S3C8639/C863A/P863A/C8647/F8647 PRODUCT OVERVIEW

PRODUCT OVERVIEW

SAM8 PRODUCT FAMILY

Samsung's SAMS8 family of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU with a wide
range of integrated peripherals, in various mask-programmable ROM sizes. Analog its major CPU features are:
— Efficient register-oriented architecture

— Selectable CPU clock sources

— Idle and Stop power-down mode release by interrupt

— Built-in basic timer with watchdog function

The sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more
interrupt sources and vectors. Fast interrupt processing (within a minimum of four CPU clocks) can be assigned
to specific interrupt levels.

S3C8639/C863A/P863A MICROCONTROLLERS

S3C8639/C863A/P863A single-chip 8-bit — One 12-bit counter with selectable clock sources,
microcontrollers are based on the powerful SAM8 including Hsync or Csync input

CPU architec_ture. The internal r_egistgr file is logically — PWM block with seven 8-bit PWM circuits
expanded to increase the on-chip register space.

S3C8639/C863A/P863A contain 32/48 Kbytes of on- — Sync processor block (for Vsync and Hsync 1/0,
chip program ROM. Csync input, and Clamp signal output)

. . . — DDC Multi-master and slave-only 1IC-Bus
In line with Samsung's modular design approach, the y

following peripherals are integrated with the SAM8 — 4-channel A/D converter (8-bit resolution)
core:
) S3C8639/C863A/P863A are a versatile
— Four programmable I/O ports (total 27 pins) microcontrollers which are ideal for use in multi-sync
— One 8-bit basic timer for oscillation stabilization monitors or in general-purpose applications that
and watchdog functions require sophisticated timer/counter, PWM, sync

signal processing, A/D converter, and multi-master
[IC-bus support with DDC. They are available in a
42-pin SDIP or a 44-pin QFP package.

— One 8-bit general-purpose timer/counter with
selectable clock sources

— One interval timer
OoTP

S3C8639/C863A microcontrollers are also available in OTP (One Time Programmable) version named,
S3P863A. S3P863A microcontroller has an on-chip 48-Kbyte one-time-programmable EPROM instead of
masked ROM. S3P863A is comparable to S3C8639/C863A, both in function and pin configuration except its
ROM size.

ELECTRONICS 1-1



PRODUCT OVERVIEW

S3C8639/C863A/P863A/C8647/F8647

S3C8647/F8647 MICROCONTROLLERS

S3C8647/F8647 single-chip 8-bit microcontrollers are
based on the powerful SAM8 CPU architecture. The
internal register file is logically expanded to increase
the on-chip register space.

S3C8647/F8647 contain 24 Kbytes of on-chip
program ROM.

In line with Samsung's modular design approach, the
following peripherals are integrated with the SAM8
core:

— Three programmable 1/O ports (total 19 pins)

— One 8-bit basic timer for oscillation stabilization
and watchdog functions

— One 8-bit general-purpose timer/counter with
selectable clock sources

— One interval timer

FLASH

— One 12-bit counter with selectable clock sources,
including Hsync or Csync input

— PWM block with six 8-bit PWM circuits

— Sync processor block (for Vsync and Hsync 1/O,
Csync input, and Clamp signal output)

— DDC Multi-master [IC-Bus
— 4-channel A/D converter (4-bit resolution)

S3C8647/F8647 are a versatile microcontrollers
which are ideal for use in multi-sync monitors or in
general-purpose applications that require
sophisticated timer/counter, PWM, sync signal
processing, A/D converter, and multi-master 1IC-bus
support with DDC. They are available in a 32-pin
SDIP/SOP package.

S3C8647 microcontroller is also available in Flash version named, S3F8647. S3F8647 microcontroller has an
on-chip 24-Kbyte flash cells instead of masked ROM. S3F8647 is comparable to S3C8647, both in function and

pin configuration.

1-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

PRODUCT OVERVIEW

FEATURES

CPU
« SAM88RC CPU core

Memory

«  S3C8639: 32-Kbyte program memory (ROM)
S3C863A: 48-Kbyte program memory (ROM)
S3C8647: 24-Kbyte program memory (ROM)

«  S3C8639: 784-byte general-purpose
register area
S3C863A: 1040-byte general-purpose
register area
S3C8647: 400-byte general-purpose
register area
Instruction Set
. 78 instructions
« IDLE and STOP instructions added for
power-down modes
Instruction Execution Time

«  Minimum 333 ns (with 12 MHz CPU clock)

Interrupts

«  Ten (nine)* interrupt sources/vectors (S3C8647)*
«  Eight (seven)* interrupt level (S3C8647)*

- Fast interrupt feature

General I/O

«  S3C863X: four I/O ports (total 27pins)
S3C8647: three 1/O ports (total 19pins)

8-Bit Basic Timer

«  Programmable timer for oscillation stabilization
interval control or watchdog timer function

- Three selective internal clock frequencies

Timer/Counters

«  One 8-bit Timer/Counter with several clock
sources (Capture mode)

«  One 12-bit Counter with H-/C-sync and several
clock sources

- One Interval Timer

Low Voltage Detector (LVD & POR)

Pulse Width Modulator (PWM)

«  8-bit PWM: 7(6)*-Ch (S3C8647)*
(6-bit basic frame with 2-bit extension)

Sync-Processor Block

« Vsync-l, Hsync-Il, Csync-I input and Vsync-O,
Hsync-O, Clamp-O output pins

«  Programmable Pseudo sync signal generation
+  Auto SOG detection

« Auto H-/V-sync polarity detection

- Composite sync detection

DDC Multi-Master lIC-Bus 1-Ch

«  Serial Peripheral Interface

«  Support for Display Data Channel
(DDC1/DDC2B/DDC2Bi/DDC2B+)

Slave Only IIC-Bus 1-Ch (Only S3C863X)

«  Serial Peripheral Interface

A/D Converter
« 4-channel; 8(4)*-bit resolution (S3C8647)*

Oscillator Frequency
« 8 MHz to 12 MHz crystal operation
« Internal Max. 12 MHz CPU clock

Operating Temperature Range

« —40°C to +85°C

Operating Voltage Range

« 3.04.0*V to 5.5V (S3C8647)*

Package Types

«  S3C863X: 42-pin SDIP, 44-pin QFP
S3C8647: 32-pin SDIP, 32-pin SOP

ELECTRONICS

1-3



PRODUCT OVERVIEW S3C8639/C863A/P863A/C8647/F8647

BLOCK DIAGRAM

P0.0-PO.7/INTO-INT2 P2.0-P2.7

I0E W

RESET—» <4— V/pD1, VDD2
Port 0 Port 2 4— V/ssi, Vss2
INTO-INT2—» <«— TEST
XIN—P Main | | |
Xout Osc | Portl |€»P1.0-P1.2
PWMO €— 1/0 Port and Interrupt
, ) Control
| «— 8-Bit |
I A PWM <>
! —
! 4— (7-Ch) | | <>
] <>
PWM6 <— | Port3 «p P3.0-P3.7
Vsync-| —» SAMS8 CPU <>
Hsync-| —» <>
Csync-|—» Sync-  —
\H/Sync'g <4— Processor |— L] <>
Sync-> <— ADC | ADO-AD
Clamp-O €— | | | | | <4 ADO-AD3
32/48- 784/1040-
. Kbyte Byte
8-Bit ROM Register File || Slve |<4SCL1
TMOCAP —»| Counter . ] Only
(Timer MO) lIC-Bus |« spAl
* S3C8639 | | | | | r
- 32 Kbyte ROM 12-Bit Interval
- 784 Byte RAM Counter Timer Multi-master IIC-_Bus
* S3C863A (Timer M1) (Timer M2) and DDC1/2B/2Bi/2B+
- 48 Kbyte ROM
- 1040 Byte RAM i ¢

SCLO SDAO

Figure 1-1. Block Diagram (S3C863X)

1-4 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 PRODUCT OVERVIEW

P0.0-P0.2, PO.4/ P2.0-P2.5,
INTO-INT2 P2.7
RESET—» <4— VpD
Port O Port 2 <4+—Vss
INTO-INT2 —» <«— TEST
XIN—P Main . HII
XouT €—| Osc | | <>
] <>
Port 3 <« P3.0-P3.7
1/0 Port and Interrupt ] —
Control <>
<>
PWMO <— [ |
€ 8Bt | |
L 1 PwMm <>
L ecn [ ] il €
o ™ SAM8 CPU | ADC | ¢ ADO-AD3
PWM5 <— <+
v | Multi-
sync-I—» 2/48-K 400-B
Heyne| 32/48-Kbyte OQ yte_ master | 4 SCLO
> ROM Register File — lIC-bus
Csync-l—»|  sync- | —| (opcy |€>SDbA0
Vsync-O «— Processor — 2B/2Bi/ | € ¥ VCLK
Hsync-O €—
Clamp-O €4— 2B+)
8-Bit 12-Bit Interval
Counter Counter Timer
(Timer MO) (Timer M1) (Timer M2)

T

MTOCAP

Figure 1-2. Block Diagram (S3C8647)

ELECTRONICS 1-5



PRODUCT OVERVIEW

S3C8639/C863A/P863A/C8647/F8647

PIN ASSIGNMENTS

PO.0/INTO
PO.1/INT1
P0.2/INT2
P0.3
P0.4/TMOCAP
P0.5

PO0.6

PO0.7
P1.0/SDA1
P1.1/SCL1
VDD1

Vss1

XouTt

XIN

TEST (GND)
SDAO

SCLO
RESET
P1.2
P2.0/PWMO
P2.1/PWM1

NOTE:

Oonoonaononaonnaonnaonnnn

O
O

10 S3C8639/C863A
11

12 (42-SDIP)

14

15

16
17
18
19

20
21

O©oO~NOOTWNPE

gougurooougurooouuooog

P3.7

P3.6

P3.5

P3.4
P3.3/AD3
P3.2/AD2
P3.1/AD1
P3.0/AD0O
VDD2

Vss2
P2.7/Csync-1 (SOG)
Hsync-I
Vsync-I
Vsync-O
Hsync-O
Clamp-O
P2.6/PWM6
P2.5/PWM5
P2.4/PWM4
P2.3/PWM3
P2.2/PWM2

The TEST pin must connect to Vss (GND) in the normal operation mode.

Figure 1-3. S3C8639/C863A Pin Assignment (42-SDIP)

1-6

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 PRODUCT OVERVIEW
o
S
s pp g 2
E ££ Z <
Sndd;SNonT®
OO0 O -T0MmMMmMMMM
Aaoaoaozanodaaon
SN OMOANTOMMWONNOLW S
ITFTTTTOOOOMO™M
P0.5 ] 1 33 =2 P3.2/AD2
P0.6 | > O 3> 3 P3.1/ADL
PO.7 T 3 31 = P3.0/ADO
P1.0/SDA1 T 4 30 — VbD2
pruscLitH 5 S3C8639/C863A 29 = Vss2
Vbp1 B ¢ 28 (= P2.7/Csync-l (SOG)
Vss1 T 7 ) 27 B2 Hsync-I
Xout ] g (44-QFP) 26 = Vsync-I
XINE] g 25 /3 Vsync-O
TEST (GND) T 19 24 /3 Hsync-O
SDAO ] 11 23 (= Clamp-O
NMTTWOHONO0O O N
e N NN
S = NO N O [P N Tp (]
5 (L})J A== > ===
w22
x &£44o aagaao
SN MY
AN NN AN AN AN AN
oaaon aaooa
NOTE: The TEST pin must connect to Vss (GND) in the normal operation mode.

