ILL

SPR

IDH

DO[7:0]

DI[7:0]

GPR

Data Memory
 Address

Generation Unit
DA[15:0]

20

Flag

RBUS

TBH TBL

Figure 1-1. Top Block Diagram

S3CB519/FB519 PRODUCT OVERVIEW

1-3

The CalmRISC building blocks consist of:

— An 8-bit ALU

— 16 general purpose registers (GPR)

— 11 special purpose registers (SPR)

— 16-level hardware stack

— Program memory address generation unit

— Data memory address generation unit

Sixteen GPRs are grouped into four banks (Bank0 to Bank3), and each bank has four 8-bit registers (R0, R1, R2,
and R3). SPRs, designed for special purposes, include status registers, link registers for branch-link instructions,
and data memory index registers. The data memory address generation unit provides the data memory address
(denoted as DA[15:0] in the top block diagram) for a data memory access instruction. Data memory contents are
accessed through DI[7:0] for read operations and DO[7:0] for write operations. The program memory address
generation unit contains a program counter, PC[19:0], and supplies the program memory address through
PA[19:0] and fetches the corresponding instruction through PD[15:0] as the result of the program memory
access. CalmRISC has a 16-level hardware stack for low power stack operations as well as a temporary storage
area.

Instruction Fetch
(IF)

Instruction Decode/
Data Memory Access

(ID/MEM)

Execution/Writeback
(EXE/WB)

Figure 1-2. CalmRISC Pipeline Diagram

CalmRISC has a 3-stage pipeline as described below:

As can be seen in the pipeline scheme, CalmRISC adopts a register-memory instruction set. In other words, data
memory where R is a GPR can be one operand of an ALU instruction as shown below:

The first stage (or cycle) is the Instruction fetch stage (IF for short), where the instruction pointed by the program
counter, PC[19:0] , is read into the Instruction Register (IR for short). The second stage is the Instruction Decode
and Data Memory Access stage (ID/MEM for short), where the fetched instruction (stored in IR) is decoded and
data memory access is performed, if necessary. The final stage is the Execute and Write-back stage (EXE/WB),
where the required ALU operation is executed and the result is written back into the destination registers.

Since CalmRISC instructions are pipelined, the next instruction fetch is not postponed until the current instruction
is completely finished but is performed immediately after completing the current instruction fetch. The pipeline
stream of instructions is illustrated in the following diagram.

PRODUCT OVERVIEW S3CB519/FB519

1-4

 EXE/WBIF

IF

IF

IF IF

IF

IF

ID/MEM

ID/MEM

ID/MEM

ID/MEM

ID/MEM

ID/MEM

 EXE/WB

 EXE/WB

 EXE/WB

 EXE/WB

 EXE/WB

/ 1

/ 2

/ 3

/ 4

/ 6

/ 5

Figure 1-3. CalmRISC Pipeline Stream Diagram

Most CalmRISC instructions are 1-word instructions, while same branch instructions such as long “call” and “jp”
instructions are 2-word instructions. In Figure 1-3, the instruction, I4, is a long branch instruction, and it takes two
clock cycles to fetch the instruction. As indicated in the pipeline stream, the number of clocks per instruction
(CPI) is 1 except for long branches, which take 2 clock cycles per instruction.

S3CB519/FB519 PRODUCT OVERVIEW

1-5

FEATURES

CPU

• 8-bit CalmRISC

Coprocessor

• MAC 816

• 8 × 16, 16 × 16 multiply and accumulation

• Arithmetic operation

Memory

• ROM: 16K-word

• RAM: 3K-byte
 2048 (X-memory)
 1024 (Y-memory)

I/O Pins

• 11 I/O: not include COM/SEG

• 35 I/O: include COM/SEG

Power-Down

• Idle mode: only CPU clock stops

• Stop mode: main system oscillator stops

• Sub-system clock stop mode

ROM Option

• Basic timer counter clock source selection reset
value

• Watchdog timer enable/disable selection

8-Bit Basic Timer

• Programmable interval timer

• 8 kinds of clock source

Watchdog Timer

• System reset

Watch Timer

• Real time clock or interval time measurement

• Buzzer function (0.5/1/2/4 kHz at 4.19 MHz
OSC)

Timer/Counters

• One 8-bit timer with PWM/Capture

• One 16-bit general-purpose timer/counter

LCD Controller/Driver

• 56 SEG × 16 COM terminals

• 8, 12 and 16 COM selectable

• 16-level contrast control

• Key strobe output function

Battery Level Detector

• 2.4, 2.7, 3.0, 3.3, 4.0, 4.5 V detectable

• Internal level and/or external level selectable

8-Bit Serial I/O Interface

• 8-bit transmit/receive mode

• 8-bit receive mode

• LSB-first or MSB-first transmission selectable

A/D Converter

• Sigma delta ADC

• Linear 14-bit data (16-bit format)

• 256X over sampling

• Operation voltage: VDD = 3.0 V–5.5 V

D/A Converter

• 8-bit resolution

• Regulated output voltage

• Operation voltage: VDD = 2.4 V–5.5 V

Oscillation Sources

• Crystal, ceramic, RC for main system clock

• Crystal or external oscillator for subsystem clock

• Main system clock frequency: Max 8.2 MHz

• Subsystem clock frequency: 32.768 kHz

Operating Voltage

• 2.2 V to 5.5 V

Operating Temperature Range

• – 40 °C to 85 °C

Package Type

• 100 QFP-1420C

PRODUCT OVERVIEW S3CB519/FB519

1-6

P5.0-P5.15 CalmRISC
CPU

Main OSC

MAC
816

X-Memory
2048 Bytes

Y-Memory
1024 Bytes

SIO

Timer 0

Watch
Timer

BLD

Timer A

Timer B

T
im

er 1

SI
S0
SCK

T0/T0CAP/
T0PWM
T0CK

BUZ

BLD

CODEC

AVDD
AVSS
ADINP
ADINN
ADGAIN
DAOUT
AVREFOUT
REFH
REFL

Port 4

Port 3

Port 2

Port 1

Port 0

Port 5

Basic
Timer

SUB OSC WDT

XIN XOUT XTIN XTOUT

TACK
TB

LCD Driver/Controller

Control
Register

128 Bytes

COM0-COM15

SEG0-SEG55

P4.0-P4.7

P3.0-P3.7

P2.0-P2.7

P1.0-P1.3

P0.0-P0.6

Figure 1-4. S3CB519/FB519 Block Diagram

S3CB519/FB519 PRODUCT OVERVIEW

1-7

PIN ASSIGNMENT

C
O

M
8/

P
4.

0
C

O
M

7
C

O
M

6
C

O
M

5
C

O
M

4
C

O
M

3
C

O
M

2
C

O
M

1
C

O
M

0
S

E
G

0
S

E
G

1
S

E
G

2
S

E
G

3
S

E
G

4
S

E
G

5
S

E
G

6
S

E
G

7
S

E
G

8
S

E
G

9
S

E
G

10

R
E

F
L

P
1.

0/
K

S
0

P
1.

1/
K

S
1

P
1.

2/
K

S
2

P
1.

3/
K

S
3

P
2.

0/
S

E
G

55
P

2.
1/

S
E

G
54

P
2.

2/
S

E
G

53
P

2.
3/

S
E

G
52

P
2.

4/
S

E
G

51
P

2.
5/

S
E

G
50

P
2.

6/
S

E
G

49
P

2.
7/

S
E

G
48

P
3.

0/
S

E
G

47
P

3.
1/

S
E

G
46

P
3.

2/
S

E
G

45
P

3.
3/

S
E

G
44

P
3.

4/
S

E
G

43
P

3.
5/

S
E

G
42

P
3.

6/
S

E
G

41

SEG11
SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24/P5.15
SEG25/P5.14
SEG26/P5.13
SEG27/P5.12
SEG28/P5.11
SEG29/P5.10
SEG30/P5.9
SEG31/P5.8
SEG32/P5.7
SEG33/P5.6
SEG34/P5.5
SEG35/P5.4
SEG36/P5.3
SEG37/P5.2
SEG38/P5.1
SEG39/P5.0
SEG40/P3.7

COM9/P4.1
COM10/P4.2
COM11/P4.3
COM12/P4.4
COM13/P4.5
COM14/P4.6
COM15/P4.7

P0.0/INT0/TB
P0.1/INT1/T0/T0CAP/T0PWM

P0.2/INT2/T0CK/BUZ
P0.3/INT3/TACK/BLD

P0.4/INT4/SCK
P0.5/INT5/SO
P0.6/INT6/SI

VDD

VSS

XOUT

XIN

TEST
XTIN

XTOUT

RESET
DAOUT

AVDD

AVSS

ADINP
ADINN

ADGAIN
AVREFOUT

REFH

S
3C

B
519

(100-Q
F

P
-1420C

)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

Figure 1-5. S3CB519 Pin Assignment Diagram (100-QFP)

S3CB519/FB519 ADDRESS SPACE

2-1

2 ADDRESS SPACE

OVERVIEW

CalmRISC has 20-bit program address lines, PA[19:0], which support up to 1 Mwords of program memory.
The 1 Mword program memory space is divided into 256 pages, and each page is 4 Kwords long as shown on the
next page. The upper 8 bits of the program counter, PC[19:12], points to a specific page, and the lower 12 bits,
PC[11:0], specify the offset address of the page.

CalmRISC also has 16-bit data memory address lines, DA[15:0], which support up to 64K-byte of data memory.
The 64K-byte data memory space is divided into 256 pages, and each page has 256 bytes. The upper 8 bits of
the data address, DA[15:8], points to a specific page, and the lower 8 bits, DA[7:0], specify the offset address of
the page.

ADDRESS SPACE S3CB519/FB519

2-2

PROGRAM MEMORY (ROM)

00H

FFFH

256 page

1 Mword

00H

FFFH

4 Kword

Figure 2-1. Program Memory Organization

For example, if PC[19:0] = 5F79AH, the page index pointed to by PC is 5FH, and the offset in the page is 79AH.
If the current PC[19:0] = 5EFFFH and the instruction pointed to by the current PC (i.e., the instruction at the
address 5EFFFH is not a branch instruction), the next PC becomes 5E000H, not 5F000H. In other words, the
instruction sequence wraps around at the page boundary, unless the instruction at the boundary (in the above
example, at 5EFFFH) is a long branch instruction. The only way to change the program page is by long branches
(CALL, LNK, and JP), where the absolute branch target address is specified. For example, if the current PC[19:0]
= 047ACH (the page index is 04H and the offset is 7ACH) and the instruction pointed to by the current PC (i.e.,
the instruction at the address 047ACH), is “JP A507FH” (jump to the program address A507FH) , then the next
PC[19:0] = A507FH, which means that the page and the offset are changed to A5H and 07FH, respectively. On
the other hand, the short branch instructions cannot change the page indices.

S3CB519/FB519 ADDRESS SPACE

2-3

Suppose the current PC is 6FFFEH and its instruction is “JR 5H” (jump to the program address PC + 5H), then
the next instruction address is 6F003H, not 70003H. In other words, the branch target address calculation also
wraps around with respect to a page boundary. This situation is illustrated below:

000H

001H

002H

003H

004H

005H

FFEH

FFFH

Page 6FH

JR 5H

Figure 2-2. Relative Jump Around Page Boundary

Programmers do not have to manually calculate the offset and insert extra instructions for a jump instruction
across page boundaries. The compiler and the assembler for CalmRISC are in charge of producing appropriate
codes for them.