Figure 1-4. S3C8639/C863A Pin Assignment (44-QFP)

ELECTRONICS

1-7



PRODUCT OVERVIEW S3C8639/C863A/P863A/C8647/F8647
N
Vss ] 1 32 2 VoD
Xout 2 O 31 (& P3.7
XN & 3 30 /4 P3.6
TEST ] 4 29 3 P35
PO.0O/INTO CE 5 28 = P3.4
PO.1/INT1 = 6 27 /3 P3.3/AD3
RESET O 7 26 (3 P3.2/AD2
P0.2/INT2 C 8 83C8647 25 /3 P3.1/AD1
P0.4/TMOCAP T 9 24 3 P3.0/ADO
SDA O 10 (32-SDIP) 23 (2 P2.7/Csync-I(SOG)
SCL dH 11 22 [ Hsync-I
P2.0/PWMO ] 12 21 B3 Vsync-I
P2.1/PWM1 ] 13 20 &3 Vsync-O
P2.2/PWM2 ] 14 19 B Hsync-O
P2.3/PWM3 ] 15 18 (= Clamp-O
P2.4/PWM4 ] 16 17 /= P2.5/PWM5
Figure 1-5. S3C8647 Pin Assignment (32-SDIP)
\_/
Vss O] 1 32 1 Vbp
Xout O 2 31 1 P3.7
XN 3 3 O 30 4 P3.6
TEST ] 4 29 1 P35
PO.0/INTO EH 5 28 1 P3.4
PO.1/INT1 = 6 27 3 P3.3/AD3
RESET O 7 83C8647 26 (1 P3.2/AD2
P0.2/INT2 ] 8 25 3 P3.1/AD1
P0.4/TMOCAP T 9 24 (3 P3.0/ADO
SDA ] 10 23 (3 P2.7/Csync-1(SOG)
SscL . 11 (32-SOP) 22 [ Hsync-I
P2.0/PWMO ™ 12 21 1 Vsync-I|
P2.1/PWM1 ™ 13 20 3 Vsync-O
P2.2/PWM2 ] 14 O 19 3 Hsync-O
P2.3/PWM3 ] 15 18 = Clamp-O
P2.4/PWM4 ] 16 17 = P2.5/PWM5

Figure 1-6. S3C8647 Pin Assignment (32-SOP)

1-8

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 PRODUCT OVERVIEW
PIN DESCRIPTIONS
Table 1-1. S3C8639/C863A Pin Descriptions
Pin Pin Pin Circuit | SDIP Pin Shared
Names Type Description Type Numbers | Functions
PO0.0 I/O | General-purpose, 8-bit I1/0 port. Shared D-1 1 INTO
PO.1 functions include three external interrupt D-1 2 INT1
P0.2 inputs and /O for timer MO. Selective D-1 3 INT2
P0.3 (note) configuration of port 0 pins to input or output D-1 4
P0.4 mode is supported. D-1 5 TMOCAP
P0.5 (note) D-1 6
PO.6 (note) D-1 7
p0.7 (note) D-1 8
p1.0 (note) I/O | General-purpose, 8-bit I/O port. Selective E-1 9 SDA1
P1.1 (note) configuration is available for port 1 pins to E-1 10 SCL1
p1.2 (note) input, push-pull output, n-channel open-drain E-1 19
mode, or IIC-bus clock and data I/O.
P2.0 I/O | General-purpose, 8-bit I/O port Selective D-1 20 PWMO
P2.1 configuration of port 2 pins to input or output D-1 21 PWM1
P2.2 mode is supported. The port 2 pin circuits are D-1 22 PWM2
P2.3 designed to push-pull PWM output and Csync D-1 23 PWM3
P2.4 (SOG) signal input. E-1 24 PWM4
P2.5 E-1 25 PWM5
p2.6 (note) E-1 26 PWM6
pP2.7 D-1 32 Csync-l
P3.0-P3.3 I/O | General-purpose, 8-bit I/O port Selective E-1 35-38 ADO-AD3
P3.4-P3.7 configuration port 3 pins to input or output E 39-42
mode is supported. Multiplexed for alternative
use as A/D converter inputs ADO-AD3.
Hsync-I I The pins are sync processor signal 1/0 and A-3 31 -
Vsync-| I [IC-bus clock and data 1/O. A-3 30
Clamp-O 0 A 27
Hsync-O 0] A 28
Vsync-O 0] A 29
SDAO I/0 G-3 16
SCLO I/0 G-3 17
Vpp1 Vsgg M9, - Power pins - éi ég -
Vop2: Vssz ) B ’
Xine Xout - System clock 1/0 pins - 14, 13 -
RESET I System RESET pin B 18 -
TEST I Factory test pin input - 15 -
0 V: Normal operation, 5 V: Factory test
mode
NOTE: Not used in S3C8647.
ELECTRONICS 1-9



PRODUCT OVERVIEW

S3C8639/C863A/P863A/C8647/F8647

PIN CIRCUITS DIAGRAM

VDD

Data O—# Output

Vss

VbD
Input =——e Output
[«
300 kW
Typical
Vss

Vss

Figure 1-7. Pin Circuit Type A

Figure 1-8. Pin Circuit Type A-3

VDD

280 kW

Noise
RESET FMer__{::>x}_>

VDD
Data or
Other & DO_{
Function Output
—u
Output <
Disable

- v
Digital sS
Input, 4—————————o<:::}——————
TTL Input

NOTE: The noise filter must be built in the
external interrupts.

Figure 1-9. Pin Circuit Type B (RESET)

Figure 1-10. Pin Circuit Type D-1

1-10

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 PRODUCT OVERVIEW

VDD

Typical
47 KW VoD

Pull-up
P [>of Data o )

VbD Output
p—u
Data © Sﬁ’e.,’}
a «—
Output Output
—=u Disable
Open
Drain pul Dicital | Vss
igital Input
Output or ADC Input o@
Disable
Vss

Input 4—0@7

Figure 1-11. Pin Circuit Type E Figure 1-12. Pin Circuit Type E-1

Output

Data O—|>O—{ <+

Vss

Input < 0@

Figure 1-13. Pin Circuit Type G-3

ELECTRONICS 1-11



PRODUCT OVERVIEW S3C8639/C863A/P863A/C8647/F8647

NOTES

1-12 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESS SPACES

ADDRESS SPACES

OVERVIEW

S3C8639/C863A/C8647 microcontrollers have two types of address space:

— Internal program memory (ROM)
— Internal register file

The 16-bit address and data bus support program memory operations. The separate 8-bit register bus carries
addresses and data between the CPU and the internal register file. S3C8639/C863A/C8647 employ an internal
32/48/24-Kbyte mask-programmable ROM. External memory interface is not implemented.

There are 852/1108/462 8-bit registers in the internal register file. In this space, there are 784/1040/400 registers
for general use, 19 for CPU and system control, and 49(43) for peripheral control and data. An area of 16-byte
common working register (scratch) is part of the general-purpose register space. Most of these registers serve as
either a source or destination address, or as accumulators for data memory operations.

ELECTRONICS 2-1



ADDRESS SPACES S3C8639/C863A/P863A/C8647/F8647

PROGRAM MEMORY (ROM)

Program memory (ROM) stores program code or table data. S3C8639/C863A employ 32/48-Kbytes of
mask-programmable program memory. The memory address range is OH-7FFFH/BFFFH (see Figure 2-1).

S3C8647 employs 24-Kbytes of mask-programmable program memory.
The memory address large is OH-5FFFH.

The first 256 bytes of the ROM (OH-FFH) are reserved for interrupt vector addresses. Unoccupied locations in
the address range can be used as normal program memory. When you use the vector address area to store
program code, be careful not to overwrite vector addresses stored in these locations.

The ROM address at which program execution starts after a reset is 0100H.

(Decimal) (HEX)
49,151 BFFFH

48-Kbyte Internal
Program Memory

32,767 [-==========—-—— -1 7FFFH —_
32-Kbyte S3C863A
24575 F-----------—-——-——1 —_
S3C8639
24-Kbyte Internal
Program Memory S3C8647
255 F-mmmm e OFFH
Interrupt

Vector Area

Figure 2-1. Program Memory Address Space

2-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESS SPACES

REGISTER ARCHITECTURE

The upper 64-byte area of the S3C8639/C863A/C8647 files is logically expanded to two 64-byte areas, called set
1 and set 2. The upper 32-byte area of set 1 is divided into two register banks, bank 0 and bank 1. The total
physical register space is thereby expanded internal register to 864/1120 bytes. Within this physical space, there
are 864/1120/462-byte registers, of which 852/1108/450 are addressable.

Given the microcontroller’'s 8-bit register bus architecture, up to 256 bytes of physical register space can be
addressed as a single page. The S3C8639 register files have three pages, page 0, page 1 and page 2. And the
S3C863A register files have four pages, page 0, page 1, page 2 and page 3. The S3C8647 register files have
two pages, page 0, and page 1. All page contain 256 bytes respectively.

The extension of physical register space into separately addressable areas (sets, banks, and pages) is enabled
by addressing mode restrictions, the select bank instructions SBO and SB1, and the register page pointer, PP.

Specific register types and areas (in bytes) they occupy in the S3C8639/C863A/C8647 internal register files are
summarized in Table 2-1.

Table 2-1. Register Type Summary

Register Type Number of Bytes Number of Bytes
(S3C8639/C863A) (S3C8647)
General-purpose registers (including the 16-byte 784/1040 400
common working register area)
CPU and system control registers 19 19
Clock, peripheral, 1/0 control, and data registers 49 43
Total Addressable Bytes 852/1108 462

ELECTRONICS 2-3



ADDRESS SPACES

S3C8639/C863A/P863A/C8647/F8647

EOH
64 Bytes pEn

DOH
CFH

COH

Set 1
Bank 1
FFH Bank 0
32 Bytes
System and
Peripheral

Control Registers

System Registers

Working Registers

FFH
EOH
~___CoH
BFH
192 Bytes
— OOH

Page 2

Page 3 (S3C863A only)

Page 0 _Pagel,

Set 2

General Purpose
Data Registers

(Indirect register,
indexed addressing
modes or stack
operations)

256 Bytes

Prime Data
Registers

(All addressing
modes)

NOTE: To address registers in bank 0, bank 1, and the system register area, you must use the register
addressing mode. To address working registers, you must use working register addressing mode.

Figure 2-2. Internal Register File Organization (S3C863X)

2-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESS SPACES

Set 1
Bank 0 Bank 1
FFH FFH FFH
FCH Fon
EOH Set 2
DFH
DOH COH
BFH
COH
7FH
I:' Not mapped
. CPU control and system registers
. Working registers only
I:' Peripheral registers and I/O ports
00H O00H
General-purpose registers file
I:' il 9 Page 0 Page 1

Figure 2-3. Register File Layout (S3C8647)

ELECTRONICS 2-5



ADDRESS SPACES S3C8639/C863A/P863A/C8647/F8647

REGISTER PAGE POINTER (PP)

The SAMS8 architecture supports the logical expansion of the physical 256-byte internal register file (which use an
8-bit data bus) to as many as 16 separately addressable register pages. Page addressing is controlled by the
register page pointer (PP, DFH). Two logical pages are implemented in S3C8639/C863A/C8647. These pages
are used as general purpose register space.

Register Page Pointer (PP)
DFH, Set 1, R/W

MSB| .7 .6 5 4 3 2 1 .0 |LSB

Destination register page seleciton bits: Source register page selection bits:
0000 B | Destination: page 0 0000B | Source: page 0
000 1B | Destination: page 1 0001B | Source: page 1

0010 B | Destination: page 2 (Not used for the S3C8647) 0010B | Source: page 2 (Not used for the S3C8647)
0011 B | Destination: page 3 (Not used for the S3C8639) 0011B | Source: page 3 (Not used for the S3C8639)
01008B | Notused for the S3C8639/C863A/C8647 01008B | Notused for the S3C8639/C863A/C8647

[} [} [} [}

[} [} [} [}
1111B | Notused for the S3C8639/C863A/C8647 1111B | Notused for the S3C8639/C863A/C8647

Figure 2-4. Register Page Pointer (PP)

REGISTER SET 1

The term set 1 refers to the upper 64 bytes of the register file, locations COH-FFH. The upper 32-byte area of
this 64-byte space (EOH—FFH) is divided into two 32-byte register banks, bank 0 and bank 1. You execute the set
register bank instructions SBO or SB1 to address one bank or the other. Bank 0 is automatically selected by a
reset operation.