ADDRESS SPACE S3CB519/FB519

2-4

4000H
3FFFH

00000H

FFFFFH

~~~~

00020H
0001FH

Vector and
Option Area

Program Memory Area
(1M-word)

16K-word

NOTE:   S3CB519/FB519 has totally 16K-word (32K-byte) program memory area.

Figure 2-3. Program Memory Layout

From 00000H to 00004H addresses are used for vector addresses of exceptions, and 0001EH and 0001FH are
used for only the option. Aside from these addresses others are reserved in the vector and option area. Program
memory area from the address 00020H to FFFFFH can be used for normal programs.

Because the S3CB519/FB519’s program memory is 16 Kword (32K-byte), the block of addresses from 00020H to
3FFFH is the program memory area.



S3CB519/FB519 ADDRESS SPACE

2-5

ROM CODE OPTION (RCOD_OPT)

Just after power on, the ROM data located at 0001EH and 0001FH is used as the ROM code option.
S3CB519/FB519 has ROM code options like the Reset value of Basic timer and Watchdog timer enable.

For example, if you program as below:

opt_sec section  CODE, abs 0001FH

   opt_sec

dw 3FFH

— fxx/32 is used as Reset value of basic timer (by bit.14, 13, 12)

— Watch-dog timer is enabled (by bit.11)

If you don’t program any values in these option areas, then the default value is “1”.

In these cases, the address 0001EH would be the value of “FFFFH”.



ADDRESS SPACE S3CB519/FB519

2-6

LSBMSB

Reset value of basic timer
clock selection bits
(WDTCON.6, .5, .4):
000 = fxx/2
001 = fxx/4
010 = fxx/16
011 = fxx/32
100 = fxx/128
101 = fxx/256
110 = fxx/1024
111 = fxx/2048

Not used

Watchdog timer enable selection bit:
0 = Disable WDT
1 = Enable WDT

.15

ROM_Code Option (RCOD_OPT)
ROM Address: 0001FH

.14 .13 .12 .11 .10 .9 .8

Not used

Not used (Watchdog timer clock input is basic timer overflow)

ROM Address: 0001EH

LSBMSB

Not used

.10 .9 .8

LSBMSB

Not used

.7 .6 .5 .4 .3 .2 .1 .0

LSBMSB

Not used

.7 .6 .5 .4 .3 .2 .1 .0

.11.12.13.14.15

Figure 2-4. ROM Code Option (RCOD_OPT)



S3CB519/FB519 ADDRESS SPACE

2-7

DATA MEMORY ORGANIZATION

The total data memory address space is 64K-byte, addressed by DA[15:0], and divided into 256 pages, Each
page consists of 256 bytes as shown below.

00H

FFH

256 page

64 KByte

00H

FFFH

256 Byte

FFH

00H

FFH

12 page

Figure 2-5. Data Memory Map

The data memory page is indexed by SPR and IDH. In data memory index addressing mode, 16-bit data memory
address is composed of two 8-bit SPRs, IDH[7:0] and IDL0[7:0] (or IDH[7:0] and IDL1[7:0]). IDH[7:0] points to a
page index, and IDL0[7:0] (or IDL1[7:0]) represents the page offset. In data memory direct addressing mode, an
8-bit direct address, adr[7:0], specifies the offset of the page pointed to by IDH[7:0] (See the details for direct
addressing mode in the instruction sections). Unlike the program memory organization, data memory address
does not wrap around. In other words, data memory index addressing with modification performs an addition or a
subtraction operation on the whole 16-bit address of IDH[7:0] and IDL0[7:0] (or IDL1[7:0]) and updates IDH[7:0]
and IDL0[7:0] (or IDL1[7:0]) accordingly. Suppose IDH[7:0] is 0FH and IDL0[7:0] is FCH and the modification on
the index registers, IDH[7:0] and IDL0[7:0], is increment by 5H, then, after the modification (i.e., 0FFCH + 5 =
1001H), IDH[7:0]  and IDL0[7:0] become 10H and 01H, respectively.

As for the MAC816 coprocessor, the data memory is a word unit (16-bit wide) and is divided to X-memory and Y-
memory for DSP instruction.
The address 0080H in CalmRISC, for example, is viewed as 0040H by MAC816.



ADDRESS SPACE S3CB519/FB519

2-8

The S3CB519/FB519 has a total of 3072 bytes of  data register address from 0080H to 0C7FH.
The area from 0000H to 007FH is for peripheral control, and LCD RAM area is from 0C80H to 0CEFH.
The MAC816 views the peripheral control register area as being from 0000H to 003FH, and X-memory from
0040H to 043FH, and Y-memory from 0440H to 063FH.

Page 12

In the point of CalmRISC

063FH in word
(0C7FH in Byte)

0440H in word
(0880H in Byte)

043FH in word
(087FH in Byte)

0040H in word
(0080H in Byte)

In the point of MAC816

Y-memory
(1 KBytes)

X-memory
(2 KBytes)

Data Memory

Control Register

Page 11

Page 0

EFH in Byte

80H

7FH

00H

80H

FFH
in Byte

7FH

00H

LCD RAM

8 Bits 16 Bits

Figure 2-6. S3CB519/FB519 Data Memory Map



PRODUCT OVERVIEW S3CB519/FB519

1-8

I/O PIN DESCRIPTION

Table 1-1. S3CB519 Pin Descriptions

Pin
Name

Pin
Type

Pin Description Circuit
Type

Share
Pins

P0.0
P0.1

P0.2
P0.3
P0.4
P0.5
P0.6

I/O I/O port with bit programmable pins; Input and output modes
can be selected by software; Software assignable pull-up.
Alternately, P0.0–P0.6 can be used as INT0–INT6, TB, T0,
T0CAP, T0PWM, T0CK, BUZ, TACK, BLD, SCK, SO, SI.

D-2
D-2

D-2
F-10
D-2
D-2
D-2

INT0/TB
INT1/T0/T0CAP/
T0PWM
INT2/T0CK/BUZ
INT3/TACK/BLD
INT4/SCK
INT5/SO
INT6/SI

P1.0–P1.3 I/O I/O port with bit programmable pins; Input and output modes
can be selected by software; Software assignable pull-up.
Alternately, P1.0–P1.3 can be used as KS0–KS3.

D-2 KS0–KS3

P2.0–P2.7 I/O I/O port with 4-bit programmable pins; Input and output
modes can be selected by software; Software assignable
pull-up.
Alternately, P2.0–P2.7 can be used as SEG55–SEG48.

H-35 SEG55–SEG48

P3.0–P3.7 I/O I/O port with 4-bit programmable pins; Input and output
modes can be selected by software; Software assignable
pull-up.
Alternately, P3.0–P3.7 can be used as SEG47–SEG40.

H-35 SEG47–SEG40

P4.0–P4.7 I/O I/O port with 4-bit programmable pins; Input and output
modes can be selected by software; Software assignable
pull-up.
Alternately, P4.0–P4.7 can be used as COM8–COM15.

H-35 COM8–COM15

P5.0–
P5.15

O Key strobe output port with 4-bit programmable pins. Push-
pull and open-drain modes can be selected by software.
Alternately, P5.0–P5.15 can be used as SEG39–SEG24.

H-34 SEG39–SEG24

SEG0–
SEG23

O LCD segment signal output. H-29 –

SEG24–
SEG39

O H-34 P5.0–P5.15

SEG40–
SEG55

I/O H-35 P3.0–P3.7
P2.0–P2.7

COM0–
COM7

O LCD common signal output. H-29 –

COM8–
COM15

O H-35 P4.0–P4.7

KS0–KS3 I/O Key interrupt and/or external interrupt inputs. D-2 P1.0–P1.3

INT0–INT2,
INT4–INT6

I/O External interrupt input. D-2 P0.0–P0.2,
P0.4–P0.6

INT3 I/O F-10 P0.3



S3CB519/FB519 PRODUCT OVERVIEW

1-9

Table 1-1. S3CB519 Pin Descriptions (Continued)

Pin
Name

Pin
Type

Pin Description Circuit
Type

Share
Pins

TB I/O Timer B clock output. D-2 P0.0

T0 I/O Timer 0 clock output. D-2 P0.1

T0CAP I/O Timer 0 capture input. D-2 P0.1

T0PWM I/O Timer 0 PWM output. D-2 P0.1

T0CK I/O Timer 0 clock input. D-2 P0.2

BUZ I/O Buzzer output. D-2 P0.2

TACK I/O Timer A clock input. F-10 P0.3

BLD I/O Battery level detector input. F-10 P0.3

SCK I/O Serial I/O interface clock signal. D-2 P0.4

SO I/O Serial data output. D-2 P0.5

SI I/O Serial data input. D-2 P0.6

DAOUT O DAC analog output. – –

AVDD – Analog power. – –

AVSS – Analog ground. – –

ADINP I Analog input positive. – –

ADINN I Analog input negative. – –

ADGAIN – Analog input gain control. – –

AVREFOUT O Analog reference voltage output. – –

REFH – Analog reference power. – –

REFL – Analog reference ground. – –

VDD – Main power supply. – –

VSS – Ground – –

XIN, XOUT – Crystal, Ceramic or RC oscillator pins for system clock. – –

XTIN, XTOUT – Crystal oscillator pins for subsystem clock. – –

TEST I Chip test input pin.
Hold GND with the device is operating.

– –

RESET I Reset signal B –



PRODUCT OVERVIEW S3CB519/FB519

1-10

 PIN CIRCUIT DIAGRAMS

In

VDD

Pull-Up
Resistor

Figure 1-7. Pin Circuit Type B

VDD

Out

Output
Disable

Data

Figure 1-8. Pin Circuit Type C

Pull-up
Enable

VDD

Data
Output

Open drain
Enable

Figure 1-9. Pin Circuit Type E-2

I/O
Output

Disable

Data
 Pin Circuit

Type C

Pull-up
Enable

VDD

Ext. INT

Input

Noise
Filter

Figure 1-10. Pin Circuit Type D-2



S3CB519/FB519 PRODUCT OVERVIEW

1-11

VLC1

VLC2/VLC3

Out

VLC4/VLC5

VSS

Figure 1-11. Pin Circuit Type H-29

I/O

Output
Disable

Data

 Pin Circuit
Type H-29

VDD

 Pin Circuit
Type E-2

COM/SEG

Input

Figure 1-12. Pin Circuit Type H-35

VDD

Output
Data

Open drain
 enable

Output disable

 Pin Circuit
Type H-29COM/SEG

Figure 1-13. Pin Circuit Type H-34

I/O
Output

Disable

Data
 Pin Circuit

Type C

Pull-up
Enable

VDD

Ext. INT

Input

Noise
Filter

Analog
(BLD)

Figure 1-14. Pin Circuit Type F-10



PRODUCT OVERVIEW S3CB519/FB519

1-12

NOTES



S3CB519/FB519 REGISTERS

3-1

3 REGISTERS

OVERVIEW

The registers of CalmRISC are grouped into 2 types: general purpose registers and special purpose registers.

Table 3-1. General and Special Purpose Registers

Registers Mnemonics Description Reset Value

General Purpose R0 General Register 0 Unknown

Registers (GPR) R1 General Register 1 Unknown

R2 General Register 2 Unknown

R3 General Register 3 Unknown

Special Purpose Group 0 (SPR0) IDL0 Lower Byte of Index Register 0 Unknown

Registers (SPR) IDL1 Lower Byte of Index Register 1 Unknown

IDH Higher Byte of Index Register Unknown

SR0 Status Register 0 00H

Group 1 (SPR1) ILX Instruction Pointer Link Register for
Extended Byte

Unknown

ILH Instruction Pointer Link Register for
Higher Byte

Unknown

ILL Instruction Pointer Link Register for
Lower Byte

Unknown

SR1 Status Register 1 Unknown

GPRs can be used in most instructions such as ALU instructions, stack instructions, load instructions, etc .(See
the instruction set sections). From the programming standpoint, they have almost no restriction whatsoever.
CalmRISC has 4 banks of GPRs, and each bank has 4 registers, R0, R1, R2, and R3. Hence, 16 GPRs in total
are available. The GPR bank can be switched by setting an appropriate value in SR0[4:3] (See SR0 for details).
The ALU operations between GPRs from different banks are not allowed.

SPRs are designed for their own dedicated purposes. They have some restrictions in terms of instructions that
can access them. For example, direct ALU operations cannot be performed on SPRs. However, data transfers
between a GPR and an SPR are allowed, and stack operations with SPRs are also possible (See the instruction
sections for details).



REGISTERS S3CB519/FB519

3-2

INDEX REGISTERS: IDH, IDL0 AND IDL1

IDH in concatenation with IDL0 (or IDL1) forms a 16-bit data memory address. Note that CalmRISC’s data
memory address space is 64 Kbyte (addressable by 16-bit addresses). Basically, IDH points to a page index, and
IDL0 (or IDL1) corresponds to an offset of the page. Like GPRs, the index registers are 2-way banked. There are
2 banks in total, each of which has its own index registers, IDH, IDL0 and IDL1. The banks of index registers can
be switched by setting an appropriate value in SR0[2] (See SR0 for details). Normally, programmers can reserve
an index register pair, IDH and IDL0 (or IDL1), for software stack operations.

LINK REGISTERS: ILX, ILH AND ILL

The link registers are specially designed for link-and-branch instructions (See LNK and LRET instructions in the
instruction sections for details). When an LNK instruction is executed, the current PC[19:0] is saved into ILX, ILH
and ILL registers (i.e., PC[19:16] into ILX[3:0], PC[15:8] into ILH [7:0]) and PC[7:0] into ILL[7:0], respectively.
When an LRET instruction is executed, the PC value returned is recovered from ILX, ILH, and ILL (i.e., ILX[3:0]
into PC[19:16], ILH[7:0] into PC[15:8] and ILL[7:0] into PC[7:0], respectively). These registers are used to access
program memory by LDC instructions. When an LDC instruction is executed, the (code) data residing at the
program address specified by ILX:ILH:ILL will be read into TBH:TBL.

There is a special core input pin signal, nP64KW, which is reserved for indicating that the program memory
address space is only 64 Kword. By grounding the signal pin to zero, the upper 4 bits of PC, PC[19:16], is
deactivated and therefore its program memory address signals from CalmRISC core are also deactivated. This,
in turn, totally eliminates the power consumption due to manipulating the upper 4 bits of PC (See the core pin
description section for details). From the programmer’s standpoint, when nP64KW is tied to the ground level,
then PC[19:16] is not saved into ILX for LNK instructions and ILX is not read back into PC[19:16] for LRET
instructions. Therefore, ILX is totally unused in LNK and LRET instructions when nP64KW = 0.



S3CB519/FB519 REGISTERS

3-3

STATUS REGISTER 0: SR0

SR0 is mainly reserved for system control functions, and each bit of SR0 has its own dedicated function.

Table 3-2. Status Register 0 Configuration

Flag Name Bit Description

eid 0 Data memory page selection in direct addressing

ie 1 Global interrupt enable

idb 2 Index register banking selection

grb[1:0] 4,3 GPR bank selection

exe 5 Stack overflow/underflow exception enable

ie0 6 Interrupt 0 enable

ie1 7 Interrupt 1 enable

SR0[0] (or eid) selects which page index is to be used in direct addressing. If eid = 0, then page 0 (page index =
0) is used. Otherwise (eid = 1), IDH of the current index register bank is used for the page index. SR0[1] (or ie) is
the global interrupt enable flag. As explained in the interrupt/exception section, CalmRISC has 3 interrupt sources
(non-maskable interrupt, interrupt 0, and interrupt 1) and 1 stack exception. Both interrupt 0 and interrupt 1 are
masked by setting SR0[1] to 0 (i.e., ie = 0). When an interrupt is serviced, the global interrupt enable flag ie is
automatically cleared. The execution of an IRET instruction (return from an interrupt service routine)
automatically sets ie = 1. SR0[2] (or idb) and SR0[4:3] (or grb[1:0]) selects an appropriate bank for index registers
and GPRs, respectively, as shown below:

R3

R0

R2

R1

R3

R0

R2

R1

R3

R0

R2

R1

R3

R0

R2

R1
IDH IDL0

IDL1IDH IDL0

IDL1Bank 0

Bank 1

Bank 2

Bank 3
11

10

01

00

grb [1:0]

0

1

idb

Figure 3-1. Bank Selection by Setting of GRB Bits and IDB Bit

SR0[5] (or exe) enables the stack exception, that is, the stack overflow/underflow exception. If exe = 0, the stack
exception is disabled. The stack exception can be used for program debugging in the software development
stage. SR0[6] (or ie0) and SR0[7] (or ie1) are enabled, by setting them to 1. Even though ie0 or ie1 are enabled,
the interrupts are ignored (not serviced) if the global interrupt enable flag ie is set to 0.



REGISTERS S3CB519/FB519

3-4

STATUS REGISTER 1: SR1

SR1 is the register for status flags such as ALU execution flag and stack full flag.

Table 3-3. Status Register 1: SR1

Flag Name Bit Description

C 0 Carry flag

V 1 Overflow flag

Z 2 Zero flag

N 3 Negative flag

SF 4 Stack Full flag

– 5, 6, 7 Reserved

SR1[0] (or C) is the carry flag of ALU executions. SR1[1] (or V) is the overflow flag of ALU executions. It is set to
1 if and only if the carry-in into the 8-th bit position of addition/subtraction differs from the carry-out from the 8-th
bit position. SR1[2] (or Z) is the zero flag, which is set to 1 if and only if the ALU result is zero. SR1[3] (or N) is
the negative flag. Basically, the most significant bit (MSB) of ALU results becomes the N flag. Note, a load
instruction into a GPR is considered an ALU instruction. However, if an ALU instruction touches the overflow flag
(V) like ADD, SUB, CP, etc, N flag is updated as exclusive-OR of V and the MSB of the ALU result. This implies
that even if an ALU operation results in an overflow, N flag is still valid. SR1[4] (or SF) is the stack overflow flag.
It is set when the hardware stack is overflowed or underflowed. Programmers can check if the hardware stack
has any abnormalities through the stack exception or testing if SF is set (See the hardware stack section for more
details).

NOTE

When an interrupt occurs, the hardware does not save SR0 and SR1, so the software must save the SR1
register values.



S3CB519/FB519 MEMORY MAP

4-1

4 MEMORY MAP

OVERVIEW

To support the control of peripheral hardware, the addresses of peripheral control registers are memory-mapped
to page 0 of the RAM. Memory mapping lets you use a mnemonic as the operand of an instruction at a specific
memory location.
In this section, detailed descriptions of the S3CB519/FB519 control registers are presented in an easy-to-read
format.
You can use this section as a quick-reference source when writing application programs.

This memory area can be accessed with the whole method of data memory access.

— If SR0 bit 0 is “0” then the accessed register area is always page 0.

— If SR0 bit 0 is “1” then the accessed register page is controlled by the proper value of the IDH register.

So if you want to access the memory map area, clear the SR0.0 and use the direct addressing mode.
This method is used for most cases.
The control register is divided into five areas. Here, the system control register area is same in every device.

7FH

00H

Control Register

System Control Register Area

Port Data Register Area

Peripheral Control Register (4 x  8)

Peripheral Control Register ( 1 x 16 or 2 x 8)

0FH
10H

Port Control Register Area (4 x 8)

1FH
20H

3FH
40H

6FH
70H

Standard exhortative area

Standard  area

Figure 4-1. Control Register Area



MEMORY MAP S3CB519/FB519

4-2

Table 4-1. Control Registers

Register Name Mnemonic Decimal Hex Reset R/W

Location 16H–1FH is not mapped

Port 5 data register P5 21 15H 0FH R

Port 4 data register P4 20 14H 00H R/W

Port 3 data register P3 19 13H 00H R/W

Port 2 data register P2 18 12H 00H R/W

Port 1 data register P1 17 11H 00H R/W

Port 0 data register P0 16 10H 00H R/W

Locations 0EH and 0FH are not mapped

Watchdog timer control register WDTCON 13 0DH X0H R/W

Basic timer counter BTCNT 12 0CH 00H R

Interrupt ID register 1 IIR1 11 0BH – R/W

Interrupt priority register 1 IPR1 10 0AH – R/W

Interrupt mask register 1 IMR1 9 09H 00H R/W

Interrupt request register 1 IRQ1 8 08H – R

Interrupt ID register 00 IIR00 7 07H – R/W

Interrupt priority register 00 IPR00 6 06H – R/W

Interrupt mask register 00 IMR00 5 05H 00H R/W

Interrupt request register 00 IRQ00 4 04H – R

Oscillator control register OSCCON 3 03H 00H R/W

Power control register PCON 2 02H 04H R/W

Locations 00H and 01H are not mapped

NOTES
1. All the unused and unmapped registers and bits read “0”.
2.    “–“ means undefined.



S3CB519/FB519 MEMORY MAP

4-3

 Table 4-1. Control Registers (Continued)

Register Name Mnemonic Decimal Hex Reset R/W

Locations 35H–3FH are not mapped

Port 5 control register P5CON 52 34H 00H R/W

Locations 31H–33H are not mapped

Port 4 control register P4CON 48 30H 00H R/W

Locations 2DH–2FH are not mapped

Port 3 control register P3CON 44 2CH 00H R/W

Locations 29H–2BH are not mapped

Port 2 control register P2CON 40 28H 00H R/W

Locations 26H–27H are not mapped

Port 1 interrupt control register P1INT 37 25H 00H R/W

Port 1 control register P1CON 36 24H 00H R/W

Port 0 interrupt edge control register P0EDGE 35 23H 00H R/W

Port 0 interrupt control register P0INT 34 22H 00H R/W

Port 0 control register low P0CONL 33 21H 00H R/W

Port 0 control register high P0CONH 32 20H 00H R/W

NOTE: All unused and unmapped registers and bits read “0”.



MEMORY MAP S3CB519/FB519

4-4

Table 4-1. Control Registers (Concluded)

Register Name Mnemonic Decimal Hex Reset R/W

Locations 74H–7FH are not mapped

D/A converter data register DADATA 115 73H 00H R/W

D/A converter control register DACON 114 72H 00H R/W

Battery level detector register BLDCON 113 71H 40H R/W

Watch timer control register WTCON 112 70H 00H R/W

Locations 5FH–6FH are not mapped

LCD contrast register LCNST 94 5EH 00H R/W

LCD mode register LMOD 93 5DH 00H R/W

LCD control register LCON 92 5CH 00H R/W

Interrupt ID register 01 IIR01 91 5BH – R/W

Interrupt priority register 01 IPR01 90 5AH – R/W

Interrupt mask register 01 IMR01 89 59H 00H R/W

Interrupt request register 01 IRQ01 88 58H – R

Locations 53H–57H are not mapped

Timer 0 counter T0CNT 82 52H – R

Timer 0 data register T0DATA 81 51H FFH R/W

Timer 0 control register T0CON 80 50H 00H R/W

Location 4FH is not mapped

A/D Converter data register, Low byte ADATAL 78 4EH 00H R

A/D Converter data register, High byte ADATAH 77 4DH 00H R

A/D Converter control register ADCON 76 4CH 00H R/W

Location 4BH is not mapped

Serial I/O data register SIODATA 74 4AH 00H R/W

Serial I/O pre-scale register SIOPS 73 49H 00H R/W

Serial I/O control register SIOCON 72 48H 00H R/W

Location 47H is not mapped

Timer B counter TBCNT 70 46H – R

Timer B data register TBDATA 69 45H FFH R/W

Timer B control register TBCON 68 44H 00H R/W

Location 43H is not mapped

Timer A counter TACNT 66 42H – R

Timer A data register TADATA 65 41H FFH R/W

Timer A control register TACON 64 40H 00H R/W

NOTES
1. All unused and unmapped registers and bits read “0”.
2.    “–“ means undefined.



S3CB519/FB519 HARDWARE STACK

5-1

5 HARDWARE STACK

OVERVIEW

The hardware stack in CalmRISC has two usages:

— To save and restore the return PC[19:0] on CALL, CALLS, RET, and IRET instructions.

— Temporary storage space for registers on PUSH and POP instructions.

When PC[19:0] is saved into or restored from the hardware stack, the access should be 20 bits wide. On the
other hand, when a register is pushed into or popped from the hardware stack, the access should be 8 bits wide.
Hence, to maximize the efficiency of the stack usage, the hardware stack is divided into 3 parts: the extended
stack bank (XSTACK, 4-bits wide), the odd bank (8-bits wide), and the even bank (8-bits wide).

3 0 7 0 7 0

Level 0

Level 1

Level 2

Level 14

Level 15

XSTACK Odd Bank Even Bank

Hardware Stack

015

Stack Pointer
SPTR [5:0]

Odd or Even
Bank Selector

Stack Level
Pointer

Figure 5-1. Hardware Stack



HARDWARE STACK S3CB519/FB519

5-2

The top of the stack (TOS) is pointed to by a stack pointer, called sptr[5:0]. The upper 5 bits of the stack pointer,
sptr[5:1], points to the stack level into which either PC[19:0] or a register is saved. For example, if sptr[5:1] is 5H
or TOS is 5, then level 5 of XSTACK is empty and either level 5 of the odd bank or level 5 of the even bank is
empty. In fact, sptr[0], the stack bank selection bit, indicates which bank(s) is empty. If sptr[0] = 0, both level 5 of
the even and the odd banks are empty. On the other hand, if sptr[0] = 1, level 5 of the odd bank is empty, but
level 5 of the even bank is occupied. This situation is well illustrated in the figure below.

Level 0

Level 1

Level 2

Level 15

XSTACK Odd Bank Even Bank

0

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 3

Level 4
Level 5

0 0 11 0

0

Level 0

Level 1

Level 2

Level 15

XSTACK Odd Bank Even Bank

0

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 3

Level 4
Level 5

0 0 11 1

0

Figure 5-2. Even and Odd Bank Selection Example

As can be seen in the above example, sptr[5:1] is used as the hardware stack pointer when PC[19:0] is pushed or
popped and sptr[5:0] as the hardware stack pointer when a register is pushed or popped. Note that XSTACK is
used only for storing and retrieving PC[19:16]. Let us consider the cases where PC[19:0] is pushed into the
hardware stack (by executing CALL/CALLS instructions or by interrupts/exceptions being served) or is retrieved
from the hardware stack (by executing RET/IRET instructions). Regardless of the stack bank selection bit
(sptr[0]), TOS of the even bank and the odd bank stores or returns PC[7:0] or PC[15:8], respectively. This is
illustrated in the following figures.



S3CB519/FB519 HARDWARE STACK

5-3

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

001 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 5

011 000

Level 6

0

PC[7:0]

Stack Level
Pointer

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

101 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Level 5

111 000

Level 6

0

by Executing RET, IRET
by Executing CALL, CALLS
or Interrupts/Exceptions

Stack Level
Pointer

Stack Level
Pointer

PC[19:16] PC[15:8]

PC[15:8]

PC[19:16] PC[7:0]

by Executing RET, IRET
by Executing CALL, CALLS
or Interrupts/Exceptions

Figure 5-3. Stack Operation with PC [19:0]

As can be seen in the figures, when stack operations with PC[19:0] are performed, the stack level pointer
sptr[5:1] (not sptr[5:0]) is either incremented by 1 (when PC[19:0] is pushed into the stack) or decremented by 1
(when PC[19:0] is popped from the stack). The stack bank selection bit (sptr[0]) is unchanged. If a CalmRISC
core input signal nP64KW is 0, which signifies that only PC[15:0] is meaningful, then any access to XSTACK is
totally deactivated from the stack operations with PC. Therefore, XSTACK has no meaning when the input pin
signal, nP64KW, is tied to 0. In that case, XSTACK doesn’t have to even exist. As a matter of fact, XSTACK is
not included in CalmRISC core itself and it is interfaced through some specially reserved core pin signals
(nPUSH, nSTACK, XHSI[3:0], XSHO[3:0]), if the program address space is more than 64K words (See the core
pin signal section for details).

With regards to stack operations with registers, a similar argument can be made.The only difference is that the
data written into or read from the stack are a byte. Hence, the even bank and the odd bank are accessed
alternately as shown below.



HARDWARE STACK S3CB519/FB519

5-4

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

001 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Stack Level
Pointer

Level 5

101 100

Level 6

0

Register

Stack Level
Pointer

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector
Level 5

101 100

Level 6

0

Level 0

Level 15

XSTACK Odd Bank Even Bank

15
SPTR [5:0]

Bank Selector

Level 5

011 000

Level 6

0

Register

POP Register PUSH Register

Stack Level
Pointer

Stack Level
Pointer

POP Register PUSH Register

Figure 5-4. Stack Operation with Registers

When the bank selection bit (sptr[0]) is 0, then the register is pushed into the even bank and the bank selection
bit is set to 1. In this case, the stack level pointer is unchanged. When the bank selection bit (sptr[0]) is 1, then
the register is pushed into the odd bank, the bank selection bit is set to 0, and the stack level pointer is
incremented by 1. Unlike the push operations of PC[19:0], any data are not written into XSTACK in the register
push operations. This is illustrated in the example figures.  When a register is pushed into the stack, sptr[5:0] is
incremented by 1 (not the stack level pointer sptr[5:1]). The register pop operations are the reverse processes of
the register push operations. When a register is popped out of the stack, sptr[5:0] is decremented by 1 (not the
stack level pointer sptr[5:1]).

Hardware stack overflow/underflow happens when the MSB of the stack level pointer, sptr[5], is 1. This is obvious
from the fact that the hardware stack has only 16 levels and the following relationship holds for the stack level
pointer in a normal case.

Suppose the stack level pointer sptr[5:1] = 15 (or 01111B in binary format) and the bank selection bit sptr[0] = 1.
Here if either PC[19:0] or a register is pushed, the stack level pointer is incremented by 1. Therefore, sptr[5:1] =
16 (or 10000B in binary format) and sptr[5] = 1, which implies that the stack is overflowed. The situation is
depicted in the following figure.



S3CB519/FB519 HARDWARE STACK

5-5

Level 0

Level 15

XSTACK Odd Bank Even Bank

PUSH Register

111 110
15

SPTR [5:0]
0

Level 1

Level 14

Level 0

Level 15

XSTACK Odd Bank Even Bank

000 001
15

SPTR [5:0]
0

Level 1

Level 14

Level 0

Level 15

100 001
15

SPTR [5:0]
0

Level 1

Level 14

XSTACK Odd Bank Even Bank

PUSH PC [19:0]

Register PC[19:16] PC[15:8]

PC[7:0]

Figure 5-5. Stack Overflow

The first overflow happens due to a register push operation. As explained earlier, a register push operation
increments sptr[5:0] (not sptr[5:1]) , which results in sptr[5] = 1, sptr[4:1] = 0 and sptr[0] = 0. As indicated by
sptr[5] = 1, an overflow happens. Note that this overflow doesn’t overwrite any data in the stack. On the other
hand, when PC[19:0] is pushed, sptr[5:1] is incremented by 1 instead of sptr[5:0], and as expected, an overflow
results. Unlike the first overflow, PC[7:0] is pushed into level 0 of the even bank and the data that has been there
before the push operation is overwritten.  A similar argument can be made about stack underflows. Note that any
stack operation, which causes the stack to overflow or underflow, doesn’t necessarily mean that any data in the
stack are lost, as is observed in the first example.

In SR1, there is a status flag, SF (Stack Full Flag), which is exactly the same as sptr[5]. In other words, the value
of sptr[5] can be checked by reading SF (or SR1[4]). SF is not a sticky flag in the sense that if there was a stack
overflow/underflow but any following stack access instructions clear sptr[5] to 0, then SF = 0 and programmers
cannot tell whether there was a stack overflow/underflow by reading SF. For example, if a program pushes a
register 64 times in a row, sptr[5:0] is exactly the same as sptr[5:0] before the push sequence. Therefore, special
attention should be paid.

Another mechanism to detect a stack overflow/underflow is through a stack exception. A stack exception
happens only when the execution of any stack access instruction results in SF = 1 (or sptr[5] = 1). Suppose a
register push operation makes SF = 1 (the SF value before the push operation doesn’t matter). Then the stack
exception due to the push operation is immediately generated and served If the stack exception enable flag (exe
of SR0) is 1. If the stack exception enable flag is 0, then the generated interrupt is not served but pending.
Sometime later when the stack exception enable flag is set to 1, the pending exception request is served even if
SF = 0. More details are available in the stack exception section.



HARDWARE STACK S3CB519/FB519

5-6

NOTES



S3CB519/FB519 EXCEPTIONS

6-1

6 EXCEPTIONS

OVERVIEW

Exceptions in CalmRISC are listed in the table below. Exception handling routines, residing at the given
addresses in the table, are invoked when the corresponding exception occurs. The starting address of each
exception routine is specified by concatenating 0H (leading 4 bits of 0) and the 16-bit data in the exception vector
listed in the table. For example, the interrupt service routine for NMI starts from 0H:PM[00001H]. Note that “:”
means concatenation and PM[*] stands for the 16-bit content at the address * of the program memory. Aside
from the exception due to reset release, the current PC is pushed in the stack on an exception. When an
exception is executed due to NMI/IRQ[1:0]/IEXP, the global interrupt enable flag, ie bit (SR0[1]), is set to 0,
whereas ie is set to 1 when IRET or an instruction that explicitly sets ie is executed.

Table 6-1. Exceptions

Name Address Priority Description

Reset 00000H 1 st Exception due to rest release.

NMI 00001H 2 nd Exception due to nNMI signal. Non-maskable. Not used.

IRQ[0] 00002H 4 th Exception due to nIRQ[0] signal. Maskable by setting ie/ie0.

IRQ[1] 00003H 5 th Exception due to nIRQ[1] signal. Maskable by setting ie/ie1.

IEXP 00004H 3 rd Exception due to stack full. Maskable by setting exe.

– 00005H – Reserved.

– 00006H – Reserved.

– 00007H – Reserved.

NOTE: Break mode due to BKREQ has a higher priority than all the exceptions above. That is, when BKREQ is active,
 even the exception due to reset release is not executed.

HARDWARE RESET

When Hardware Reset is active (the reset input signal pin nRES = 0), the control pins in the CalmRISC core are
initialized to be disabled, and SR0 and sptr (the hardware stack pointer) are initialized to be 0. Additionally, the
interrupt sensing block is cleared. When Hardware Reset is released (nRES = 1), the reset exception is executed
by loading the JP instruction in IR (Instruction Register) and 0h:0000h in PC. Therefore, when Hardware Reset is
released, the “JP {0h:PM[00000h]}” instruction is executed. When the reset exception is executed, a core output
signal nEXPACK is generated to acknowledge the exception.



EXCEPTIONS S3CB519/FB519

6-2

NMI EXCEPTION (EDGE SENSITIVE)

On the falling edge of a core input signal nNMI, the NMI exception is executed by loading the CALL instruction in
IR and 0h:0001h in PC. Therefore, when NMI exception is activated, the “CALL {0h:PM[00001h]}” instruction is
executed. When the NMI exception is executed, the ie bit (SR0[1]) becomes 0 and a core output signal
nEXPACK is generated to acknowledge the exception.

IRQ[0] EXCEPTION (LEVEL-SENSITIVE)

When a core input signal nIRQ[0] is low, SR0[6] (ie0) is high, and SR0[1] (ie) is high, IRQ[0] exception is
generated, and this will load the CALL instruction in IR (Instruction Register) and 0h:0002h in PC. Therefore, on
an IRQ[0] exception, the “CALL {0h:PM[00002h]}” instruction is executed. When the IRQ[0] exception is
executed, SR0[1] (ie) is set to 0 and a core output signal nEXPACK is generated to acknowledge the exception.

IRQ[1] EXCEPTION (LEVEL-SENSITIVE)

When a core input signal nIRQ[1] is low, SR0[7] (ie1) is high, and SR0[1] (ie) is high, IRQ[1] exception is
generated, and this will load the CALL instruction in IR (Instruction Register) and 0h:0003h in PC. Therefore, on
an IRQ[1] exception, the “CALL {0h:PM[00003h]}” instruction is executed. When the IRQ[1] exception is
executed, SR0[1] (ie) is set to 0 and a core output signal nEXPACK is generated to acknowledge the exception.

HARDWARE STACK FULL EXCEPTION

A Stack Full exception occurs when a stack operation is performed and as a result of the stack operation sptr[5]
(SF) is set to 1. If the stack exception enable bit, exe (SR0[5]), is 1, the Stack Full exception is served. One
exception to this rule is when nNMI causes a stack operation that sets sptr[5] (SF), since it has higher priority.

Handling a Stack Full exception may cause another Stack Full exception.  In this case, the new exception is
ignored. On a Stack Full exception, the CALL instruction is loaded in IR (Instruction Register) and 0h:0004h in
PC. Therefore, when the Stack Full exception is activated, the “CALL {0h:PM[00004h]}” instruction is executed.
When the exception is executed, SR0[1] (ie) is set to 0, and a core output signal nEXPACK is generated to
acknowledge the exception.

BREAK EXCEPTION

Break exception is reserved only for an in-circuit debugger. When a core input signal, BKREQ, is high, the
CalmRISC core is halted or in the break mode, until BKREQ is deactivated. Another way to drive the CalmRISC
core into the break mode is by executing a break instruction, BREAK. When BREAK is fetched, it is decoded in
the fetch cycle (IF stage) and the CalmRISC core output signal nBKACK is generated in the second cycle
(ID/MEM stage). An in-circuit debugger generates BKREQ active by monitoring nBKACK to be active. BREAK
instruction is exactly the same as the NOP (no operation) instruction except that it does not increase the program
counter and activates nBKACK in the second cycle (or ID/MEM stage of the pipeline). There, once BREAK is
encountered in the program execution, it falls into a deadlock. BREAK instruction is reserved for in-circuit
debuggers only, so it should not be used in user programs.



S3CB519/FB519 EXCEPTIONS

6-3

EXCEPTIONS (or INTERRUPTS)

VECTOR SOURCELEVEL RESET (CLEAR)

Not usedNMI 0001H

Timer A match

Timer B match

SIO

IVEC0 0002H

H/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

AD/DA interrupt

External interrupt

INT4

INT5

INT6

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

INT0

INT1

INT2

INT3

IVEC1 0003H Timer 0 match

Timer 0 overflow

H/W, S/W

H/W, S/W

H/W, S/W

Stack full INT0004HSF_EXCEP H/W

NOTES:
1.     There are two interrupt vectors, and the one interrupt vector have several interrupt sources.
        The priority of the sources is controlled by setting the IPR register.
2.     IMR00, IPR00, IRQ00,  is responsible for AD/DA interrupt, Timer A, Timer B, SIO, External,
        Basic timer, Watch timer interrupt. IMR01, IPR01, IRQ01 is responsible for INT0-INT6 interrupt.
        IMR1, IPR1, IRQ1 is responsible for Timer 0 Match, Timer 0 Overflow, Key scan interrupts.
3.     External interrupts are triggered by a rising or falling edge, depending on the corresponding control
        register setting.
4.     The NMI has the most higher priority in the interrupt levels. And the priority of SF_EXCEP is next
        but higher then IVEC0, IVEC1's priority is the last.
5.     When system reset occurs, IPR register value is undefined.
        After reset, the interrupt priority can be changed by setting of IPR register.
6.     The pending bit is cleared by Hardware when CPU reads the IIR register value.
7.     If you write "LD IIRx, #8H", all bits of IRQx are cleared. (Where x is 1, 00, 01)

KS0

KS1

KS2

KS3

Basic timer overflow

Watch timer

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

H/W, S/W

Figure 6-1. Interrupt Structure



EXCEPTIONS S3CB519/FB519

6-4

IPR1
Logic

IIR1

CPU

Timer 0 Match

IVEC1
IPR1

IMR1
Logic

IMR1

STOP & IDLE

Release

IMR00 IPR00

IPR00
Logic

IVEC0

IIR00

IRQ1.0

IRQ1.1

IRQ1.2

IRQ1.3

IRQ1.4

IRQ1.5

IRQ1.6

IRQ1.7

IRQ00.0

IRQ00.1

IRQ00.2

IRQ00.3

IRQ00.4

IRQ00.5

IRQ00.6

IRQ00.7

IMR00
Logic

Timer 0 Overflow

Not used

Not used

Clear (when writing clear bit value to bit.2. 1. 0)
ex) LD IIR00, #x5H        IRQ.5 is cleared

Clear (when writing clear bit value to bit.2. 1. 0)
ex) LD IIR1, #x5H        IRQ.5 is cleared

AD/DA Interrupt

Timer A match

SIO

External Interrupt

Basic Timer

Watch Timer

Not used

Timer B match

IRQ01.0

IRQ01.1

IRQ01.2

IRQ01.3

IRQ01.4

IRQ01.5

IRQ01.6

INT0

INT1

INT2

INT3

INT4

INT5

INT6

IMR01/
IPR01
Logic

Clear (when writing clear bit value to bit.2. 1. 0)
ex) LD IIR01, #x3H        IRQ01.3 is cleared

IIR01

P1INT.0

P1INT.1

P1INT.2

P1INT.3

KS0

KS1

KS2

KS3

NOTE: If you write "LD" IIRx, #8H", all bits of IRQx are cleared. (Where x is 1, 00, 01)

Figure 6-2. Interrupt Structure



S3CB519/FB519 EXCEPTIONS

6-5

INTERRUPT MASK REGISTERS

Interrupt request enable bits:
0 = Disable interrupt request
1 = Enable interrupt request

NOTE: If you want to change the value of the IMR register, then you first
make disable global INT by DI instruction, and change the value of the IMR register.

Interrupt Mask Register00 (IMR00)
05H, R/W

IRQ00.0

IRQ00.1

IRQ00.2

IRQ00.3

IRQ00.4

IRQ00.5

IRQ00.6

IRQ00.7

.7 .6 .5 .4 .3 .2 .1 .0

Interrupt Mask Register01 (IMR01)
59H, R/W

IRQ01.0

IRQ01.1

IRQ01.2

IRQ01.3

IRQ01.4

IRQ01.5

IRQ01.6

IRQ01.7

.7 .6 .5 .4 .3 .2 .1 .0

.7 .6 .5 .4 .3 .2 .1 .0

Interrupt Mask Register1 (IMR1)
09H, R/W

IRQ1.0

IRQ1.1

IRQ1.2

IRQ1.3

IRQ1.4

IRQ1.5

IRQ1.6

IRQ1.7

Figure 6-3. Interrupt Mask Register



EXCEPTIONS S3CB519/FB519

6-6

INTERRUPT PRIORITY REGISTER

Interrupt Priority Registers
(IPR00:06H, IPR01:5AH, IPR1:0AH, R/W )

IPR
Group A

NOTE: If you want to change the value of the IPR register, then you first make disable
global INT by DI instruction, and change the value of the IPR register.

IPR
Group B

IPR
Group C

IRQx.0 IRQx.1 IRQx.2 IRQx.3 IRQx.4 IRQx.5 IRQx.6 IRQx.7 (note)

Group A
0 = IRQx.0 > IRQx.1
1 = IRQx.1 > IRQx.0

Group B
0 = IRQx.2 > (IRQx.3,IRQx.4)
1 = (IRQx.3,IRQx.4) > IRQx.2

Subgroup B
0 = IRQx.3 > IRQx.4
1 = IRQx.4 > IRQx.3

Group C
0 = IRQx.5 > (IRQx.6,IRQx.7)
1 = (IRQx.6,IRQx.7) > IRQx.5

Subgroup C
0 = IRQx.6 > IRQx.7
1 = IRQx.7 > IRQx.6

.7 .6 .5 .4 .3 .2 .1 .0

0  0  0
0  0  1
0  1  0
0  1  1
1  0  0
1  0  1
1  1  0
1  1  1

Not used
B>C>A
A>B>C
B>A>C
C>A>B
C>B>A
A>C>B
Not used

.7 .4 .1

Group priority:

Figure 6-4. Interrupt Priority Register



S3CB519/FB519 EXCEPTIONS

6-7

++PROGRAMMING TIP — Interrupt Programming Tip 1

Jumped from vector 2

PUSH SR1
PUSH R0
LD R0, IIR00
CP R0, #03h
JR ULE, LTE03
CP R0, #05h
JR ULE, LTE05
CP R0, #06h
JP EQ, IRQ6_srv
JP T, IRQ7_srv

LTE05 CP R0, #04
JP EQ, IRQ4_srv
JP T, IRQ5_srv

LTE03 CP R0, #01
JR ULE, LTE01
CP R0, #02
JP EQ, IRQ2_srv
JP T, IRQ3_srv

LTE01 CP R0, #00h
JP EQ, IRQ0_srv
JP T, IRQ1_srv

IRQ0_srv ; →   service for IRQ0
•
POP R0
POP SR1
IRET

IRQ1_srv ; →   service for IRQ1
•

•
POP R0
POP SR1
IRET
•

•
IRQ7_srv ; →   service for IRQ7

•

•
POP R0
POP SR1
IRET

NOTE: If the SR0 register is changed in the interrupt service routine, then the SR0 register must be pushed and popped in 
the interrupt service routine.



EXCEPTIONS S3CB519/FB519

6-8

++PROGRAMMING TIP — Interrupt Programming Tip 2

Jumped from vector 2

PUSH SR1
PUSH R0
PUSH R1
LD R0, IIR00
SL R0
LD R1, < TBL_INTx
ADD R0, > TBL_INTx
PUSH R1
PUSH R0
RET

TBL_INTx LJP IRQ0_svr
LJP IRQ1_svr
LJP IRQ2_svr
LJP IRQ3_svr
LJP IRQ4_svr
LJP IRQ5_svr
LJP IRQ6_svr
LJP IRQ7_svr

IRQ0_srv ; →   service for IRQ0
•

•
POP R1
POP R0
POP SR1
IRET

IRQ1_srv ; →   service for IRQ1
•

•
POP R1
POP R0
POP SR1
IRET
•

•
IRQ7_srv ; →   service for IRQ7

•

•
POP R1
POP R0
POP SR1
IRET

NOTES:
1. If the SR0 register is changed in the interrupt service routine, then the SR0 register must be pushed and popped in the 

interrupt service routine.
2. Above example is assumed that ROM size is less than 64K-word and all the LJP instructions in the jump table 

(TBL_INTx) is in the same page.



S3CB519/FB519 COPROCESSOR INTERFACE

7-1

7 COPROCESSOR INTERFACE

OVERVIEW

CalmRISC supports an efficient and seamless interface with coprocessors. By integrating a MAC (multiply and
accumulate) DSP coprocessor engine with the CalmRISC core, not only the microcontroller functions but also
complex digital signal processing algorithms can be implemented in a single development platform (or MDS).
CalmRISC has a set of dedicated signal pins, through which data/command/status are exchanged to and from a
coprocessor. Depicted below are the coprocessor signal pins and the interface between two processors.

Data Bus [7:0]

SYSCP [11:0]

nCOPID

nCLDID

CLDWR

EC[2:0]

CoprocessorCalmRISC

Program
ROM

Data
RAM

Figure 7-1. Coprocessor Interface Diagram



COPROCESSOR INTERFACE S3CB519/FB519

7-2

As shown in the coprocessor interface diagram above, the coprocessor interface signals of CalmRISC are:
SYSCP[11:0], nCOPID, nCLDID, nCLDWR, and EC[2:0]. The data are exchanged through data buses, DI[7:0]
and DO[7:0]. A command is issued from CalmRISC to a coprocessor through SYSCP[11:0] in COP instructions.
The status of a coprocessor can be sent back to CalmRISC through EC[2:0] and these flags can be checked in
the condition codes of branch instructions. The coprocessor instructions are listed in the following table

Table 7-1. Coprocessor instructions

Mnemonic Op 1 Op 2 Description

COP #imm:12 – Coprocessor operation

CLD GPR imm:8 Data transfer from coprocessor into GPR

CLD imm:8 GPR Data transfer of GPR to coprocessor

JP(or JR)

CALL

LNK

EC2–EC0 label Conditional branch with coprocessor status flags

The coprocessor of CalmRISC does not have its own program memory (i.e., it is a passive coprocessor) as
shown in Figure 7 -1. In fact, the coprocessor instructions are fetched and decoded by CalmRISC, and CalmRISC
issues the command to the coprocessor through the interface signals. For example, if “COP #imm:12” instruction
is fetched, then the 12-bit immediate value (imm:12) is loaded on SYSCP[11:0] signal with nCOPID active in
ID/MEM stage, to request the coprocessor to perform the designated operation. The interpretation of the 12-bit
immediate value is totally up to the coprocessor. By arranging the 12-bit immediate field, the instruction set of the
coprocessor is determined. In other words, CalmRISC only provides a set of generic coprocessor instructions,
and its installation to a specific coprocessor instruction set can differ from one coprocessor to another. CLD Write
instructions (“CLD imm:8, GPR”) put the content of a GPR register of CalmRISC on the data bus (DO[7:0] ) and
issue the address(imm:8) of the coprocessor internal register on SYSCP[7:0] with nCLDID active and CLDWR
active. CLD Read instructions (“CLD GPR, imm:8” in Table 7-1) work similarly, except that the content of the
coprocessor internal register addressed by the 8-bit immediate value is read into a GPR register through DI[7:0]
with nCLDID active and CLDWR deactivated.

The timing diagram given below is a coprocessor instruction pipeline and shows when the coprocessor performs
the required operations. Suppose I2 is a coprocessor instruction. First, it is fetched and decoded by CalmRISC (at
t = T(i-1)). Once it is identified as a coprocessor instruction, CalmRISC indicates to the coprocessor the
appropriate command through the coprocessor interface signals (at t = T(i)). Then the coprocessor performs the
designated tasks at t = T(i) and t = T(i+1). Hence IF from CalmRISC and then ID/MEM and EX from the
coprocessor constitute the pipeline for I2. Similarly, if I3 is a coprocessor instruction, the coprocessor’s ID/MEM
and EX stages replace the corresponding stages of CalmRISC.



S3CB519/FB519 COPROCESSOR INTERFACE

7-3

CalmRISC

IF ID/MEM EX

IF ID/MEM

IF

EX

ID/MEM EX

I2: Coprocessor Instruction

T (i -1) T (i) T (i +1)

I1: Normal Instruction

I3: Coprocessor Instruction

For I3For I2

ID/MEM EX

ID/MEM EX

Coprocessor

I2:

I3:

Coprocessor
Interface Signals

Figure 7-2. Coprocessor Instruction Pipeline

In a multi-processor system, the data transfer between processors is an important factor to determine the
efficiency of the overall system. Suppose an input data stream is accepted by a processor, in order for the data to
be shared by another processors. There should be some efficient mechanism to transfer the data to the
processors. In CalmRISC, data transfers are accomplished through a single shared data memory. The shared
data memory in a multi-processor has some inherent problems such as data hazards and deadlocks. However,
the coprocessor in CalmRISC accesses the shared data memory only at the designated time by CalmRISC at
which time CalmRISC is guaranteed not to access the data memory, and therefore there is no contention over
the shared data memory. Another advantage of the scheme is that the coprocessor can access the data memory
in its own bandwidth.



COPROCESSOR INTERFACE S3CB519/FB519

7-4

NOTES



S3CB519/FB519 INSTRUCTION SET

8-1

8 INSTRUCTION SET

OVERVIEW

GLOSSARY

This chapter describes the CalmRISC instruction set and the details of each instruction are listed in alphabetical
order. The following notations are used for the description.

Table 8-1. Instruction Notation Conventions

Notation Interpretation

<opN> Operand N. N can be omitted if there is only one operand. Typically, <op1> is the
destination (and source) operand and <op2> is a source operand.

GPR General Purpose Register

SPR Special Purpose Register (IDL0, IDL1, IDH, SR0, ILX, ILH, ILL, SR1)

adr:N N-bit address specifier

@idm Content of memory location pointed by ID0 or ID1

(adr:N) Content of memory location specified by adr:N

cc:4 4-bit condition code. Table 8-6 describes cc:4.

imm:N N-bit immediate number

& Bit-wise AND

| Bit-wise OR

~ Bit-wise NOT

^ Bit-wise XOR

N**M Mth power of N

(N)M M-based number N

As additional note, only the affected flags are described in the tables in this section. That is, if a flag is not
affected by an operation, it is NOT specified.



INSTRUCTION SET S3CB519/FB519

8-2

INSTRUCTION SET MAP

Table 8-2.Overall Instruction Set Map

IR [12:10]000 001 010 011 100 101 110 111

[15:13,7:2]

000 xxxxxx

ADD GPR,
#imm:8

SUB
GPR,

#imm:8

CP GPR,
#imm8

LD GPR,
#imm:8

TM GPR,
#imm:8

AND
GPR,

#imm:8

OR GPR,
#imm:8

XOR
GPR,

#imm:8

001 xxxxxx ADD GPR,
@idm

SUB
GPR,
@idm

CP GPR,
@idm

LD GPR,
@idm

LD @idm,
GPR

AND
GPR,
@idm

OR GPR,
@idm

XOR
GPR,
@idm

010 xxxxxx ADD GPR,
adr:8

SUB
GPR,
adr:8

CP GPR,
adr:8

LD GPR,
adr:8

BITT adr:8.bs BITS adr:8.bs

011 xxxxxx ADC GPR,
adr:8

SBC
GPR,
adr:8

CPC
GPR,
adr:8

LD adr:8,
GPR

BITR adr:8.bs BITC adr:8.bs

100 000000 ADD GPR,
GPR

SUB
GPR,
GPR

CP GPR,
GPR

BMS/BM
C

LD SPR0,
#imm:8

AND
GPR,
adr:8

OR GPR,
adr:8

XOR
GPR,
adr:8

100 000001 ADC GPR,
GPR

SBC
GPR,
GPR

CPC
GPR,
GPR

invalid

100 000010 invalid invalid invalid invalid

100 000011 AND GPR,
GPR

OR GPR,
GPR

XOR
GPR,
GPR

invalid

100 00010x SLA/SL/
RLC/RL/
SRA/SR/
RRC/RR/

GPR

INC/INCC
/DEC/
DECC/
COM/

COM2/
COMC
GPR

invalid invalid

100 00011x LD SPR,
GPR

LD GPR,
SPR

SWAP
GPR,
SPR

LD
TBH/TBL,

GPR

100 00100x PUSH SPR POP SPR invalid invalid

100 001010 PUSH
GPR

POP GPR LD GPR,
GPR

LD GPR,

TBH/TBL



S3CB519/FB519 INSTRUCTION SET

8-3

Table 8-2. Overall Instruction Set Map (Continued)

IR [12:10]000 001 010 011 100 101 110 111

100 001011 POP invalid LDC invalid LD SPR0,
#imm:8

AND
GPR,
adr:8

OR GPR,
adr:8

XOR
GPR,
adr:8

100 00110x RET/LRET/
IRET/NOP/

BREAK

invalid invalid invalid

100 00111x invalid invalid invalid invalid

100 01xxxx LD
GPR:bank,
GPR:bank

AND
SR0,

#imm:8

OR SR0,
#imm:8

BANK
#imm:2

100 100000

100 110011

invalid invalid invalid invalid

100 1101xx LCALL cc:4, imm:20 (2-word instruction)

100 1110xx LLNK cc:4, imm:20 (2-word instruction)

100 1111xx LJP cc:4, imm:20 (2-word instruction)

[15:10]
101 xxx

JR cc:4, imm:9

110 0xx CALLS imm:12

110 1xx LNKS imm:12

111 xxx CLD GPR, imm:8 / CLD imm:8, GPR / JNZD GPR, imm:8 / SYS #imm:8 / COP #imm:12

NOTE:  “invalid” - invalid instruction.



INSTRUCTION SET S3CB519/FB519

8-4

Table 8-3. Instruction Encoding

Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD GPR, #imm:8 000 000 GPR imm[7:0]

SUB GPR, #imm:8 001

CP GPR, #imm:8 010

LD GPR, #imm:8 011

TM GPR, #imm:8 100

AND GPR, #imm:8 101

OR GPR, #imm:8 110

XOR GPR, #imm:8 111

ADD GPR, @idm 001 000 GPR idx mod offset[4:0]

SUB GPR, @idm 001

CP GPR, @idm 010

LD GPR, @idm 011

LD @idm, GPR 100

AND GPR, @idm 101

OR GPR, @idm 110

XOR GPR, @idm 111

ADD GPR, adr:8 010 000 GPR adr[7:0]

SUB GPR, adr:8 001

CP GPR, adr:8 010

LD GPR, adr:8 011

BITT adr:8.bs 10 bs

BITS adr:8.bs 11

ADC GPR, adr:8 011 000 GPR adr[7:0]

SBC GPR, adr:8 001

CPC GPR, adr:8 010

LD adr:8, GPR 011

BITR adr:8.bs 10 bs

BITC adr:8.bs 11



S3CB519/FB519 INSTRUCTION SET

8-5

 Table 8-3. Instruction Encoding (Continued)

Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD GPRd, GPRs 100 000 GPRd 000000 GPRs

SUB GPRd, GPRs 001

CP GPRd, GPRs 010

BMS/BMC 011

ADC GPRd, GPRs 000 000001

SBC GPRd, GPRs 001

CPC GPRd, GPRs 010

invalid 011

invalid ddd 000010

AND GPRd, GPRs 000 000011

OR GPRd, GPRs 001

XOR GPRd, GPRs 010

invalid 011

ALUop1 000 GPR 00010 ALUop1

ALUop2 001 GPR ALUop2

invalid 010–011 xx xxx

LD SPR, GPR 000 GPR 00011 SPR

LD GPR, SPR 001 GPR SPR

SWAP GPR, SPR 010 GPR SPR

LD TBL, GPR 011 GPR x 0 x

LD TBH, GPR x 1 x

PUSH SPR 000 xx 00100 SPR

POP SPR 001 xx SPR

invalid 010–011 xx xxx

PUSH GPR 000 GPR 001010 GPR

POP GPR 001 GPR GPR

LD GPRd, GPRs 010 GPRd GPRs

LD GPR, TBL 011 GPR 0 x

LD GPR, TBH 1 x

POP 000 xx 001011 xx

LDC @IL 010 0 x

LDC @IL+ 1 x

Invalid 001, 011 xx

NOTE:  "x" means not applicable.



INSTRUCTION SET S3CB519/FB519

8-6

Table 8-3. Instruction Encoding (Concluded)

Instruction 15-13 12 11 10 9 8 7 6 5 4 3 2 1 0 2nd word

MODop1 100 000 xx 00110 MODop1 –

Invalid 001–011 xx xxx

Invalid 000 xx 01 xxxxxx

AND SR0, #imm:8 001 imm[7:6] imm[5:0]

OR SR0, #imm:8 010 imm[7:6]

BANK #imm:2 011 xx x imm

[1:0]

xxx

Invalid 0 xxxx 10000000-11001111

LCALL cc, imm:20 cc 1101 imm[19:16] imm[15:0]

LLNK cc, imm:20

LJP cc, imm:20

LD SPR0, #imm:8 1 00 SPR0 IMM[7:0] –

AND GPR, adr:8 01 GPR ADR[7:0]

OR GPR, adr:8 10

XOR GPR, adr:8 11

JR cc, imm:9 101 imm

[8]

cc imm[7:0]

CALLS imm:12 110 0 imm[11:0]

LNKS imm:12 1

CLD GPR, imm:8 111 0 00 GPR imm[7:0]

CLD imm:8, GPR 01 GPR

JNZD GPR, imm:8 10 GPR

SYS #imm:8 11 xx

COP #imm:12 1 imm[11:0]

NOTES: 
1. "x" means not applicable.
2. There are several MODop1 codes that can be used, as described in table 8-9.
3. The operand 1(GPR) of the instruction JNZD is Bank 3’s register.



S3CB519/FB519 INSTRUCTION SET

8-7

Table 8-4. Index Code Information (“idx”)

Symbol Code Description

ID0 0 Index 0 IDH:IDL0

ID1 1 Index 1 IDH:IDL1

Table 8-5. Index Modification Code Information (“mod”)

Symbol Code Function

@IDx + offset:5 00 DM[IDx], IDx ← IDx + offset

@[IDx - offset:5] 01 DM[IDx + (2’s complement of offset:5)],

IDx ← IDx + (2’s complement of offset:5)

@[IDx + offset:5]! 10 DM[IDx + offset], IDx ← IDx

@[IDx - offset:5]! 11 DM[IDx + (2’s complement of offset:5)], IDx ← IDx

NOTE: Carry from IDL is propagated to IDH. In case of @[IDx - offset:5] or @[IDx - offset:5]!, the assembler should convert
offset:5 to the 2’s complement format to fill the operand field (offset[4:0]).
Furthermore, @[IDx - 0] and @[IDx - 0]! are converted to @[IDx + 0] and @[IDx + 0]!, respectively.

Table 8-6. Condition Code Information (“cc”)

Symbol (cc:4) Code Function

Blank 0000 always

NC or ULT 0001 C = 0, unsigned less than

C or UGE 0010 C = 1, unsigned greater than or equal to

Z or EQ 0011 Z = 1, equal to

NZ or NE 0100 Z = 0, not equal to

OV 0101 V = 1, overflow - signed value

ULE 0110 ~C | Z, unsigned less than or equal to

UGT 0111 C & ~Z, unsigned greater than

ZP 1000 N = 0, signed zero or positive

MI 1001 N = 1, signed negative

PL 1010 ~N & ~Z, signed positive

ZN 1011 Z | N, signed zero or negative

SF 1100 Stack Full

EC0-EC2 1101-1111 EC[0] = 1/EC[1] = 1/EC[2] = 1

NOTE: EC[2:0] is an external input (CalmRISC core’s point of view) and used as a condition.



INSTRUCTION SET S3CB519/FB519

8-8

Table 8-7. “ALUop1” Code Information

Symbol Code Function

SLA 000 arithmetic shift left

SL 001 shift left

RLC 010 rotate left with carry

RL 011 rotate left

SRA 100 arithmetic shift right

SR 101 shift right

RRC 110 rotate right with carry

RR 111 rotate right

 Table 8-8. “ALUop2” Code Information

Symbol Code Function

INC 000 increment

INCC 001 increment with carry

DEC 010 decrement

DECC 011 decrement with carry

COM 100 1’s complement

COM2 101 2’s complement

COMC 110 1’s complement with carry

– 111 reserved

Table 8-9. “MODop1” Code Information

Symbol Code Function

LRET 000 return by IL

RET 001 return by HS

IRET 010 return from interrupt (by HS)

NOP 011 no operation

BREAK 100 reserved for debugger use only

– 101 reserved

– 110 reserved

– 111 reserved



S3CB519/FB519 INSTRUCTION SET

8-9

QUICK REFERENCE

Operation op1 op2 Function Flag # of word / cycle

AND

OR

XOR

ADD

SUB

CP

GPR adr:8

#imm:8

GPR

@idm

op1 ← op1 & op2

op1 ← op1 | op2

op1 ←  op1 ^ op2

op1 ← op1 + op2

op1 ← op1 + ~op2 + 1

op1 + ~op2 + 1

z,n

z,n

z,n

c,z,v,n

c,z,v,n

c,z,v,n

1W1C

ADC

SBC

CPC

GPR GPR

adr:8

op1 ← op1 + op2 + c

op1 ← op1 + ~op2 + c

op1 + ~op2 + c

c,z,v,n

c,z,v,n

c,z,v,n

TM GPR #imm:8 op1 & op2 z,n

BITS

BITR

BITC

BITT

R3 adr:8.bs op1 ← (op2[bit] ← 1)

op1 ← (op2[bit] ← 0)

op1 ← ~(op2[bit])

z ← ~(op2[bit])

z

z

z

z

BMS/BMC – – TF ← 1 / 0 –

PUSH

POP

GPR – HS[sptr] ← GPR, (sptr ← sptr + 1)

GPR ← HS[sptr - 1], (sptr ← sptr - 1)

–

z,n

PUSH

POP

SPR – HS[sptr] ← SPR, (sptr ← sptr + 1)

SPR ← HS[sptr - 1], (sptr ← sptr - 1)

–

POP – – sptr ← sptr – 2 –

SLA

SL

RLC

RL

SRA

SR

RRC

RR

INC

INCC

DEC

DECC

COM

COM2

COMC

GPR – c ← op1[7], op1 ← {op1[6:0], 0}

c ← op1[7], op1 ← {op1[6:0], 0}

c ← op1[7], op1 ← {op1[6:0], c}

c ← op[7], op1 ← {op1[6:0], op1[7]}

c ← op[0], op1 ← {op1[7],op1[7:1]}

c ← op1[0], op1 ← {0, op1[7:1]}

c ← op1[0], op1 ← {c, op1[7:1]}

c ← op1[0], op1 ← {op1[0], op1[7:1]}

op1 ← op1 + 1

op1 ← op1 +  c

op1 ←  op1 + 0FFh

op1 ← op1 + 0FFh + c

op1 ← ~op1

op1 ← ~op1 + 1

op1 ← ~op1 + c

c,z,v,n

c,z,n

c,z,n

c,z,n

c,z,n

c,z,n

c,z,n

c,z,n

c,z,v,n

c,z,v,n

c,z,v,n

c,z,v,n

z,n

c,z,v,n

c,z,v,n



INSTRUCTION SET S3CB519/FB519

8-10

QUICK REFERENCE (Continued)

Operation op1 op2 Function Flag # of word / cycle

LD GPR
:bank

GPR
:bank

op1 ← op2 z,n 1W1C

LD SPR0 #imm:8 op1 ← op2 –

LD GPR GPR
SPR
adr:8
@idm

#imm:8
TBH/TBL

op1 ← op2 z,n

LD SPR
TBH/TBL

GPR op1 ← op2 –

LD adr:8 GPR op1 ← op2 –

LD @idm GPR op1 ← op2 –

LDC @IL
@IL+

– (TBH:TBL) ← PM[(ILX:ILH:ILL)],
ILL++ if @IL+

– 1W2C

AND

OR

SR0 #imm:8 SR0 ← SR0 & op2
SR0 ← SR0 | op2

– 1W1C

BANK #imm:2 – SR0[4:3] ← op2 –

SWAP GPR SPR op1 ← op2, op2 ← op1 (excluding
SR0/SR1)

–

LCALL cc imm:20 – If branch taken, push XSTACK,
HS[15:0] ← {PC[15:12],PC[11:0] + 2} and
PC ← op1
else PC[11:0] ← PC[11:0] + 2

– 2W2C

LLNK cc imm:20 – If branch taken, IL[19:0] ← {PC[19:12],
PC[11:0] + 2} and PC ← op1
else PC[11:0] ← PC[11:0] + 2

–

CALLS imm:12 – push XSTACK, HS[15:0] ← {PC[15:12],
PC[11:0] + 1} and PC[11:0] ← op1

– 1W2C

LNKS imm:12 – IL[19:0] ← {PC[19:12], PC[11:0] + 1} and
PC[11:0] ← op1

–

JNZD Rn imm:8 if (Rn == 0) PC ← PC[delay slot] - 2’s
complement of imm:8, Rn--
else PC ← PC[delay slot]++, Rn--

–

LJP cc imm:20 – If branch taken, PC ← op1

else PC[11:0] < PC[11:0] + 2

– 2W2C

JR cc imm:9 – If branch taken, PC[11:0] ← PC[11:0] + op1

else PC[11:0] ← PC[11:0] + 1

– 1W2C

NOTE: op1 - operand1, op2 - operand2, 1W1C - 1-Word 1-Cycle instruction, 1W2C - 1-Word 2-Cycle instruction, 2W2C - 
2-Word 2-Cycle instruction. The Rn of instruction JNZD is Bank 3’s GPR.



S3CB519/FB519 INSTRUCTION SET

8-11

QUICK REFERENCE (Concluded)

Operation op1 op2 Function Flag # of word / cycle

LRET

RET

IRET

NOP

BREAK

– – PC ← IL[19:0]

PC ← HS[sptr - 2], (sptr ← sptr - 2)

PC ← HS[sptr - 2], (sptr ← sptr - 2)

no operation

no operation and hold PC

– 1W2C

1W2C

1W2C

1W1C

1W1C

SYS #imm:8 – no operation but generates SYSCP[7:0] and
nSYSID

– 1W1C

CLD imm:8 GPR op1 ← op2, generates SYSCP[7:0], nCLDID,
and CLDWR

–

CLD GPR imm:8 op1 ← op2, generates SYSCP[7:0], nCLDID,
and CLDWR

z,n

COP #imm:12 – generates SYSCP[11:0] and nCOPID –

NOTES:
1. op1 - operand1, op2 - operand2, sptr - stack pointer register, 1W1C - 1-Word 1-Cycle instruction, 1W2C - 1-Word 

2-Cycle instruction
2. Pseudo instructions

— SCF/RCF
                  Carry flag set or reset instruction

— STOP/IDLE
                  MCU power saving instructions

— EI/DI
                  Exception enable and disable instructions

— JP/LNK/CALL
    If JR/LNKS/CALLS commands (1 word instructions) can access the target address, there is no conditional  code
    in the case of CALL/LNK, and the JP/LNK/CALL commands are assembled to JR/LNKS/CALLS in linking time, or
    else the JP/LNK/CALL commands are assembled to LJP/LLNK/LCALL (2 word instructions) instructions.



INSTRUCTION SET S3CB519/FB519

8-12

INSTRUCTION GROUP SUMMARY

ALU INSTRUCTIONS

“ALU instructions” refer to the operations that use ALU to generate results. ALU instructions update the values in
Status Register 1 (SR1), namely carry (C), zero (Z), overflow (V), and negative (N), depending on the operation
type and the result.

ALUop GPR, adr:8

Performs an ALU operation on the value in GPR and the value in DM[adr:8] and stores the result into GPR.
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPR+(not DM[adr:8])+1 is performed.
adr:8 is the offset in a specific data memory page.

The data memory page is 0 or the value of IDH (Index of Data Memory Higher Byte Register), depending on the
value of eid in Status Register 0 (SR0).

Operation

GPR ← GPR ALUop DM[00h:adr:8] if eid = 0
GPR ← GPR ALUop DM[IDH:adr8] if eid = 1
Note that this is an 8-bit operation.

Example

ADD R0, 80h // Assume eid = 1 and IDH = 01H
// R0 ← R0 + DM[0180h]

ALUop GPR, #imm:8

Stores the result of an ALU operation on GPR and an 8-bit immediate value into GPR.
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPR+(not #imm:8)+1 is performed.
#imm:8 is an 8-bit immediate value.

Operation

GPR ← GPR ALUop #imm:8

Example

ADD R0, #7Ah // R0 ← R0 + 7Ah



S3CB519/FB519 INSTRUCTION SET

8-13

ALUop GPRd, GPRs

Store the result of ALUop on GPRs and GPRd into GPRd.
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPRd + (not GPRs) + 1 is performed.
GPRs and GPRd need not be distinct.

Operation

GPRd ← GPRd ALUop GPRs
GPRd - GPRs when ALUop = CP (comparison only)

Example

ADD R0, R1 // R0 ← R0 + R1

ALUop GPR, @idm

Performs ALUop on the value in GPR and DM[ID] and stores the result into GPR. Index register ID is IDH:IDL
(IDH:IDL0 or IDH:IDL1).
ALUop = ADD, SUB, CP, AND, OR, XOR
For SUB and CP, GPR+(not DM[idm])+1 is performed.
idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]!
(IDx = ID0 or ID1)

Operation

GPR - DM[idm] when ALUop = CP (comparison only)
GPR ← GPR ALUop DM[IDx], IDx ← IDx + offset:5 when idm = IDx + offset:5
GPR ← GPR ALUop DM[IDx - offset:5], IDx ← IDx - offset:5 when idm = [IDx - offset:5]
GPR ← GPR ALUop DM[IDx + offset:5] when idm = [IDx + offset:5]!
GPR ← GPR ALUop DM[IDx - offset:5] when idm = [IDx - offset:5]!

When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH.

Example

ADD R0, @ID0+2 // assume ID0 = 02FFh
// R0 ← R0 + DM[02FFh], IDH ← 03h and IDL0 ← 01h

ADD R0, @[ID0-2] // assume ID0 = 0201h
// R0 ← R0 + DM[01FFh], IDH ← 01h and IDL0 ← FFh

ADD R0, @[ID1+2]! // assume ID1 = 02FFh
// R0 ← R0 + DM[0301], IDH ← 02h and IDL1 ← FFh

ADD R0, @[ID1-2]! // assume ID1 = 0200h
// R0 ← R0 + DM[01FEh], IDH ← 02h and IDL1 ← 00h



INSTRUCTION SET S3CB519/FB519

8-14

ALUopc GPRd, GPRs

Performs ALUop with carry on GPRd and GPRs and stores the result into GPRd.
ALUopc = ADC, SBC, CPC
GPRd and GPRs need not be distinct.

Operation

GPRd ← GPRd + GPRs + C when ALUopc = ADC
GPRd ← GPRd + (not GPRs) + C when ALUopc = SBC
GPRd + (not GPRs) + C when ALUopc = CPC (comparison only)

Example

ADD R0, R2 // assume R1:R0 and R3:R2 are 16-bit signed or unsigned numbers.
ADC R1, R3 // to add two 16-bit numbers, use ADD and ADC.

SUB R0, R2 // assume R1:R0 and R3:R2 are 16-bit signed or unsigned numbers.
SBC R1, R3 // to subtract two 16-bit numbers, use SUB and SBC.

CP R0, R2 // assume both R1:R0 and R3:R2 are 16-bit unsigned numbers.
CPC R1, R3 // to compare two 16-bit unsigned numbers, use CP and CPC.

ALUopc GPR, adr:8

Performs ALUop with carry on GPR and DM[adr:8].

Operation

GPR ← GPR + DM[adr:8] + C when ALUopc = ADC
GPR ← GPR + (not DM[adr:8]) + C when ALUopc = SBC
GPR + (not DM[adr:8]) + C when ALUopc = CPC (comparison only)

CPLop GPR (Complement Operations)