In S3C8639/C863A, register locations of only EOH-F4H are addressable in the bank 1 area; the remaining
locations (F5H-FFH) are not mapped. The lower 32-byte area of set 1 is not banked and can be addressed at
any time. It contains 16 mapped system registers (DOH-DFH) and a 16-byte “scratch” area (COH-CFH) for
working register addressing.

Registers in set 1 are directly accessible at all times using Register addressing mode. The 16-byte working
register area can only be accessed using working register addressing. (For more information about working
register addressing, please refer to Chapter 3, “Addressing Modes.”)

REGISTER SET 2

The same 64-byte physical space that is used for set 1 register locations COH-FFH is logically duplicated to add
another 64 bytes of space. This expanded area of the register file is called set 2. All set 2 locations (COH-FFH)
can be addressed in all page of the S3C8639/C863A register space.

The logical division of set 1 and set 2 is maintained by means of addressing mode. In order to access set 1, you
should use resister addressing mode. When you want to access register locations in set 2, you have to select
Register Indirect addressing mode or Indexed addressing mode access register locations in set 2.

2-6 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

ADDRESS SPACES

PRIME REGISTER SPACE

The lower 192 bytes of the 256-byte physical internal register file (OOH-BFH) is called the prime register space,
or more simply, the prime area. You can access registers in this address range at all page using any of the seven
explicit addressing modes (see chapter 3, "Addressing Modes"). All registers in the prime area can be addressed

immediately after a reset.

Set 1

FFH

FCH
EOH

DFH

CFH

COH

COH-CFH, after a reset.

Register pointers RP0 and RP1 point to the
common working register area, locations

RPO=| 1100

0000

RP1=( 1100

1000

FFH

COH
BFH

OOH

Page0 Pagel Page

Set 2

Set 2

{

Prime
Area

Prime
Area

o Page 3 (S3C863A only)
FFH
Set 2 Set 2
COH
BFH
Prime | Prime
Area Area
00H

Figure 2-5. Set 1, Set 2, and Prime Area Register Map (S3C863X)

ELECTRONICS

2-7



ADDRESS SPACES

S3C8639/C863A/P863A/C8647/F8647

Set 1

FFH

FCH
EOH

DFH

CFH

COH

Register pointers RP0 and RP1 point to the
common working register area, locations

COH-CFH, after a reset.

RPO=| 1100

0000

RP1=( 1100

1000

FFH

COH
BFH

O00OH

Page 0
Set 2
B | Pagel
Prime
Area
Prime
Area

7FH

O0OH

Figure 2-6. Set 1, Set 2, and Prime Area Register Map (S3C8647)

2-8

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESS SPACES

WORKING REGISTERS

Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.
When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as one
that consists of 32 8-byte register groups or "slices." Each slice comprises of eight 8-bit registers.

With the two 8-bit register pointers, RP1 and RPO employed, two working register slices can be selected at any
time to form a 16-byte working register block. The register pointers help, you move this 16-byte register block to
anywhere in the addressable register file, except for the set 2 area.

The terms slice and block are used in this manual to help you visualize the size and relative locations of selected
working register spaces:

— One working register slice is 8 bytes (eight 8-bit working registers; RO—R7 or R8—R15)
— One working register block is 16 bytes (sixteen 8-bit working registers; RO—R15)

All the registers in an 8-byte working register slice have the same binary value for their five most significant
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file.
The base addresses for the two 8-byte register slices selected are contained in register pointers RPO and RP1.

After a reset, RPO and RP1 always point to the 16-byte common area in set 1 (COH-CFH).

. FFH |
Slice 32 FSH
F7H
11111XXX FOH
Setl
RP1 (Registers R8-R15) Only
Each register pointer points to CFH
one 8-byte slice of the register COH |
space, selecting a total of :
16-byte working register block. :
1 i 1
|
|
00000 X XX :
! 10H
RPO (Registers R0O-R7) FH
8H
. 7H
Slice 1 OH

Figure 2-7. 8-Byte Working Register Areas (Slices)

ELECTRONICS 2-9



ADDRESS SPACES S3C8639/C863A/P863A/C8647/F8647

USING THE REGISTER POINTERS

Register pointers of RPO and RP1 which are mapped to the addresses D6H and D7H in set 1, are used to select
two movable 8-byte working register slices in the register file. After a reset, they point to the working register
common area: RPO points to the addresses COH-C7H, and RP1 points to the addresses C8H-CFH.

You can change a register pointer value, by loading a new value to RP0O and/or RP1 using an SRP or LD
instruction (see Figures 2-6 and 2-7).

In working register addressing, you can only access those two 8-bit slices of the register file that are currently
pointed to by RPO and RP1. You cannot use the register pointers to select a working register area in set 2, COH-—
FFH, because these locations can be accessed only with Indirect Register or Indexed addressing modes.

The 16-byte working register block selected usually consists of two contiguous 8-byte slices. As a general
programming guideline, we recommend that RPO point to the "lower" slice and RP1 point to the "upper" slice (see
Figure 2-6). In some cases, it may be necessary to define working register areas in different (non-contiguous)
areas of the register file. In Figure 2-7, RPO points to the "upper" slice and RP1 to the "lower" slice.

As a register pointer can point to either of the two 8-byte slices in the working register block, you can flexibly
define the working register area to support a variety of program requirements.

& PROGRAMMING TIP — Setting the Register Pointers

SRP #70H ; RPO - 70H,RP1 - 78H

SRP1 #48H ; RPO = nochange, RP1 - 48H
SRPO #0AOH ; RPO - AOH, RP1 - no change
CLR RPO ; RPO = O0OH, RP1 - no change
LD RP1,#0F8H ; RPO - nochange, RP1 - OF8H

Register File
Contains 32
8-Byte Slices
00001XXX FH (R15)
\ 8-Byte Slice | 16'byte
RP1 8H contiguous
_ 7H working
00000XXX |——» 8-Byte Slice register block
OH (RO)

RPO

Figure 2-8. Contiguous 16-Byte Working Register Block

2-10 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESS SPACES

F7H (R7)
8-Byte Slice |
FOH (RO)
Register File 16-byte non-
Contains 32 contiguous
11110XXX 8-Byte Slices working
register block
RPO
7H (R15)
00000 XXX (b—mp 8-Byte Slice |
OH (RO) |-
RP1

Figure 2-9. Non-Contiguous 16-Byte Working Register Block

& PROGRAMMING TIP — Calculate the Sum of a Series of Registers Using the RPs

Calculate the sum of registers 80H-85H using the register pointer and working register addressing. The register
addresses from 80H through 85H contain the values 10H, 11H, 12H, 13H, 14H, and 15H, respectively:

SRPO #80H ; RPO - 80H

ADD RO,R1 ;7 RO- RO + R1
ADC RO,R2 ; RO- RO+ R2+C
ADC RO,R3 ; RO- RO + R3+C
ADC RO,R4 ; RO- RO+ R4+C
ADC RO,R5 ; RO- RO+ R5+C

The sum of these six registers, 6FH, is located in the register RO (80H). The instruction string used in this
example takes 12 bytes of instruction code and its execution time is 24 cycles. If the register pointer is not used
to calculate the sum of these registers, the following instruction sequence would have to be used:

ADD 80H,81H - 80H - (80H) + (81H)

ADC 80H,82H © 80H - (80H) + (82H) + C
ADC 80H,83H © 80H - (80H) + (83H) + C
ADC 80H,84H © 80H - (80H) + (84H) + C
ADC 80H,85H © 80H - (80H) + (85H) + C

The sum of the six registers, here, is also located in the register 80H. This instruction string, however, takes 15
bytes of instruction code instead of 12 bytes, and its execution time is 30 cycles instead of 24 cycles.

ELECTRONICS 2-11



ADDRESS SPACES S3C8639/C863A/P863A/C8647/F8647

REGISTER ADDRESSING

The SAMS8 register architecture provides an efficient method of working register addressing that takes full
advantage of shorter instruction formats to reduce execution time.

With Register (R) addressing mode, in which the operand value is the content of a specific register or register
pair, you can access all locations in the register file except for set 2. With working register addressing, you use a
register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that
space.

Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register
pair, the address of the first 8-bit register is always an even number and the address of the next register is always
an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register; the
least significant byte is always stored in the next (+1) odd-numbered register.

Working register addressing differs from Register addressing in a way that it uses a register pointer to specify an
8-byte working register space in the register file and an 8-bit register within that space (see Figure 3-2).

MSB LSB n = Even address

Rn Rn+1

Figure 2-10. 16-Bit Register Pair

2-12 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESS SPACES

Special-Purpose General-Purpose
Registers Registers
Set 1
FFH | FFH
Control
Bank 1 Bank 0 Registers
=on 7 Set 2
> System
DOH __ ] Registers
CFH| ]
cH_ /- » COH
BFH
D7H rRp2 !/ [TTTTTTTTTT
Register /== ---———=-4
Pointers

Y e Z

Each register pointer (RP) can independently point
to one of the 24 8-byte "slices" of the register file
(other than set 2). After a reset, RPO pointsto |- -=====——--—+
locations COH-C7H and RP1 to locations C8H-CFH
(the common working register area).

O0H === === === ===
(S3C863A: Page 0,1, 2,3

S3C8639: Page 0, 1, 2
S3C8647: Page 0, 1)

Page 0,1,2,3 PageO0,1,2,3

Register Addressing Only All Indirect
Addressing Register,
Modes Indexed
I | Addressing
Can be Pointed to by Register Pointer Modes

Figure 2-11. Register File Addressing

ELECTRONICS 2-13



ADDRESS SPACES S3C8639/C863A/P863A/C8647/F8647

COMMON WORKING REGISTER AREA (COH-CFH)

After a reset, register pointers RPO and RP1 automatically select two 8-byte register slices in set 1, locations
COH-CFH, as the active 16-byte working register block:

RPO ® COH-C7H
RP1 ® C8H-CFH

This16-byte address range is called common working register area. That is, locations in this area can be used as
working registers by operations that address any location on any page in the register file. Typically, these working
registers serve as temporary buffers for data operations between different pages.

Set 1 pageo Page1 Page2 Page 3 (S3C863A only)
FFH
o i Set 2
FCH Set 2 Set2 | Set2 €
EOH
DFH
CFH o
COH ggﬂ BEH
Register pointers RP0O and RP1 point to the T + T T -
common working register area, locations Prime Prime Prime e
COH-CFH, after a reset. Area Area Area
RPO=|{ 1100|0000
RP1={ 1100|1000
OOH
OOH

Figure 2-12. Common Working Register Area (S3C863X)

2-14 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

ADDRESS SPACES

Set 1l Page 0
FFH FFH
FCH Set 2
EOH
DFH
CFH
COH
COH BFH

Register pointers RP0 and RP1 point to the T 4 Pagel
common working register area, locations Prime 7FH
COH-CFH, after a reset. Area
RPO=| 1100|0000 Prime
Area
RP1=({ 1100 1000
00H 00H

Figure 2-13. Common Working Register Area (S3C8647)

ELECTRONICS

2-15



ADDRESS SPACES

S3C8639/C863A/P863A/C8647/F8647

& PROGRAMMING TIP — Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations COH-CFH,
using working register addressing mode only.

Examples:

1. LD 0C2H,40H ; Invalid addressing mode!
Use working register addressing instead:
SRP  #0COH
LD R2,40H ; R2 (C2H) - the value in location 40H
ADD OC3H,#45H ; Invalid addressing mode!
Use working register addressing instead:
SRP  #0COH
ADD R3#45H ; R3(C3H) = R3+45H

2-16

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESS SPACES

4-BIT WORKING REGISTER ADDRESSING

Each register pointer defines a movable 8-byte slice of working register space. The address information stored in
a register pointer serves as an addressing "window" that makes it possible for instructions to access working
registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected
working register area, the address bits are concatenated in the following way to form a complete 8-bit address:

— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RPO; "1" selects RP1);

— The five high-order bits in the register pointer select an 8-byte slice of the register space;
— The three low-order bits of the 4-bit address select one of the eight registers in the slice.

As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are
concatenated with the three low-order bits from the instruction address to form the complete address. As long as
the address stored in the register pointer remains unchanged, the three bits from the address will always point to
an address in the same 8-byte register slice.