CPLop = COM, COM2, COMC

Operation

COM GPR not GPR (logical complement)
COM2 GPR not GPR + 1 (2’s complement of GPR)
COMC GPR not GPR + C (logical complement of GPR with carry)

Example

COM2 R0 // assume R1:R0 is a 16-bit signed number.
COMC R1 // COM2 and COMC can be used to get the 2’s complement of it.



S3CB519/FB519 INSTRUCTION SET

8-15

IncDec GPR (Increment/Decrement Operations)

IncDec = INC, INCC, DEC, DECC

Operation

INC GPR Increase GPR, i.e., GPR ← GPR + 1
INCC GPR Increase GPR if carry = 1, i.e., GPR ← GPR + C

DEC GPR Decrease GPR, i.e., GPR ← GPR + FFh
DECC GPR Decrease GPR if carry = 0, i.e., GPR ← GPR + FFh + C

Example

INC R0 // assume R1:R0 is a 16-bit number
INCC R1 // to increase R1:R0, use INC and INCC.

DEC R0 // assume R1:R0 is a 16-bit number
DECC R1 // to decrease R1:R0, use DEC and DECC.



INSTRUCTION SET S3CB519/FB519

8-16

SHIFT/ROTATE INSTRUCTIONS

Shift (Rotate) instructions shift (rotate) the given operand by 1 bit. Depending on the operation performed, a
number of Status Register 1 (SR1) bits, namely Carry (C), Zero (Z), Overflow (V), and Negative (N), are set.

SL GPR

Operation

C

7 0

0

GPR

Carry (C) is the MSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

SLA GPR

Operation

C

7 0

0

GPR

Carry (C) is the MSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) will be 1 if the MSB of the result is different from C. Z will be 1 if the result is 0.

RL GPR

Operation

C

7 0

GPR

Carry (C) is the MSB of GPR before rotating. Negative (N) is the MSB of GPR after rotatin/g.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

RLC GPR

Operation

C

7 0

GPR

Carry (C) is the MSB of GPR before rotating, Negative (N) is the MSB of GPR after rotating.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.



S3CB519/FB519 INSTRUCTION SET

8-17

SR GPR

Operation

C

7 0

0

GPR

Carry (C) is the LSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

SRA GPR

Operation

C

7 0

GPR

Carry (C) is the LSB of GPR before shifting, Negative (N) is the MSB of GPR after shifting.
Overflow (V) is not affected. Z will be 1 if the result is 0.

RR GPR

Operation

C

7 0

GPR

Carry (C) is the LSB of GPR before rotating. Negative (N) is the MSB of GPR after rotating.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.

RRC GPR

Operation

C

7 0

GPR

Carry (C) is the LSB of GPR before rotating, Negative (N) is the MSB of GPR after rotating.
Overflow (V) is not affected. Zero (Z) will be 1 if the result is 0.



INSTRUCTION SET S3CB519/FB519

8-18

LOAD INSTRUCTIONS

Load instructions transfer data from data memory to a register or from a register to data memory, or assigns an
immediate value into a register. As a side effect, a load instruction placing a value into a register sets the Zero
(Z) and Negative (N) bits in Status Register 1 (SR1), if the placed data is 00h and the MSB of the data is 1,
respectively.

LD GPR, adr:8

Loads the value of DM[adr:8] into GPR. Adr:8 is offset in the page specified by the value of eid in Status Register
0 (SR0).

Operation

GPR ← DM[00h:adr:8] if eid = 0
GPR ← DM[IDH:adr:8] if eid = 1

Note that this is an 8-bit operation.

Example

LD R0, 80h // assume eid = 1 and IDH= 01H
// R0 ← DM[0180h]

LD GPR, @idm

Loads a value from the data memory location specified by @idm into GPR.
idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]!
(IDx = ID0 or ID1)

Operation

GPR ← DM[IDx], IDx ← IDx + offset:5 when idm = IDx + offset:5
GPR ← DM[IDx - offset:5], IDx ← IDx - offset:5 when idm = [IDx - offset:5]
GPR ← DM[IDx + offset:5] when idm = [IDx + offset:5]!
GPR ← DM[IDx - offset:5] when idm = [IDx - offset:5]!

When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH.

Example

LD R0, @[ID0 + 03h]! // assume IDH:IDL0 = 0270h
// R0 ← DM[0273h], IDH:IDL0 ← 0270h



S3CB519/FB519 INSTRUCTION SET

8-19

LD REG, #imm:8

Loads an 8-bit immediate value into REG. REG can be either GPR or an SPR0 group register - IDH (Index of
Data Memory Higher Byte Register), IDL0 (Index of Data Memory Lower Byte Register)/ IDL1, and Status
Register 0 (SR0). #imm:8 is an 8-bit immediate value.

Operation

REG ← #imm:8

Example

LD R0 #7Ah // R0 ← 7Ah
LD IDH, #03h // IDH ← 03h

LD GPR:bs:2, GPR:bs:2

Loads a value of a register from a specified bank into another register in a specified bank.

Example

LD R0:1, R2:3 // R0 in bank 1, R2 in bank 3

LD GPR, TBH/TBL

Loads the value of TBH or TBL into GPR. TBH and TBL are 8-bit long registers used exclusively for LDC
instructions that access program memory. Therefore, after an LDC instruction, LD GPR, TBH/TBL instruction will
usually move the data into GPRs, to be used for other operations.

Operation

GPR ← TBH (or TBL)

Example

LDC @IL // gets a program memory item residing @ ILX:ILH:ILL
LD R0, TBH
LD R1, TBL

LD TBH/TBL, GPR

Loads the value of GPR into TBH or TBL. These instructions are used in pair in interrupt service routines to save
and restore the values in TBH/TBL as needed.

Operation

TBH (or TBL) ← GPR

LD GPR, SPR

Loads the value of SPR into GPR.

Operation

GPR ← SPR

Example

LD R0, IDH // R0 ← IDH



INSTRUCTION SET S3CB519/FB519

8-20

LD SPR, GPR

Loads the value of GPR into SPR.

Operation

SPR ← GPR

Example

LD IDH, R0 // IDH ← R0

LD adr:8, GPR

Stores the value of GPR into data memory (DM). adr:8 is offset in the page specified by the value of eid in
Status Register 0 (SR0).

Operation

DM[00h:adr:8] ← GPR if eid = 0
DM[IDH:adr:8] ← GPR if eid = 1

Note that this is an 8-bit operation.

Example

LD 7Ah, R0 // assume eid = 1 and IDH = 02h.
// DM[027Ah] ← R0

LD @idm, GPR

Loads a value into the data memory location specified by @idm from GPR.
idm = IDx+off:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]!
(IDx = ID0 or ID1)

Operation

DM[IDx] ← GPR, IDx ← IDx + offset:5 when idm = IDx + offset:5
DM[IDx - offset:5] ← GPR, IDx ← IDx - offset:5 when idm = [IDx - offset:5]
DM[IDx + offset:5] ← GPR when idm = [IDx + offset:5]!
DM[IDx - offset:5] ← GPR when idm = [IDx - offset:5]!

When carry is generated from IDL (on a post-increment or pre-decrement), it is propagated to IDH.

Example

LD @[ID0 + 03h]!, R0 // assume IDH:IDL0 = 0170h
// DM[0173h] ← R0, IDH:IDL0 ← 0170h



S3CB519/FB519 INSTRUCTION SET

8-21

BRANCH INSTRUCTIONS

Branch instructions can be categorized into jump instruction, link instruction, and call instruction. A jump
instruction does not save the current PC, whereas a call instruction saves (“pushes”) the current PC onto the
stack and a link instruction saves the PC in the link register IL. Status registers are not affected. Each instruction
type has a 2-word format that supports a 20-bit long jump.

JR cc:4, imm:9

imm:9 is a signed number (2’s complement), an offset to be added to the current PC to compute the target
(PC[19:12]:(PC[11:0] + imm:9)).

Operation

PC[11:0] ← PC[11:0] + imm:9 if branch taken (i.e., cc:4 resolves to be true)
PC[11:0] ← PC[11:0] + 1 otherwise

Example

L18411: // assume current PC = 18411h.
JR Z, 107h // next PC is 18518 (18411h + 107h) if Zero (Z) bit is set.

LJP cc:4, imm:20

Jumps to the program address specified by imm:20. If program size is less than 64K word, PC[19:16] is not
affected.

Operation

PC[15:0] ← imm[15:0] if branch taken and program size is less than 64K word
PC[19:0] ← imm[19:0] if branch taken and program size is equal to 64K word or more
PC [11:0] ← PC[11:0] + 1 otherwise

Example

L18411: // assume current PC = 18411h.
LJP Z, 10107h // next instruction’s PC is 10107h If Zero (Z) bit is set

JNZD Rn, imm:8

Jumps to the program address specified by imm:8 if the value of the bank 3 register Rn is not zero. JNZD
performs only backward jumps, with the value of Rn automatically decreased. There is one delay slot following
the JNZD instruction that is always executed, regardless of whether JNZD is taken or not.

 Operation

If (Rn == 0) PC ← PC[delay slot] (-) 2’s complement of imm:8, Rn ← Rn - 1
else PC ← PC[delay slot] + 1, Rn ← Rn - 1.



INSTRUCTION SET S3CB519/FB519

8-22

Example

LOOP_A: // start of loop body
•

•

•
JNZD R0, LOOP_A          // jump back to LOOP_A if R0 is not zero
ADD R1, #2                // delay slot, always executed (you must use one cycle instruction only)

CALLS imm:12

Saves the current PC on the stack (“pushes” PC) and jumps to the program address specified by imm:12. The
current page number PC[19:12] is not changed. Since this is a 1-word instruction, the return address pushed onto
the stack is (PC + 1). If nP64KW is low when PC is saved, PC[19:16] is not saved in the stack.

Operation

HS[sptr][15:0] ← current PC + 1 and sptr ← sptr + 2 (push stack) if nP64KW = 0
HS[sptr][19:0] ← current PC + 1 and sptr ← sptr + 2 (push stack) if nP64KW = 1
PC[11:0] ← imm:12

Example

L18411: // assume current PC = 18411h.
CALLS 107h // call the subroutine at 18107h, with the current PC pushed

// onto the stack (HS ← 18412h) if nP64KW = 1.

LCALL cc:4, imm:20

Saves the current PC onto the stack (pushes PC) and jumps to the program address specified by imm:20. Since
this is a 2-word instruction, the return address saved in the stack is (PC + 2). If nP64KW, a core input signal is
low when PC is saved, 0000111111PC[19:16] is not saved in the stack and PC[19:16] is not set to imm[19:16].

Operation

HS[sptr][15:0] ← current PC + 2 and sptr + 2 (push stack)   if branch taken and nP64KW = 0
HS[sptr][19:0] ← current PC + 2 and sptr + 2 (push stack)   if branch taken and nP64KW = 1
PC[15:0] ← imm[15:0] if branch taken and nP64KW = 0
PC[19:0] ← imm[19:0] if branch taken and nP64KW = 1
PC[11:0] ← PC[11:0] + 2   otherwise

Example

L18411: // assume current PC = 18411h.
LCALL NZ, 10107h // call the subroutine at 10107h with the current PC pushed

// onto the stack (HS ← 18413h)



S3CB519/FB519 INSTRUCTION SET

8-23

LNKS imm:12

Saves the current PC in IL and jumps to the program address specified by imm:12. The current page number
PC[19:12] is not changed. Since this is a 1-word instruction, the return address saved in IL is (PC + 1). If the
program size is less than 64K word when PC is saved, PC[19:16] is not saved in ILX.

Operation

IL[15:0] ← current PC + 1 if program size is less than 64K word
IL[19:0] ← current PC + 1 if program size is equal to 64K word or more
PC[11:0] ← imm:12

Example

L18411: // assume current PC = 18411h.
LNKS 107h // call the subroutine at 18107h, with the current PC saved

// in IL (IL[19:0] ← 18412h) if program size is 64K word or more.

LLNK cc:4, imm:20

Saves the current PC in IL and jumps to the program address specified by imm:20. Since this is a 2-word
instruction, the return address saved in IL is (PC + 2). If the program size is less than 64K word when PC is
saved, PC[19:16] is not saved in ILX.

Operation

IL[15:0] ← current PC + 2   if branch taken and program size is less than 64K word
IL[19:0] ← current PC + 2   if branch taken and program size is 64K word or more
PC[15:0] ← imm[15:0] if branch taken and program size is less than 64K word
PC[19:0] ← imm[19:0] if branch taken and program size is 64K word or more
PC[11:0] ← PC[11:0] + 2   otherwise

Example

L18411: // assume current PC = 18411h.
LLNK NZ, 10107h // call the subroutine at 10107h with the current PC saved

// in IL (IL[19:0] ← 18413h) if program size is 64K word or more

RET, IRET

Returns from the current subroutine. IRET sets ie (SR0[1]) in addition. If the program size is less than 64K word,
PC[19:16] is not loaded from HS[19:16].

Operation

PC[15:0] ← HS[sptr - 2] and sptr ← sptr - 2 (pop stack) if program size is less than 64K word
PC[19:0] ← HS[sptr - 2] and sptr ← sptr - 2 (pop stack) if program size is 64K word or more

Example

RET // assume sptr = 3h and HS[1] = 18407h.
// the next PC will be 18407h and sptr is set to 1h



INSTRUCTION SET S3CB519/FB519

8-24

LRET

Returns from the current subroutine, using the link register IL. If the program size is less than 64K word,
PC[19:16] is not loaded from ILX.

Operation

PC[15:0] ← IL[15:0] if program size is less than 64K word
PC[19:0] ← IL[19:0] if program size is 64K word or more

Example

LRET // assume IL = 18407h.
// the next instruction to execute is at PC = 18407h

   // if program size is 64K word or more

JP/LNK/CALL

JP/LNK/CALL instructions are pseudo instructions. If JR/LNKS/CALLS commands (1 word instructions) can
access the target address, there is no conditional code in the case of CALL/LNK and the JP/LNK/CALL
commands are assembled to JR/LNKS/CALLS in linking time or  else the JP/LNK/CALL commands are
assembled to LJP/LLNK/LCALL (2 word instructions) instructions.



S3CB519/FB519 INSTRUCTION SET

8-25

BIT MANIPULATION INSTRUCTIONS

BITop adr:8.bs

Performs a bit operation specified by op on the value in the data memory pointed by adr:8 and stores the result
into R3 of current GPR bank or back into memory depending on the value of TF bit.

BITop = BITS, BITR, BITC, BITT
BITS: bit set
BITR: bit reset
BITC: bit complement
BITT: bit test (R3 is not touched in this case)
bs: bit location specifier, 0 - 7.

Operation

R3 ← DM[00h:adr:8] BITop bs if eid = 0
R3 ← DM[IDH:adr:8] BITop bs if eid = 1 (no register transfer for BITT)
Set the Zero (Z) bit if the result is 0.

Example

BITS 25h.3 // assume eid = 0. set bit 3 of DM[00h:25h] and store the result in R3.
BITT 25h.3 // check bit 3 of DM[00h:25h] if eid = 0.

BMC/BMS

Clears or sets the TF bit, which is used to determine the destination of BITop instructions. When TF bit is clear,
the result of BITop instructions will be stored into R3 (fixed); if the TF bit is set, the result will be written back to
memory.

 Operation

TF ← 0 (BMC)
TF ← 1 (BMS)

TM GPR, #imm:8

Performs AND operation on GPR and imm:8 and sets the Zero (Z) and Negative (N) bits. No change in GPR.

Operation

Z, N flag ← GPR & #imm:8

BITop GPR.bs

Performs a bit operation on GPR and stores the result in GPR.
Since the equivalent functionality can be achieved using OR GPR, #imm:8, AND GPR, #imm:8, and XOR GPR,
#imm:8, this instruction type doesn’t have separate op codes.



INSTRUCTION SET S3CB519/FB519

8-26

AND SR0, #imm:8/OR SR0, #imm:8

Sets/resets bits in SR0 and stores the result back into SR0.

Operation

SR0 ← SR0 & #imm:8
SR0 ← SR0 | #imm:8

BANK #imm:2

Loads SR0[4:3] with #imm[1:0].

Operation

SR0[4:3] ← #imm[1:0]

MISCELLANEOUS INSTRUCTION

SWAP GPR, SPR

Swaps the values in GPR and SPR. SR0 and SR1 can NOT be used for this instruction.
No flag is updated, even though the destination is GPR.

Operation

temp ← SPR
SPR ← GPR
GPR ← temp

Example

SWAP R0, IDH // assume IDH = 00h and R0 = 08h.
// after this, IDH = 08h and R0 = 00h.

PUSH REG

Saves REG in the stack (Pushes REG into stack).
REG = GPR, SPR

Operation

HS[sptr][7:0] ← REG and sptr ← sptr + 1

Example

PUSH R0 // assume R0 = 08h and sptr = 2h
// then HS[2][7:0] ← 08h and sptr ← 3h



S3CB519/FB519 INSTRUCTION SET

8-27

POP REG

Pops stack into REG.
REG = GPR, SPR

Operation

REG ← HS[sptr-1][7:0] and sptr ← sptr – 1

Example

POP R0 // assume sptr = 3h and HS[2] = 18407h
// R0 ← 07h and sptr ← 2h

POP

Pops 2 bytes from the stack and discards the popped data.

NOP

Does no work but increase PC by 1.

BREAK

Does nothing and does NOT increment PC. This instruction is for the debugger only. When this instruction is
executed, the processor is locked since PC is not incremented. Therefore, this instruction should not be used
under any mode other than the debug mode.

SYS #imm:8

Does nothing but increase PC by 1 and generates SYSCP[7:0] and nSYSID signals.

CLD GPR, imm:8

GPR ← (imm:8) and generates SYSCP[7:0], nCLDID, and nCLDWR signals.

CLD imm:8, GPR

(imm:8) ← GPR and generates SYSCP[7:0], nCLDID, and nCLDWR signals.

COP #imm:12

Generates SYSCP[11:0] and nCOPID signals.



INSTRUCTION SET S3CB519/FB519

8-28

LDC

Loads program memory item into register.

Operation

[TBH:TBL] ← PM[ILX:ILH:ILL] (LDC @IL)
[TBH:TBL] ← PM[ILX:ILH:ILL], ILL++ (LDC @IL+)

TBH and TBL are temporary registers to hold the transferred program memory items. These can be accessed
only by LD GPR and TBL/TBH instruction.

Example

LD ILX, R1 // assume R1:R2:R3 has the program address to access
LD ILH, R2
LD ILL, R3
LDC @IL // get the program data @(ILX:ILH:ILL) into TBH:TBL



S3CB519/FB519 INSTRUCTION SET

8-29

PSEUDO INSTRUCTIONS

EI/DI

Exceptions enable and disable instruction.

Operation

SR0 ← OR   SR0,#00000010b (EI)
SR0 ← AND SR0,#11111101b (DI)

Exceptions are enabled or disabled through this instruction. If there is an EI instruction, the SR0.1 is set and
reset, when DI instruction.

Example

DI
•

•

•
EI

SCF/RCF

Carry flag set and reset instruction.

Operation

CP R0,R0 (SCF)
AND R0,R0 (RCF)

Carry flag is set or reset through this instruction. If there is an SCF instruction, the SR1.0 is set and reset, when
RCF instruction.

Example

SCF
RCF

STOP/IDLE

MCU power saving instruction.

Operation

SYS #0Ah (STOP)
SYS #05h (IDLE)

The STOP instruction stops the both CPU clock and system clock and causes the microcontroller to enter STOP
mode. The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue.

Example

STOP(or IDLE)
NOP
NOP
NOP
•

•



INSTRUCTION SET S3CB519/FB519

8-30

•



S3CB519/FB519 INSTRUCTION SET

8-31

ADC — Add with Carry

Format: ADC <op1>, <op2>
<op1>: GPR
<op2>: adr:8, GPR

Operation: <op1> ← <op1> + <op2> + C
ADC adds the values of <op1> and <op2> and carry (C) and stores the result back into <op1>

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.

. N:   exclusive OR of V and MSB of result.

Example:
 ADC R0, 80h // If eid = 0, R0 ← R0 + DM[0080h] + C

// If eid = 1, R0 ← R0 + DM[IDH:80h] + C

ADC R0, R1 // R0 ← R0 + R1 + C

ADD R0, R2
ADC R1, R3

In the last two instructions, assuming that register pair R1:R0 and R3:R2 are 16-bit signed or
unsigned numbers. Even if the result of “ADD R0, R2” is not zero, Z flag can be set to ‘1’ if the
result of “ADC R1,R3” is zero. Note that zero (Z) flag do not exactly reflect result of 16-bit
operation. Therefore when programming 16-bit addition, take care of the change of Z flag.



INSTRUCTION SET S3CB519/FB519

8-32

ADD — Add

Format: ADD <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> + <op2>

ADD adds the values of <op1> and <op2> and stores the result back into <op1>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.

. N:   exclusive OR of V and MSB of result.

Example: Given: IDH:IDL0 = 80FFh, eid = 1

ADD R0, 80h // R0 ← R0 + DM[8080h]

ADD R0, #12h // R0 ← R0 + 12h

ADD R1, R2 // R1 ← R1 + R2

ADD R0, @ID0 + 2 // R0 ← R0 + DM[80FFh], IDH ← 81h, IDL0 ← 01h
ADD R0, @[ID0 – 3] // R0 ← R0 + DM[80FCh], IDH ← 80h, IDL0 ← FCh
ADD R0, @[ID0 + 2]! // R0 ← R0 + DM[8101h], IDH ← 80h, IDL0 ← FFh
ADD R0, @[ID0 – 2]! // R0 ← R0 + DM[80FDh], IDH ← 80h, IDL0 ← FFh

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



S3CB519/FB519 INSTRUCTION SET

8-33

AND — Bit-wise AND

Format: AND <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> & <op2>

AND performs bit-wise AND on the values in <op1> and <op2> and stores the result in <op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   set if the MSB of result is 1. Reset if not.

Example: Given: IDH:IDL0 = 01FFh, eid = 1

AND R0, 7Ah // R0 ← R0 & DM[017Ah]

AND R1, #40h // R1 ← R1 & 40h

AND R0, R1 // R0 ← R0 & R1

AND R1, @ID0 + 3 // R1 ← R1 & DM[01FFh], IDH:IDL0 ← 0202h
AND R1, @[ID0 – 5] // R1 ← R1 & DM[01FAh], IDH:IDL0 ← 01FAh
AND R1, @[ID0 + 7]! // R1 ← R1 & DM[0206h], IDH:IDL0 ← 01FFh
AND R1, @[ID0 – 2]! // R1 ← R1 & DM[01FDh], IDH:IDL0 ← 01FFh

In the first instruction, if eid bit in SR0 is zero, register R0 has garbage value because data
memory DM[0051h-007Fh] are not mapped in S3CB519/S3FB519. In the last two instructions,
the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more detailed explanation about this
addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



INSTRUCTION SET S3CB519/FB519

8-34

AND SR0 — Bit-wise AND with SR0

Format: AND SR0, #imm:8

Operation: SR0 ← SR0 & imm:8

AND SR0 performs the bit-wise AND operation on the value of SR0 and imm:8 and stores the
result in SR0.

Flags: –

Example: Given: SR0 = 11000010b

nIE EQU          ~02h
nIE0 EQU          ~40h
nIE1 EQU          ~80h

AND          SR0, #nIE | nIE0 | nIE1

AND          SR0, #11111101b

In the first example, the statement “AND SR0, #nIE|nIE0|nIE1” clear all of bits of the global
interrupt, interrupt 0 and interrupt 1. On the contrary, cleared bits can be set to ‘1’ by instruction
“OR SR0, #imm:8”. Refer to instruction OR SR0 for more detailed explanation about enabling bit.

In the second example, the statement “AND SR0, #11111101b” is equal to instruction DI, which
is disabling interrupt globally.

 



S3CB519/FB519 INSTRUCTION SET

8-35

BANK — GPR Bank selection

Format: BANK #imm:2

Operation: SR0[4:3] ← imm:2

Flags: –

NOTE: For explanation of the CalmRISC banked register file and its usage, please refer to chapter 3.

Example:
 BANK #1 // Select register bank 1

LD R0, #11h // Bank1’s R0 ← 11h

BANK #2 // Select register bank 2
LD R1, #22h // Bank2’s R1 ← 22h



INSTRUCTION SET S3CB519/FB519

8-36

BITC — Bit Complement

Format: BITC adr:8.bs

bs: 3-digit bit specifier

Operation: R3 ← ((adr:8) ^ (2**bs))        if (TF == 0)

(adr:8) ← ((adr:8) ^ (2**bs))    if (TF == 1)

BITC complements the specified bit of a value read from memory and stores the result in R3 or 
back into memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction.

Flags: Z:   set if result is zero. Reset if not.

NOTE: Since the destination register R3 is fixed, it is not specified explicitly.

Example: Given: IDH = 01, DM[0180h] = FFh, eid = 1

BMC // TF ← 0
BITC 80h.0 // R3 ← FEh, DM[0180h] = FFh

BMS // TF ← 1
BITC 80h.1 // DM[0180h] ← FDh



S3CB519/FB519 INSTRUCTION SET

8-37

BITR — Bit Reset

Format: BITR adr:8.bs

bs: 3-digit bit specifier

Operation: R3 ← ((adr:8) & ((11111111)2 - (2**bs)))        if (TF == 0)

(adr:8) ← ((adr:8) & ((11111111)2 - (2**bs)))    if (TF == 1)

BITR resets the specified bit of a value read from memory and stores the result in R3 or back 
into memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction.

Flags: Z:   set if result is zero. Reset if not.

NOTE: Since the destination register R3 is fixed, it is not specified explicitly.

Example: Given: IDH = 01, DM[0180h] = FFh, eid = 1

BMC // TF ← 0
BITR 80h.1 // R3 ← FDh, DM[0180h] = FFh

BMS // TF ← 1
BITR 80h.2 // DM[0180h] ← FBh



INSTRUCTION SET S3CB519/FB519

8-38

BITS — Bit Set

Format: BITS adr:8.bs

bs: 3-digit bit specifier.

Operation: R3 ← ((adr:8) | (2**bs))        if (TF == 0)

(adr:8) ← ((adr:8) | (2**bs))    if (TF == 1)

BITS sets the specified bit of a value read from memory and stores the result in R3 or back into 
memory, depending on the value of TF. TF is set or clear by BMS/BMC instruction.

Flags: Z:  set if result is zero. Reset if not.

NOTE: Since the destination register R3 is fixed, it is not specified explicitly.

Example: Given: IDH = 01, DM[0180h] = F0h, eid = 1

BMC // TF ← 0
BITS 80h.1 // R3 ← 0F2h, DM[0180h] = F0h

BMS // TF ← 1
BITS 80h.2 // DM[0180h] ← F4h



S3CB519/FB519 INSTRUCTION SET

8-39

BITT — Bit Test

Format: BITT adr:8.bs

bs: 3-digit bit specifier.

Operation: Z ← ~((adr:8) & (2**bs))

BITT tests the specified bit of a value read from memory.

Flags: Z:  set if result is zero. Reset if not.

Example: Given: DM[0080h] = F7h, eid = 0

BITT 80h.3 // Z flag is set to ‘1’
JR Z, %1 // Jump to label %1 because condition is true.
•

•

•
%1 BITS 80h.3

NOP
•

•

•



INSTRUCTION SET S3CB519/FB519

8-40

BMC/BMS – TF bit clear/set

Format: BMS/BMC

Operation: BMC/BMS clears (sets) the TF bit.

TF ← 0  if BMC

TF ← 1  if BMS

TF is a single bit flag which determines the destination of bit operations, such as BITC, BITR,
and BITS.

Flags: –

NOTE: BMC/BMS are the only instructions that modify the content of the TF bit.

Example:
 BMS // TF ← 1

BITS 81h.1

BMC // TF ← 0
BITR 81h.2
LD R0, R3



S3CB519/FB519 INSTRUCTION SET

8-41

CALL — Conditional Subroutine Call (Pseudo Instruction)

Format: CALL cc:4, imm:20
CALL imm:12

Operation: If CALLS can access the target address and there is no conditional code (cc:4), CALL command is 
assembled to CALLS (1-word instruction) in linking time, else the CALL is assembled to LCALL (2-word 
instruction).

Example:
CALL C, Wait // HS[sptr][15:0] ← current PC + 2, sptr ← sptr + 2
• // 2-word instruction
•

•
 CALL 0088h // HS[sptr][15:0] ← current PC + 1, sptr ← sptr + 2

• // 1-word instruction
•

•
Wait: NOP // Address at 0088h

NOP
 NOP
 NOP
 NOP

RET



INSTRUCTION SET S3CB519/FB519

8-42

CALLS — Call Subroutine

Format: CALLS imm:12

Operation: HS[sptr][15:0] ← current PC + 1, sptr ← sptr + 2 if the program size is less than 64K word.

HS[sptr][19:0] ← current PC + 1, sptr ← sptr + 2 if the program size is equal to or over 64K word.

PC[11:0] ← imm:12
CALLS unconditionally calls a subroutine residing at the address specified by imm:12.

Flags: –

Example:
CALLS Wait
•

•

•
Wait: NOP

NOP
NOP
RET

Because this is a 1-word instruction, the saved returning address on stack is (PC + 1).



S3CB519/FB519 INSTRUCTION SET

8-43

CLD — Load into Coprocessor

Format: CLD imm:8, <op>

<op>: GPR

Operation: (imm:8) ← <op>

CLD loads the value of <op> into (imm:8), where imm:8 is used to access the external
coprocessor's address space.

Flags: –

Example:
AH EQU 00h
AL EQU 01h
BH EQU 02h
BL EQU 03h

•

•

•
CLD AH, R0 // A[15:8] ← R0
CLD AL, R1 // A[7:0] ← R1

CLD BH, R2 // B[15:8] ← R2
CLD BL, R3 // B[7:0] ← R3

The registers A[15:0] and B[15:0] are Arithmetic Unit (AU) registers of MAC816.
 Above instructions generate SYSCP[7:0], nCLDID and CLDWR signals to access MAC816.



INSTRUCTION SET S3CB519/FB519

8-44

CLD — Load from Coprocessor

Format: CLD <op>, imm:8

<op>: GPR

Operation: <op> ← (imm:8)

CLD loads a value from the coprocessor, whose address is specified by imm:8.

Flags: Z:   set if the loaded value in <op1> is zero. Reset if not.
N:   set if the MSB of the loaded value in <op1> is 1. Reset if not.

Example:
AH EQU 00h
AL EQU 01h
BH EQU 02h
BL EQU 03h

•

•

•
CLD R0, AH // R0 ← A[15:8]
CLD R1, AL // R1 ← A[7:0]

CLD R2, BH // R2 ← B[15:8]
CLD R3, BL // R3 ← B[7:0]

 The registers A[15:0] and B[15:0] are Arithmetic Unit (AU) registers of MAC816.
 Above instructions generate SYSCP[7:0], nCLDID and CLDWR signals to access MAC816.



S3CB519/FB519 INSTRUCTION SET

8-45

COM — 1's or Bit-wise Complement

Format: COM <op>

<op>: GPR

Operation: <op> ← ~<op>

COM takes the bit-wise complement operation on <op> and stores the result in <op>.

Flags: Z:   set if result is zero. Reset if not.
N:   set if the MSB of result is 1. Reset if not.

Example: Given: R1 = 5Ah

 COM R1 // R1 ← A5h, N flag is set to ‘1’



INSTRUCTION SET S3CB519/FB519

8-46

COM2 — 2's Complement

Format: COM2 <op>

<op>: GPR

Operation: <op> ← ~<op> + 1

COM2 computes the 2's complement of <op> and stores the result in <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative.

Example: Given: R0 = 00h, R1 = 5Ah

COM2 R0 // R0 ← 00h, Z and C flags are set to ‘1’.

COM2 R1 // R1 ← A6h, N flag is set to ‘1’.



S3CB519/FB519 INSTRUCTION SET

8-47

COMC — Bit-wise Complement with Carry

Format: COMC <op>

<op>: GPR

Operation: <op> ← ~<op> + C

COMC takes the bit-wise complement of <op>, adds carry and stores the result in <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: If register pair R1:R0 is a 16-bit number, then the 2’s complement of R1:R0 can be obtained by
 COM2 and COMC as following.

 COM2 R0
COMC R1

Note that Z flag do not exactly reflect result of 16-bit operation. For example, if 16-bit register
pair R1: R0 has value of FF01h, then 2’s complement of R1: R0 is made of 00FFh by COM2 and
COMC.  At this time, by instruction COMC, zero (Z) flag is set to ‘1’ as if the result of 2’s
complement for 16-bit number is zero. Therefore when programming 16-bit comparison, take
care of the change of Z flag.



INSTRUCTION SET S3CB519/FB519

8-48

COP — Coprocessor

Format: COP #imm:12

Operation: COP passes imm:12 to the coprocessor by generating SYSCP[11:0] and nCOPID signals.

Flags: –

Example:
COP #0D01h // generate 1 word instruction code(FD01h)
COP #0234h // generate 1 word instruction code(F234h)

The above two instructions are equal to statement “ELD A, #1234h” for MAC816 operation. The
microcode of MAC instruction “ELD A, #1234h” is “FD01F234”, 2-word instruction. In this, code
‘F’ indicates ‘COP’ instruction.



S3CB519/FB519 INSTRUCTION SET

8-49

CP — Compare

Format: CP <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> + ~<op2> + 1

CP compares the values of <op1> and <op2> by subtracting <op2> from <op1>. Contents of
<op1> and <op2> are not changed.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero (i.e., <op1> and <op2> are same). Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: R0 = 73h, R1 = A5h, IDH:IDL0 = 0123h, DM[0123h] = A5, eid = 1

CP R0, 80h // C flag is set to ‘1’

CP R0, #73h // Z and C flags are set to ‘1’

CP R0, R1 // V flag is set to ‘1’

CP R1, @ID0 // Z and C flags are set to ‘1’
CP R1, @[ID0 – 5]
CP R2, @[ID0 + 7]!
CP R2, @[ID0 – 2]!

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



INSTRUCTION SET S3CB519/FB519

8-50

CPC — Compare with Carry

Format: CPC <op1>, <op2>

<op1>: GPR
<op2>: adr:8, GPR

Operation: <op1> ← <op1> + ~<op2> + C

CPC compares <op1> and <op2> by subtracting <op2> from <op1>. Unlike CP, however, CPC
adds (C - 1) to the result. Contents of <op1> and <op2> are not changed.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.

 N:   set if result is negative. Reset if not.

Example: If register pair R1:R0 and R3:R2 are 16-bit signed or unsigned numbers, then use CP and CPC
 to compare two 16-bit numbers as follows.

CP R0, R1
CPC R2, R3

Because CPC considers C when comparing <op1> and <op2>, CP and CPC can be used in pair
to compare 16-bit operands. But note that zero (Z) flag do not exactly reflect result of 16-bit
operation. Therefore when programming 16-bit comparison, take care of the change of Z flag.



S3CB519/FB519 INSTRUCTION SET

8-51

DEC — Decrement

Format: DEC <op>

<op>: GPR

Operation: <op> ← <op> + 0FFh

DEC decrease the value in <op> by adding 0FFh to <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: R0 = 80h, R1 = 00h

DEC R0 // R0 ← 7Fh, C, V and N flags are set to ‘1’

DEC R1 // R1 ← FFh, N flags is set to ‘1’



INSTRUCTION SET S3CB519/FB519

8-52

DECC — Decrement with Carry

Format: DECC <op>

<op>: GPR

Operation: <op> ← <op> + 0FFh + C

DECC decrease the value in <op> when carry is not set. When there is a carry, there is no
change in the value of <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: If register pair R1:R0 is 16-bit signed or unsigned number, then use DEC and DECC to
decrement 16-bit number as follows.

DEC R0
DECC R1

Note that zero (Z) flag do not exactly reflect result of 16-bit operation. Therefore when
programming 16-bit decrement, take care of the change of Z flag.



S3CB519/FB519 INSTRUCTION SET

8-53

DI — Disable Interrupt (Pseudo Instruction)

Format: DI

Operation: Disables interrupt globally. It is same as “AND SR0, #0FDh” .
DI instruction sets bit1 (ie: global interrupt enable) of SR0 register to “0”

Flags: –

Example: Given: SR0 = 03h

DI // SR0 ← SR0 & 11111101b

DI instruction clears SR0[1] to ‘0’, disabling interrupt processing.



INSTRUCTION SET S3CB519/FB519

8-54

EI — Enable Interrupt (Pseudo Instruction)

Format: EI

Operation: Enables interrupt globally. It is same as “OR SR0, #02h” .
EI instruction sets the bit1 (ie: global interrupt enable) of SR0 register to “1”

Flags: –

Example: Given: SR0 = 01h

EI // SR0 ← SR0 | 00000010b

The statement “EI” sets the SR0[1] to ‘1’, enabling all interrupts.



S3CB519/FB519 INSTRUCTION SET

8-55

IDLE — Idle Operation (Pseudo Instruction)

Format: IDLE

Operation: The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue.
Idle mode can be released by an interrupt or reset operation.
The IDLE instruction is a pseudo instruction. It is assembled as “SYS #05H”, and this generates
the SYSCP[7-0] signals. Then these signals are decoded and the decoded signals execute the
idle operation.

Flags: –

NOTE: The next instruction of IDLE instruction is executed, so please use the NOP instruction after the IDLE
instruction.

Example:
 IDLE
 NOP
 NOP
 NOP
 •

 •

 •

The IDLE instruction stops the CPU clock but not the system clock.



INSTRUCTION SET S3CB519/FB519

8-56

INC — Increment

Format: INC <op>

<op>: GPR

Operation: <op> ← <op> + 1

INC increase the value in <op>.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: R0 = 7Fh, R1 = FFh

INC R0 // R0 ← 80h, V flag is set to ‘1’

INC R1 // R1 ← 00h, Z and C flags are set to ‘1’



S3CB519/FB519 INSTRUCTION SET

8-57

INCC — Increment with Carry

Format: INCC <op>

<op>: GPR

Operation: <op> ← <op> + C

INCC increase the value of <op> only if there is carry. When there is no carry, the value of
<op> is not changed.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   exclusive OR of V and MSB of result.

Example: If register pair R1:R0 is 16-bit signed or unsigned number, then use INC and INCC to increment
16-bit number as following.

INC R0
INCC R1

Assume R1:R0 is 0010h, statement “INC R0” increase R0 by one without carry and statement
“INCC R1” set zero (Z) flag to ‘1’ as if the result of 16-bit increment is zero. Note that zero (Z)
flag do not exactly reflect result of 16-bit operation. Therefore when programming 16-bit
increment, take care of the change of Z flag.



INSTRUCTION SET S3CB519/FB519

8-58

IRET — Return from Interrupt Handling

Format: IRET

Operation: PC ← HS[sptr - 2], sptr ← sptr - 2

IRET pops the return address (after interrupt handling) from the hardware stack and assigns it to
PC. The ie (i.e., SR0[1]) bit is set to allow further interrupt generation.

Flags: –

NOTE: The program size (indicated by the nP64KW signal) determines which portion of PC is updated.
When the program size is less than 64K word, only the lower 16 bits of PC are updated
(i.e., PC[15:0] ← HS[sptr – 2]).
When the program size is 64K word or more, the action taken is PC[19:0] ← HS[sptr - 2].

Example:

 SF_EXCEP: NOP // Stack full exception service routine
  •

•

•
IRET



S3CB519/FB519 INSTRUCTION SET

8-59

JNZD — Jump Not Zero with Delay slot

Format: JNZD <op>, imm:8

<op>: GPR (bank 3’s GPR only)

imm:8 is an signed number

Operation: PC ← PC[delay slot] - 2’s complement of imm:8

<op> ← <op> - 1

JNZD performs a backward PC-relative jump if <op> evaluates to be non-zero. Furthermore,
JNZD decrease the value of <op>. The instruction immediately following JNZD (i.e., in delay slot)
is always executed, and this instruction must be 1 cycle instruction.

Flags: –

NOTE: Typically, the delay slot will be filled with an instruction from the loop body. It is noted, however,
that the chosen instruction should be “dead” outside the loop for it executes even when the loop
is exited (i.e., JNZD is not taken).

Example: Given: IDH = 03h, eid = 1

BANK #3
 LD R0, #0FFh // R0 is used to loop counter

 LD R1, #0
%1 LD IDL0, R0

JNZD R0, %B1 // If R0 of bank3 is not zero, jump to %1.
 LD @ID0, R1 // Clear register pointed by ID0
 •

•

•

This example can be used for RAM clear routine. The last instruction is executed even if the loop
is exited.



INSTRUCTION SET S3CB519/FB519

8-60

JP — Conditional Jump (Pseudo Instruction)

Format: JP cc:4 imm:20
JP cc:4 imm:9

Operation: If JR can access the target address, JP command is assembled to JR (1 word instruction) in
linking time, else the JP is assembled to LJP (2 word instruction) instruction.
There are 16 different conditions that can be used, as described in table 8-6.

Example:
%1 LD R0, #10h // Assume address of label %1 is 020Dh

•

•

•
JP Z, %B1 // Address at 0264h

JP C, %F2 // Address at 0265h
•

•

•
%2 LD R1, #20h // Assume address of label %2 is 089Ch

 •

•

•

In the above example, the statement “JP Z, %B1” is assembled to JR instruction. Assuming that
current PC is 0264h and condition is true, next PC is made by PC[11:0] ← PC[11:0] + offset,
offset value is “64h + A9h” without carry. ‘A9’ means 2’s complement of offset value to jump
backward. Therefore next PC is 020Dh. On the other hand, statement “JP C, %F2” is assembled
to LJP instruction because offset address exceeds the range of imm:9.



S3CB519/FB519 INSTRUCTION SET

8-61

 JR — Conditional Jump Relative

Format: JR cc:4 imm:9

cc:4: 4-bit condition code

Operation: PC[11:0] ← PC[11:0] + imm:9 if condition is true. imm:9 is a signed number, which is sign-
extended to 12 bits when added to PC.
There are 16 different conditions that can be used, as described in table 8-6.

Flags: –

NOTE: Unlike LJP, the target address of JR is PC-relative. In the case of JR, imm:9 is added to PC to
compute the actual jump address, while LJP directly jumps to imm:20, the target.

Example:
JR Z, %1 // Assume current PC = 1000h
•

•

•
%1 LD R0, R1 // Address at 10A5h

•

•

•

After the first instruction is executed, next PC has become 10A5h if Z flag bit is set to ‘1’. The
range of the relative address is from +255 to –256 because imm:9 is signed number.



INSTRUCTION SET S3CB519/FB519

8-62

LCALL — Conditional Subroutine Call

Format: LCALL cc:4, imm:20

Operation: HS[sptr][15:0] ← current PC + 2, sptr ← sptr + 2, PC[15:0] ← imm[15:0] if the condition holds 
and the program size is less than 64K word.

HS[sptr][19:0] ← current PC + 2, sptr ← sptr + 2, PC[19:0] ← imm:20 if the condition holds and 
the program size is equal to or over 64K word.

PC[11:0] ← PC[11:0] + 2 otherwise.
LCALL instruction is used to call a subroutine whose starting address is specified by imm:20.

Flags: –

Example:
LCALL L1

LCALL C, L2

Label L1 and L2 can be allocated to the same or other section. Because this is a 2-word
instruction, the saved returning address on stack is (PC + 2).



S3CB519/FB519 INSTRUCTION SET

8-63

LD adr:8 — Load into Memory

Format: LD adr:8, <op>

<op>: GPR

Operation: DM[00h:adr:8] ← <op> if eid = 0
DM[IDH:adr:8] ← <op> if eid = 1

LD adr:8 loads the value of <op> into a memory location. The memory location is determined by
the eid bit and adr:8.

Flags: –

Example: Given: IDH = 01h

LD 80h, R0

If eid bit of SR0 is zero, the statement “LD 80h, R0” load value of R0 into DM[0080h], else eid bit
was set to ‘1’, the statement “LD 80h, R0” load value of R0 into DM[0180h]



INSTRUCTION SET S3CB519/FB519

8-64

LD @idm — Load into Memory Indexed

Format: LD @idm, <op>

<op>: GPR

Operation: (@idm) ← <op>

LD @idm loads the value of <op> into the memory location determined by @idm. Details of the
@idm format and how the actual address is calculated can be found in chapter 2.

Flags: –

Example: Given R0 = 5Ah, IDH:IDL0 = 8023h, eid = 1

LD @ID0, R0 // DM[8023h] ← 5Ah
LD @ID0 + 3, R0 // DM[8023h] ← 5Ah, IDL0 ← 26h
LD @[ID0-5], R0 // DM[801Eh] ← 5Ah, IDL0 ← 1Eh
LD @[ID0+4]!, R0 // DM[8027h] ← 5Ah, IDL0 ← 23h
LD @[ID0-2]!, R0 // DM[8021h] ← 5Ah, IDL0 ← 23h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



S3CB519/FB519 INSTRUCTION SET

8-65

LD — Load Register

Format: LD <op1>, <op2>

<op1>: GPR
<op2>: GPR, SPR, adr:8, @idm, #imm:8

Operation: <op1> ← <op2>

LD loads a value specified by <op2> into the register designated by <op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   exclusive OR of V and MSB of result.

Example: Given: R0 = 5Ah, R1 = AAh, IDH:IDL0 = 8023h, eid = 1

LD R0, R1 // R0 ← AAh

 LD R1, IDH // R1 ← 80h

 LD R2, 80h // R2 ← DM[8080h]

 LD R0, #11h // R0 ← 11h

LD R0, @ID0+1 // R0 ← DM[8023h], IDL0 ← 24h
LD R1, @[ID0-2] // R1 ← DM[8021h], IDL0 ← 21h
LD R2, @[ID0+3]! // R2 ← DM[8026h], IDL0 ← 23h
LD R3, @[ID0-5]! // R3 ← DM[801Eh], IDL0 ← 23h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



INSTRUCTION SET S3CB519/FB519

8-66

LD — Load GPR:bankd, GPR:banks

Format: LD <op1>, <op2>

<op1>: GPR: bankd
<op2>: GPR: banks

Operation: <op1> ← <op2>

LD loads a value of a register in a specified bank (banks) into another register in a specified bank
(bankd).

Flags: Z:   set if result is zero. Reset if not.
N:   exclusive OR of V and MSB of result.

Example:
 LD R2:1, R0:3 // Bank1’s R2 ← bank3’s R0

LD R0:0, R0:2 // Bank0’s R0 ← bank2’s R0



S3CB519/FB519 INSTRUCTION SET

8-67

LD — Load GPR, TBH/TBL

Format: LD <op1>, <op2>

<op1>: GPR
<op2>: TBH/TBL

Operation: <op1> ← <op2>

LD loads a value specified by <op2> into the register designated by <op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   exclusive OR of V and MSB of result.

Example: Given: register pair R1:R0 is 16-bit unsigned data.

 LDC @IL // TBH:TBL ← PM[ILX:ILH:ILL]
LD R1, TBH // R1 ← TBH
LD R0, TBL // R0 ← TBL



INSTRUCTION SET S3CB519/FB519

8-68

LD — Load TBH/TBL, GPR

Format: LD <op1>, <op2>

<op1>: TBH/TBL
<op2>: GPR

Operation: <op1> ← <op2>

LD loads a value specified by <op2> into the register designated by <op1>.

Flags: –

Example: Given: register pair R1:R0 is 16-bit unsigned data.

 LD TBH, R1 // TBH ← R1
LD TBL, R0 // TBL ← R0



S3CB519/FB519 INSTRUCTION SET

8-69

LD SPR — Load SPR

Format: LD <op1>, <op2>

<op1>: SPR
<op2>: GPR

Operation: <op1> ← <op2>

LD SPR loads the value of a GPR into an SPR.
 Refer to Table 3-1 for more detailed explanation about kind of SPR.

Flags: –

Example: Given: register pair R1:R0 = 1020h

 LD ILH, R1 // ILH ← 10h
LD ILL, R0 // ILL ← 20h



INSTRUCTION SET S3CB519/FB519

8-70

LD SPR0 — Load SPR0 Immediate

Format: LD SPR0, #imm:8

Operation: SPR0 ← imm:8

LD SPR0 loads an 8-bit immediate value into SPR0.

Flags: –

Example: Given: eid = 1, idb = 0 (index register bank 0 selection)

LD IDH, #80h // IDH point to page 80h
LD IDL1, #44h
LD IDL0, #55h
LD SR0, #02h

The last instruction set ie (global interrupt enable) bit to ‘1’.
 Special register group 1 (SPR1) registers are not supported in this addressing mode.



S3CB519/FB519 INSTRUCTION SET

8-71

LDC — Load Code

Format: LDC <op1>

<op1>: @IL, @IL+

Operation: TBH:TBL ← PM[ILX:ILH:ILL]

ILL ← ILL + 1 (@IL+ only)

LDC loads a data item from program memory and stores it in the TBH:TBL register pair.

@IL+ increase the value of ILL, efficiently implementing table lookup operations.

Flags: –

Example:
 LD ILX, R1

LD ILH, R2
LD ILL, R3
LDC @IL // Loads value of PM[ILX:ILH:ILL] into TBH:TBL

LD R1, TBH // Move data in TBH:TBL to GPRs for further processing
LD R0, TBL

 The statement “LDC @IL” do not increase, but if you use statement “LDC @IL+”, ILL register is
 increased by one after instruction execution.



INSTRUCTION SET S3CB519/FB519

8-72

LJP — Conditional Jump

Format: LJP cc:4, imm:20

cc:4: 4-bit condition code

Operation: PC[15:0] ← imm[15:0] if condition is true and the program size is less than 64K word. If the
program is equal to or larger than 64K word, PC[19:0] ← imm[19:0] as long as the condition is
true. There are 16 different conditions that can be used, as described in table 8-6.

Flags: –

NOTE: LJP cc:4 imm:20 is a 2-word instruction whose immediate field directly specifies the target
address of the jump.

Example:
 LJP C, %1 // Assume current PC = 0812h

•

•

•
            %1 LD R0, R1 // Address at 10A5h

•

•

•

After the first instruction is executed, LJP directly jumps to address 10A5h if condition is true.



S3CB519/FB519 INSTRUCTION SET

8-73

LLNK — Linked Subroutine Call Conditional

Format: LLNK cc:4, imm:20

cc:4: 4-bit condition code

Operation: If condition is true, IL[19:0] ← {PC[19:12], PC[11:0] + 2}.

Further, when the program is equal to or larger than 64K word, PC[19:0] ← imm[19:0] as long as
the condition is true. If the program is smaller than 64K word, PC[15:0] ← imm[15:0].
There are 16 different conditions that can be used, as described in table 8-6.

Flags: –

NOTE: LLNK is used to conditionally to call a subroutine with the return address saved in the link register
(IL) without stack operation. This is a 2-word instruction.

Example:
 LLNK Z, %1 // Address at 005Ch, ILX:ILH:ILL ← 00:00:5Eh

NOP // Address at 005Eh
•

•

•
%1 LD R0, R1

•

•

•
LRET



INSTRUCTION SET S3CB519/FB519

8-74

LNK — Linked Subroutine Call (Pseudo Instruction)

Format: LNK cc:4, imm:20
LNK imm:12

Operation: If LNKS can access the target address and there is no conditional code (cc:4), LNK command is 
assembled to LNKS (1 word instruction) in linking time, else the LNK is assembled to LLNK (2 
word instruction).

Example:
 LNK Z, Link1 // Equal to “LLNK Z, Link1”

LNK Link2 // Equal to “LNKS Link2”
NOP
•

•

•
Link2: NOP

•

•

•
 LRET

Subroutines section CODE, ABS 0A00h
Subroutines

Link1: NOP
•

•

•
LRET



S3CB519/FB519 INSTRUCTION SET

8-75

LNKS — Linked Subroutine Call

Format: LNKS imm:12

Operation: IL[19:0] ← {PC[19:12], PC[11:0] + 1} and PC[11:0] ← imm:12
LNKS saves the current PC in the link register and jumps to the address specified by imm:12.

Flags: –

NOTE: LNKS is used to call a subroutine with the return address saved in the link register (IL) without
stack operation.

Example:
 LNKS Link1 // Address at 005Ch, ILX:ILH:ILL ← 00:00:5Dh

NOP // Address at 005Dh
•

•

•

Link1: NOP
•

•

•
LRET



INSTRUCTION SET S3CB519/FB519

8-76

LRET — Return from Linked Subroutine Call

Format: LRET

Operation: PC ← IL[19:0]
LRET returns from a subroutine by assigning the saved return address in IL to PC.

Flags: –

Example:
LNK Link1

Link1: NOP
•

•

•
LRET ; PC[19:0] ← ILX:ILH:ILL



S3CB519/FB519 INSTRUCTION SET

8-77

NOP — No Operation

Format: NOP

Operation: No operation.

 When the instruction NOP is executed in a program, no operation occurs. Instead, the instruction
 time is delayed by approximately one machine cycle per each NOP instruction encountered.

Flags: –

Example:
NOP



INSTRUCTION SET S3CB519/FB519

8-78

OR — Bit-wise OR

Format: OR <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> | <op2>
OR performs the bit-wise OR operation on <op1> and <op2> and stores the result in <op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   exclusive OR of V and MSB of result.

Example: Given: IDH:IDL0 = 031Eh, eid = 1

 OR R0, 80h // R0 ← R0 | DM[0380h]

OR R1, #40h // Mask bit6 of R1

 OR R1, R0 // R1 ← R1 | R0

 OR R0, @ID0 // R0 ← R0 | DM[031Eh], IDL0 ← 1Eh
 OR R1, @[ID0-1] // R1 ← R1 | DM[031Dh], IDL0 ← 1Dh
 OR R2, @[ID0+1]! // R2 ← R2 | DM[031Fh], IDL0 ← 1Eh
 OR R3, @[ID0-1]! // R3 ← R3 | DM[031Dh], IDL0 ← 1Eh

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more
detailed explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



S3CB519/FB519 INSTRUCTION SET

8-79

OR SR0 — Bit-wise OR with SR0

Format: OR SR0, #imm:8

Operation: SR0 ← SR0 | imm:8

OR SR0 performs the bit-wise OR operation on SR0 and imm:8 and stores the result in SR0.

Flags: –

Example: Given: SR0 = 00000000b

 EID EQU          01h
IE EQU          02h
IDB1 EQU          04h
IE0 EQU          40h
IE1 EQU          80h

OR            SR0, #IE | IE0 | IE1

OR            SR0, #00000010b

In the first example, the statement “OR SR0, #EID|IE|IE0” set global interrupt(ie), interrupt 0(ie0)
and interrupt 1(ie1) to ‘1’ in SR0. On the contrary, enabled bits can be cleared with instruction
“AND SR0, #imm:8”. Refer to instruction AND SR0 for more detailed explanation about disabling
bit.

In the second example, the statement “OR SR0, #00000010b” is equal to instruction EI, which is
enabling interrupt globally.



INSTRUCTION SET S3CB519/FB519

8-80

POP — POP

Format: POP

Operation: sptr ← sptr – 2

POP decrease sptr by 2. The top two bytes of the hardware stack are therefore invalidated.

Flags: –

Example: Given: sptr[5:0] = 001010b

POP

This POP instruction decrease sptr[5:0] by 2. Therefore sptr[5:0] is 001000b.



S3CB519/FB519 INSTRUCTION SET

8-81

POP — POP to Register

Format: POP <op>

<op>: GPR, SPR

Operation: <op> ← HS[sptr - 1], sptr ← sptr - 1

POP copies the value on top of the stack to <op> and decrease sptr by 1.

Flags: Z:   set if the value copied to <op> is zero. Reset if not.
N:   set if the value copied to <op> is negative. Reset if not.

           When <op> is SPR, no flags are affected, including Z and N.

Example:
POP R0 // R0 ← HS[sptr-1], sptr  ← sptr-1

POP IDH // IDH ← HS[sptr-1], sptr  ← sptr-1

In the first instruction, value of HS[sptr-1] is loaded to R0 and the second instruction “POP IDH”
load value of HS[sptr-1] to register IDH. Refer to chapter 5 for more detailed explanation about
POP operations for hardware stack.



INSTRUCTION SET S3CB519/FB519

8-82

PUSH — Push Register

Format: PUSH <op>

<op>: GPR, SPR

Operation: HS[sptr] ← <op>, sptr ← sptr + 1

PUSH stores the value of <op> on top of the stack and increase sptr by 1.

Flags: –

Example:
 PUSH R0 // HS[sptr] ← R0, sptr ← sptr + 1

PUSH IDH // HS[sptr] ← IDH, sptr ← sptr + 1

In the first instruction, value of register R0 is loaded to HS[sptr-1] and the second instruction
“PUSH IDH” load value of register IDH to HS[sptr-1]. Current HS pointed by stack point sptr[5:0]
be emptied. Refer to chapter 5 for more detailed explanation about PUSH operations for
hardware stack.



S3CB519/FB519 INSTRUCTION SET

8-83

RET — Return from Subroutine

Format: RET

Operation: PC ← HS[sptr - 2], sptr ← sptr – 2

RET pops an address on the hardware stack into PC so that control returns to the subroutine call
site.

Flags: –

Example: Given: sptr[5:0] = 001010b

 CALLS Wait // Address at 00120h
 •

•

•
 Wait: NOP // Address at 01000h

NOP
 NOP
 NOP

NOP
RET

After the first instruction CALLS execution, “PC+1”, 0121h is loaded to HS[5] and hardware stack
pointer sptr[5:0] have 001100b and next PC became 01000h. The instruction RET pops value
0121h on the hardware stack HS[sptr-2] and load to PC then stack pointer sptr[[5:0] became
001010b.



INSTRUCTION SET S3CB519/FB519

8-84

RL — Rotate Left

Format: RL <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], <op>[7]}

RL rotates the value of <op> to the left and stores the result back into <op>.
The original MSB of <op> is copied into carry (C).

Flags: C:   set if the MSB of <op> (before rotating) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R0 = 01001010b, R1 = 10100101b

RL R0 // N flag is set to ‘1’, R0 ← 10010100b

RL R1 // C flag is set to ‘1’, R1 ← 01001011b



S3CB519/FB519 INSTRUCTION SET

8-85

RLC — Rotate Left with Carry

Format: RLC <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], C}

RLC rotates the value of <op> to the left and stores the result back into <op>.
The original MSB of <op> is copied into carry (C), and the original C bit is copied into <op>[0].

Flags: C:   set if the MSB of <op> (before rotating) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R2 = A5h, if C = 0

RLC R2 // R2 ← 4Ah, C flag is set to ‘1’

RL R0
RLC R1

In the second example, assuming that register pair R1:R0 is 16-bit number, then RL and RLC are
used for 16-bit rotate left operation. But note that zero (Z) flag do not exactly reflect result of 16-
bit operation. Therefore when programming 16-bit decrement, take care of the change of Z flag.



INSTRUCTION SET S3CB519/FB519

8-86

RR — Rotate Right

Format: RR <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {<op>[0], <op>[7:1]}

RR rotates the value of <op> to the right and stores the result back into <op>. The original LSB
of <op> is copied into carry (C).

Flags: C:   set if the LSB of <op> (before rotating) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R0 = 01011010b, R1 = 10100101b

RR R0 // No change of flag, R0 ← 00101101b

RR R1 // C and N flags are set to ‘1’, R1 ← 11010010b



S3CB519/FB519 INSTRUCTION SET

8-87

RRC — Rotate Right with Carry

Format: RRC <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {C, <op>[7:1]}

RRC rotates the value of <op> to the right and stores the result back into <op>. The original LSB
of <op> is copied into carry (C), and C is copied to the MSB.

Flags: C:   set if the LSB of <op> (before rotating) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after rotating) is 1. Reset if not.

Example: Given: R2 = A5h, if C = 0

RRC R2 // R2 ← 52h, C flag is set to ‘1’

RR R0
RRC R1

In the second example, assuming that register pair R1:R0 is 16-bit number, then RR and RRC
are used for 16-bit rotate right operation. But note that zero (Z) flag do not exactly reflect result of
16-bit operation. Therefore when programming 16-bit decrement, take care of the change of Z
flag.



INSTRUCTION SET S3CB519/FB519

8-88

SBC — Subtract with Carry

Format: SBC <op1>, <op2>

<op1>: GPR
<op2>: adr:8, GPR

Operation: <op1> ← <op1> + ~<op2> + C

SBC computes (<op1> - <op2>) when there is carry and (<op1> - <op2> - 1) when there is no
carry.

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated.
N:   set if result is negative. Reset if not.

Example:
 SBC R0, 80h // If eid = 0, R0 ← R0 + ~DM[0080h] + C

// If eid = 1, R0 ← R0 + ~DM[IDH:80h] + C

SBC R0, R1 // R0 ← R0 + ~R1 + C

SUB R0, R2
SBC R1, R3

In the last two instructions, assuming that register pair R1:R0 and R3:R2 are 16-bit signed or
unsigned numbers. Even if the result of “ADD R0, R2” is not zero, zero (Z) flag can be set to ‘1’ if
the result of “SBC R1,R3” is zero. Note that zero (Z) flag do not exactly reflect result of 16-bit
operation. Therefore when programming 16-bit addition, take care of the change of Z flag.



S3CB519/FB519 INSTRUCTION SET

8-89

SL — Shift Left

Format: SL <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], 0}

SL shifts <op> to the left by 1 bit. The MSB of the original <op> is copied into carry (C).

Flags: C:   set if the MSB of <op> (before shifting) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after shifting) is 1. Reset if not.

Example: Given: R0 = 01001010b, R1 = 10100101b

SL R0 // N flag is set to ‘1’, R0 ← 10010100b

SL R1 // C flag is set to ‘1’, R1 ← 01001010b



INSTRUCTION SET S3CB519/FB519

8-90

SLA — Shift Left Arithmetic

Format: SLA <op>

<op>: GPR

Operation: C ← <op>[7], <op> ← {<op>[6:0], 0}

SLA shifts <op> to the left by 1 bit. The MSB of the original <op> is copied into carry (C).

Flags: C:   set if the MSB of <op> (before shifting) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if the MSB of the result is different from C. Reset if not.
N:   set if the MSB of <op> (after shifting) is 1. Reset if not.

Example: Given: R0 = AAh

SLA R0 // C, V, N flags are set to ‘1’, R0 ← 54h



S3CB519/FB519 INSTRUCTION SET

8-91

SR — Shift Right

Format: SR <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {0, <op>[7:1]}

SR shifts <op> to the right by 1 bit. The LSB of the original <op> (i.e., <op>[0]) is copied into
carry (C).

Flags: C:   set if the LSB of <op> (before shifting) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after shifting) is 1. Reset if not.

Example: Given: R0 = 01011010b, R1 = 10100101b

SR R0 // No change of flags, R0 ← 00101101b

SR R1 // C flag is set to ‘1’, R1 ← 01010010b



INSTRUCTION SET S3CB519/FB519

8-92

SRA — Shift Right Arithmetic

Format: SRA <op>

<op>: GPR

Operation: C ← <op>[0], <op> ← {<op>[7], <op>[7:1]}

SRA shifts <op> to the right by 1 bit while keeping the sign of <op>. The LSB of the original <op>
(i.e., <op>[0]) is copied into carry (C).

Flags: C:   set if the LSB of <op> (before shifting) is 1. Reset if not.
Z:   set if result is zero. Reset if not.
N:   set if the MSB of <op> (after shifting) is 1. Reset if not.

NOTE: SRA keeps the sign bit or the MSB (<op>[7]) in its original position. If SRA is executed ‘N’ times, N
significant bits will be set, followed by the shifted bits.

Example: Given: R0 = 10100101b

SRA R0 // C, N flags are set to ‘1’, R0 ← 11010010b
SRA R0 // N flag is set to ‘1’, R0 ← 11101001b
SRA R0 // C, N flags are set to ‘1’, R0 ← 11110100b
SRA R0 // N flags are set to ‘1’, R0 ← 11111010b



S3CB519/FB519 INSTRUCTION SET

8-93

STOP — Stop Operation (pseudo instruction)

Format: STOP

Operation: The STOP instruction stops the both the CPU clock and system clock and causes the
microcontroller to enter the STOP mode. In the STOP mode, the contents of the on-chip CPU
registers, peripheral registers, and I/O port control and data register are retained. A reset
operation or external or internal interrupts can release stop mode. The STOP instruction is a
pseudo instruction. It is assembled as “SYS #0Ah”, which generates the SYSCP[7-0] signals.
These signals are decoded and stop the operation.

NOTE: The next instruction of STOP instruction is executed, so please use the NOP instruction after the
STOP instruction.

Example:
STOP
NOP
NOP
NOP
•

•

•

In this example, the NOP instructions provide the necessary timing delay for oscillation
stabilization before the next instruction in the program sequence is executed. Refer to the timing
diagrams of oscillation stabilization, as described in Figure 18-3, 18-4



INSTRUCTION SET S3CB519/FB519

8-94

SUB — Subtract

Format: SUB <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> + ~<op2> + 1

SUB adds the value of <op1> with the 2's complement of <op2> to perform subtraction on
<op1> and <op2>

Flags: C:   set if carry is generated. Reset if not.
Z:   set if result is zero. Reset if not.
V:   set if overflow is generated. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: IDH:IDL0 = 0150h, DM[0143h] = 26h, R0 = 52h, R1 = 14h, eid = 1

SUB R0, 43h // R0 ← R0 + ~DM[0143h] + 1 = 2Ch

SUB R1, #16h // R1 ← FEh, N flag is set to ‘1’

SUB R0, R1 // R0 ← R0 + ~R1 + 1 = 3Eh

SUB R0, @ID0+1 // R0 ← R0 + ~DM[0150h] + 1, IDL0 ← 51h
SUB R0, @[ID0-2] // R0 ← R0 + ~DM[014Eh] + 1, IDL0 ← 4Eh
SUB R0, @[ID0+3]! // R0 ← R0 + ~DM[0153h] + 1, IDL0 ← 50h
SUB R0, @[ID0-2]! // R0 ← R0 + ~DM[014Eh] + 1, IDL0 ← 50h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more detailed
explanation about this addressing mode.  The example in the SBC description shows how SUB and
SBC can be used in pair to subtract a 16-bit number from another.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



S3CB519/FB519 INSTRUCTION SET

8-95

SWAP — Swap

Format: SWAP <op1>, <op2>

<op1>: GPR
<op2>: SPR

Operation: <op1> ← <op2>, <op2> ← <op1>

SWAP swaps the values of the two operands.

Flags: –

NOTE: Among the SPRs, SR0 and SR1 can not be used as <op2>.

Example: Given: IDH:IDL0 = 8023h, R0 = 56h, R1 = 01h

SWAP R1, IDH // R1 ← 80h, IDH ← 01h
SWAP R0, IDL0 // R0 ← 23h, IDL0 ← 56h

After execution of instructions, index registers IDH:IDL0 (ID0) have address 0156h.



INSTRUCTION SET S3CB519/FB519

8-96

SYS — System

Format: SYS #imm:8

Operation: SYS generates SYSCP[7:0] and nSYSID signals.

Flags: –

NOTE: Mainly used for system peripheral interfacing.

Example:
SYS #0Ah

SYS #05h

In the first example, statement “SYS #0Ah” is equal to STOP instruction and second example
“SYS #05h” is equal to IDLE instruction. This instruction does nothing but increase PC by one
and generates SYSCP[7:0] and nSYSID signals.



S3CB519/FB519 INSTRUCTION SET

8-97

TM — Test Multiple Bits

Format: TM <op>, #imm:8

<op>: GPR

Operation: TM performs the bit-wise AND operation on <op> and imm:8 and sets the flags. The content of
<op> is not changed.

Flags: Z:   set if result is zero. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: R0 = 01001101b

TM R0, #00100010b // Z flag is set to ‘1’



INSTRUCTION SET S3CB519/FB519

8-98

XOR — Exclusive OR

Format: XOR <op1>, <op2>

<op1>: GPR
<op2>: adr:8, #imm:8, GPR, @idm

Operation: <op1> ← <op1> ^ <op2>

XOR performs the bit-wise exclusive-OR operation on <op1> and <op2> and stores the result in
<op1>.

Flags: Z:   set if result is zero. Reset if not.
N:   set if result is negative. Reset if not.

Example: Given: IDH:IDL0 = 8080h, DM[8043h] = 26h, R0 = 52h, R1 = 14h, eid = 1

XOR R0, 43h // R0 ← 74h

XOR R1, #00101100b // R1 ← 38h

XOR R0, R1 // R0 ← 46h

XOR R0, @ID0 // R0 ← R0 ^ DM[8080h], IDL0 ← 81h
XOR R0, @[ID0-2] // R0 ← R0 ^ DM[807Eh], IDL0 ← 7Eh
XOR R0, @[ID0+3]! // R0 ← R0 ^ DM[8083h], IDL0 ← 80h
XOR R0, @[ID0-5]! // R0 ← R0 ^ DM[807Bh], IDL0 ← 80h

In the last two instructions, the value of IDH:IDL0 is not changed. Refer to Table 8-5 for more detailed
explanation about this addressing mode.
idm = IDx+offset:5, [IDx-offset:5], [IDx+offset:5]!, [IDx-offset:5]! (IDx = ID0 or ID1)



S3CB519/FB519 INSTRUCTION SET

8-99

NOTES



S3CB519/FB519 CLOCK CIRCUIT

9-1

9 CLOCK CIRCUIT

OVERVIEW

The S3CB519/FB519 microcontroller has two oscillator circuits: a main system clock circuit and a subsystem
clock circuit. The CPU and peripheral hardware operate at the system clock frequency supplied by these circuits.
The maximum CPU clock frequency is determined by PCON register setting.

SYSTEM CLOCK CIRCUIT

The system clock circuit has the following components:

— External crystal or ceramic resonator oscillation source (or an external clock source)

— Oscillator stop and wake-up functions

— Programmable frequency divider for the CPU clock (fOSC divided by 1, 2, 4, 8, 16, 32, 64, 128)

— System clock control register, PCON



CLOCK CIRCUIT S3CB519/FB519

9-2

Peripheral

INT
Stop Release

1/1 - 1/4096

Frequency
Dividing
Circuit

1/1 1/16 1/32 1/64 1/1281/2 1/4 1/8

Stop Release
INT

Main-System
Oscillator

Circuit

Selector 1

fx fxt

Dividing
Ability

OSCCON.4

Sub-System
Oscillator

Circuit

Stop

OSCCON.2
Stop

fxx

Selector 2

Oscillator
Control
Circuit

CPU Stop Signal
by Idle or Stop

CPU

PCON.2 - .0

OSCCON.3

OSCCON.0

Watch Timer

SYS #05H      Idle
SYS #0AH      Stop

Figure 9-1. System Clock Circuit Diagram



S3CB519/FB519 CLOCK CIRCUIT

9-3

Power Control Register (PCON)
02H, R/W, Reset: 04H

MSB LSB

Not used System clock selection bits:
000 = fxx/128
001 = fxx/64
010 = fxx/32
011 = fxx/16
100 = fxx/8
101 = fxx/4
110 = fxx/2
111 = fxx/1

.7 .6 .5 .4 .3 .2 .1 .0

Figure 9-2. Power Control Register (PCON)

Oscillator Control Register (OSCCON)
03H, R/W, Reset: 00H

MSB LSB

Not used

Mainsystem oscillator control bits:
0 = Mainsystem oscillator RUN
1 = Mainsystem oscillator STOP

Not used

System clock source selection bits:
0 = Mainsystem oscillator select
1 = Subsystem oscillator select

.7 .6 .5 .4 .3 .2 .1 .0

Subsystem oscillator control bits:
0 = Subsystem oscillator RUN
1 = Subsystem oscillator STOP

Subsystem oscillator driving ability selection bits:
0 = Strong drive
1 = Normal drive

NOTE: The oscillator selected by the OSCCON.0 can be stopped only by the "stop"
instruction. It cannot be stopped by the OSCCON settings.

Figure 9-3. Oscillator Control Register (OSCCON)  



CLOCK CIRCUIT S3CB519/FB519

9-4

NOTES



S3CB519/FB519 RESET AND POWER-DOWN

10-1

10 RESET AND POWER-DOWN

OVERVIEW

During a power-on reset, the voltage at VDD goes to High level and the RESET pin is forced to Low level.

The reset signal is input through a schmitt trigger circuit where it is then synchronized with the CPU clock.
This procedure brings S3CB519/FB519 into a known operating status.

For the time for CPU clock oscillation to stabilize, the RESET pin must be held to low level for a minimum time
interval after the power supply comes within tolerance. (For the minimum time interval, see the electrical
characteristic).

In summary, the following sequence of events occurs during a reset operation:

— All interrupts are disabled.

— The watchdog function (basic timer) is enabled.

— Ports are set to input mode except port 5 which is set to output mode.

— Peripheral control and data registers are disabled and reset to their default hardware values.

— The program counter (PC) is loaded with the program reset address in the ROM, 00000H.

— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM
location 00000H is fetched and executed.

NOTE

To program the duration of the oscillation stabilization interval, make the appropriate settings to the
watchdog timer control register, WDTCON, before entering STOP mode.



RESET AND POWER-DOWN S3CB519/FB519

10-2

NOTES



S3CB519/FB519 I/O PORTS

11-1

11 I/O PORTS

OVERVIEW

The S3CB519/FB519 has five I/O ports (P0–P4) for general I/O and one output port (P5) dedicated for the key-
strobe with LCD segment data.

PORT 0

Two 8-bit control registers are used to configure the port 0 pins: P0CONH for pins P0.4–P0.6 and P0CONL for
pins P0.0–P0.3. Each byte contains four bit-pairs and each bit-pair configures one pin. The P0CONH and the
P0CONL registers also control the alternative functions.

For example, when bits 4 and 5 of P0CONL are “00”, P0.2 is selected for the input mode.
In this mode, you can set P0.2 as a normal input or an interrupt 2 or a timer 0 clock input by controlling P0INT
and T0CON.

P0INT and P0EDGE registers control the interrupt functions for INT0–INT6.

Port 0 Control Register, Low Byte (P0CONL)
21H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Input mode
(INT0 for P0.0, INT1/T0CAP for P0.1, INT2/T0CK for P0.2, INT3/TACK for P0.3)
Input mode, pull-up
(INT0 for P0.0, INT1/T0CAP for P0.1, INT2/T0CK for P0.2, INT3/TACK for P0.3)
Alternative mode
(TB for P0.0, T0/T0PWM for P0.1, BUZ for P0.2, BLD for P0.3)
Output mode, push-pull

P0CONL bit-pair pin configuration settings:

0  0

0  1

1  0

1  1

P0.1/INT1/T0/
T0CAP/
T0PWM

P0.0/INT0/TBP0.2/INT2/
T0CK/BUZ

P0.3/INT3/
TACK/BLD

Figure 11-1. Port 0 Low-byte Control Register (P0CONL)



I/O PORTS S3CB519/FB519

11-2

Port 0 Control Register, High Byte (P0CONH)
20H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Input mode
(INT4/SCK input for P0.4, INT5 for P0.5, INT6/SI for P0.6)
Input mode, pull-up
(INT4/SCK input for P0.4, INT5 for P0.5, INT6/SI for P0.6)
Alternative mode
(SCK output for P0.4, SO for P0.5, High-impedance for P0.6)
Output mode, push-pull

P0CONH bit-pair pin configuration settings:

0  0

0  1

1  0

1  1

P0.4/INT4/SCKP0.5/INT5/SOP0.6/INT6/SINot used

Figure 11-2. Port 0 High-byte Control Register (P0CONH)

Port 0 Interrupt Control Register (P0INT)
22H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P0.0/INT0

P0.1/INT1

P0.2/INT2

P0.3/INT3

P0.4/INT4

P0.5/INT5

P0.6/INT6

Not used

Disable interrupt
Enable interrupt

P0INT bit settings:

0
1

Figure 11-3. Port 0 Interrupt Control Register (P0INT)



S3CB519/FB519 I/O PORTS

11-3

Port 0 Interrupt Edge Control Register (P0EDGE)
23H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P0.0/INT0

P0.1/INT1

P0.2/INT2

P0.3/INT3

P0.4/INT4

P0.5/INT5

P0.6/INT6

Not used

Falling edge detection
Rising edge detection

P0EDGE bit settings:

0
1

Figure 11-4. Port 0 Interrupt Edge Control Register (P0EDGE)



I/O PORTS S3CB519/FB519

11-4

PORT 1

P1CON contains four bit-pairs and bit-pair configures one pin. P1INT controls the interrupt function for KS0–KS3.
When  the alternative mode is selected, KS0–KS3 can be used as key scan inputs with P5 (shared with LCD
SEG) strobe.

Port 1 Control Register (P1CON)
24H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P1.1/KS1 P1.0/KS0P1.2/KS2P1.3/KS3

Input mode (KSx interrupt)
Input mode, pull-up (KSx interrupt)
Alternative mode
-  When key strobe is off (P5CON.7 = 'Low'), High-impedance
-  Else other state: Key scan mode (KSx interrupt)
Output mode, push-pull

P1CON bit-pair pin configuration settings:

0  0
0  1
1  0

1  1

Figure 11-5. Port 1 Control Register (P1CON)

Port 1 Interrupt Control Register (P1INT)
25H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P1.1/KS1 P1.0/KS0P1.2/KS2P1.3/KS3

Interrupt disable
Interrupt enable, falling edge detection
Interrupt enable, rising edge detection

P1INT bit-pair pin configuration settings:

0  x
1  0
1  1

NOTE: When key scan mode, P1INT setting has no meaning

Figure 11-6. Port 1 Interrupt Control Register (P1INT)



S3CB519/FB519 I/O PORTS

11-5

PORT 2

P2CON and P3CON contain two nibbles each and each nibble configures four pins.
Port 2 is shared by SEG48–SEG55, and Port 3 is shared by SEG40–SEG47.

Port 2 Control Register (P2CON)
28H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P2CON pin configuration settings: (bit7, 6, 5, 4 or bit3, 2, 1, 0)

x000
x001
x010
x011
x1xx

High nibble port configuration
(P2.4/SEG51-P2.7/SEG48)

Lower nibble port configuration
(P2.0/SEG55-P2.3/SEG52)

Input mode
Input mode, pull-up
Output mode, push-pull
Output mode, open-drain
LCD Segment (SEG55-SEG52 for P2.0-P2.3 or SEG51-SEG48 for P2.4-P2.7)

Figure 11-7. Port 2 Control Register (P2CON)

PORT 3

Port 3 Control Register (P3CON)
2CH, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P3CON pin configuration settings: (bit7, 6, 5, 4 or bit3, 2, 1, 0)

x000
x001
x010
x011
x1xx

High nibble port configuration
(P3.4/SEG43-P3.7/SEG40)

Lower nibble port configuration
(P3.0/SEG47-P3.3/SEG44)

Input mode
Input mode, pull-up
Output mode, push-pull
Output mode, open-drain
LCD Segment (SEG47-SEG44 for P3.0-P3.3 or SEG43-SEG40 for P3.4-P3.7)

Figure 11-8. Port 3 Control Register (P3CON)



I/O PORTS S3CB519/FB519

11-6

PORT 4

P4CON contains two nibbles and each nibble configures four pins.
Port 4 is shared by COM8–COM15, and I/O and COM switching are up to LMOD register.

Port 4 Control Register (P4CON)
30H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

P4CON pin configuration settings: (bit7, 6, 5, 4 or bit3, 2, 1, 0)

xx00
xx01
xx10
xx11

High nibble port configuration
(P4.4/COM12-P4.7/COM15)

Lower nibble port configuration
(P4.0/COM8-P4.3/COM11)

Input mode
Input mode, pull-up
Output mode, push-pull
Output mode, open-drain

NOTE: P4.0-P4.7 can be converted to COM8-COM15 according to LMOD setting.
If only COM0-COM11 are selected as COM, COM12-COM15 are normal ports.
If only COM0-COM7 are selected as COM, COM8-COM15 are normal ports.

Figure 11-9. Port 4 Control Register (P4CON)



S3CB519/FB519 I/O PORTS

11-7

PORT 5

Port 5 , which has 15 pins, can be controlled by P5CON but cannot be used as normal I/O.
Port 5 is shared by SEG pins and makes  the key-strobe. (for details, see LCD chapter).
When port 1 is selected as  the alternative mode (key scan input) and  the key strobe function of port 5 is
enabled, port 5 data register has the key-strobe value of the time when the key scan interrupt occurs.

For example, when P5.3 outputs strobe and any of port 1 are “Low”-state, forcing the key scan interrupt, port 5
data register has the value "3". For P5.9, port 5 data register has "9".

Port 5 Control Register (P5CON)
34H, R/W

.7 .6 .5 .4 .3 .2 .1 .0MSB LSB

Not used Key strobe selection bits:

P5.0-P5.15 as key strobe
P5.0-P5.11 as key strobe
P5.0-P5.7 as key strobe
P5.0-P5.3 as key strobe

0  0
0  1
1  0
1  1

Interval between strobes:

32/fw-1 msec
64/fw-2 msec
128/fw-4 msec
256/fw-8 msec

0  0
0  1
1  0
1  1

0
1

Strobe duration:

1.5/fw-45 usec
2/fw-64 usec

0
1

P5 output mode:

Push-pull output
Open-drain output

0
1

Key strobe enable bit:

Disable key strobe
Enable key strobe

NOTE: fw is watch timer input clock (fw = 32768 Hz)

Figure 11-10. Port 5 Control Register (P5CON)



I/O PORTS S3CB519/FB519

11-8

NOTES



S3CB519/FB519 BASIC TIMER/WATCHDOG TIMER

12-1

12 BASIC TIMER/WATCHDOG TIMER

OVERVIEW

WDTCON controls basic timer clock selection and watchdog timer clear bit.

Basic timer is used in two different ways:

• As a clock source to watchdog timer to provide an automatic reset mechanism in the event of a system
malfunction (When watchdog function is enabled in ROM code option)

• To signal the end of the required oscillation stabilization interval after a reset or stop mode release.

The reset value of basic timer clock selection bits is decided by the ROM code option. (see the section on ROM
code option for details). After reset, programmer can select the basic timer input clock using WDTCON.

Watchdog timer provides an automatic reset mechanism in the event of a system malfunction (When watchdog
function is enabled in ROM code option)
When watchdog function is enabled by the ROM code option, programmer must set WDTCON.0 periodically
within every 2048 × basic timer input clock time to prevent system reset.

LSBMSB

Watchdog Timer Control Register (WDTCON)
0DH, R/W

Not used

.7 .6 .5 .4 .3 .2 .1 .0

Watchdog timer clear bit:
0 = Not applicable
1 = clear watchdog timer counter

Not used

Basic timer counter clock selection bits:
000 = fxx/2
001 = fxx/4
010 = fxx/16
011 = fxx/32
100 = fxx/128
101 = fxx/256
110 = fxx/1024
111 = fxx/2048

Figure 12-1. Watchdog Timer Control Register (WDTCON)



BASIC TIMER/WATCHDOG TIMER S3CB519/FB519

12-2

BLOCK DIAGRAM

MUX

WDTCON .6 .5 .4

Data Bus

MUX

3-bit Watchdog
Timer Counter

clear

WDTCON .0 Reset STOP IDLE

NOTE: CPU start signal (32/fb)
(Power down release)

RCOD_OPT .14 .13 .12

BT OVFfb

1/2048

1/1024

1/256

1/128

1/32

1/16

1/4

1/2

8-bit Basic Counter
(Read Only)

Clear

Data Bus

BT INT

(note)

Reset or Stop

RCOD_OPT .11

OVF

RESET

Figure 12-2. Basic Timer & Watchdog Timer Functional Block Diagram



S3CB519/FB519  WATCH TIMER

13-1

13 WATCH TIMER

OVERVIEW

Watch timer functions include real-time and watch-time measurements.
After the watch timer starts and time elapses, the watch timer interrupt is automatically set to "1", and interrupt
requests commence in 3.91 ms, 0.25 s, 0.5 s or 1 second.
The watch timer can generate a steady 0.5 kHz, 1 kHz, 2 kHz or 4 kHz signal to the BUZ output when the main
system clock frequency is 4.195 MHz. The watch timer supplies the clock frequency for the LCD  controller (fLCD)

and BLD. Therefore, if the watch timer is disabled, the LCD and BLD controller do not operate.

— Real-time and Watch-time measurements

— Clock source generation for LCD controller

— Buzzer output frequency generator

Table 13-1. Watch Timer Control Register (WTCON): 8-Bit R/W

Bit Name Values Function Address

WTCON.7 – Not used 70H

WTCON.6 – Not used

WTCON .5–.4 0 0 0.5 kHz buzzer (BUZ) signal output

0 1 1 kHz buzzer (BUZ) signal output

1 0 2 kHz buzzer (BUZ) signal output

1 1 4 kHz buzzer (BUZ) signal output

WTCON .3–.2 0 0 Set watch timer interrupt to 1 S.

0 1 Set  watch timer interrupt to 0.5 S.

1 0 Set  watch timer interrupt to 0.25 S.

1 1 Set  watch timer interrupt to 3.91 mS.

WTCON.1 0 Selects (fx/128 or fx/64 ) as the watch timer clock

1 Selects the subsystem clock as watch timer clock

WTCON.0 0 Stops the watch timer counter; clears the frequency dividing
circuits

1 Runs the watch timer counter

NOTE: Main system clock frequency (fx) is assumed to be 4.195 MHz.



WATCH TIMER S3CB519/FB519

13-2

WATCH TIMER CIRCUIT DIAGRAM

Frequency
Dividing
Circuit

Clock
Selector

WTCON .1 WTCON .2 .3

Enable/Disable

fw
32768 Hz

fxt fw/27

fw/213

fw/214

fw/215 (1 HZ)

fw/23 (4 kHz)

fw/24 (2 kHz)

fw/25 (1 kHz)

fw/26 (0.5 kHz)

fx = Main system clock (4.195 MHz)
fxt = Subsystem clock (32768 Hz)
fw = Watch timer clock

MUX

Selector
Circuit

WTCON .4 .5

Buzzer Output

WTINT

fx/128

fx/64

LMOD.0 WTCON .0

fw/23 fLCD

Figure 13-1. Watch Timer Circuit Diagram



S3CB519/FB519 16-BIT TIMER (8-BIT TIMER A & B)

14-1

14 16-BIT TIMER (8-BIT TIMER A & B)

OVERVIEW

The 16-bit timer is used in one 16-bit timer or two 8-bit timers. When Bit 2 of TBCON is "1" , it operates as one
16-bit timer. When it is “0”, it operates as two 8-bit timers. When it operates as one 16-bit timer, the TBCNT’s
clock source can be selected by setting TBCON.3. If TBCON.3 is “0”, the timer A’s overflow would be TBCNT’s
clock source. If it is “1”, the timer A’s interval out would be TBCNT’s clock source. The timer clock source can
be selected by the S/W.

LSBMSB

Timer A Control Register (TACON)
40H, R/W, Reset: 00H

Timer A counter clear bit:
0 = No effect
1 = Clear the timer A (when write)

Timer A input clock selection bits:
000 = fxx/1024
001 = fxx/256
010 = fxx/64
011 = fxx/8
1x0 = fxx/1
1x1 = TACLK

Not used Not used Timer A operation enable bit:
0 = Stop
1 = Run

.7 .6 .5 .4 .3 .2 .1 .0

NOTE:    8-Bit Timer A is only available when TBCON.2 is setted "0" for 8-Bit operation mode.

Figure 14-1. Timer A Control Register (TACON)

INTERVAL TIMER FUNCTION

The timer A&B module can generate an interrupt: the Timer A and/or Timer B match interrupt (TAINT, TBINT). In
interval timer mode, a match signal is generated when the counter value is identical to the value written to the
reference data register, TADATA/TBDATA. The match signal generates Timer A and/or Timer B match interrupt
and clears the counter.

TB pin can be toggled whenever the timer B match interrupt occurs if I/O port setting is appropriate.



16-BIT TIMER (8-BIT TIMER A & B) S3CB519/FB519

14-2

LSBMSB

Timer B Control Register (TBCON)
44H, R/W, Reset: 00H

Timer B counter clear bit:
0 = No effect
1 = Clear the timer B (when write)

Timer B input clock selection bits:
000 = fxx/1024
001 = fxx/256
010 = fxx/64
011 = fxx/8
1x0 = fxx/4
1x1 = TBCLK (Not used in this
          device-no input clock)

Not used Timer B operation enable bit:
0 = Stop
1 = Run

.7 .6 .5 .4 .3 .2 .1 .0

NOTE:   At 16-bit operation mode 16-bit counter clock input is selected by TACON .6, .5, .4

Timer B mode selection bit:
0 = 8-bit operation mode
1 = 16-bit operation mode

When 16 bit operation Timer B input clock selection bit:
0 = Timer A overflow out
1 = Timer A interval out

Figure 14-2. Timer B Control Register (TBCON)



S3CB519/FB519 16-BIT TIMER (8-BIT TIMER A & B)

14-3

M
U
X

1

fxx/1024

fxx/256

fxx/64

fxx/8

fxx/1

TACLK

TBCON.2 Timer A Data Register
(Read/Write)

MUX

0

TBCON.0

TACON.0

TACON.6,.5,.4
Timer A Buffer Register

8-Bit Comparator

Data Bus

TACNT (8-Bit
Up-Counter, Read Only)

TACON.1 TBCON.1

MUX TBCON.2

TBCON.3

MUX

10

TBCON.6,.5,.4

8-Bit Comparator

TBCON.3

TBCNT (8-Bit
Up-Counter, Read Olny)

Timer B Buffer Register

Timer B Data Register
(Read/Write)

Data Bus

1

TBOUT

TBINT

TBCON.0TBCON.2

0

MUXM
U
X

fxx/1024

fxx/256

fxx/64

fxx/8

fxx/4

TBCLK

MUX1

0

MUX0

1

8

8

TAINT

TBCON.2

Interval
Output Gen.

Clear

Clear

TBCON.1 TBCON.3TBCON.2

Figure 14-3. Timer A, B Function Block Diagram



16-BIT TIMER (8-BIT TIMER A & B) S3CB519/FB519

14-4

NOTES



S3CB519/FB519 8-BIT TIMER (TIMER 0)

15-1

15 8-BIT TIMER (TIMER 0)

OVERVIEW

The 8-bit timer 0  is an 8-bit general-purpose timer/counter. Timer 0 has three operating modes, one of which you
select using the appropriate T0CON setting:

— Interval timer mode (Toggle output at T0 pin)

— Capture input mode with a rising or falling edge trigger at the T0CAP pin

— PWM mode (T0PWM)



8-BIT TIMER (TIMER 0) S3CB519/FB519

15-2

FUNCTION DESCRIPTION

Timer 0 Interrupts

The Timer 0 module can generate two interrupts: the Timer 0 overflow interrupt (T0OVF), and the Timer 0
match/ capture interrupt (T0INT).

Interval Timer Function

The Timer 0 module can generate an interrupt: the Timer 0 match interrupt (T0INT).
In interval timer mode, a match signal is generated(,) and T0 is toggled when the counter value is identical to the
value written to the T0 reference data register, T0DATA. The match signal generates a Timer 0 match interrupt
and clears the counter.
If, for example, you write the value 10H to T0DATA and 0AH  to T0CON, the counter will increment until it
reaches 10H. At this point, the T0 interrupt request is generated and the counter value is reset and counting
resumes.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the
T0PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the
value written to the Timer 0 data register. In PWM mode, however, the match signal does not clear the counter
but can generate a match interrupt. The counter runs continuously, overflowing at FFH, and then repeats the
incrementing from 00H.  Whenever an overflow occurs, an overflow(OVF) interrupt can be generated.
Although you can use the match or the overflow interrupt in PWM mode, interrupts are not typically used in
PWM-type applications. Instead, the pulse at the T0PWM pin is held to High level as long as the reference data
value is less than or equal to ( ≤ ) the counter value, and then the pulse is held to Low level for as long as the
data value is greater than ( > ) the counter value. One pulse width is equal to  tCLK × 256.

Capture Mode

In capture mode, a signal edge that is detected at the T0CAP pin opens a gate and loads the current counter
value into the T0 data register. You can select the rising or falling edges to trigger this operation.
Timer 0 also gives you capture input source: the signal edge at the T0CAP pin. You select the capture input by
setting the value of the Timer 0 capture input selection bit in the port control register.
Both kinds of Timer 0 interrupts can be used in capture mode: the Timer 0 overflow interrupt is generated
whenever a counter overflow occurs; the Timer 0 match/capture interrupt is generated whenever the counter
value is loaded into the T0 data register.
By reading the captured data value in T0DATA and assuming a specific value for the Timer 0 clock frequency,
you can calculate the pulse width (duration) of the signal that is being input at the T0CAP pin.



S3CB519/FB519 8-BIT TIMER (TIMER 0)

15-3

TIMER 0 CONTROL REGISTER (T0CON)

You use the Timer 0 control register, T0CON, to

• Select the Timer 0 operating mode (interval timer, capture mode, or PWM mode)

• Select the Timer 0 input clock frequency

• Clear the Timer 0 counter, T0CNT

• Enable the Timer 0 overflow interrupt or Timer 0 match/capture interrupt

A reset clears T0CON to '00H'. This sets Timer 0 to normal interval timer mode, selects an input clock frequency
of fOSC/1024, and disables all Timer 0 interrupts. You can clear the Timer 0 counter at any time during normal

operation by writing a "1" to T0CON.3.

LSBMSB

Timer 0 Control Register (T0CON)
50H, R/W, Reset: 00H

Timer 0 overflow interrupt enable
bit:
0 = Disable
1 = Enable

Timer 0 operating mode selection bits:
00 = Interval mode (T0)
01 = Capture mode (capture on rising edge,
        counter running, OVF can occur)
10 = Capture mode (capture on falling edge,
        counter running, OVF can occur)
11 = PWM mode (Match & OVF interrupt
        can occur)

Not used

Timer 0 match/capture interrupt enable bit:
0 = Disable
1 = Enable

.7 .6 .5 .4 .3 .2 .1 .0

Timer 0 input clock selection bits:
00 = fxx/1024
01 = fxx/256
10 = fxx/64
11 = External clock (T0CK)

Timer 0 counter clear bit:
0 = No
1 = Clear the timer 0 counter (when write)

Figure 15-1. Timer 0 Control Register (T0CON)



8-BIT TIMER (TIMER 0) S3CB519/FB519

15-4

BLOCK DIAGRAM

MUX
DIV

1/1024

1/64

1/256
8-Bit Up Counter

(Read-Only)

8-Bit Comparator

Timer 0 Buffer Reg

Data Bus

T0CAP

M
U
X

T0CON.1

T0INT

Clear

Data Bus
T0CON. 7-.6

OVF

T0OUT
T0PWM

Match

T0CK

T0CON. 5-.4

fxx

Timer 0 Data
Register

T0CON. 5-.4

Counter Clear Signal
Match

T0CON.3

T0CON.2

T0OVF

8

8

R

Figure 15-2. Timer 0 Functional Block Diagram



S3CB519/FB519 SERIAL I/O INTERFACE

16-1

16     SERIAL I/O INTERFACE

OVERVIEW

The SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control
register settings. To ensure flexible data transmission rates, you can select an internal or external clock source.

PROGRAMMING PROCEDURE

To program the SIO modules, follow these basic steps:

1. Configure the I/O pins at port (SO,SCK, SI) by loading the appropriate value to the P0CONH register, if
necessary.

2. Load an 8-bit value to the SIOCON register to properly configure the serial I/O module. In this operation,
SIOCON.2 must be set to "1" to enable the data shifter.

3. For interrupt generation, set the serial I/O interrupt enable bit (SIOCON.1) to "1".

4. When you transmit data to the serial buffer, write data to SIODATA and set SIOCON.3 to 1, the shift
operation starts.

5. When the shift operation (transmit/receive) is completed, the SIO pending bit is set to "1", and a SIO
interrupt request is generated.



SERIAL I/O INTERFACE S3CB519/FB519

16-2

SIO CONTROL REGISTER (SIOCON)

LSBMSB

Serial I/O Module Control Registers (SIOCON)
 48H, R/W, Reset: 00H

SIO interrupt enable bit:
0 = Disable SIO interrupt
1 = Enable SIO interrupt

Not usedSIO shift clock select bit:
0 = Internal clock (P.S clock)
1 = External clock (SCK)

Data direction control bit:
0 = MSB-first
1 = LSB-first

SIO counter clear and shift start bit:
0 = No action
1 = Clear 3-bit counter and start shifting

SIO shift operation enable bit:
0 = Disable shifter and clock
1 = Enable shfter and clock

SIO mode selction bit:
0 = Rececive-only mode
1 = Transmit/receive mode

Shift clock edge selction bit:
0 = Tx at falling edges, Rx at rising
1 = Tx at rising edges, Rx at falling

.7 .6 .5 .4 .3 .2 .1 .0

Figure 16-1. Serial I/O Control Register (SIOCON)



S3CB519/FB519 SERIAL I/O INTERFACE

16-3

SIO PRE-SCALER REGISTER (SIOPS)

The values stored in the SIO pre-scaler registers, SIOPS, lets you determine the SIO clock rate (baud rate) as
follows:

Baud rate  = Input clock/(Pre-scaler value + 1), or SCLK input clock

where the input clock is fxx/4

LSBMSB

SIO Pre-scaler Register (SIOPS)
49H,R/W

Baud rate = (fxx/4)/(SIOPS + 1)

.7 .6 .5 .4 .3 .2 .1 .0

Figure 16-2. SIO Pre-scaler Register (SIOPS)

BLOCK DIAGRAM

3-Bit Counter

MUX 8-Bit SIO Shift Buffer
(SIODATA)8-Bit P.S 1/2fxx/2

SIOPS

SCLK

SIOCON.7
(Shift Clock

Source Select)

Prescaled Value = 1/(SIOPS + 1)

Clear

CLK

CLK

SI

SIOCON.3

SIOCON.4
(Edge Select)

SIOCON.5
(Mode Select)

SIOCON.2
(Shift Enable)

SIOCON.6
(LSB/MSB First
Mode Select)

Data Bus

SO

SIO INT

SIOCON.1
(Interrupt Enable)

8

Figure 16-3. SIO Functional Block Diagram



SERIAL I/O INTERFACE S3CB519/FB519

16-4

SERIAL I/O TIMING DIAGRAMS

SO

Transmit
Complete

IRQS

Set SIOCON.3

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0SI

SCK

Figure 16-4. Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4 = 0)

IRQS

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

SCK

Transmit
Complete

SI

SO

Set SIOCON.3

Figure 16-5. Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4 = 1)



S3CB519/FB519 BATTERY LEVEL DETECTOR

17-1

17 BATTERY LEVEL DETECTOR

OVERVIEW

The S3CB519/FB519 microcontroller has a built-in BLD (Battery Level Detector) circuit which allows detection of
power voltage drop of an external input level or internal VDD.

When external input is selected by P0CONL, detection voltage level can be adjusted through the external divided
resistors ratio on BLD pin. Internal reference voltage is 1.2 V.

After detection, BLD is automatically disabled, and EOBLD bit is set.
Because the clock for BLD comes from the watch timer, watch timer must be enabled to use BLD.

NOTES:
1.    Internal reference voltage (VREF) = 1.2 V
2.    C1 = 0.1 µF

-

+

VREF

VDD

BGR

BLD Pin

C1

External resistor for adjusting
detected voltage level

External
VDD

BLD Result
(EOBLD)

P0CONL.7, .6

Criteria
Voltage
Setting
Circuit

VREF

VIN

M
U
X

BLDCON.3, .2, .1

S3CB519
Internal

VDD

Figure 17-1. Voltage Level Detection Circuit



BATTERY LEVEL DETECTOR  S3CB519/FB519

17-2

LSBMSB

Battery Level Detector Control Register (BLDCON)
71H, R/W, Reset: 40H

Select BLD criteria voltage bit:
010 = 2.4 V
011 = 2.7 V
100 = 3.0 V
101 = 3.3 V
110 = 4.0 V
111 = 4.5 V

Not used BLD circuit on/off bit-auto clear:
0 = BLD circuit off
1 = BLD circuit on

.7 .6 .5 .4 .3 .2 .1 .0

EOBLD (End of BLD)-read only:
0 = On processing
1 = End of BLD

BLD result bit-read only:
0 = criteria voltage < source voltage (VDD-VSS)
1 = criteria voltage > source voltage (VDD-VSS)

_

Figure 17-2. Battery Level Detector Control Register (BLDCON)



S3CB519/FB519 LCD CONTROLLER/DRIVER

18-1

18 LCD CONTROLLER/DRIVER

OVERVIEW

This microcontroller can directly drive the (56 segments × 16 commons) LCD panel. Data written to the LCD
display RAM can be transferred to the segment signal pins automatically without program control.
When a subsystem clock is selected as the LCD clock source, the LCD display is enabled even during Idle
modes.

LCD RAM ADDRESS AREA

LCD RAM can be addressed by 8-bit RAM access instructions. When the bit value of a display segment is "1",
the LCD display is turned on; when the bit value is "0", the display is turned off.
Display RAM data are sent out through segment pins SEG0–SEG55 using a direct memory access (DMA)
method that is synchronized with the fLCD signal. RAM addresses in this location that are not used for the LCD

display can be allocated to general-purpose use.

LCD RAM (RAM BANK 12)

bit7

bit0

bit1

bit7

bit0

bit1

bit2

S
E
G
0

S
E
G
1

82H

83H81H

80H

COM7

COM8

COM9

COM15

COM0

COM1

COM2

EDH

S
E
G
54

S
E
G
55

EEH

EFH

ECH

Figure 18-1. LCD Display Data RAM Organization



LCD CONTROLLER/DRIVER     S3CB519/FB519

18-2

LCD CONTROL REGISTER (LCON)

LCON controls LCD dividing resistor and LCD display.

LSBMSB

LCD Control Register (LCON)

Not used

.7 .6 .5 .4 .3 .2 .1 .0

LCD segment signal control bit:
00 = All LCD COM/SEG is ground and LCD clock off, TR1 off
01 = All LCD dots off, TR1 on
10 = All LCD dots on, TR1 on
11 = Normal LCD display, TR1 on

Not used

LCD dividing resistors selection bit:
0 = Normal LCD dividing resistors (R = 55 Kohm)
1 = Diminish LCD dividing resistors (R = 28 Kohm)

Figure 18-2. LCD Control Register (LCON)

LCD VOLTAGE DIVIDING RESISTORS

S3CB519 (1/5 Bias)

TR1

VLC1

VDD

LCNST.7

VLC2

VLC4

VLC3

VLC5

VSS

VSS

LCNST.0-3

R

R

R

R

R

LCON.1, .2

S3CB519 (1/4 Bias)

TR1

VLC1

VDD

LCNST.7

VLC2

VLC4

VLC3

VLC5

VSS

VSS

LCNST.0-3

R

R

R

R

R

LCON.1, .2

Figure 18-3. Internal Voltage Dividing Resistor Connection



S3CB519/FB519 LCD CONTROLLER/DRIVER

18-3

LCD MODE REGISTER (LMOD)

LMOD controls LCD bias, duty, and clock.

LSBMSB

LCD Mode Register (LMOD)

.7 .6 .5 .4 .3 .2 .1 .0

Watch timer (fw) selection bits:
(When main system clock is supplied to the watch timer source.)
0 = fLCD = 4096 Hz when fw = fx/128 (32.768 kHz @ fx = 4.19 MHz)
1 = fLCD = 8192 Hz when fw = fx/64 (65.563 kHz @ fx = 4.19 MHz)

Not used

Duty selection bits:
00 = 1/8 duty (COM0-COM7 select)
01 = 1/12 duty (COM0-COM11 select)
1x = 1/16 duty (COM0-COM15 select)

LCD Clock (LCDCK)

1/12 duty (COM0-11) 1/16 duty (COM0-15)

00

01

10

11

fw/27 (256 Hz)

1/8 duty (COM0-7)

fw/26 (512 Hz)

fw/25 (1024 Hz)

fw/24 (2048 Hz)

fw/26 (512 Hz) fw/26 (512 Hz)

fw/25 (1024 Hz)

fw/24 (2048 Hz)

fw/23 (4096 Hz)

fw/25 (1024 Hz)

fw/24 (2048 Hz)

fw/23 (4096 Hz)

Not used

Bias selection bits:
0 = 1/4 bias
1 = 1/5 bias

Figure 18-4. LCD Mode Register (LMOD)



LCD CONTROLLER/DRIVER     S3CB519/FB519

18-4

LCD CONTRAST CONTROL REGISTER (LCNST)

LCNST controls LCD contrast.

LSBMSB

LCD Contrast Register (LCNST)

Not used

.7 .6 .5 .4 .3 .2 .1 .0

Duty selection bits:
0000 = 1/16 step (the dimmest level)
0001 = 2/16 step
0010 = 3/16 step

 .....
1110 = 15/16 step
1111 = 16/16 step (the brightest level)

Contrast enable bits:
0 = Disable contrast
1 = Enable contrast

Figure 18-5. LCD Contrast Register (LCNST)



S3CB519/FB519 LCD CONTROLLER/DRIVER

18-5

COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7

COM8
COM9

COM10
COM11
COM12
COM13
COM14
COM15

S
E
G
0

S
E
G
1

S
E
G
2

S
E
G
3

S
E
G
4

1 Frame

310 2 15 310 2

FR

15
VDD

VSS

COM0

VSS

VLC1

VLC2

VLC3

VLC4

VLC5

SEG0

VSS

VLC1

VLC2

VLC3

VLC4

VLC5

COM2

VSS

VLC1

VLC2

VLC3

VLC4

VLC5

COM1

VSS

VLC1

VLC2

VLC3

VLC4

VLC5

Figure 18-6. LCD Signal Waveforms (1/16 Duty, 1/5 Bias)



LCD CONTROLLER/DRIVER     S3CB519/FB519

18-6

1 Frame

310 2 15 310 2

FR

15
VDD

VSS

SEG1

VSS

VLC1

VLC2

VLC3

VLC4

VLC5

SEG0-COM0

VLC1

VLC2

VLC3

VLC4

-VLC4

-VLC3

-VLC1

VLC5

-VLC2

0V

-VLC5

SEG1-COM0

VLC1

VLC2

VLC3

VLC4

-VLC4

-VLC3

-VLC1

VLC5

-VLC2

0V

-VLC5

Figure 18-6. LCD Signal Waveforms (1/16 Duty, 1/5 Bias) (Continued)



S3CB519/FB519 LCD CONTROLLER/DRIVER

18-7

COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7

S
E
G
0

S
E
G
1

S
E
G
2

S
E
G
3

S
E
G
4

FR

1 Frame

VSS

VDD
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

COM0

COM2

SEG0

COM1

SEG0-COM0

-VLC2

-VLC1

VLC3 = VLC4

VLC5

VLC1

VLC2

VSS

VLC5

VLC1

VLC2

VSS

VLC5

VLC1

VLC2

VSS

VLC5

VLC1

VLC2

VSS

VLC5

VLC1

VLC2

0V

-VLC5

VLC3 = VLC4

VLC3 = VLC4

VLC3 = VLC4

VLC3 = VLC4

-VLC3 = -VLC4

Figure 18-7. LCD Signal Waveforms (1/8 Duty, 1/4 Bias)



LCD CONTROLLER/DRIVER     S3CB519/FB519

18-8

LCD KEY SCAN

When P5CON.7 is set, strobe signal is output to P5.0/SEG39-P5.15/SEG24 during normal SEG output, and the
strobe signal number is selected by P5CON setting.
Key input is acquired from KS0/P1.0–KS3/P1.3 and is set in P1CON.
If any pin of P5.0–P5.15 is set only to SEG in P5CON, the selected pin does not output the key strobe signal.
If any of P1.0-P1.3 is set to anything other than the alternative mode (key scan mode), the selected pin acts as a
normal I/O.
When P5.0/SEG39–P5.15/SEG24 are set as key strobe, selected key strobe is output, pin by pin, continuously
with a selected interval and duration.

When KS0/P1.0–KS3/P1.3 are set as an alternative mode (key scan input), KS0–KS3 state is normally high-
impedance, and when SEGx strobe is out, KS0/P1.0–KS3/P1.3 setting is changed to input pull-up state.
The data (Port 1) is input right before the strobe disappears, and if any “Low” state appears, an interrupt occurs.

When the key scan interrupt occurs, user can read the Interrupt request register for the key input state and the
Port 5 data register for the key strobe state. The data of the selected pin, P5, is not changed until next strobe
occurs. Port 1 data register has invalid data when in the key input state.