Figure 2-12 shows a typical example of 4-bit working register addressing: the high-order bit of the instruction
"INC R6" is "0", which selects RPO. The five high-order bits stored in RPO (01110B) are concatenated with the
three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).

RPO
—>
RP1
Selects
RPO or RP1

Address OPCODE

4-bit address

Register pointer provides three

provides five low-order bits
high-order bits

Together they create an
8-bit register address

Figure 2-14. 4-Bit Working Register Addressing

ELECTRONICS 2-17



ADDRESS SPACES

S3C8639/C863A/P863A/C8647/F8647

RPO RP1
01110| 000 |4 011111000
Selects RPO
l . 1 R6 OPCODE
Register
01110 110 address 0110 1110
(76H)

.

Instruction
'INC R6'

Figure 2-15. 4-Bit Working Register Addressing Example

2-18

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESS SPACES

8-BIT WORKING REGISTER ADDRESSING

You can also use 8-bit working register addressing to access registers in a selected working register area. To
initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value of
1100B. This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working
register addressing.

As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit
addressing: Bit 3 selects either RPO or RP1, which then supplies the five high-order bits of the final address; the
three low-order bits of the complete address are provided by the original instruction.

Figure 2-14 shows an example of 8-bit working register addressing: the four high-order bits of the instruction
address (1100B) specify 8-bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in
RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register
address (011) are provided by the three low-order bits of the 8-bit instruction address. The five address bits from
RP1 and the three address bits from the instruction are concatenated to form the complete register address,
0ABH (10101011B).

RPO
—>
RP1
Selects
RPO or RP1
Address
These address ! !
bits indicate 8-bit »| 1 11o0lo0 8-bit logical
working register o address
addressing
Register pointer Three low-order bits

provides five
high-order bits

8-bit physical address

Figure 2-16. 8-Bit Working Register Addressing

ELECTRONICS 2-19



ADDRESS SPACES S3C8639/C863A/P863A/C8647/F8647

RPO RP1
01100000 —»| 10101000
Selects RP1
J— R11 . v l .
8-bit address Register
1100|1|011 | forminstruction 10101011 address
‘LD R11, R2' (OABH)

Specifies working
register addressing

Figure 2-17. 8-Bit Working Register Addressing Example

2-20 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESS SPACES

SYSTEM AND USER STACKS

S3-series microcontrollers can be programmed to use the system stack for subroutine calls, returns and
interrupts and to store data. The PUSH and POP instructions are used to control system stack operations. The
S3C8639/C863A architecture supports stack operations in the internal register file.

Stack Operations

Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to
their original locations. The stack address is always decremented before a push operation and incremented after
a pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown
in Figure 2-15.

High Address

A
PCL
PCL
Top of PCH PCH
stack Top of Flags
stack 9
Stack contents Stack contents
after a call after an
instruction interrupt
v

Low Address

Figure 2-18. Stack Operations

User-Defined Stacks

You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI,
PUSHUD, POPUI, and POPUD support user-defined stack operations.

Stack Pointers (SPL, SPH)

Register locations D8H and D9H contain the 16-bit stack pointer (SP) that is used for system stack operations.
The most significant byte of the SP address, SP15-SP8, is stored in the SPH register (D8H) and the least
significant byte, SP7-SPO0, is stored in the SPL register (D9H). After a reset, the SP value is undetermined.

Because only internal memory space is implemented in S3C8639/C863A, the SPL must be initialized to an 8-bit
value in the range 00H-FFH. The SPH register is not needed here and can be used as a general-purpose
register, if necessary.

When the SPL register contains the only stack pointer value (that is, when it points to a system stack in the
register file), you can use the SPH register as a general-purpose data register. However, if an overflow or
underflow condition occurs as the result of incrementing or decrementing the stack address in the SPL register
during normal stack operations, the value in the SPL register will overflow (or underflow) to the SPH register,
overwriting any data that is currently stored there. To avoid overwriting data in the SPH register, you can
initialize the SPL value to "FFH" rather than "00H".

ELECTRONICS 2-21



ADDRESS SPACES S3C8639/C863A/P863A/C8647/F8647

& PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following example shows you how to perform stack operations in the internal register file using PUSH and
POP instructions:

LD SPL,#0FFH ;. SPL - FFH
;  (Normally, the SPL is set to OFFH by the initialization
; routine)
PUSH PP ; Stack address OFEH - PP
PUSH RPO ;  Stack address OFDH - RPO
PUSH RP1 ;  Stack address OFCH - RP1
PUSH R3 ; Stack address OFBH - R3
POP R3 ; R3 = Stack address OFBH
POP RP1 ; RP1 - Stack address OFCH
POP RPO ; RPO - Stack address OFDH
POP PP ; PP - Stack address OFEH

2-22 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESSING MODES

ADDRESSING MODES

OVERVIEW

The program counter is used to fetch instructions that are stored in program memory for execution. Instructions
indicate the operation to be performed and the data to be operated on. Addressing mode is used to determine the
location of the data operand. The operands specified in SAMS8 instructions may be condition codes, immediate
data, or a location in the register file, program memory, or data memory.

The SAMS instruction set supports seven explicit addressing modes. Not all of these addressing modes are
available for each instruction:

— Register (R)

— Indirect Register (IR)

— Indexed (X)

— Direct Address (DA)

— Indirect Address (I1A)

— Relative Address (RA)

— Immediate (IM)

ELECTRONICS 3-1



ADDRESSING MODES S3C8639/C863A/P863A/C8647/F8647

REGISTER ADDRESSING MODE (R)

In Register addressing mode, the operand is the content of a specified register or register pair (see Figure 3-1).
Working register addressing differs from Register addressing as it uses a register pointer to specify an 8-byte
working register space in the register file and an 8-bit register within that space (see Figure 3-2).

Program Memory Register File
8-bit Register
File Address. ™SI gt . »|  OPERAND
Point to One /
» OPCODE Rigister in Register
One-Operand I File
Instruction val di
(Example) alue used in

Instruction Execution

Sample Instruction:

DEC CNTR ; Where CNTR is the label of an 8-bit register address

Figure 3-1. Register Addressing

Register File
MSB Point to
RPO of RP1
> RPO or RP1 @
Selected
RP points
Program Memory to start
4-bit of working
Working Register X st src o 3LSBs > L(Tg::slﬁer
Point to the
- | w OPCODE Woking Register OPERAND
wo-0Operan 10f8
Instruction/ ( ) «
(Example)
Sample Instruction:
ADD R1, R2 ;. Where R1 and R2 are registers in the working register area
currently selected

Figure 3-2. Working Register Addressing

3-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

ADDRESSING MODES

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of

the operand. Depending on the instruction used, the actual address may point to a register in the register file, to

program memory (ROM), or to an external memory space, if implemented (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to
indirectly address another memory location. Remember, however, that locations COH-FFH in set 1 cannot be

accessed using Indirect Register addressing mode.

8-bit Register
File Address

One-Operand
Instruction
(Example)

RL

Program Memory

Register File

i oy dst °
Point to One
» OPCODE Rigister in Register
/ File
Address of Operand

Sample Instruction:

@SHIFT

used by Instruction

Value used in
Instruction Execution

;. Where SHIFT is the label of an 8-bit register address

, ADDRESS

/

Ly OPERAND

Figure 3-3. Indirect Register Addressing to Register File

ELECTRONICS

3-3



ADDRESSING MODES S3C8639/C863A/P863A/C8647/F8647

INDIRECT REGISTER ADDRESSING MODE (Continued)

Register File
Program Memory
Example . [ Register
Instruction dst hd ) "L Par —
References —» OPCODE PQII’IIS to_
Program Rigister Pair 16-Bit
Memory Address
Points to
Program Memory Program
Memory
Sample Instructions: Value used in —» OPERAND <
Instruction
CALL @RR2
JP @RR2

Figure 3-4. Indirect Register Addressing to Program Memory

3-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESSING MODES

INDIRECT REGISTER ADDRESSING MODE (Continued)

Register File
MSB Points to
RPO or RP1
o > RPOorRP1 e
i
[}
! Selected
I RP points
Program Memory : ~+ —+ to start of
[} . .
4-Bit ! \tl)vlgléwg register
i I 3LSBs
\éVor_kltng —» dst SIC @ -t-—--—------ »
egister Point to the P
Address OPCODE Working Register ADDRESS
(1 of 8) «
Sample Instruction: )
Value used in —» OPERAND <+
OR R3,@R6 Instruction

Figure 3-5. Indirect Working Register Addressing to Register File

ELECTRONICS 3-5



ADDRESSING MODES

S3C8639/C863A/P863A/C8647/F8647

INDIRECT REGISTER ADDRESSING MODE (Concluded)

4-bit Working
Register Address

Example Instruction
References either
Program Memory or
Data Memory

Program Memory

MSB Points to
RPO or RP1

Register File

RPOorRP1 e

A dst | src @

7! OPCODE

Sample Instructions:

LCD
LDE
LDE

R5,@RR6
R3,@RR14
@RR4,R8

|-
Ll

Next 2-bit Point to
Working Register
Pair (1 of 4)

LSB Selects

Register
Pair

\ 4

Value used in __|

Instruction

Program Memory
or
Data Memory

OPERAND

;  Program memory access
;  External data memory access
;  External data memory access

=

Selected
RP points
to start of
working
register
block

16-Bit
address
points to
program
memory
or data
memory

Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

3-6

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESSING MODES

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access
locations in the internal register file or in external memory (if implemented). You cannot, however, access
locations COH-FFH in set 1 using Indexed addressing.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range from —
128 to +127. This applies to external memory accesses only (see Figure 3-8).

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained
in a working register. For external memory access, the base address is stored in the working register pair
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address
(see Figure 3-9).

The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for
external data memory (if implemented).

Register File
MSB Points to
RPO to RP1
e ittt » RPOorRP1 @
i
[}
[}
i i} 1
[}
! _ Selected RP
! VaILIJe ttjseotl_ln points to
nstruction
| OPERAND start of
: working
, register
[}
block
i + 1 1
Program Memory :/'
)
[}
Base Address I
- I 3LSBs
TWOI Opera.nd —1p dSt/SrC X o+ -L-——---————--4 o INDEX <
nstruction OPCODE Point to One of the
Example Woking Register
(1 of 8)
Sample Instruction:
LD  RO#BASE[R1] ;i Where BASE is an 8-bit immediate value

Figure 3-7. Indexed Addressing to Register File

ELECTRONICS 3-7



ADDRESSING MODES S3C8639/C863A/P863A/C8647/F8647

INDEXED ADDRESSING MODE (Continued)

Register File
MSB Points to
RPO or RP1
FTTTTTTooTos > RPOorRP1 e
: Selected
: RP points
l to start of
! T T working
[}
Program Memory : register
! block
. . OFFSET ] | NEXT 2 Bits
. _4:[b'tngrk'”g — dst/src X e > Register
egister ress ; ; — . -
g OPCODE : Point t_o Work_lng Pair
1 Register Pair
| (lof4) <! | 16Bit
: address
: added to
[ p Program Memory offset
LSB Selects or
Data Memory
—> <
8-Bits 16-Bits
OPERAND <«— Value used in
16-Bits Instruction
Sample Instructions:
LDC R4, #04H[RR2] ; The values in the program address (RR2 + 04H)
are loaded into register R4.
LDE R4,#04H[RR2] ; Identical operation to LDC example, except that
external program memory is accessed.

Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

3-8 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESSING MODES

INDEXED ADDRESSING MODE (Concluded)

Register File
MSB Points to
RPO or RP1
Fommmooooooo- > RPOOrRP1 @
[}
! Selected
! RP points
Program Memory ! 1 1 to start of
I working
OFFSET | register
[}
. . OFFSET ] | NEXT 2 Bits block
. A;bltxgrkmg —» dst/src SIC @f-b----mmo— - > Register
egister ress 1 Pointto Working [ Par | [
OPCODE : Register Pair
[}
! <+ | 16-Bit
I address
: P M added to
Lo > rogram Memory OFESET
LSB Selects or
Data Memory
—> <
8-Bits 16-Bits
OPERAND <«4— Valueusedin
16-Bits Instruction
Sample Instructions:
LDC R4,#1000H[RR2] ;. The values in the program address (RR2 + 1000H)
are loaded into register R4.
LDE R4,#1000H[RR2] ; Identical operation to LDC example, except that

external program memory is accessed.

Figure 3-9. Indexed Addressing to Program or Data Memory

ELECTRONICS 3-9



ADDRESSING MODES S3C8639/C863A/P863A/C8647/F8647

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC
whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

Program or
Data Memory

Memory
Address

Program Memory Used

Upper Address Byte
Lower Address Byte

dst/src_| "0 or 1" LSB Selects Program

OPCODE Memory or Data Memory:
"0" = Program Memory
"1" = Data Memory

Sample Instructions:

LDC R5,1234H ; The values in the program address (1234H)
are loaded into register R5.

; ldentical operation to LDC example, except that
external program memory is accessed.

LDE R5,1234H

Figure 3-10. Direct Addressing for Load Instructions

3-10 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

ADDRESSING MODES

DIRECT ADDRESS MODE (Continued)

Program Memory

Next OPCODE <
Program
Memory
Address
Used
Lower Address Byte
Upper Address Byte
OPCODE
Sample Instructions:
JP C,JOB1 i Where JOB1 is a 16-bit immediate address
CALL DISPLAY i Where DISPLAY is a 16-bit immediate address

Figure 3-11. Direct Addressing for Call and Jump Instructions

ELECTRONICS

3-11



ADDRESSING MODES

S3C8639/C863A/P863A/C8647/F8647

INDIRECT ADDRESS MODE (lA)

In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program

memory. The selected pair of memory locations contains the actual address of the next instruction to be

executed. Only the CALL instruction can use Indirect Address mode.

Because Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program

memory, only an 8-bit address is supplied in the instruction. The upper bytes of the destination address are
assumed to be all zeros.

Program Memory

v

<4— Next Instruction
LSB must be Zero
-
c . dst A
urren
Instruction OPCODE
|_ Lower Address Byte Program Memory

|_ Upper Address Byte | €— Locations 0-255

Sample Instruction:

CALL #40H ; The 16-bit value in program memory addresses 40H
and 41H is the subroutine start address.

Figure 3-12. Indirect Addressing

3-12

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ADDRESSING MODES

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a two's-complement signed displacement between — 128 and + 127 is specified
in the instruction. The displacement value is then added to the current PC value. The result is the address of the
next instruction to be executed. Before this addition occurs, the PC contains the address of the next instruction
immediately following the current instruction.

Several program control instructions use the Relative Address mode to perform conditional jumps. The
instructions that support RA addressing are BTJRF, BTJRT, DIJNZ, CPIJE, CPIINE, and JR.

Program Memory

Next OPCODE

Program Memory
Address Used

Current
: — pc Value ™
Displacement | >

Current Instruction — [ __ OPCODE Signed
Displacement Value

Sample Instruction:

JR ULT,$+OFFSET ;. Where OFFSET is a value in the range +127 to -128

Figure 3-13. Relative Addressing

ELECTRONICS 3-13



ADDRESSING MODES

S3C8639/C863A/P863A/C8647/F8647

IMMEDIATE MODE (IM)

In Immediate (IM) mode, the operand value used in the instruction is the value supplied in the operand field
itself. The operand may be one byte or one word in length, depending on the instruction used. Immediate
addressing mode is useful for loading constant values into registers.

Program Memory

OPERAND
OPCODE

(The Operand value is in the instruction)

Sample Instruction:

LD RO#0AAH

Figure 3-14. Immediate Addressing

3-14

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

CONTROL REGISTERS

OVERVIEW

In this chapter, detailed descriptions of the S3C8639/C863A/C8647 control registers are presented in an easy-to-
read format. You can use this chapter as a quick-reference source when writing application programs.

The locations and read/write characteristics of all mapped registers in the S3C8639/C863A/C8647 register files
are presented in Tables 4-1, 4-2, and 4-3. The hardware reset values for these registers are described in Chapter

8, "RESET and Power-Down."
Figure 4-1 illustrates the important features of the standard register description format.
Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed

information about control registers is presented in the context of the specific peripheral hardware descriptions in
Part Il of this manual.

ELECTRONICS 4-1



CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

Table 4-1. Set 1 Registers

Register Name Mnemonic Decimal Hex R/W
Timer MO counter register TMOCNT 208 DOH R (note)
Timer MO data register TMODATA 209 Di1H R (note)
Timer MO control register TMOCON 210 D2H R/W
Basic timer control register BTCON 211 D3H R/W
Clock control register CLKCON 212 D4H R/W
System flags register FLAGS 213 D5H R/W
Register pointer 0 RPO 214 D6H R/W
Register pointer 1 RP1 215 D7H R/W
Stack pointer (high byte) SPH 216 D8H R/W
Stack pointer (low byte) SPL 217 D9H R/W
Instruction pointer (high byte) IPH 218 DAH R/W
Instruction pointer (low byte) IPL 219 DBH R/W
Interrupt request register IRQ 220 DCH R (note)
Interrupt mask register IMR 221 DDH R/W
System mode register SYM 222 DEH R/W
Page pointer register PP 223 DFH R/W

NOTE: You cannot use a read-only register (TMOCNT, TMODATA, IRQ) as a destination field for the instructions OR, AND,

LD, or LDB.

4-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

Table 4-2. Set 1, Bank 0 Registers

Register Name Mnemonic Decimal Hex R/W
Port O data register PO 224 EOH R/W
Port 1 data register P1 225 E1H R/W
Port 2 data register P2 226 E2H R/W
Port 3 data register P3 227 E3H R/W
Port 0 control register (high byte) POCONH 228 E4H R/W
Port 0 control register (low byte) POCONL 229 E5H R/W
Port 1 control register (2) P1CON 230 E6H R/W
Port 2 control register (high byte) P2CONH 231 E7H R/W
Port 2 control register (low byte) P2CONL 232 E8H R/W
Port 3 control register (high byte) P3CONH 233 E9H R/W
Port 3 control register (low byte) P3CONL 234 EAH R/W
Port 0 external interrupt control register POINT 235 EBH R/W
Watchdog time control register WDTCON 236 ECH R/W
Sync control register 0 SYNCONO 237 EDH R/W
Sync control register 1 SYNCON1 238 EEH R/W
Sync control register 2 SYNCON2 239 EFH R/W
Sync port read data register SYNCRD 240 FOH R®
Timer M1 counter register (high byte) TM1CNTH 241 F1H R@
Timer M1 counter register (low byte) TM1CNTL 242 F2H R@
Timer M1 data register (high byte) TM1DATAH 243 F3H R @
Timer M1 data register (low byte) TM1DATAL 244 F4H R@
Timer M1 control register TM1CON 245 F5H R/W
Timer M2 control register TM2CON 246 F6H R/W
A/D converter control register ADCON 247 F7H R/W
A/D converter data register ADDATA 248 F8H R®
Pseudo Hsync generation register PHGEN 249 FOH R/IW
Pseudo Vsync generation register PVGEN 250 FAH R/IW
Stop control register STOPCON 251 FBH R/W

Location FCH is not mapped

Basic timer counter register BTCNT 253 FDH R®
External memory timing register EMT 254 FEH R/W
Interrupt priority register IPR 255 FFH R/W

NOTES:

1. You cannot use a read-only register (SYNCRD, TM1CNTH, TM1TNCL, TM1DATAH, TM1DATAL, ADDATA, BTCNT)

as a destination field for the instructions OR, AND, LD, or LDB.

2. Not used for the S3C8647.

ELECTRONICS

4-3



CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

Table 4-3. Set 1, Bank 1 Registers

Register Name Mnemonic Decimal Hex R/W
PWM 0 data register PWMO 224 EOH R/W
PWM 1 data register PWM1 225 E1H R/W
PWM 2 data register PWM2 226 E2H R/W
PWM 3 data register PWM3 227 E3H R/W
PWM 4 data register PWM4 228 E4H R/W
PWM 5 data register PWM5 229 E5H R/W
PWM 6 data register PWM6 230 E6H R/W
PWM control register PWMCON 231 E7H R/W
PWM counter register PWMCNT 232 E8H R®
DDC control register DCON 233 E9H R/W
DDC address register 0 DARO 234 EAH R/W
DDC clock control register DCCR 235 EBH R/W
DDC control/status register O DCSRO 236 ECH R/W
DDC control/status register 1 DCSR1 237 EDH R/W
DDC address register 1 DAR1 238 EEH R/W
Transmit prebuffer data register TBDR 239 EFH R/W
Receive prebuffer data register RBDR 240 FOH R®
DDC data shift register DDSR 241 F1H R/W
Slave 1IC-Bus control/status register (2) SICSR 243 F2H R/W
Slave 1IC-Bus address register (2) SIAR 242 F3H R/W
Slave 1IC-Bus data shift register (2) SIDSR 244 F4H R/W

Locations F5H-FFH are not mapped

NOTES:

1. You cannot use a read-only register (PWMCNT, RBDR) as a destination field for the instructions OR, AND, LD, or LDB.

2. Not used for the S3C8647.

4-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

Bit number(s) that is/are appended to
the register name for bit addressing

Name of individual
bit or related bits

Register address

Register location
in the internal

Type of addressing
that must be used to
address the bit
(2-bit, 4-bit, or 8-bit)

RESET value notation:
'-' = Not used

'X' = Undetermined value
'0' = Logic zero

'1' = Logic one

Register ID Register name (hexadecimal) register file
| | | |
FLAGS - System Flags Register D5H Set 1
Bit Identifier | 7 | 6 | 5 | a4 | 3| 2 | a R
RESET Value X X X X X X X +—» 0
Read/Write —» R/W R/W R/W R/W R/W R/W R/W R/W
Bit Addressing Register addressing mode|only
Mode
A
> 7 Carry Flag (C) ¢——
0 Operation does not generate a carry or borrow condition
0 Operation generates carry-out or borrow into high-order bit 7
> 6 Zero Flag (2)
0 Operation result is a non-zero value
0 | Operation result is zero
> 5
| Sign Flag (S)
M 0 Operation generates positive number (MSB = "0")
0 Operation generates negative number (MSB = "1")
R = Read-only Description of the Bit number:
W = Write-only effect of specific MSB = Bit 7
R/W = Read/write bit settings LSB =Bit 0
'-' = Not used

Figure 4-1. Register Description Format

ELECTRONICS



CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

ADCON — A/D converter Control Register

Bit Identifier

RESET Value
Read/Write
Addressing Mode

.6 and .4

.2and .1

F7H Set 1, Bank O
|7 | & | 5 | a4 3 | 2 1 0
- 0 0 0 0 0 0 0
_ RIW R/W R/W R R/W R/W RIW

Register addressing mode only

Not used for the S3C8639/C863A/C8647

Analog Input Pin Selection Bits

0| 0| O |ADCO (Port 3.0)
0| 0| 1 |ADC1 (Port3.1)
0| 1| 0 |ADC2(Port3.2)
0| 1 1 | ADC3 (Port 3.3)
Others Not used

End-of Conversion (EOC) Flag (read-only)

0

Conversion not complete

1

Conversion is complete

Clock Source Selection Bits

0| 0 |fosc/16
0| 1 |fosc/®
1|0 [foscld
1|1 |fosc

Start or Enable Bit

0

Disable operation

1

Start operation

4-6

ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

BTCON — Basic Timer Control Register D3H Setl
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
g-4 Watchdog Timer Function Disable Bits

1 | 0 | 1 | 0 | Disable watchdog timer function

Others Enable watchdog timer function

3and .2 Basic Timer Input Clock Selection Bits

0 | 0 |fogc/4096

0 | 1 |fogc/1024

1| 0 |fosc/128

1 1 | Invalid setting; not used for the S3C8639/C863A/C8647
1 Basic Timer Counter Clear Bit ()

0 | No effect

1 [ Clear the basic timer counter value
.0 Clock Frequency Divider Clear Bit for Basic Timer and Timer MO (2)

0 | No effect

1 | Clear basic timer and timer MO frequency dividers

NOTES:

1. When you write a “1” to BTCON.1, the basic timer counter value is cleared to "00H". Immediately after the write

operation, the BTCON.1 value is automatically cleared to “0”.