Port 5 data register value is ‘0’ for P5.0 strobe, ‘1’ for P5.1, ‘2’ for P5.2, …’0FH’ for P5.15 strobe.



S3CB519/FB519 LCD CONTROLLER/DRIVER

18-9

1 Frame

310 2 15 310 2

FR

15
VDD

VSS

P5.1

VSS

VLC1

VLC2

VLC3

VLC4

VLC5

P5.0

VSS

VLC1

VLC2

VLC3

VLC4

VLC5

Tframe

P5.15

VSS

VLC1

VLC2

VLC3

VLC4

VLC5

Tstrobe

Tinterval

NOTES:
1.    Tframe
       When P5.0-P5.3 is used, Tframe is Tinterval x 4,
       When P5.0-P5.7 is used, Tframe is Tinterval x 8,
       When P5.0-P5.11 is used, Tframe is Tinterval x 12,
       When P5.0-P5.15 is used, Tframe is Tinterval x 16.
2.   Tinterval, Tstrobe value is set by setting P5CON value.

Figure 18-8. LCD Waveform when Key Strobe Signal is Active



LCD CONTROLLER/DRIVER     S3CB519/FB519

18-10

NOTES



S3CB519/FB519 A/D CONVERTER

19-1

19 A/D CONVERTER

OVERVIEW

The ADC is Sigma-Delta type ADC for speech and telephony applications. The ADC contains both digital IIR/FIR
filters, and an on-chip voltage reference circuit is included to allow supply operations.

FEATURES

Sigma Delta ADC.

• 256X oversampling

• On chip decimation filter

• On chip voltage reference circuitry



A/D CONVERTER S3CB519/FB519

19-2

A/D CONVERTER CONTROL REGISTER (ADCON)

User can select the A/D input clock for dividing higher crystal by controlling ADCON.
A/D converted data are 14-bit resolution and are input to ADATAH (High byte), ADATAL (Low byte) in 16-bit data
format. Because A/DC use 256X over-sampling, for 8 kHz sampling, when crystal is 2.048 MHz (= 8 kHz × 256),
user must select fx as AD/DA input clock.
And when crystal is 4.096 MHz (= 2 × 8 kHz × 256), user must select fx/2 as AD/DA input clock.

LSBMSB

A/DC Control Register  (ADCON)
4CH, R/W, Reset: 00H

.7 .6 .5 .4 .3 .2 .1 .0

AD/DA  input clock selection bits:
000 = fx
001 = fx/2
010 = fx/3
011 = fx/4
100 = fx/5
101 = fx/6
110 = fx/8
111 = fx10

AD/DA clock On/Off bits:
0 = AD/DA clock Off
1 = AD/DA clock On

Not used

AD/DA interrupt enable bits:
0 = Interrupt disable
1 = Interrupt enable

A/D enable bits:
0 = A/DC disable
1 = A/DC enable

Figure 19-1. A/DC Control Register (ADCON)



S3CB519/FB519 A/D CONVERTER

19-3

-

+

Decimal
Filter

Modulator
ADDATAH

ADDATAL

Voltage Reference

ADGAIN

ADINN

ADINP

AVREFOUT

NOTE:
C3: 0.1µF    TANTALUM    CAPACITOR
C4, C6: 10 µF    CERAMIC       CAPACITOR
C5: 1 µF      TANTALUM    CAPACITOR
L: 0.1mH

C6 C5

+

AVDD AVSS

C3

C4
+

VDD

REFH REFL

C3

C4
+

AVSS

VSS

L L

L

AVDD

Figure 19-2. A/D Converter Block Diagram



A/D CONVERTER S3CB519/FB519

19-4

Differential-ended input application

Single-ended input application

ADINN

ADINP

ADGAIN

R1

AVREFOUT

R1C0
-

+

R2VDD

GND

C1

ADINP

ADINN

ADGAIN

R1

R1'

AVREFOUT

C2

R4

AVREFOUT

R3

R2'

R2C1

C1'

GND

VDD

R5

C2'

+

-

Voltage Gain: R5/(R1 + R2)
R3 = R4 x R5/(R4 +R5)
R1 = R1'
R2 = R2'
C1 = C1'
C2 = C2'

Example:
R1 = R1' = 390 kΩ
R2 = R2' = 47 kΩ
R3 = 110 kΩ
R4 = 220 kΩ
R5 = 220 kΩ
C1 = C1' = 470 pF
C2 = C2' = 22 pF

Example:
R1 = 100 kΩ
R2 = 200 kΩ
C1 = 50 pF

Voltage Gain:
R2 = 2 x R1
R1>50 kΩ
C1 = 1 x 10-5/R2

2 x R1
R2

Figure 19-3. Application Example



S3CB519/FB519 D/A CONVERTER

20-1

20 D/A CONVERTER

OVERVIEW

This MCU has an 8-bit Digital-to-Analog converter with R-2R structure. This DAC (Digital – to Analog converter)
is used to generate analog voltage, VDA, with 256-steps (28). This function is controlled by the DAC mode register

(DACON).
To enable the converter, the DACON.0 must be set to “1”. To generate an analog voltage (VDA), load the

appropriate value to DADATA. The level of the analog voltage is determined by DADATA.

When a user writes data to DATATA, the contents of GR13 is shifted to GR14, GR12 to GR13, GR11 to GR12,
and DATATA to GR11.
The content of GR24 is  output to DAO. When GR24 is output and some time passes, the contents of GR23 is
shifted to GR24, GR22 to GR23, GR21 to GR22. After all the contents of GR21–GR24 is out to DAO, GR11–
GR14 will be copied to GR21–GR24.
Four consequent DA data will be written to DADATA every AD/DA interrupt. Then the four data will be out with
same interval until the next AD/DA interrupt occurs.
The interval between DAO and the next DAO is about 31 µsec when a 4.096 MHz oscillator is used, and ADC
clock is fx/2.

The interval clock comes from the ADC. (See ADCON).

88
GR21 GR22 GR23 GR24

Load

GR11 GR12 GR13 GR14
WR

SFT_CK DAO

8

R2R

VREF

DADATA
(Write)

DADATA
(Read)

NOTE: When write, data is written to DADATA (write),
When read, data is read from DADATA (read).

Figure 20-1. D/A Converter Circuit Diagram



D/A CONVERTER S3CB519/FB519

20-2

DADATA A B C D A'

A

A B C D

A B C D

C DB

C D

D

WR

GR11

GR12

GR13

GR14

Load_CK

GR21

GR22

GR23

GR24

SFT_CK

DAO

B' C' D'

A' B' C' D'BA C D

A B C

B

A

A' B' C'

A' B'

A'

Figure 20-2. D/A Converter Timing Diagram



S3CB519/FB519 D/A CONVERTER

20-3

D/A CONVERTER DATA REGISTER (DADATA)

The DADATA specifies the digital data to generate analog voltage.
RESET initializes the DADATA value to "00H". The D/A converter output value, VDAO, is calculated by following

formula.

VDAO= VPP × (n / 256) + VBIAS– 
1
2 VPP (n = 0-255, DADATA value), where, VPP and VBIAS is specified in electrical

data and the VPP is a regulated output voltage.

If DADATA value is 0, VDAO = VBIAS – 
1
2 VPP

If DADATA value is 128, VDAO = VBIAS

If DADATA value is 255, VDAO = VBIAS + 
1
2 VPP

D/A CONVERTER CONTROL REGISTER (DACON)

DACON values are set to logic "00H" following RESET, and this value disables DAC.

D/AC Control Register (DACON)
72H, R/W, Reset: 00H

MSB LSB

Not used D/A enable bits:
0 = D/AC disable
1 = D/AC enable

.7 .6 .5 .4 .3 .2 .1 .0

Figure 20-3. D/A Control Register (DACON)



D/A CONVERTER S3CB519/FB519

20-4

NOTES



S3CB519/FB519 MAC816

21-1

21 MAC816

MAC816 ARCHITECTURE OVERVIEW

MAC816 is a 16-bit fixed-point DSP coprocessor for low-end DSP applications. It is designed as one of the DSP
coprocessor engines for CalmRISC, which targets towards cost-sensitive low-end multimedia DSP applications.
The generic coprocessor instructions for CalmRISC are renamed according to the intended operations on
MAC816, including the DSP data type, and the DSP addressing mode. Below represented is the top block
diagram of MAC816.

YA[13:0]

RP0[15:0]

RP1[15:0]

RP2[15:0]

RPD[15:0]

MC0[15:0]

MC1[15:0]

MSR0[15:0]

MSR1[15:0]

Decoder

IR [11:0]

X[15:0] Y[15:0]

Multiplier & Adder

MAH[15:0] MAL[15:0]

Adder

A[15:0]

B[15:0]

XDIE XDOE YDIE

XDO[15:0]XDI[15:0] YD[15:0]XA[13:0]

EYB2XB
EXB2YB YB[15:0]

XB[15:0]

Status

Control

nXMCS,
XMWR,

nYMCS,
YMWR,

SMACYM

EC[2:0],
nlMASK

nRTCS,
RTWR,

RAT[1:0]

CKI,
nRES,

nlREXE

IR[11:0]

Figure 21-1. Top Block Diagram



MAC816 S3CB519/FB519

21-2

The MAC816 building blocks consist of:

— Multiplier and Accumulator Unit (MAU)

— Arithmetic Unit (AU)

— RAM Pointer Unit (RPU)

— Interface Unit (IU)

Basically, MAU (Multiplier and Accumulator Unit) is built around an 8-bit by 16-bit parallel multiplier and a 32-bit
adder for multiply-and-accumulate (MAC) operations. Hence, 16-bit by 16-bit MAC operations are performed in
two cycles in MAC816. AU performs 16-bit arithmetic and shift operations for DSP. RPU of MAC816 consists of 3
data memory pointers and 2 control blocks for the pointer modulo calculation. The pointers are used for
accessing the data memory for a 16-bit data operand. Since two 16-bit data operands can be fetched
simultaneously in a single cycle through XD[15:0] and YD[15:0] for MAC operation, the data memory should be
partitioned into two parts: X and Y memory. IU is for the communication between CalmRISC and MAC816. It
decodes coprocessor interface signals from CalmRISC and controls the data paths in MAC816, according to the
decoding result.

Most of MAC816 instructions are 1-word instruction, while several instructions which need 16-bit immediate value
are 2-word instruction.



S3CB519/FB519 MAC816

21-3

PROGRAMMER’S MODEL

In this chapter, the important features of MAC816 are discussed in detail. How the data memory is organized is
discussed and the explanation of registers follows. Last, the host interface with CalmRISC will be explained.

DATA MEMORY ACCESSES

The total data memory address space for MAC816 is 32K-word. The 32K-word data memory space is physically
divided into XM (X area memory) and YM (Y area memory). This memory is actually shared with the host
processor (CalmRISC). The host processor accesses the 64K-byte data memory in byte width, otherwise
MAC816 accesses it in 2-byte width. MAC816 has two types of addressing modes. RPU can generate two 15-bit
addresses every instruction cycle which can be post-modified.

YMH, DA = C7EH

YMH, DA = 880H

YML, DA = C7FH

XMH, DA = 87EH

YML, DA = 881H

XML, DA = 87FH

XMH, DA = 0080H XML, DA = 0081H

XMH, DA = 0000H XML, DA = 0001H
I/O Area

(128 Byte)

YA = 63FH

YA = 440H

XA = 0040H

XA = 0000H

Figure 21-2. Data Memory Organization



MAC816 S3CB519/FB519

21-4

Table 21-1. RPU(RAM Pointer Unit) Registers

Registers Mnemonics Description Reset Value

Mreg1 RPi RP0 RAM Pointer register 0 Unknown

RP1 RAM Pointer register 1 Unknown

RP2 RAM Pointer register 2 Unknown

RPD RAM Pointer for short direct addressing Unknown

MCi MC0 Modulo Control register 0 for RP0/RP1 Unknown

MC1 Modulo Control register 1 for RP2 Unknown

Modulo Control

XB[15:0]

+ 1, 0, - 1, +2/- 2

RP0[15:0]

RP1[15:0]

MC0[15:0]

Modulo Control

+ 1, 0, - 1, +2/- 2

RPD[15:0]

RP2[15:0]

MC1[15:0]

IR[5:4] IR[3:0]

[15:0] XA[14:0]

YA[14:0]

[14:0]

16

[15:0]

[14:0]

16

Figure 21-3. RPU (RAM Pointer Unit) Block Diagram



S3CB519/FB519 MAC816

21-5

Short Direct Memory Addressing Mode

Six-bits embedded in the instruction code as LSBs and 9-bits from the RPD[14:6] of RPD register as MSB
compose the 15-bit address to the data memory address. This can be used with some instructions operating an Ai
(A/B register in AU) operand. In “load/store mreg1” instruction, a 4-bit embedded in the instruction code as LSBs
and 11-bits from the RPD[14:4] of RPD register as MSB compose the 15-bit address to the data memory
address.  This can be used to load/store RAM pointer register from/to data memory.

Indirect Memory Addressing Mode

The RPi registers of RPU are used as a 15-bit address for indirect addressing XM (X area memory) or YM (Y
area memory). Some instructions can simultaneously access the XM and YM, and then RP0 is used for XM and
RP2 for YM. In indirect addressing mode, RPi register is modified by +1,-1,-2, and +2 after the addressing. The
MSB of RPi register enables modulo opera tion of the RPi modification. The RPU registers are divided into two
groups of simultaneous addressing over XA and YA: X-memory is addressed by RP0 and RP1 with MC0 and Y-
memory is addressed by RP2 with MC1. RPi from both groups can be used for both XA and YA for instruction,
which uses only one address register. In this instruction the XM and YM can be viewed as a single continuous
data memory space.

Table 21-2. RPi register bit information

Bit position Value Description

[14:0] 0H–7FFFH Data memory(XM/YM) address

[15] 0 Modulo mode disable

1 Modulo mode enable



MAC816 S3CB519/FB519

21-6

Modulo Control Registers (MCi)

MCi controls RP0, RP1 and RP2 register modifications after indirect memory accessing. MCi has an upper
boundary value in MCi[9:0], a step size in MCi[12:10] and a modulo size information in MCi[15:13]. The upper
boundary determines the upper limit of the modulo body. The modulo size information determines the lower limit
and size of the modulo body as shown below. For example, assume RP0 = 87FFH and MC0 = 03FFH: If
"@RP0+" is used on the operand of the instruction, the data memory contents pointed by "07FFH" is accessed,
and RP0 is updated to "8400H" after memory accessing. Assume RP0 = 07FFH and MC0 = 03FFH: If "@RP0+"
is used on the operand of the instruction, the data memory contents pointed by "07FFH" is accessed, and RP0 is
updated to "0800H" after memory accessing.

Bit position Value Description

[9:0] 0H–3FFH Upper boundary

[12:10] 000 Step size = + 2

001 Step size = - 2

010–111 Reserved

[15:13] 000 Maximum modulo size = 1024 (0H to 3FFH),

Modulo body = RPi[14:10]:0000000000 to RPi[14:10]:MCi[9:0]

001 Maximum modulo size = 8 (0H to 7H),

Modulo body = RPi[14:3]:000 to RPi[14:3]:MCi[2:0]

010 Maximum modulo size = 16 (0H to 0FH),

Modulo body = RPi[14:4]:0000 to RPi[14:4]:MCi[3:0]

011 Maximum modulo size = 32 (0H to 1FH),

Modulo body = RPi[14:5]:00000 to RPi[14:5]:MCi[4:0]

100 Maximum modulo size = 64 (0H to 3FH),

Modulo body = RPi[14:6]:000000 to RPi[14:6]:MCi[5:0]

101 Maximum modulo size = 128 (0H to 7FH),

Modulo body = RPi[14:7]:0000000 to RPi[14:7]:MCi[6:0]

110 Maximum modulo size = 256 (0H to 0FFH),

Modulo body = RPi[14:8]:00000000 to RPi[14:8]:MCi[7:0]

111 Maximum modulo size = 512 (0H to 1FFH),

Modulo body = RPi[14:9]:000000000 to RPi[14:9]:MCi[8:0]



S3CB519/FB519 MAC816

21-7

COMPUTATION UNIT

The computation unit contains two main units, the Multiplier and Accumulator Unit (MAU) and Arithmetic Unit
(AU).

yi[15:0]

Saturation

YB[15:0]

Y[15:0]

32-Bit Adder

xi[15:0]

X[15:0]

8 x 16 Multiplier

Shift Left

MA[31:0]

16-Bit Adder

Saturation

A[15:0]

B[15:0]

XB[15:0]

16

OPM

8

16

32

16

OP

Figure 21-4. Computation Unit Block Diagram



MAC816 S3CB519/FB519

21-8

Multiplier and Accumulator Unit (MAU)

The MAU consists of a 8 by 16 to 24 bit parallel multiplier, two 16-bit input registers(X and Y), a product output
shifter, and 32-bit product and accumulator register(MA). The multiplier performs signed by signed, signed by
unsigned, unsigned by signed, or unsigned by unsigned multiplication. By clearing “MSR1[2] (or M816)”, the MAU
can perform 16 by 16 to 32 bit parallel multiplication in 2 cycles. After the multiplier instruction, if a read
instruction of MA is followed, previous MA register value will be read out because. During 16 by 16 multiplication,
in the second cycle of multiplication, the instruction of MA modification can cause illegal multiplication results.
Thus, multiplier instruction should not be followed by MA register writing. The “MV” flag is set if arithmetic
overflow occurs after an arithmetic operation in the MA register, and if set “OPM”, the MA register is saturated to
a 32-bit positive (7FFFFFFFH) or negative (80000000H). The MA register is not updated by loading X and Y
registers. Hence, the X and Y registers can be used as a temporary data registers. The registers in MAU are as
shown in the table.

Mnemonics Description Reset Value

X MAU X input register Unknown

Y MAU Y input register Unknown

MAL MAU Accumulator register, MA[15:0] Unknown

MAH or MA MAU Accumulator register, MA[31:16] Unknown

Arithmetic Unit (AU)

The AU consists of 16-bit adder, 1-bit shifter, and two result registers (A and B). The AU receives one operand
from Ai and another operand from XB or Ai. Operations between the two Ai registers are also possible. The
source and destination Ai register of an AU instruction are always the same. The XB bus is used for transferring
one of the register content, an immediate operand, or the content of a data memory location as a source
operand. The AU results are stored in one of the Ai registers. The AU can perform add, subtract, compare, and
shift operations. It uses two’s complement arithmetic operations. The AU evaluates the status flags of an
arithmetic result. The “V” flag is set if arithmetic overflow occurs after an arithmetic operation in A or B register,
and if set to “OPA” or “OPB”, the A or B register is saturated to a 16-bit positive (7FFFH) or negative (8000H).
Data transfer between MAC816 and the host processor can be achieved via A or B register. The host processor
(CalmRISC) can  directly access A and B registers of MAC816 through  “CLD GPR,imm” or “CLD imm,GPR”
instruction.



S3CB519/FB519 MAC816

21-9

STATUS REGISTERS

Status Register 0 : MSR0

MSR0 is mainly reserved for flagging an AU result , for protecting control overflow, and for indicating test results.

Bit Name Bit Description

C 0 Carry flag

V 1 Overflow flag

Z 2 Zero flag

N 3 Negative flag

T 4 Test result flag

OPA 5 Overflow Protection control for A register

OPB 6 Overflow Protection control for B register

– 15–7 Reserved

MSR0[0] (or C) is the carry of AU executions. MSR0[1] (or V) is the overflow flag of AU executions. It is set to 1 if
and only if the carry-in into the 16-th bit position of addition/subtraction differs from the carry-out from the 16-th
bit position. MSR0[2] (or Z) is the zero flag, which is set to 1 if and only if the AU result is zero. MSR0[3] (or N) is
the negative flag. Basically, the most significant bit (MSB) of AU results becomes the N flag. However, if an AU
instruction touches the overflow flag (V) like ADD, SUB, CP, etc, N flag is updated as exclusive-OR of V and the
MSB of the AU result. This implies that even if an AU operation results in overflow, N flag is still valid. T flag is
set to 1 if the result of “ETST cond.” Instruction is true. MSR0[5] (or OPA) or MSR0[6] (or OPB) enables
arithmetic saturation when an arithmetic overflow occurs in A or B register.

Status Register 1 : MSR1

MSR1 consists of status flags of MAU operation, control bit for MAU, and selection bits of EC[I].

Bit Name Bit Description

PSH1 0 Multiplier product 1 bit shift control

OPM 1 Overflow Protection control for MA register

M816 2 Multiplication mode control

MV 3 MA overflow flag

SEC0 7–4 EC[0] selection

SEC1 11–8 EC[1] selection

SEC2 15–12 EC[2] selection



MAC816 S3CB519/FB519

21-10

MSR1[0] (or PSH1) enables the product to shift by one bit to the left. MSR1[1] (or OPM) controls MA saturation.
MSR1[2] (or M816) selects the operating mode for the multiplier. If M816=1, then the multiplier performs 8 by 16
bit to 24 bit multiplication. Otherwise (M816=0), the multiplier performs 16 by 16 bit to 32 bit multiplication in two
cycles. MSR1[3] (or MV) is the overflow flag of MAU executions. It is set to 1 if an arithmetic overflow (32-bit
overflow) occurs after an arithmetic operation in MAU. It is cleared by a processor reset or “ECR MV” and
modified by writing to MSR1. SECi selects the combination of EC[I]. The flag information for the host processor is
selected by setting SECi.

Value( of SECi) Description

0000 EC[I] = Z,  Set to 1 if Z flag is 1.

0001 EC[I] = not Z

0010 EC[I] = N

0011 EC[I] = not N

0100 EC[I] = C

0101 EC[I] = not C

0110 EC[I] = V

0111 EC[I] = not V

1000 EC[I] = T

1001 EC[I] = GT

1010 EC[I] = LE

1011 EC[I] = MV

1100 EC[I] = not MV

1101–1111 reserved



S3CB519/FB519 MAC816

21-11

HOST INTERFACE

MAC816 is interfaced to the host processor according to CalmRISC coprocessor interface scheme explained
below.

CalmRISC supports an efficient and seamless interface with coprocessors. By integrating a MAC (multiply and
accumulate) with the CalmRISC core, not only microcontroller functions but also complex digital signal
processing algorithms can be implemented in a single development platform (or MDS). CalmRISC has a set of
dedicated signal pins, through which data/command/status are exchanged between CalmRISC and a
coprocessor. Depicted below are the coprocessor signal pins and a figure of how two processors are interfaced.

Data Bus [7:0]

SYSCP [11:0]

nCOPID

nCLDID

CLDWR

EC[2:0]

CoprocessorCalmRISC

Program
ROM

Data
RAM

Figure 21-5. Coprocessor Interface Diagram



MAC816 S3CB519/FB519

21-12

As shown in the coprocessor interface diagram above, the coprocessor interface signals of CalmRISC are:
SYSCP[11:0], nCOPID, nCLDID, nCLDWR, and EC[2:0]. The data are exchanged through the data buses, DI[7:0]
and DO[7:0]. CalmRISC issues the command to a coprocessor through SYSCP[11:0] in COP instructions. The
status of a coprocessor can be sent back to CalmRISC through EC[2:0], and these flags can be checked in the
condition codes of branch instructions. The coprocessor instructions are listed in the following table.

Table 21-3. Coprocessor instructions

Mnemonic Op 1 Op 2 Description

COP #imm:12 – Coprocessor operation

CLD GPR imm:8 Data transfer from coprocessor into GPR

CLD imm:8 GPR Data transfer of GPR to coprocessor

JP(or JR)

CALL

LNK

EC2–0 label Conditional branch with coprocessor status flags

The coprocessor of CalmRISC does not have its own program memory (that is, passive coprocessor) as shown in
Figure 7 -1. In fact, the coprocessor instructions are fetched and decoded by CalmRISC, which issues the
command to the coprocessor through the interface signals. For example, if “COP #imm:12” instruction is fetched,
then the 12-bit immediate value (imm:12) is loaded on SYSCP[11:0] signal with nCOPID active in ID/MEM stage,
to request the coprocessor to perform the designated operation. The interpretation of the 12-bit immediate value
is totally up to the coprocessor. The instruction set of the coprocessor is determined by arranging the 12 bit
immediate field. In other words, CalmRISC only provides a set of generic coprocessor instructions, and its
installation to a specific coprocessor instruction set can differ from one coprocessor to another. CLD Write
instructions
(“CLD imm:8, GPR”) put the content of a GPR register of CalmRISC on the data bus (DO[7:0] ) and issue the
address(imm:8) of the coprocessor internal register on SYSCP[7:0] with nCLDID active and CLDWR active.
CLD Read instructions (“CLD GPR, imm:8” in Table 1) work similarly, except that the content of the coprocessor
internal register addressed by the 8-bit immediate value is read into a GPR register through DI[7:0] with nCLDID
active and CLDWR inactive.

The timing diagram given below is a coprocessor instruction pipeline and shows the time the coprocessor
performs the required operations. Suppose I2 is a coprocessor instruction. First, it is fetched and decoded by
CalmRISC (at t = T(i-1)). Once it is identified as a coprocessor instruction, CalmRISC indicates to the
coprocessor the appropriate command through the coprocessor interface signals (at t = T(i)). Then the
coprocessor performs the designated tasks at t = T(i) and t = T(i+1). Hence IF from CalmRISC and then ID/MEM
and EX from the coprocessor constitute the pipeline for I2. Similarly, if I3 is a coprocessor instruction, the
coprocessor’s ID/MEM and EX stages replace the corresponding stages of CalmRISC.



S3CB519/FB519 MAC816

21-13

CalmRISC

IF ID/MEM EX

IF ID/MEM

IF

EX

ID/MEM EX

I2: Coprocessor Instruction

T (i -1) T (i) T (i +1)

I1: Normal Instruction

I3: Coprocessor Instruction

For I3For I2

ID/MEM EX

ID/MEM EX

Coprocessor

I2:

I3:

Coprocessor
Interface Signals

Figure 21-6. Coprocessor Instruction Pipeline

In a multi-processor system, the data transfer between processors is an important factor to determine the
efficiency of the overall system. Suppose an input data stream is accepted by a processor, in order to share data
with other processors, there should be some efficient mechanism to transfer the data to the processors. In
CalmRISC, data is transferred through a single shared data memory. The shared data memory in a multi-
processor has some inherent problems such as data hazards and deadlocks. However, the coprocessor in
CalmRISC accesses the shared data memory only at the time designated by CalmRISC, a time at which
CalmRISC is guaranteed not to access the data memory, and therefore there is no contention over the shared
data memory. Another advantage of the proposed scheme is that the coprocessor can access the data memory
in its own bandwidth.



MAC816 S3CB519/FB519

21-14

INSTRUCTION SET

GLOSSARY

This chapter describes the MAC816 instruction set, and the details of each instruction are listed in alphabetical
order . The following notations are used for the description and mnemonics of assembler.

Table 21-4. Notation and Convention

Notation Interpretation

<opN> Operand N. N can be omitted if there is only one operand. Typically, <op1> is the
destination (and source) operand and <op2> is the source operand.

adr:N Content of memory location specified by N-bit address

#imm:N N-bit immediate number

& Bit-wise AND

| Bit-wise OR

~ Bit-wise NOT

^ Bit-wise XOR

N**M Mth power of N

(N)M M-based number N



S3CB519/FB519 MAC816

21-15

Table 21-5. MAC816 Registers

Notation Operand Code Mnemonic Descriptions

Mreg 0000–0010 – Reserved

0011 MARN MA[31:16] + MA[15], MA higher word with round-off

0100 Y Y[15:0], multiplier Y input register

0101 X X[15:0], multiplier X input register

0110 MAL MA[15:0], multiplier accumulator lower 16-bits

0111 MAH MA[31:16], multiplier accumulator higher 16-bits

1000 RP0 RP0[15:0], RAM pointer register 0

1001 RP1 RP0[15:0], RAM pointer register 1

1010 RP2 RP0[15:0], RAM pointer register 2

1011 RPD RAM pointer for short direct addressing

1100 MC0 Modulo control register 0 for RP0/RP1

1101 MC1 Modulo control register 1 for RP2

1110 MSR0 MAC816 status register 0

1111 MSR1 MAC816 status register 1

Ai 0 A A[15:0], AU result register A

1 B B[15:0], AU result register B

Am 00 A A[15:0], AU result register A

01 B B[15:0], AU result register B

10 AC A[15:0], AU result register A with Carry

11 BC B[15:0], AU result register B with Carry

MAm 00 A A[15:0], AU result register A

01 B B[15:0], AU result register B

10 MAL MA[15:0], multiplier accumulator lower 16-bits

11 MAH MA[31:16], multiplier accumulator higher 16-bits



MAC816 S3CB519/FB519

21-16

Table 21-5. MAC816 Registers (Continued)

Notation Operand Code Mnemonic Descriptions

Mreg2 000–011 – Reserved

Mreg2s 100 Y Y[15:0], multiplier Y input register

Mreg2d 101 X X[15:0], multiplier X input register

110 MAL MA[15:0], multiplier accumulator lower 16-bits

111 MAH MA[31:16], multiplier accumulator higher 16-bits

Mreg1 00 RP0 RP0[15:0], RAM pointer register 0

01 RP1 RP0[15:0], RAM pointer register 1

10 RP2 RP0[15:0], RAM pointer register 2

11 RPD RAM pointer for short direct addressing

Mreg3 00 MC0 Modulo control register 0 for RP0/RP1

01 MC1 Modulo control register 1 for RP2

10 MSR0 MAC816 status register 0

11 MSR1 MAC816 status register 1

Table 21-6. Data Transfer Registers

Notation Register Address Descriptions

Creg 00 A[7:0], AU result register A lower 8-bits

01 A[15:8], AU result register A higher 8-bits

10 B[7:0], AU result register B lower 8-bits

11 B[15:8], AU result register B higher 8-bits



S3CB519/FB519 MAC816

21-17

Table 21-7. Memory Access Mode Information

Notation Operand Code Mnemonic Descriptions

@rpm 0000 @rp0+ Content of memory location specified by RP0,
RP0 post-increment by 1 with modulo mode

0001 @rp0- Content of memory location specified by RP0,
RP0 post-decrement by 1 with modulo mode

0010 @rp0s Content of memory location specified by RP0,
RP0 post-modification by +2 or –2  with modulo mode

0011 @rp0 Content of memory location specified by RP0

0100 @rp1+ Content of memory location specified by RP1,
RP1 post-increment by 1 with modulo mode

0101 @rp1- Content of memory location specified by RP1,
RP1 post-decrement by 1 with modulo mode

0110 @rp1s Content of memory location specified by RP1,
RP1 post-modification by +2 or –2  with modulo mode

0111 @rp1 Content of memory location specified by RP1

1000 @rp2+ Content of memory location specified by RP2,
RP2 post-increment by 1 with modulo mode

1001 @rp2- Content of memory location specified by RP2,
RP2 post-decrement by 1 with modulo mode

1010 @rp2s Content of memory location specified by RP2,
RP2 post-modification by +2 or –2  with modulo mode

1011 @rp2 Content of memory location specified by RP2

1100–1111 - Reserved

@rp0m 00 @rp0+ Content of memory location specified by RP0,
RP0 post-increment by 1 with modulo mode

01 @rp0- Content of memory location specified by RP0,
RP0 post-decrement by 1 with modulo mode

10 @rp0s Content of memory location specified by RP0,
RP0 post-modification by +2 or –2  with modulo mode

11 @rp0 Content of memory location specified by RP0

@rp2m 00 @rp2+ Content of memory location specified by RP2,
RP2 post-increment by 1 with modulo mode

01 @rp2- Content of memory location specified by RP2,
RP2 post-decrement by 1 with modulo mode

10 @rp2s Content of memory location specified by RP2,
RP2 post-modification by +2 or –2  with modulo mode

11 @rp2 Content of memory location specified by RP2



MAC816 S3CB519/FB519

21-18

Table 21-8. Condition Code Information

Notation Operand Code Mnemonic Descriptions

cc 0000 Z Z = 1

0001 NZ Z = 0

0010 C C = 1

0011 NC C = 0

0100 NEG N = 1

0101 POS N = 0

0110 V1 V = 1

0111 V0 V = 0

1000 – Reserved

1001 GT N = 0 and Z = 0

1010 LE N = 1 and Z = 1

1011 MV1 MV = 1

1100 MV0 MV = 0

1101–1111 – Reserved

Table 21-9. Control Bit Code Information

Notation Operand Code Mnemonic Descriptions

bs 000 OPM MSR1[1]

001 PSH1 MSR1[0]

010 ME0 RP0[15], RP0 modulo mode enable

011 ME1 RP1[15], RP1 modulo mode enable

100 M816 MSR1[2]

101 ME2 RP2[15], RP2 modulo mode enable

110 OPA MSR0[5]

111 OPB MSR0[6]



S3CB519/FB519 MAC816

21-19

Table 21-10. AU operation code information

Notation Operand Code Mnemonic Descriptions

EMOD0 00 ELD/ELDT Load

01 EADD/EADDT Addition

10 ESUB/ESUBT Subtraction

11 ECP/ECPT Comparison

EMOD1 0000 ERR/ERRT Rotate right

0001 ERL/ERLT Rotate left

0010 ESR/ESRT Arithmetic shift right

0011 ESL/ESLT Arithmetic shift left

0100 EINC/EINCT Increment

0101 EDEC/EDECT Decrement

0110 ENEG/ENEGT Negation

0111 ECR/ECRT Clear

1000 ENORM/ENORMT Normalization

1001 EABS/EABST Absolution

1010–1111 – reserved

Table 21-11. Others

Notation Operand Code Mnemonic Descriptions

sXsY 00 uu Unsigned by unsigned multiplication

01 us Unsigned by signed multiplication

10 su Signed by unsigned multiplication

11 none Signed by signed multiplication

rs 0 ER Reset

1 ES Set

ts 0 ELD/
EMOD1/
EMOD0

Execute mnemonic always

1 ELDT/
EMOD1T/
EMOD0T

Execute mnemonic when test result flag (MSR0[4] or T)
is set.
If T = 0, act as nop.



MAC816 S3CB519/FB519

21-20

INSTRUCTION ENCODING

Table 21-12. Instruction Encoding

Instruction 11 10 9 8 7 6 5 4 3 2 1 0 2nd Word

ELD Mreg2,@rpm 00 00 0 Mreg2 rpm –

ELD @rpm,Mreg2 1

ELD Mreg3,@rpm 01 00 Mreg3

ELD @rpm,Mreg3 01

ELD Mreg1,adr:4 10 Mreg1 adr[3:0]

ELD adr:4,Mreg1 11 Mreg1

ESEC0 #imm:4 10 00 00 Imm[3:0]

ESEC0 #imm:4 01

ESEC0 #imm:4 10

ECR MV 11

ELD Mreg2d,Mreg2s 01 Mreg2d Mreg2s

EMOD0 A,#imm:5 1 EMOD0 Imm[4:0]

ELD adr:6,MAm 11 adr[5:4] MAm adr[3:0]

ELD MAm,adr:6 01 00 MAm

EADD Am,adr:6 01 Am

ESUB Am,adr:6 10

ECP Am,adr:6 11

ELD Mreg,Am 10 00 00 Mreg

ELD Am,Mreg 01

ELD/ELDT @rpm,Am 1 ts rpm

EMOD1/EMOD1T Am 01 0 EMOD1

EMOD0/EMOD0T Am,MAm 1 MAm EMOD0

EMOD0/EMOD0T Am,@rpm 1 EMOD0 rpm



S3CB519/FB519 MAC816

21-21

Table 21-12. Instruction Encoding (Continued)

Instruction 11 10 9 8 7 6 5 4 3 2 1 0 2nd Word

ELD Mreg,#imm:16 11 00 Mreg Imm[15:12] Imm[11:0]

EMOD0 Am,#imm:16 01 EMOD0 Am

EMAD @rp0m,@rp2m,sXsY 10 00 rp0m rp2m sXsY –

EMSB @rp0m,@rp2m,sXsY 01

EMUL @rp0m,@rp2m,sXsY 10

EMUL Ai,@rp2m,sXsY 11 0 Ai

EMUL X,@rp2m,sXsY 10

EMUL @rp0mY,,sXsY 11 rp0m

EMAD Ai,@rp2m,sXsY 11 00 0 Ai rp2m