2. When you write a "1" to BTCON.O0, the corresponding frequency divider is cleared to "00H". Immediately after the

write operation, the BTCON.O value is automatically cleared to "0".

ELECTRONICS

4-7




CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

CLKCON — System Clock Control Register D4H Setl
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7 Oscillator IRQ Wake-up Function Enable Bit

0 | Enable IRQ for main system oscillator wake-up in power-down mode

1 | Disable IRQ for main system oscillator wake-up in power-down mode

.6and .5 Main Oscillator Stop Control Bits
0 0 | No effect
0 1 [ No effect
1 0 | Stop main oscillator
1 1 [ No effect
4and .3 CPU Clock (System Clock) Selection Bits (1)
0 | O |Divide by 16 (fo5c/16)
0 | 1 |Divide by 8 (fysc/8)
1 | O |Divide by 2 (fogc/2)
1 | 1 |Non-divided clock (fogc) @
2-.0 Subsystem Clock Selection Bits 3
1 | o | 1 [invalid setting for S3C8639/C863A/C8647
Others Select main system clock (MCLK)

NOTES:

1. After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds,
load the appropriate values to CLKCON.3 and CLKCON.4.

2. If the oscillator frequency is higher than 12 MHz, this selection is invalid.

3. These selection bits are required only for systems that have a main clock and a subsystem clock.
S3C8639/C863A/C8647 use only the main oscillator clock circuit. For this reason, the setting "101B" is invalid.

4-8 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

DARO — bbc Address Register 0 EAH Set 1, Bank 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 1 0 1 0 - - - -
Read/Write R/W R/W R/W R/W - - - -
Addressing Mode Register addressing mode only
7-4 4-Slave Address Bits

These bits are operate only when receive the slave address. Read enable anytime.
Write enable when DCSRO0.4 is "0".

3-.0 Not used for the S3C8639/C863A/C8647

DAR1 — bbc Address Register 1 EEH Set 1, Bank 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X X -
Read/Write R/W R/W R/W R/W R/W R/W R/W -
Addressing Mode Register addressing mode only
7-1 7-Slave Address Bits

These bits are operate only when receive the slave address. Read enable anytime.
Write enable when DCSRO0.4 is "0".

.0 Not used for the S3C8639/C863A/C8647

ELECTRONICS 4-9



CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

DCCR — bpc clock Control Register EBH Set 1, Bank 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 0 0 0 0 1 1 1 1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7 Transmit acknowledgement enable mode when this bit is "1".

.6 Tx Clock Selection Bit
0 |fosc/10
1 |fogc/256
5 DDC Module Interrupt Enable Bit

0 | Disable interrupt

1 | Enable interrupt

4 DDC Module Interrupt Pending Bit

When write "0" to this bit (write "1" has no effect)
When DCSR0.4 is "0"

When slave address match occurred

When arbitration lost (master mode)

When an 1-byte transmit or receive operation is terminated

RlRr(r|r|lo|oO

As soon as the DDC1 mode is enabled after the prebuffer is used

.3-.0 Transmit Clock 4-Bit Prescaler Bits (CCR3—-CCRO)

SCL clock = IICLK/(CCR < 3: 0 > +1)
where, lICLK is f55-/10 when DCCR.6 is "0"

ICLK is fogc/256 when DCCR.6 is "1"

4-10 ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

DCON — pbc control Register E9H Set 1, Bank 1

Bit Identifier |

7 | 6 | 5 | a4 | 3 | 2 | 1 | o

RESET Value
Read/Write
Addressing Mode

- - - 1 0 0 0
- - - R/W R/W R/W R/W

Register addressing mode only

-4 Not used for the S3C8639/C863A/C8647.
3 Tx/Rx Pre-Buffer Data Registers Enable Bit
0 | Normal IIC-bus mode (Pre-buffer data registers are not used.)
1 | Pre-buffer data registers enable mode. This bit is set by writing "1" or by a
reset.
2 DDC Address Match Bit
0 | When start or stop or reset
1 | When DDC received address matchs to DARO register
A DDC1 Tx Mode Enable Bit
0 | lIC-bus interface mode (SCL pin is also selected)
1 | DDC1 Tx mode (VCLK pin is also selected)
.0 SCL Pin Falling Edge Detection Flag (n°te)

0 | SCL pin level remains high after a reset (when read)

0 | This bit can be cleared by S/W written "0" (when write)

1 [ Falling edge can be detected at the SCL pin after a reset or after this flag is
cleared by software (when read)
After start condition, the clock source of DDC module automatically charges
from VCLK (Vsync-1) to SCLO (DCON.1 is "1" to "0") and slave address match
possible.

1 | No effect (when write)

NOTE: When DDC interrupt is occurred, the SCL line is not pull-down in the DDC1 mode and Tx/Rx pre-buffer data
registers enable bit, DCON.3 is "1" (only slave mode).

ELECTRONICS

4-11




CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

DCSRO — bpDc control/Status Register 0 ECH Set 1, Bank 1
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | a1 | o |
RESET Value 0 0 0 0 0 0 -

Read/Write R/W R/W R/W R/W R R — R
Addressing Mode Register addressing mode only
.7-.6 Master/Slave, Tx/Rx Mode Selection Bits

0 0 | Slave receiver mode (Default mode)

0 1 | Slave transmitter mode

1 0 | Master receiver mode

1 1 | Master transmitter mode

5 Bus Busy Bit

0 | lIC-bus is not busy (when read), stop condition generation (when write)

1 | lIC-bus is busy (when read), start condition generation (when write)

4 DDC Module Enable Bit
0 | Disable DDC module
1 | Enable DDC module

3 Arbitration Lost Bit

0 | Bus arbitration status okay

1 | Bus arbitration failed during serial I/O

2 DDC Address/Data classification Bit

0 | When reset or start/stop condition is generated, or when the received data is
in the data field.

1 | When the received slave address matchs to DARO, DARL1 register

1 Not used for the S3C8639/C863A/C8647

.0 Received Acknowledgement (ACK) Bit
0 | ACK is received
1 [ ACK s not received

NOTE: Bits 3—0 are read only.

4-12 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

DCSR1 — ppc control/Status Register 1 EDH Set 1, Bank 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value - - - - - 0 1 0
Read/Write - - - - - R/W R/W R/W
Addressing Mode Register addressing mode only
7-3 Not used for the S3C8639/C863A/C8647
2 Stop Condition Detection Bit

0 | When it writes "0" to this bit, it is reset or master mode.

1 | When a STOP condition is detected after START and slave address reception

A Data Buffer Empty Status Bit

0 | When the CPU writes the transmitted data into the TBDR register

1 | When the data of the TBDR register is loads to the DDSR register or when a
STOP condition is detected in DCSRO0.7-.6 (slave transmitter mode) = "01"

.0 Data Buffer Full Status Bit
0 | When the CPU reads the received data from the RBDR register or STOP
condition

1 | When the data or matched address is transferred from the DDSR register to
the RBDR register

ELECTRONICS 4-13



CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

DDSR — pbpc Data shift Register F1H Set 1, Bank 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.0 Write enable when DCSRO0.4 is "1" and DCON.3 is "0". Read enable anytime.

4-14 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

EMT — external Memory Timing Register FEH Set 1, Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 0 1 1 1 1 1 0 -
Read/Write R/W R/W R/W R/W R/W R/W R/W -
Addressing Mode Register addressing mode only
7 External WAIT Input Function Enable Bit

0 | Disable WAIT input function for external device
1 [ Enable WAIT input function for external device
.6 Slow Memory Timing Enable Bit
0 | Disable slow memory timing
1 | Enable slow memory timing
Sand .4 Program Memory Automatic Wait Control Bits
0 | O | No wait (Normal Operation)
0 1 | Wait one cycle
1 0 | Wait two cycles
1 1 | Wait three cycles
3and .2 Data Memory Automatic Wait Control Bits
0 | O | No wait (Normal Operation)
0 1 | Wait one cycle
1 0 | Wait two cycles
1 1 | Wait three cycles
A Stack Area Selection Bit
0 | Select internal register file area
1 [ Select external data memory area
.0 Not used for the S3C8639/C863A/C8647

NOTE: As external peripheral interface is not implemented in S3C8639/C863A/C8647, EMT register is not used. The
program initialization routine should clear the EMT register to "O0H" after a reset. Modification of EMT values during

the normal operation may cause a system malfunction.

ELECTRONICS

4-15




CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

FLAGS — System Flags Register D5H Setl
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7 Carry Flag (C)

0 | Operation does not generate a carry or borrow condition

1 | Operation generates a carry-out or borrow into high-order bit 7

.6 Zero Flag (2)

0 | Operation result is a non-zero value

1 [ Operation result is zero

5 Sign Flag (S)

0 | Operation generates a positive number (MSB = "0")

1 | Operation generates a negative number (MSB = "1")

4 Overflow Flag (V)

O | Operation resultis £ +127 or 3 -128

1 [ Operation resultis > +127 or < -128

3 Decimal Adjust Flag (D)

0 | Add operation completed

1 | Subtraction operation completed

2 Half-Carry Flag (H)

0 | No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction

1 | Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3

A Fast Interrupt Status Flag (FIS)

0 | Cleared automatically during an interrupt return (IRET)

1 | Automatically set to logic one during a fast interrupt service routine

.0 Bank Address Selection Flag (BA)

0 | Bank O is selected (by executing the instruction SB0O)

1 | Bank 1 is selected (by executing the instruction SB1)

4-16 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

IMR — Interrupt Mask Register

Bit Identifier

RESET Value
Read/Write
Addressing Mode

DDH Set 1
| 7 | s 5 4 3 2 1 0
X X X X X X X X
R/W R/W R/W R/W R/W R/W R/W RIW

Register addressing mode only

Interrupt Level 7 (IRQ7) Enable Bit; Slave Only IIC-Bus Interrupt (Only S3C863X)

0 | Disable IRQ7 interrupt

1 | Enable IRQ7 interrupt

Interrupt Level 6 (IRQ6) Enable Bit; P0.2 External Interrupt (INT2)

0 | Disable IRQ6 interrupt

1 | Enable IRQ6 interrupt

Interrupt Level 5 (IRQ5) Enable Bit; P0.1 External Interrupt (INT1)

0 | Disable IRQ5 interrupt

1 | Enable IRQ5 interrupt

Interrupt Level 4 (IRQ4) Enable Bit; P0.0 External Interrupt (INTO)

0 | Disable IRQ4 interrupt

1 | Enable IRQ4 interrupt

Interrupt Level 3 (IRQ3) Enable Bit; DDC (Multi-Master [IC-Bus) Interrupt

0 | Disable IRQ3 interrupt

1 | Enable IRQ3 interrupt

Interrupt Level 2 (IRQ2) Enable Bit; Timer M1 Capture/Overflow Interrupt

0 | Disable IRQ2 interrupt

1 | Enable IRQ2 interrupt

Interrupt Level 1 (IRQ1) Enable Bit; Timer M2 Interval Interrupt

0 | Disable IRQ1 interrupt

1 | Enable IRQ1 interrupt

Interrupt Level 0 (IRQO) Enable Bit; Timer MO Overflow/Capture Interrupt

0 | Disable IRQO interrupt

1 | Enable IRQO interrupt

ELECTRONICS

4-17




CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

IPH — Instruction Pointer (High Byte) DAH Setl
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.0 Instruction Pointer Address (High Byte)

The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction
pointer address (IP15-1P8). The lower byte of the IP address is located in the IPL
register (DBH).

[PL — instruction Pointer (Low Byte) DBH Setl
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.0 Instruction Pointer Address (Low Byte)

The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction
pointer address (IP7—I1P0). The upper byte of the IP address is located in the IPH
register (DAH).

4-18 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

IPR — Interrupt Priority Register FFH Set 1, Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7,.4and .1 Priority Control Bits for Interrupt Groups A, B and C

0 0 0 | Not used

0 0 1 (B>C>A

0| 1| 0|A>B>C

0 1 1 |B>A>C

1 0 0O |C>A>8B

1 0 1 |C>B>A

1 1 O |lA>C>8B

1 1 1 | Not used
.6 Interrupt Sub-group C Priority Control Bit

0 |IRQ6 > IRQ7

1 |IRQ7 > IRQ6

5 Interrupt Group C Priority Control Bit

0 |IRQ5 > (IRQ6, IRQY)

1 | (IRQ6, IRQ7) > IRQ5

3 Interrupt Sub-group B Priority Control Bit

0 |IRQ3 > IRQ4

1 |IRQ4 > IRQ3

2 Interrupt Group B Priority Control Bit

0 |IRQ2 > (IRQ3, IRQ4)

1 | (IRQ3, IRQ4) > IRQ2

.0 Interrupt Group A Priority Control Bit

0 |IRQO > IRQ1

1 |IRQ1 > IRQO

NOTE: Interrupt group A is IRQO and IRQ1. Interrupt group B is IRQ2, IRQ3, and IRQ4. Interrupt group C is IRQ5,
IRQ6 and IRQ7.

ELECTRONICS 4-19



CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

|RQ — Interrupt Request Register

Bit Identifier

RESET Value
Read/Write
Addressing Mode

DCH Set 1
| 7 | & | 5 2
0 0 0 0
R R R R R

Register addressing mode only

Level 7 (IRQ7) Request Pending Bit; Slave Only IIC-Bus Interrupt (Only S3C863X)

0 | No IRQ?7 interrupt pending

1 | IRQ7 interrupt is pending

Level 6 (IRQ6) Request Pending Bit; P0.2 External Interrupt (INT2)

0 | No IRQ6 interrupt pending

1 | IRQ6 interrupt is pending

Level 5 (IRQ5) Request Pending Bit; P0O.1 External Interrupt (INT1)

0 | No IRQ5 interrupt pending

1 | IRQ5 interrupt is pending

Level 4 (IRQ4) Request Pending Bit; P0.0 External Interrupt (INTO)

0 | No IRQ4 interrupt pending

1 | IRQ4 interrupt is pending

Level 3 (IRQ3) Request Pending Bit; DDC (Multi-Master [IC-Bus) Interrupt

0 | No IRQ3 interrupt pending

1 | IRQ3 interrupt is pending

Level 2 (IRQ2) Request Pending Bit; Timer M1 Capture/Overflow Interrupt

0 | No IRQ2 interrupt pending

1 | IRQ2 interrupt is pending

Level 1 (IRQ1) Request Pending Bit; Timer M2 Interval Interrupt

0 | No IRQL1 interrupt pending

1 | IRQ1 interrupt is pending

Level 0 (IRQO) Request Pending Bit; Timer MO Overflow/Capture Interrupt

0 | No IRQO interrupt pending

1 | IRQO interrupt is pending

4-20

ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

POCONH — Port 0 control Register (High Byte) E4H Set 1, Bank O
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ a 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7and .6 P0.7 Mode Selection Bits (Not Used for S3C8647)

0 | x |Input mode

1 X | Push-pull output mode

Sand .4 P0.6 Mode Selection Bits (Not Used for S3C8647)

0 | x |Input mode

1 X | Push-pull output mode

.3and .2 P0.5 Mode Selection Bits (Not Used for S3C8647)

0 | x |Input mode

1 X | Push-pull output mode

.land .0 P0.4/TMOCAP Mode Selection Bits

0 0 | Input mode

0 1 | TMOCAP input mode

1 X | Push-pull output mode

ELECTRONICS

4-21




CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

POCONL — port 0 control Register (Low Byte) E5H Set 1, Bank O
Bit Identifier | 7 6 | 5 | 4 | 3 | 2 1 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write RIW R/W R/W R/W R/W R/W R/W R/W

Addressing Mode

Register addressing mode only

.7and .6 P0.3 Mode Selection Bits (Not Used for S3C8647)
0 0 | Input mode
0 1 | Input mode
1 0 | Input mode
1 1 | Push-pull output mode

Sand .4 P0.2/INT2 Mode Selection Bits
0 | 0 |Inputmode (P0.2)
0 1 | Input mode, rising edge interrupt detection (INT2)
1 0 | Input mode, falling edge interrupt detection (INT2)
1 1 | Push-pull output mode

3and .2 P0.1/INT1 Mode Selection Bits
0 | O |Inputmode (P0O.1)
0 1 | Input mode, rising edge interrupt detection (INT1)
1 0 | Input mode, falling edge interrupt detection (INT1)
1 1 | Push-pull output mode

land .0 P0.0/INTO Mode Selection Bits

0 0 | Input mode (P0.0)

0 1 | Input mode, rising edge interrupt detection (INTO)
1 0 | Input mode, falling edge interrupt detection (INTO)
1 1 | Push-pull output mode

4-22

ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

POINT — Port 0 External Interrupt Control Register EBH Set 1, Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ a 0
RESET Value - 0 0 0 - 0 0 0
Read/Write - RIW RIW RIW - RIW RIW RIW

Addressing Mode

.7 and .3

Register addressing mode only

Not used for the S3C8639/C863A/C8647

P0.2 External Interrupt (INT2, IRQ6) Pending Flag (note)

0 | No P0.2 external interrupt pending (when read)
0 | Clear P0.2 interrupt pending condition (when write)
1 | P0.2 external interrupt is pending (when read)

PO0.1 External Interrupt (INT1, IRQ5) Pending Flag

0 | No P0.1 external interrupt pending (when read)
0 | Clear PO.1 interrupt pending condition (when write)
1 | PO.1 external interrupt is pending (when read)

P0.0 External Interrupt (INTO, IRQ4) Pending Flag

0 | No P0.0 external interrupt pending (when read)
0 | Clear PO0.0 interrupt pending condition (when write)
1 | P0.0 external interrupt is pending (when read)

P0.2 External Interrupt (INT2, IRQ6) Enable Bit

0

Disable P0.2 interrupt

1

Enable PO0.2 interrupt

PO0.1 External Interrupt (INT1, IRQ5) Enable Bit

0

Disable P0.1 interrupt

1

Enable P0.1 interrupt

P0.0 External Interrupt (INTO, IRQ4) Enable Bit

0

Disable P0.0 interrupt

1

Enable PO0.0 interrupt

NOTE: Writing a "1" to an interrupt pending flag (P0.2, P0.1, P0.0) has no effect.

ELECTRONICS

4-23




CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

P1CON — port 1 control Register (Only S3C863X) E6H Set 1, Bank O
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 | 0
RESET Value - - 0 0 0 0 0
Read/Write - - R/W R/W R/W R/W R/W

Addressing Mode

Register addressing mode only

.7and .6 Not used for the S3C8639/C863A/C8647
Sand .4 P1.2 Mode Selection Bits
0 0 | Input mode
0 1 | Push-pull output mode
1 0 | N-channel open-drain output mode (5 V load capability)
1 1 | Not used
3and .2 P1.1/SCL1 Mode Selection Bits
0 0 | Input mode
0 1 | Push-pull output mode
1 0 | N-channel open-drain output mode (5 V load capability)
1 1 | Multiplexed mode (SCL1 (P1.1))
land .0 P1.0/SDA1 Mode Selection Bits

0 0 | Input mode

0 1 | Push-pull output mode

1 0 | N-channel open-drain output mode (5 V load capability)
1 1 | Multiplexed mode (SDA1 (P1.0))

4-24

ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

P2CONH — port 2 control Register (High Byte) E7H Set 1, Bank O
Bit Identifier | 6 | 5 | 4 | 3 | 2 [ a 0
RESET Value 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7and .6 P2.7/Csync-I

0 X | TTL input mode (Csync-I)

1 X | Push-pull output mode
Sand .4 P2.6/PWM6 Mode Selection Bits (Not Used for S3C8647)

0 0 | Input mode

0 1 | Push-pull output mode

1 0 | Push-pull PWM output mode

1 1 | N-channel open-drain PWM output mode (5 V load capability)
3and .2 P2.5/PWM5 Mode Selection Bits

0 0 | Input mode

0 1 | Push-pull output mode

1 0 | Push-pull PWM output mode

1 1 | N-channel open-drain PWM output mode (5 V load capability)
land .0 P2.4/PWM4 Mode Selection Bits

0 0 | Input mode

0 1 | Push-pull output mode

1 0 | Push-pull PWM output mode

1 1 | N-channel open-drain PWM output mode (5 V load capability)

ELECTRONICS

4-25




CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

P2CONL — port 2 control Register (Low Byte) ESH Set 1, Bank O
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7and .6 P2.3/PWM3 Mode Selection Bits

0 | x |Input mode

1 0 | Push-pull output mode
1 1 | Push-pull PWM output mode (5 V load capability)

S5and .4 P2.2/PWM2 Mode Selection Bits
0 | x |Input mode

1 0 | Push-pull output mode
1 1 | Push-pull PWM output mode (5 V load capability)

.3and .2 P2.1/PWM1 Mode Selection Bits
0 | x |Input mode

1 0 | Push-pull output mode
1 1 | Push-pull PWM output mode (5 V load capability)

.land .0 P2.0/PWMO Mode Selection Bits
0 | x |Input mode

1 0 | Push-pull output mode
1 1 | Push-pull PWM output mode (5 V load capability)

4-26 ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

P3CONH — Port 3 control Register (High Byte) E9H Set 1, Bank O
Bit Identifier | 7 | 6 | 5 | 4 | 3 [ 2 [ a 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7and .6 P3.7 Mode Selection Bits

0 0 | Input mode

Input mode with pull-up resistor

0|1
1 0 | Push-pull output mode
1 1

N-channel open-drain output mode

S5 and .4 P3.6 Mode Selection Bits

0 0 | Input mode

Input mode with pull-up resistor

0|1
1 0 | Push-pull output mode
1 1

N-channel open-drain output mode

3and .2 P3.5 Mode Selection Bits

0 0 | Input mode

Input mode with pull-up resistor

0|1
1 0 | Push-pull output mode
1 1 | N-channel open-drain output mode

.land.O P3.4 Mode Selection Bits

0 0 | Input mode

Input mode with pull-up resistor

0|1
1 0 | Push-pull output mode
1 1 | N-channel open-drain output mode

ELECTRONICS

4-27




CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

P3CONL — port 3 control Register (Low Byte) EAH Set 1, Bank O
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 1 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7and .6 P3.3/AD3 Mode Selection Bits

0 0 | Input mode

Analog Input mode (AD3)

0|1
1 0 | Push-pull output mode
1 1 | N-channel open-drain output mode

S5and .4 P3.2/AD2 Mode Selection Bits

0 0 | Input mode

Analog Input mode (AD2)

0|1
1 0 | Push-pull output mode
1 1 | N-channel open-drain output mode

3and .2 P3.1/AD1 Mode Selection Bits

0 0 | Input mode

Analog Input mode (AD1)

0|1
1 0 | Push-pull output mode
1 1 | N-channel open-drain output mode

.land.O P3.0/AD0O Mode Selection Bits

0 0 | Input mode

Analog Input mode (ADO)

0|1
1 0 | Push-pull output mode
1 1

N-channel open-drain output mode

4-28

ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

PHGEN — pseudo Hsync Generation Register FOH Set 1, Bank O
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 0 1 0 1 0 0 1 1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.0 Write enable when SYNCON2.4 is "0". (General Pseudo H/Vsync generation mode)

Read enable any time

ELECTRONICS 4-29



CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

PP — Page Pointer Register DFH Setl
Bit Identifier IR 5 | 4 | 3 | 2 | a 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Addressing Mode

Register addressing mode only

Destination Register Page Selection Bits

Destination: page 0

Destination: page 1

Destination: page 2 (Not used for the S3C8647)

Destination: page 3 (Not used for the S3C8639)

Not used for the S3C8639/C863A/C8647

Not used for the S3C8639/C863A/C8647

Source Register Page Selection Bits

Source: page 0

Source: page 1

Source: page 2 (Not used for the S3C8647)

Source: page 3 (Not used for the S3C8639)

-4
olofo]o
o|ofo]1
olof1]o
olof1]1
o|1]o]o
11|11

3-0
olofo]o
o|ofo]1
olof1]o
olof1]1
o|1]o]o

Not used for the S3C8639/C863A/C8647

11|11

Not used for the S3C8639/C863A/C8647

4-30

ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

PVGEN — pseudo Vsync Generation Register FAH Set 1, Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 0 1 0 1 0 0 1 1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.0 Write enable SYNCONZ2.4 is "0". (General Pseudo H/Vsync generation mode) Read

enable any time

ELECTRONICS 4-31



CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

PWMCON — pwM control Register

Bit Identifier

RESET Value
Read/Write
Addressing Mode

.7 and .6

E7H Set 1, Bank 1
|7 | & | 5 | a4 3 | 2 1 | 0
0 0 0 - - - - -
RIW RIW RIW - - - - -

Register addressing mode only

2-Bit Prescaler Value for PWM Counter Input Clock

0 0 | Non-divided input clock

0 1 | Input clock divided into two
1 0 | Input clock divided into three
1 1 | Input clock divided into four

PWM Counter Enable Bit

0

Stop PWM counter operation (No current leakage)

1

Start (or resume) PWM counter operation

Not used for the S3C8639/C863A/C8647

4-32

ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

RBDR — Receive Pre-Buffer Data Register FOH Set 1, Bank 1
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value X X X X X X X X
Read/Write R R R R R R R R

Addressing Mode

.7-0

Register addressing mode only

It is a read-only register. Read enable anytime. This register will be updated after a

data byte is received when the DCSRO0.2 is "1" and the DCSR1.0 will be "1". The

read operation of this register will clear the DCSR1.0. After the DCSR1.0 is cleared,

the register can load the received data again and set the DCSR1.0.