EMAD X,@rp2m,sXsY 10

EMAD @rp0m,Y,sXsY 11 rp0m

EMSB Ai,@rp2m,sXsY 01 0 Ai rp2m

EMSB X,@rp2m,sXsY 10

EMSB @rp0m,Y,sXsY 11 rp0m

EMAD X,Y,sXsY 10 00 00

EMSB X,Y,sXsY 01

EMUL X,Y,sXsY 10

ESR MA 01 00 xx

ESL MA 01

ERND MA 10

ENOP 1 xxxxx

ERPM rpm 00 rpm

ER/ES bs 11 01 rs bs

ETST cc 10 cc

ELD RPDN,#imm:4 11 Imm[3:0]

NOTE: "X" means not applicable.



MAC816 S3CB519/FB519

21-22

QUICK REFERENCE

Table 21-13. Quick Reference

Operation Operand1 Operand2 Function Flag

ELD
EADD
ESUB
ECP

A #imm:5 op1 ← op2
op1 ← op1 + op2
op1 ← op1 - op2
op1 - op2

–
c.z,v,n
c,z,v,n
c,z,v,n

ELD RPDN #imm:4 RPD[7:4] ← op2

ELD Adr:6 Am/MAm op1 ← op2

ELD Am/MAm Adr:6 op1 ← op2

EADD
ESUB
ECP

Am Adr:6 op1 ← op1 + op2
op1 ← op1 - op2
op1 - op2

c.z,v,n
c,z,v,n
c,z,v,n

ELD Mreg1 Adr:4 op1 ← op2 –

ELD Adr:4 Mreg1 op1 ← op2 –

ELD Am Mreg op1 ← op2 –

ELD mreg Am op1 ← op2 –

ELD Mreg2d Mreg2s op1 ← op2 –

ELD Mreg2 @rpm op1 ← op2 –

ELD @rpm Mreg2 op1 ← op2 –

ELD
EADD
ESUB
ECP
ELDT
EADDT
ESUBT
ECPT

Am MAm op1 ← op2
op1 ← op1 + op2
op1 ← op1 - op2
op1 - op2
If T=1, same as ELD
If T=1, same as EADD
If T=1, same as ESUB
If T=1, same as ECP

–
c.z,v,n
c,z,v,n
c,z,v,n

–
c.z,v,n
c,z,v,n
c,z,v,n

ELD

ELDT

@rpm Am op1 ← op2

If T=1, same as ELD

–

ELD
EADD
ESUB
ECP
ELDT
EADDT
ESUBT
ECPT

Am @rpm op1 ← op2
op1 ← op1 + op2
op1 ← op1 - op2
op1 - op2
If T=1, same as ELD
If T=1, same as EADD
If T=1, same as ESUB
If T=1, same as ECP

–
c.z,v,n
c,z,v,n
c,z,v,n

–
c.z,v,n
c,z,v,n
c,z,v,n



S3CB519/FB519 MAC816

21-23

Table 21-13. Quick Reference (Continued)

Operation Operand1 Operand2 Function Flag

ETST cc – MSR0[4] ← cc (condition check) –

ELD mreg #imm:16 op1 ← op2 –

ELD
EADD
ESUB
ECP

A #imm:16 op1 ← op2
op1 ← op1 + op2
op1 ← op1 - op2
op1 - op2

–
c.z,v,n
c,z,v,n
c,z,v,n

ERPM rpm – RP ← modified RP –

ER bs – op1 ← 0 –

ES bs – op1 ← 10 –

ESEC0
ESEC1
ESEC2

MSR1 #imm:4 MSR1[7:4] ← imm[3:0]
MSR1[11:8] ← imm[3:0]
MSR1[15:12] ← imm[3:0]

–

ERR

ERRT

Am – when Am!=AC/BC, op ← {op1}>>1, op1[15] ← op1[0],
c ← op1[0]
when Am=AC/BC, op1← {c:op1}>>1, c ← op1[0]
when t=1, same as ERR

c,z,v,n

c,z,v,n

ERL

ERLT

Am – when Am!=AC/BC, op←{op1}<<1, op1[0]←op[15], c←op[15],
when Am=AC/BC, op1←{op1:c}<<1, c←op[15]
when t=1, same as ERL

c,z,v,n

c,z,v,n

ESR

ESRT

Am – when Am!=AC/BC, op ← {op1}>>1, c ← op1[0]
when Am=AC/BC, op1 ← {c:op1}>>1, c ← op1[0]
when t=1, same as ESR

c,z,v,n

c,z,v,n

ESL

ESLT

Am – when Am!=AC/BC, op1 ← {op1}<<1, op1[0] ← 0, c ← op[15],
when Am=AC/BC, op1 ← {op1:c}<<1, c ← op[15]
when t=1, same as ESL

c,z,v,n

c,z,v,n

EINC

EINCT

Am – when Am!=AC/BC, op1 ← op1+1
when Am=AC/BC, op1 ← op1+c
when t=1, same as EINC

c,z,v,n

c,z,v,n

EDEC

EDECT

Am – when Am!=AC/BC, op1 ← op1+ffffh
when Am=AC/BC, op1 ← op1+ffffh+c
when t=1, same as EDEC

c,z,v,n

c,z,v,n

ENEG

ENEGT

Am – when Am!=AC/BC, op1 ← ~op1+1
when Am=AC/BC, op1 ← ~op1+c
when t=1, same as ENEG

c,z,v,n

c,z,v,n

EABS

EABST

Am – when Am!=AC/BC, if op[15]=1, op1 ← ~op1+1
when Am=AC/BC, op[15]=1, op1 ← ~op1+c
when t=1, same as EABS

c,z,v,n

c,z,v,n

ENORM

ENORMT

Am – when Am!=AC/BC, if op1[15]^op1[14]=0,
op1 ← {op1}<<1, op1[0] ← 0, RP0 ← RP0+1
when Am=AC/BC, if op1[15]^op1[14]=0,
op1 ← {op1:c}<<1, RP0 ← RP0+1
when t=1, same as ENORMT

c,z,v,n

c,z,v,n

ECR
ECRT

Am – op1 ← 0
when t=1, same as ECR

–



MAC816 S3CB519/FB519

21-24

Table 21-13. Quick Reference (Concluded)

Operation Operand1 Operand2 Operand3 Function Flag

ESR MA – – op1 ← op1>>1 –

ESL MA – – op1 ← op1<<1 MV

ERND MA – – MA[31:16] ← MA[31:16] + MA[15] MV

EMAD MA @rp0m @rp2m X-reg ← @rp0m, Y-reg ← @rp2m,

MA ← MA+X*Y

MV

EMSB MA @rp0m @rp2m X-reg ← @rp0m, Y-reg ← @rp2m,

MA ← MA-X*Y

MV

EMUL MA @rp0m @rp2m X-reg ← @rp0m, Y-reg ← @rp2m,

MA ← (X*Y)

–

EMAD MA Ai @rp2m X-reg ← op2, Y-reg ← @rp2m,

MA ← MA+X*Y

MV

EMSB MA Ai @rp2m X-reg ← op2, Y-reg ← @rp2m,

MA ← MA-X*Y

MV

EMUL MA Ai @rp2m X-reg ← op2, Y-reg ← @rp2m,

MA ← (X*Y)

–

EMAD MA X @rp2m Y-reg ← @rp2m,

MA ← MA+X*Y

MV

EMSB MA X @rp2m Y-reg ←  @rp2m,

MA ← MA-X*Y

MV

EMUL MA X @rp2m Y-reg ← @rp2m,

MA ← (X*Y)

–

EMAD MA @rp0m Y X-reg ← @rp0m,

MA ← MA+X*Y

MV

EMSB MA @rp0m Y X-reg ← @rp0m,

MA ← MA-X*Y

MV

EMUL MA @rp0m Y X-reg ← @rp0m,

MA ← (X*Y)

–

EMAD MA X Y MA ← MA+X*Y MV

EMSB MA X Y MA ← MA-X*Y MV

EMUL MA X Y MA ← (X*Y) –



S3CB519/FB519 MAC816

21-25

MAC816 INSTRUCTION DESCRIPTION

EABS  —  Absolute

Format: EABS <op>
     <op>: Am

Operation: If the MSB of <op> is 1, <op> ← ~<op> +1 when <op> is A or B.
If the MSB of <op> is 1, <op> ← ~<op> +C when <op> is AC or BC.
EABS adds the values 0 and the 2’s complement of <op>.

Flags: C:   set if the borrow of result is zero. Reset if not.
 Z:   set if result is zero. Reset if not.
 V:   set if overflow is generated. Reset if not.
 N:   exclusive OR of V and MSB of result.



MAC816 S3CB519/FB519

21-26

EABST —  Absolute conditional

Format: EABST <op>
 <op>: Am

Operation: If T=1, then same as EABS, else no operation

Flags: If T=1, then same as EABS, else no operation



S3CB519/FB519 MAC816

21-27

EADD —  Add

Format: EADD <op1>, <op2>
 <op1>: Am: A, B, AC, BC
 <op2>: adr:6, @rpm, Ai, Mreg, #imm:16, #imm:5

Operation: <op1> ← <op1 + <op2> when <op1> is A or B.
 <op1> ← <op1 + <op2> + C when <op1> is AC or BC.
 EADD adds the values in <op1> and <op2> and stores the result in <op1>.

Flags: C:   set if the carry of result is 1. Reset if not.
 Z:   set if result is zero. Reset if not.
 V:   set if overflow is generated. Reset if not.
 N:   exclusive OR of V and MSB of result.

NOTE: If <op1> is B, <op2> can not be #imm:5.



MAC816 S3CB519/FB519

21-28

EADDT — Add conditional

Format: EADDT <op1>, <op2>
 <op1>: Am: A, B, AC, BC
 <op2>: @rpm, Ai, MAH,MAL

Operation: If T=1, then same as EADD, else no operation

Flags: If T=1, then same as EADD, else no operation



S3CB519/FB519 MAC816

21-29

ECP —  Compare

Format: ECP <op1>, <op2>
 <op1>: Am
 <op2>: adr:6, @rpm, Ai, Mreg, #imm:16, #imm:5

Operation: <op1> + ~<op2> +1 when <op1> is A or B.
 <op1> + ~<op2> +C when <op1> is AC or BC.
 ECP compares the values of <op1> and <op2> by subtracting <op2> from <op1>.
 Contents of    <op1> and <op2> are not changed.

Flags: C:   set if the borrow of result is zero. Reset if not.
 Z:   set if result is zero. Reset if not.
 V:   set if overflow is generated. Reset if not.
 N:   exclusive OR of V and MSB of result.

NOTE: If <op1> is B, <op2> can not be #imm:5.



MAC816 S3CB519/FB519

21-30

ECPT —  Compare conditional

Format: ECPT <op1>, <op2>
 <op1>: Am: A, B, AC, BC
 <op2>: @rpm, Ai, MAH,MAL

Operation: If T=1, then same as ECP, else no operation

Flags: If T=1, then same as ECP, else no operation



S3CB519/FB519 MAC816

21-31

ECR  —  Clear

Format: ECRT <op>
 <op>: Ai, MV

Operation: <op> ← 0
 ECRT clears Ai or MV.



MAC816 S3CB519/FB519

21-32

ECRT —  Clear

Format: ECRT <op>
 <op>: Ai

Operation: If T=1, <op> ← 0
 ECRT clears Ai when T=1.



S3CB519/FB519 MAC816

21-33

EDEC —  Decrement

Format: EDEC <op>
 <op>: Am

Operation: <op> ← <op> + 0xffff when <op> is A or B.
 <op> ← <op> + 0xffff + C when <op> is AC or BC.
 EDEC decrements the value in <op>.

Flags: C:   set if carry is generated. Reset if not.
 Z:   set if result is zero. Reset if not.
 V:   set if overflow is generated. Reset if not.
 N:   exclusive OR of V and MSB of result.



MAC816 S3CB519/FB519

21-34

EDECT —  Decrement conditional

Format: EDECT <op>
 <op>: Am

Operation: If T=1, then same as EDEC, else no operation

Flags: If T=1, then same as EDEC, else no operation



S3CB519/FB519 MAC816

21-35

EINC —  Increment

Format: EINC <op>
 <op>: Am

Operation: <op> ← <op> + 1 when <op> is A or B.
 <op> ← <op> + C when <op> is AC or BC.
 EINC increments the value in <op>.

Flags: C:   set if carry is generated. Reset if not.
 Z:   set if result is zero. Reset if not.
 V:   set if overflow is generated. Reset if not.
 N:   exclusive OR of V and MSB of result.



MAC816 S3CB519/FB519

21-36

EINCT —  Increment conditional

Format: EINCT <op>
 <op>: Am

Operation: If T=1, then same as EINC, else no operation

Flags: If T=1, then same as EINC, else no operation



S3CB519/FB519 MAC816

21-37

ELD Adr —  Load Adr

Format: ELD <op1>, <op2>
 <op1>,<op2>: adr:6, MAi  /  adr:4,Mreg1

Operation: <op1> ← <op2>
 ELD Adr loads a value specified by <op2> into the memory location determined by <op1>



MAC816 S3CB519/FB519

21-38

ELD Ai —  Load Ai

Format: ELD <op1>, <op2>
 <op1>: Ai: A, B
 <op2>: adr:6, @rpm, Ai, Mreg, #imm:5, #imm:16

Operation: Ai ← <op2>
 ELD Ai loads a value specified by <op2> into the register designated by Ai.

NOTE: If <op1> is B, <op2> can not be #imm:5.



S3CB519/FB519 MAC816

21-39

ELD Mreg —  Load Mreg

Format: ELD <op1>, <op2>
 <op1>: Mreg
 <op2>: Ai

Operation: Mreg ← Ai
 ELD Mreg loads a value specified by <op2> into the register designated by Mreg.



MAC816 S3CB519/FB519

21-40

ELD Mreg1 —  Load Mreg1

Format: ELD <op1>, <op2>
 <op1>: Mreg1: RP0, RP1, RP2, RPD
 <op2>: adr:4

Operation: Mreg1 ← adr:4
 ELD Mreg1 loads the content of memory location determined by adr:4 into the register
 designated by Mreg1.



S3CB519/FB519 MAC816

21-41

ELD Mreg2 —  Load Mreg2

Format: ELD <op1>, <op2>
 <op1>: Mreg2: X, Y, MAH, MAL
 <op2>: @rpm

Operation: Mreg2 ← @rpm, rpi ← post-modified rpi
 ELD Mreg2 loads the content of memory location determined by @rpm into the register
 designated by Mreg2.



MAC816 S3CB519/FB519

21-42

ELD Mreg3 —  Load Mreg3

Format: ELD <op1>, <op2>
 <op1>: Mreg3: MC0, MC1, MSR0, MSR1
 <op2>: @rpm

Operation: Mreg3 ← @rpm
 ELD Mreg3 loads the content of memory location determined by @rpm into the register
 designated by Mreg3.



S3CB519/FB519 MAC816

21-43

ELD @rpm —  Load into memory indexed

Format: ELD <op1>, <op2>
 <op1>: @rpm
 <op2>: Ai, Mreg2, Mreg3

Operation: @rpm ← <op2>, rpi ← post-modified rpi
 ELD @rpm loads the value of <op2> into the memory location determined by @rpm.



MAC816 S3CB519/FB519

21-44

EMAD —  Multiplication and Addition

Format: EMAD <op1>, <op2>,sXsY
 <op1>,<op2>: @rp0m,@rp2m / Ai,@rp2m / X,@rp2m / @rp0m,Y / X,Y

Operation: X ← <op1>, Y ← <op2>,  MA ← MA + {sign,X}*{sign,Y}
 EMAD multiplies the values in <op1> and <op2> and adds the result in  MA.

Flags: MV:   Set if the arithmetic overflow occurs in MA after this instruction.



S3CB519/FB519 MAC816

21-45

EMSB —  Multiplication and Subtraction

Format: EMSB <op1>, <op2>,sXsY
 <op1>,<op2>: @rp0m,@rp2m / Ai,@rp2m / X,@rp2m / @rp0m,Y / X,Y

Operation: X ← <op1>, Y ← <op2>,  MA ← MA – {sign,X}*{sign,Y}
 EMAD multiplies the values in <op1> and <op2> together and subtracts the result in MA.

Flags: MV:   Set if the arithmetic overflow occurs in MA after this instruction.



MAC816 S3CB519/FB519

21-46

EMUL —  Multiply

Format: EMUL <op1>, <op2>,sXsY
 <op1>,<op2>: @rp0m,@rp2m / Ai,@rp2m / X,@rp2m / @rp0m,Y / X,Y

Operation: X ← <op1>, Y ← <op2>,  MA ← {sign,X}*{sign,Y}
 EMUL multiplies the values in <op1> and <op2> and stores the result in MA.



S3CB519/FB519 MAC816

21-47

ENEG —  Negate

Format: ENEG <op>
 <op>: Am

Operation: <op> ← ~<op> +1  when <op> is A or B.
 <op> ← ~<op> +C  when <op> is AC or BC.
 ESUB adds the values 0 and the 2’s complement of <op> to to negate <op>.

Flags: C:   set if the borrow of result is zero. Reset if not.
 Z:   set if result is zero. Reset if not.
 V:   set if overflow is generated. Reset if not.
 N:   exclusive OR of V and MSB of result.



MAC816 S3CB519/FB519

21-48

ENEGT —  Negate conditional

Format: ENEGT <op>
 <op>: Am

Operation: If T=1, then same as ENEG, else no operation

Flags: If T=1, then same as ENEG, else no operation



S3CB519/FB519 MAC816

21-49

ENOP —  No operation

Format: ENOP

Operation: No operation

Flags: No operation



MAC816 S3CB519/FB519

21-50

ENORM —  Normalization step

Format: ENORM <op>
 <op>: Am

Operation: If <op>[15] == <op>[14], <op> ← <op> << 1, RP0 ← RP0+1 when <op> is A or B.
 If <op>[15] == <op>[14], <op> ← {<op>,C} <<1, RP0 ← RP0+1 when <op> is AC or BC.

Flags: C:   <op>[15] ^ <op>[14]
 Z:   set if result is zero. Reset if not
 V:   reset to zero.
 N:   set if the MSB of result is 1. Reset if not



S3CB519/FB519 MAC816

21-51

ENORMT —  Normalization step conditional

Format: ENORMT <op>
 <op>: Am

Operation: If T=1, then same as ENORM, else no operation

Flags: If T=1, then same as ENORM, else no operation



MAC816 S3CB519/FB519

21-52

ER —  Bit Reset

Format: ER bs

Operation: bs ← 0
 ES resets the specified bit.



S3CB519/FB519 MAC816

21-53

ERL —  Rotate Left

Format: ERL <op>
 <op>: Am

Operation: <op> ← {<op>[14:0],<op>[15]}, C ← <op>[15] when Am is A or B.
 <op> ← {<op>[14:0],C}, C ← <op>[15] when Am is AC or BC.
 ERL rotates the value of <op> to the left and stores the result back into <op>.
 The original MSB of <op> is copied into carry (C).

Flags: C:   set if the MSB of <op> (before shifting) is 1. Reset if not
 Z:   set if result is zero. Reset if not
 V:   reset to zero.
 N:   set if the MSB of result is 1. Reset if not



MAC816 S3CB519/FB519

21-54

ERLT —  Rotate Left conditional

Format: ERLT <op>
 <op>: Am

Operation: If T=1, then same as ERL, else no operation

Flags: If T=1, then same as ERL, else no operation



S3CB519/FB519 MAC816

21-55

ERND —  Round off

Format: ERND MA

Operation: MA[31:16] ← MA[31:16] + MA[15],  MA[15:0] ← 0
 ERND adds 0x8000 to the lower 16-bit position of MA and stores the result in MA.

Flags: MV:   set if overflow is generated. Reset if not



MAC816 S3CB519/FB519

21-56

ERPM  —  Modify Ram pointer

Format: ERPM rpm

Operation: rpi ← modified rpi
 ERPM modifies a rpi by rpm.

NOTE: It does not generate a cycle of RAM access.



S3CB519/FB519 MAC816

21-57

ERR —  Rotate Right

Format: ERR <op>
 <op>: Am

Operation: <op> ← {<op>[0], <op>[15:1]}, C ← <op>[0]  when Am is A or B.
 <op> ← {C, <op>[15:1]}, C ← <op>[0]  when Am is AC or BC.
 RR rotates the value of <op> to the right and stores the result back into <op>.
 The original LSB of <op> is copied into carry (C).

Flags: C:   set if the LSB of <op>(before shifting) is 1. Reset if not
 Z:   set if result is zero. Reset if not
 V:   reset to zero.
 N:   set if the MSB of result is 1. Reset if not



MAC816 S3CB519/FB519

21-58

ERRT —  Rotate Right conditional

Format: ERRT <op>
 <op>: Am

Operation: If T=1, then same as ERR, else no operation

Flags: If T=1, then same as ERR, else no operation



S3CB519/FB519 MAC816

21-59

ES —  Bit Set

Format: ES bs

Operation: bs ← 1
 ES sets the specified bit.



MAC816 S3CB519/FB519

21-60

ESEC0 / ESEC1 / ESEC2 —  Set SECi

Format: ESEC0 #imm:4
 ESEC1 #imm:4
 ESEC2 #imm:4

Operation: ESEC0: SEC0[3:0] ← #imm:4
 ESEC1: SEC1[3:0] ← #imm:4
 ESEC2: SEC2[3:0] ← #imm:4



S3CB519/FB519 MAC816

21-61

ESL —  Shift Left

Format: ESL <op>
 <op>:Am

Operation: <op> ← {<op>[14:0],0}, C ← <op>[15]  when <op> is A or B.
 <op> ← {<op>[14:0],C}, C ← <op>[15]  when <op> is AC or BC.
 ESL shifts to the left by 1 bit. The MSB of the original <op> is copied into carry(C).

Flags: C:   set if the MSB of <op>(before shifting) is 1. Reset if not
 Z:   set if result is zero. Reset if not
 V:   set if overflow is generated. Reset if not.
 N:   exclusive OR of V and MSB of result.



MAC816 S3CB519/FB519

21-62

ESLT —  Shift Left conditional

Format: ESLT <op>
 <op>: Am

Operation: If T=1, then same as ESL, else no operation

Flags: If T=1, then same as ESL, else no operation



S3CB519/FB519 MAC816

21-63

ESR  —  Shift Right

Format: ESR <op>
 <op>:Am

Operation: <op> ← {<op>[15],<op>[15:1]}, C ← <op>[0]  when <op> is A or B.
 <op> ← {C,<op>[15:1]}, C ← <op>[0]  when <op> is AC or BC.
 ESR shifts to the right by 1 bit. The LSB of the original <op> is copied into carry(C).

Flags: C:   set if the LSB of <op>(before shifting) is 1. Reset if not
 Z:   set if result is zero. Reset if not
 V:   set to zero
 N:   set if result is negative. Reset if not



MAC816 S3CB519/FB519

21-64

ESRT — Shift Right conditional

Format: ESRT <op>
 <op>: Am

Operation: If T=1, then same as ESR, else no operation

Flags: If T=1, then same as ESR, else no operation



S3CB519/FB519 MAC816

21-65

ESUB —  Subtract

Format: ESUB <op1>, <op2>
 <op1>: Am
 <op2>: adr:6, @rpm, Ai, Mreg, #imm:16, #imm:5

Operation: <op1> ← <op1> + ~<op2> +1  when <op1> is A or B.
 <op1> ← <op1> + ~<op2> +C  when <op1> is AC or BC.
 ESUB adds the values in <op1> and the 2’s complement of <op2>,
 to perform subtraction on <op1> and <op2>.

Flags: C:   set if the borrow of result is zero. Reset if not.
 Z:   set if result is zero. Reset if not.
 V:   set if overflow is generated. Reset if not.
 N:   exclusive OR of V and MSB of result.

NOTE: If <op1> is B, <op2> can not be #imm:5.



MAC816 S3CB519/FB519

21-66

ESUBT —  Subtract conditional

Format: ESUBT <op1>, <op2>
 <op1>: Am
 <op2>: @rpm, Ai, MAH, MAL

Operation: If T=1, then same as ESUB, else no operation

Flags: If T=1, then same as ESUB, else no operation



S3CB519/FB519 MAC816

21-67

ETST —  Test Condition

Format: ETST cc
 cc: Z, NZ, C, NC, NEG, POS, V1, V0, GT, LE, MV1, MV0

Operation: T ← test result
 ETST tests the specified condition of a flag.

Flags: T:   set if test result is true. Reset if not



MAC816 S3CB519/FB519

21-68

NOTES



S3CB519/FB519 ELECTRICAL DATA

22-1

22 ELECTRICAL DATA

OVERVIEW

Table 22-1. Absolute Maximum Ratings

(TA = 25 °C)

Parameter Symbol Conditions Rating Unit

Supply voltage VDD – -0.3  to  + 6.5 V

Input voltage VI – -0.3  to  VDD + 0.3 V

Output voltage VO – -0.3  to  VDD + 0.3 V

Output current high IOH One I/O pin active -18 mA

All I/O pins active -60

Output current low IOL One I/O pin active + 30 mA

Total pin current for port + 100

Operating temperature TA – -40  to  + 85 °C

Storage temperature TSTG – -65  to  + 150 °C

Table 22-2. D.C. Electrical Characteristics

(TA  = -40 °C to  + 85 °C, VDD  =  2.2 V  to  5.5  V)

Parameter Symbol Conditions Min Typ Max Unit

Operating  voltage VDD fxx = 8.2 MHz 3.0 – 5.5 V

fxx = 4.1 MHz 2.2 – 5.5

Input high  voltage VIH1 All input pins except VIH2 0.8 VDD – VDD V

VIH2 XIN, XTIN VDD-0.1

Input low voltage VIL1 All input pins except VIL2 – – 0.2 VDD V

VIL2 XIN, XTIN 0.1



ELECTRICAL DATA S3CB519/FB519

22-2

Table 22-2. D.C. Electrical Characteristics (Continued)

(TA = -40 °C to + 85 °C, VDD = 2.2 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit

Output high voltage VOH1 VDD = 5 V; IOH = -1 mA
All output pins except VOH2

VDD-1.0 – – V

VOH2 VDD = 5 V; IOH = -15 mA

Port 5

VDD-1.0 – –

Output low voltage VOL1 VDD = 4.5-5.5 V; IOL = 15 mA – 0.4 2 V

Input high leakage
current

ILIH1 VIN = VDD
All input pins except ILIH2

– – 3 uA

ILIH2 VIN = VDD
XIN, XTIN, XOUT, XTOUT

20

Input low leakage
current

ILIL1 VIN = 0 V
All input pins except ILIL2

– – -3

ILIL2 VIN = 0 V

XIN, XTIN, XOUT, XTOUT, RESET
-20

Output high
leakage current

ILOH VOUT = VDD

All I/O pins and Output pins
– – 3

Output low
leakage current

ILOL VOUT = 0 V

All I/O pins and Output pins
– – -3

Pull-up resistor RL1 VIN = 0 V; VDD = 5 V ± 10%

All port, TA = 25 °C

30 50 70 kΩ

RL2 VIN = 0 V; VDD = 5 V ± 10%

TA = 25 °C, RESET only

110 210 310



S3CB519/FB519 ELECTRICAL DATA

22-3

Table 22-2. D.C. Electrical Characteristics (Concluded)

(TA = -40 °C to + 85 °C, VDD = 2.2 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit

|VDD–COMi|

voltage drop (I=0-16)

VDC VDD = 2.7  to  5.5 V

-15 uA per common pin
LCNST = 00000000b

– – 120 mV

|VDD–SEGi|

voltage drop (I=0-55)

VDS VDD = 2.7  to  5.5 V

-15 uA per segment pin
LCNST = 00000000b

– – 120 mV

LCD voltage
dividing resistor

RLCD1 VLCD = 2.7  to  5.5 V; LCON.3 = 0 40 55 70 KΩ

RLCD2 VLCD = 2.7  to  5.5 V; LCON.3 = 1 20 28 35

Total contrast
resistor

RCNST VLCD = 2.7  to  5.5 V;

LCNST = 10000000b

– 140 –

VLC Output voltage VLC1 VLCD = 2.7 to  5.5 V VDD-0.2 VDD
VDD+0.2 V

VLC2 LCD clock = 0 Hz 0.8VDD-0.2 0.8 VDD
0.8VDD+0.2

VLC3 LCNST = 00000000b 0.6VDD-0.2 0.6 VDD
0.6VDD+0.2

VLC4
0.4VDD-0.2 0.4 VDD

0.4VDD+0.2

VLC5
0.2VDD-0.2 0.2 VDD

0.2VDD+0.2

Supply current (1) IDD1 Run mode; VDD = 5 V ± 10%
6 MHz crystal oscillator

– 4 8 mA

4 MHz crystal oscillator 2.7 5.4

VDD = 3 V ± 10%
6 MHz crystal oscillator

– 2 4 mA

4 MHz crystal oscillator 1.3 2.6

IDD2 Idle mode: VDD = 5 V ± 10 %
6 MHz crystal oscillator

– 1.2 2.5 mA

4 MHz crystal oscillator 1.0 2.0

Idle mode: VDD = 3 V± 10 %
6 MHz crystal oscillator

0.5 1.5 mA

4 MHz crystal oscillator 0.4 1.0

IDD3 Sub-run mode; VDD = 3 V± 10 %

Main stop, 32 kHz sub-osc.

– 17 34 uA

IDD4 Sub-idle mode; VDD = 3 V± 10 %

Main stop, 32 kHz

– 4.8 10 uA

IDD5 Stop mode ; VDD = 5 V ± 10 % – 0.2 3 uA

VDD = 3 V ± 10 % 0.1 2

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads and 
ADC, DAC, BLD, LCD voltage dividing resistor.



ELECTRICAL DATA S3CB519/FB519

22-4

Table 22-3. A.C. Electrical Characteristics

(TA = -40 °C to + 85 °C, VDD = 2.2 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Unit

Interrupt input high,
low width

tINTH,
tINTL

P0, P1
VDD = 5 V

– 200 – ns

RESET input
low width

tRSL VDD = 5 V ± 10 % 5 – – us

NOTE: User must keep a larger value than the min value.

tINTHtINTL

0.8 VDD

0.2 VDD

Figure 22-1. Input Timing for External Interrupts (Port 0, Port 1)

RESET

tRSL

0.2 VDD

Figure 22-2. Input Timing for RESETRESET



S3CB519/FB519 ELECTRICAL DATA

22-5

Table 22-4. Data Retention Supply Voltage in Stop Mode

(TA = -40 °C to + 85 °C)

Parameter Symbol Conditions Min Typ Max Unit

Data retention
supply voltage

VDDDR – 2.2 – 5.5 V

Data retention
supply current

IDDDR VDDDR = 2.2 V – – 2 uA

Execution of
STOP Instruction

RESET
Occur

~ ~
VDDDR

~ ~

Stop Mode
Normal
Operating ModeData Retention Mode

tWAIT

RESET

VDD

NOTE:   tWAIT is same as 2048 x 32 x 1/fxx

Oscillation
Stabilization Time

0.2VDD

Figure 22-3. Stop Mode Release Timing When Initiated by a RESETRESET



ELECTRICAL DATA S3CB519/FB519

22-6

Execution of
STOP Instruction

VDDDR

~ ~ Data Retention
VDD

Normal
Operating
Mode

~ ~

Stop Mode

OSC Start
up time

tWAIT

  NOTE: tWAIT is same as 2048 x 32 x 1/fxx. The value of 2048 which is selected for the clock
source of the basic timer can be changed. And then the value of tWAIT will be changed.

Oscillation
Stabilization Time

0.2 VDD

INT

Figure 22-4. Stop Mode (Main) Release Timing Initiated by Interrupts

Execution of
STOP Instruction

VDDDR

~ ~ Data Retention
VDD

Normal
Operating
Mode

~ ~

Stop Mode

OSC Start
up time

tWAIT

  NOTE: tWAIT is same as 256 x 32 x 1/fxx. The oscillator strat up time is less than
100 ms. The value of 256 which is selected for the clock source of basic timer
must be kept  within this value.

Oscillation
Stabilization Time

0.2 VDD

INT

Figure 22-5. Stop Mode (Sub) Release Timing Initiated by Interrupts



S3CB519/FB519 ELECTRICAL DATA

22-7

Table 22-5. Synchronous SIO Electrical Characteristics

(TA = -40 °C to + 85 °C VDD = 4.5 V to 5.5 V, VSS = 0 V, fxx = 10 MHz oscillator )

Parameter Symbol Conditions Min Typ Max Unit

SCK Cycle time tCYC – 200 – – ns

Serial Clock High Width tSCKH – 60 – –

Serial Clock Low Width tSCKL – 60 – –

Serial Output data delay
time

tOD – – – 50

Serial Input data  setup
time

tID – 40 – –

Serial Input data  Hold
time

tIH – 100 – –

Output Data

Input Data

SCK

tSCKH

tCYC

tSCKL

0.8 VDD

0.2 VDD

tOD

tID tIH

0.8 VDD

0.2 VDD
SI

SO

Figure 22-6. Serial Data Transfer Timing



ELECTRICAL DATA S3CB519/FB519

22-8

Table 22-6. BLD Electrical Characteristics

(TA = 25 °C, VDD = 2.2 V to  5.5 V, VSS = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

BLD Voltage VB0 Internal VDD mode Typ-0.15 2.4 Typ+0.15 V

VB1 2.7

VB2 3.0

VB3 3.3

VB4 Typ-0.3 4.0 Typ+0.3

VB5 4.5

VB6 External Input mode,

VDD = 2.2 V–3.0 V

Typ-0.15 1.2 Typ+0.15

VB7 External Input mode,

VDD = 3.0 V–5.5 V

Typ-0.3 1.2 Typ+0.3

BLD Current IBLD VDD = 5.5 V – 50 100 uA

BLD Response TB VDD = 5.5 V – 1/fw (note) – us

NOTE: The fw must be greater than 10 µsec.

Table 22-7. ADC Electrical Characteristics

(TA = -40 °C to + 85 °C, VDD = 3.0 V  to 5.5 V, VSS = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

ADC Current IADC VDD = 3.3 V – 1.5 3 mA

Sampling Frequency – – – 8 11 kHz

Resolution – Measurement Bandwidth: 20 Hz–4 kHz,
Full scale input sine wave: 1 kHz,
Sampling frequency: 8 kHz

– 14 – bits

Signal to Distortion
ratio

– 70 75 – dB

Offset Error – – – ±20 mV

Input Voltage Range – VDD = 3.3 V – 2 – VPP

NOTE: All the data in this ADC characteristics is measured in the condition of  VDD = 3.3 V



S3CB519/FB519 ELECTRICAL DATA

22-9

Table 22-8. DAC Electrical Characteristics

(TA = -40 °C to + 85 °C, VDD = 2.4 V to 5.5 V, VSS = 0 V)

Parameter Symbol Conditions Min Typ Max Unit

DAC Current IDAC VDD = 5.5 V – 1.5 3.0 mA

Resolution – – – 8 – bits

Absolute Accuracy – -3 – 3 LSB

Differential Linearity Error DLE -1.5 – 1.5 LSB

Output Delay – – – 250 us

Output Load Resistance Ro – 10 – kΩ

Output Level
(peak to peak)

– TA = -30 °C  to  + 60 °C 1.2 1.5 1.88 VPP

Regulator Bias voltage – VDD = 3.3 V – VDD/2 – V

Output Interval – OSC = 4.096 MHz;

AD/DA clock input = 8 kHz

– 31 – us



ELECTRICAL DATA S3CB519/FB519

22-10

Table 22-9. Main Oscillator Frequency (fOSC1)

(TA = -40 °C to + 85 °C VDD = 2.2 V to 5.5 V)

Oscillator Clock Circuit Test Condition Min Typ Max Unit

Crystal/Ceramic
XIN

C1 C2

XOUT
VDD = 2.2 V–5.5 V 0.4 – 4.1 MHz

VDD = 2.4 V–5.5 V 6.2

VDD = 3.0 V–5.5 V 8.2

External clock
XIN XOUT

VDD = 2.2 V–5.5 V 0.4 – 4.1 MHz

VDD = 2.4 V–5.5 V 6.2

VDD = 3.0 V–5.5 V 8.2

RC
XIN XOUT

R = 20 Kohm, VDD = 5 V – 2 – MHz

NOTE: Oscillation frequency and Xin input frequency data are for oscillator characteristics only.

Table 22-10. Main Oscillator Clock Stabilization Time (TST1)

(TA = -40 °C + 85 °C, VDD = 4.5 V to 5.5 V)

Oscillator Test Condition Min Typ Max Unit

Crystal VDD = 4.5 V  to  5.5 V – – 10 ms

Ceramic Stabilization occurs when VDD is equal to the minimum

oscillator voltage range.
VDD = 4.5 V  to  5.5 V

– – 4 ms

External clock XIN input high and low level width (tXH, tXL) 50 – – ns

NOTE: Oscillation stabilization time (TST1) is the time required for the CPU clock to return to its normal oscillation

frequency after a power-on occurs, or when Stop mode is ended by a RESET signal.



S3CB519/FB519 ELECTRICAL DATA

22-11

XIN

tXHtXL

1/fosc1

VDD - 0.1 V

0.1 V

Figure 22-7. Clock Timing Measurement at XIN

Table 22-11. Sub Oscillator Frequency (fOSC2)

(TA = -40 °C + 85 °C, VDD = 2.2 V to 5.5 V)

Oscillator Clock Circuit Test Condition Min Typ Max Unit

Crystal

C1 C2

XTIN XTOUT

R

Crystal  oscillation frequency

C1 = 22 pF,      C2 = 33 pF
R   = 39 KΩ
XTIN and XTOUT are connected

with R and C by soldering.

32 32.768 35 kHz

NOTE: Oscillation frequency and XTin input frequency data are for oscillator characteristics only.

Table 22-12. Sub Oscillator (Crystal) Start up Time (tST2)

(TA = -40 °C +  85 °C, VDD = 2.2 V to 5.5 V)

Oscillator Test Condition Min Typ Max Unit

Normal mode VDD =  4.5 V  to  5.5 V – 1 2 sec

VDD =  2.2 V  to  4.5 V – – 10

Strong mode VDD =  3.0 V  to  5.5 V – – 6

VDD =  2.2 V  to  3.0 V – – 2

NOTE: Oscillation stabilization time (tST2) is the time required for the oscillator to it’s normal oscillation when stop mode is

released by interrupts.



ELECTRICAL DATA S3CB519/FB519

22-12

20 MHz
fxx

 4 MHz

0.4 MHz

1 2 3 4 5 6 7

Supply Voltage (V)

Minimum instruction clock = 1/(1 x oscillator frequency)
A = 2.4 V: 6.2 MHz
B = 3.0 V: 8.2 MHz
C = 4.0 V: 10.24 MHz

6 MHz

8 MHz

12 MHz

A

B

C
10 MHz

Figure 22-8. Operating Voltage Range



S3CB519/FB519 MECHANICAL DATA

23-1

23   MECHANICAL DATA

OVERVIEW

The S3CB519/FB519 microcontroller is currently available in a 100-pin QFP package.



MECHANICAL DATA S3CB519/FB519

23-2

100-QFP-1420C

#100

20.00 ± 0.20

23.90 ± 0.30

14
.0

0 
±

 0
.2

0

17
.9

0 
±

 0
.3

0

0.15
+ 0.10
- 0.05

0-8

0.10 MAX

#1

0.65

NOTE:   Dimensions are in millimeters.

(0.58)
0.

80
 ±

 0
.2

0

0.05 MIN

2.65 ± 0.10

3.00 MAX

0.80 ± 0.20

0.30
+ 0.10
- 0.05

(0
.8

3)

0.15 MAX

0.10 MAX

Figure 23-1. 100-QFP-1420C Package Dimensions



S3CB519/FB519 S3FB519

24-1

24 S3FB519

OVERVIEW

The S3FB519 single-chip CMOS microcontroller is the FLASH version of the S3CB519 microcontroller.
It has an on-chip FLASH ROM instead of masked ROM. The FLASH ROM is accessed by serial data format.

The S3FB519 is fully compatible with the S3CB519, both in function and in pin configuration. Because of its
simple programming requirements, the S3FB519 is ideal for use as an evaluation chip for the S3CB519.



S3CB519/FB519 S3FB519

24-2

C
O

M
8/

P
4.

0
C

O
M

7
C

O
M

6
C

O
M

5
C

O
M

4
C

O
M

3
C

O
M

2
C

O
M

1
C

O
M

0
S

E
G

0
S

E
G

1
S

E
G

2
S

E
G

3
S

E
G

4
S

E
G

5
S

E
G

6
S

E
G

7
S

E
G

8
S

E
G

9
S

E
G

10

R
E

F
L

P
1.

0/
K

S
0

P
1.

1/
K

S
1

P
1.

2/
K

S
2

P
1.

3/
K

S
3

P
2.

0/
S

E
G

55
P

2.
1/

S
E

G
54

P
2.

2/
S

E
G

53
P

2.
3/

S
E

G
52

P
2.

4/
S

E
G

51
P

2.
5/

S
E

G
50

P
2.

6/
S

E
G

49
P

2.
7/

S
E

G
48

P
3.

0/
S

E
G

47
P

3.
1/

S
E

G
46

P
3.

2/
S

E
G

45
P

3.
3/

S
E

G
44

P
3.

4/
S

E
G

43
P

3.
5/

S
E

G
42

P
3.

6/
S

E
G

41

SEG11
SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24/P5.15
SEG25/P5.14
SEG26/P5.13
SEG27/P5.12
SEG28/P5.11
SEG29/P5.10
SEG30/P5.9
SEG31/P5.8
SEG32/P5.7
SEG33/P5.6
SEG34/P5.5
SEG35/P5.4
SEG36/P5.3
SEG37/P5.2
SEG38/P5.1
SEG39/P5.0
SEG40/P3.7

COM9/P4.1
COM10/P4.2
COM11/P4.3
COM12/P4.4
COM13/P4.5
COM14/P4.6
COM15/P4.7

P0.0/INT0/TB
P0.1/INT1/T0/T0CAP/T0PWM

P0.2/INT2/T0CK/BUZ
P0.3/INT3/TACK/BLD

P0.4/INT4/SCK
SDAT/P0.5/INT5/SO
SCLK/P0.6/INT6/SI

VDD/VDD

VSS/VSS

XOUT

XIN

VPP/TEST
XTIN

XTOUT

RESET
DAOUT

AVDD

AVSS

ADINP
ADINN

ADGAIN
AVREFOUT

REFH

S
3F

B
519

(100-Q
F

P
-1420C

)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

Figure 24-1. S3FB519 Pin Assignments (100-QFP)



S3CB519/FB519 S3FB519

24-3

Table 24-1. Descriptions of Pins Used to Read/Write the FLASH ROM

Main Chip During Programming

Pin Name Pin Name Pin No. I/O Function

P0.5 SDAT 13 I/O Serial data pin. Output port when reading and input
port when writing. Can be assigned as a Input/push-
pull output port.

P0.6 SCLK 14 I/O Serial clock pin. Input only pin.

TEST VPP (TEST) 19 I Power supply pin for FLASH ROM cell writing
(indicates that FLASH enters into the writing mode).
When 12.5 V is applied, FLASH is in writing mode
and when 5 V is applied, FLASH is in reading
mode. When FLASH is operating, hold GND.

RESET RESET 22 I Chip initialization

VDD/VSS VDD/VSS 15/16 I Logic power supply pin. VDD should be tied to

+5 V during programming.

NOTE: Pin No. is for 100-QFP type package.

Table 24-2. Comparison of S3FB519 and S3CB519 Features

Characteristic S3FB519 S3CB519

Program Memory 32-Kbyte FLASH ROM 32-Kbyte mask ROM

Operating Voltage (VDD) 2.2 V  to  5.5 V 2.2 V  to  5.5 V

FLASH Programming Mode VDD = 5 V, VPP (TEST) = 12.5V

Pin Configuration 100-QFP 100-QFP

FLASH ROM Programmability User program Programmed at the factory



S3CB519/FB519 S3FB519

24-4

NOTES