ELECTRONICS

4-33




CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

RPO — Register Pointer O D6H Setl
Bit Identifier 7 | e | 5 | 4 | 3 | 2 | 1 | o |
RESET Value 1 1 0 0 0 - - -
Read/Write R/W R/W R/W R/W R/W - - -
Addressing Mode Register addressing only
7-3 Register Pointer 0 Address Value

Register pointer 0 can independently point to one of the 18 8-byte working register
areas in the register file. Using the register pointers, RP0O and RP1, you can select
two 8-byte register slices at one time as active working register space. After a reset,
RPO points to address COH in register set 1, selecting the 8-byte working register

slice COH—C7H.

2-0 Not used for the S3C8639/C863A/C8647

RP1— Register Pointer 1 D7H Setl
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 1 1 0 0 1 - - -
Read/Write R/W R/W R/W R/W R/W - - -
Addressing Mode Register addressing only
7-3 Register Pointer 1 Address Value

Register pointer 1 can independently point to one of the 18 8-byte working register
areas in the register file. Using the register pointers, RPO and RP1, you can select
two 8-byte register slices at one time as active working register space. After a reset,
RP1 points to address C8H in register set 1, selecting the 8-byte working register
slice C8BH—-CFH.

.2-.0 Not used for the S3C8639/C863A/C8647

4-34 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

SIAR — slave lic-Bus Address Register (Only S3C863X) F3H Set 1, Bank 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 [ 2 [ 1 | |
RESET Value X X X X X X X
Read/Write RIW R/W R/W R/W R/W R/W R/W

Addressing Mode

-1

Register addressing only

7-Bit Slave Address Bits

These bits are operated only when receive the slave address and general call.

Write enable when SICSR.6 is "0", but read enable anytime.

Not used for the S3C8639/C863A/C8647

ELECTRONICS

4-35



CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

SICSR — siave IIC-Bus Control/Status Register (Only S3C863X)

F2H

Bit Identifier | 7 | e | 5 | 4 | 3 | 2 | 1 |
RESET Value 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R R R
Addressing Mode Register addressing mode only
7 Acknowledgement Enable Bit
0 | Disable ACK generation
1 | Enable ACK generation
.6 Slave IIC-Bus Module Enable Bit
0 | Disable IIC-Bus module
1 | Enable IIC-Bus module (Enable serial data Tx/Rx)
5 Slave IIC-Bus Tx/Rx Interrupt Enable Bit
0 | Disable interrupt
1 | Enable interrupt
4 Slave IIC-Bus Tx/Rx Interrupt Pending Bit
0 | No interrupt pending (when read) clear pending condition (when write)
0 | When SICSR.6 is "0"
1 [ When 1-Byte Tx/Rx is terminated
1 | When slave address match occurred
3 Slave IIC-Bus Tx/Rx Mode Status Bit
0 | Slave receive mode (Default mode)
1 | Slave transmitter mode
2 [IC-Bus Busy Status Bit
0 | lIC-Bus is not busy
1 | lIC-Bus is busy
A Slave Address Match Bit
0 | When start or stop or reset
1 | When received slave address matchs to SIAR register
.0 Received Acknowledge (ACK) Bit
0 | ACKis received
1 | ACK is not received
NOTE: Bit 2-0 are read only.
4-36 ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

SIDSR — slave 1IC-Bus Tx/Rx Data Shift Register (Only S3C863X) F4H Set 1, Bank 1

Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing only

.7-.0 Slave lIC-Bus Transmit/Receive Data Shift Bus

Write enable when SICSR.6 is "1", but read enable anytime.

ELECTRONICS 4-37



CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

SPH — stack pointer (High Byte) D8H Setl
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.0 Stack Pointer Address (High Byte)

The high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer
address (SP15-SP8). The lower byte of the stack pointer value is located in the
register SPL (D9H). The SP value is undefined after a reset.

SPL — stack Pointer (Low Byte) D9H Setl
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X X X
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
.7-.0 Stack Pointer Address (Low Byte)

The low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer
address (SP7-SP0). The upper byte of the stack pointer value is located in the
register SPH (D8H). The SP value is undefined after a reset.

4-38 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

STOPCON — Stop Control Register FBH Set 1, Bank O
Bit Identifier 7 | 6 5 | 4 | 3 | 2 | 1 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Addressing Mode

.7-0

NOTES:

1.

2.

(10100101B).

Register addressing mode only

Stop Operation Enable Bits

10100101

Enable the stop (power saving) function

Others

Disable the stop function

If you intend to stop function for power saving, before Stop OP-code, you must set this register value to A5H

When STOP mode is released, stop control register (STOPCON) value is cleared automatically.

ELECTRONICS

4-39




CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

SYM— System Mode Register DEH Setl
Bit Identifier 6 | 5 | 4 | 3 2 1 0
RESET Value - - X X X 0 0
Read/Write R/W - - R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7 Tri-State External Interface Control Bit (1)

0 | Normal operation (disable tri-state operation)

1 | Set external interface lines to high impedance (enable tri-state operation)
.6and .5 Not used for the S3C8639/C863A/C8647
4A-2 Fast Interrupt Level Selection Bits (2

0| 0| O [IRQO

0| O 1 [IRQ1

0 1 0 |IRQ2

0 1 1 [IRQ3

1 0| 0 |IRQ4

1 0 1 |IRQ5

1 1 0 |IRQ6

1 1 1 | IRQ7 (Not used for the S3C8647)
1 Fast Interrupt Enable Bit ®

0 | Disable fast interrupt processing

1 | Enable fast interrupt processing
.0 Global Interrupt Enable Bit 4)

0 | Disable global interrupt processing

1 | Enable global interrupt processing

NOTES:

1. As external interface is not implemented in S3C8639/C863A/C8647, SYM.7 must always be "0".

2. You can select only one interrupt level at a time for fast interrupt processing.

3. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2-SYM.4.

4. After a reset, you must enable global interrupt processing by executing an El instruction (not by writing a "1"

to SYM.0).
4-40 ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

SYNCONO — Sync Processor Control Register O EDH Set 1, Bank O
Bit Identifier | 6 | 5 | 4 | 3 | 2 [ 1 |
RESET Value 0 0 0 0 0 0
Read/Write R/W R/W R/W R R R R

Addressing Mode

Register addressing mode only

Sync Input Selection (SIS) Bit

0

Hsync-I input is selected

1

Csync-l input is selected

Hsync Blanking Enable Bit

0

Disable (Hsync signal by-pass) (When SYNCONO.5 ="0")

1

Enable Hsync blanking automatically (During the Vsync signal extraction
period) (When SYNCONO.5 ="1")

Vsync-O Output Selection (VOS) Bit

0

Select Vsync-I port input (when separate sync input mode)

1

Select 5-bit compare output (when composite sync input mode)

5-Bit Counter Value Bits

5-bit counter increases when a high level is detected, while an overflow dose not

occur (Stop at "11111"). It decreases when a low level is detected, while an
underflow does not occur (Stop at "00000")
When SYNCONO.5 is "1": Sync separation and output (When counter value

increases to "11111", output the high through the MUX and when counter value

decreases to "00000", output becomes low. Resume the previous status when
"11111" > counter value > "00000")

ELECTRONICS

4-41




CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

SYNCON1 — Sync Processor Control Register 1 EEH Set 1, Bank O
Bit Identifier | 7 | 6 | 5 | 4 3 2 | 1 ]
RESET Value 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R
Addressing Mode Register addressing mode only
.7and .6 Clamp Signhal Generator Selection Bits

0 0 | Inhibit Clamp signal output (Clamp-O)

0 | 1 |(fosc ™ 2) clock pulse output (250 ns at 8 MHz fygc)

1 0 |(fosc ™~ 4) clock pulse output
(500 ns at 8 MHz fog¢, 333 ns at 12 MHz fygc)

1 | 1 |(fosc  8)clock pulse output (1 ms at 8 MHz fog¢, 666ns at 12 MHz fogc)

5 "Front Porch"/"Back Porch" Mode Selection Bit

0 | Generate Clamp-O after the rising edge of Hsync ("front porch" mode)

1 | Generate Clamp-O after the falling edge of Hsync ("back porch" mode)

4 Clamp Signal Output Status Control Bit (COSC)

0 | Negative polarity

1 | Positive polarity

3 Vsync-O Status Control Bit

0 | Do not invert (by-pass)

1 | Invert output signal

2 Hsync-O Status Control Bit (HOSC)

0 | Do not invert (by-pass)

1 | Invert output signal

1 Vsync Polarity Detection Bit ()

0 | Negative polarity

1 | Positive polarity

.0 Hsync Polarity Detection Bit (@)

0 | Negative polarity

1 | Positive polarity

NOTES:
1. To check Hsync/Vsync polarity, it uses 16 clocks of timer M2 (f55/1000). If the Vsync polarity is changing, this bit will

be updated after a typical delay of 2 ms, at 8 MHz fqgc (1.33 ms at 12 MHz f5g¢).
2. The SYNCONL1.0 may not be accurate when the Hsync-I is composite-sync signal output.

4-42 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

SYNCON2 — Sync Processor Control Register 2 EFH Set 1, Bank O
Bit Identifier | 7 | - | 5 | a4 3 2 | a1 | o
RESET Value 0 - 0 0 0 0 0 0
Read/Write R/W - R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7 Unmixed Hsync Detection Bit (When SYNCONO.5is "1")

0 | Mixed Hsync period with Vsync of a composite sync input (This bit still cleared
before being read this bit or it is been in mixed Hsync period)

1 | Unmixed Hsync periods

.6 Not used for the S3C8639/C863A/C8647(Only “0”)

5 5-Bit Counter Source Clock (fsync) Input Selection Bit @)

0 |[fosc/3 (when fop is 12 MHZ)

1 |fosc/2 (When fop, is 8 MHZ)

4 Pseudo Sync Generation Disable Bit (Positive Polarity Only)

0 | Enable Pseudo Hsync/Vsync generation

1 | Normal Sync-processor operation (by-pass)

3 Sync Signhal Output Disable Bit

0 | Enable Sync signal output

1 | Inhibit Sync signal output (Output level is low)

2 SOG (Sync On Green) Detection Bit

0 | No SOG signal (when read)

0 | Clear SOG detection 6-bit counter (when write)

1 | Csync-lis SOG signal (@)

A 5-Bit up/down Counter Latch Status Changing Detection Bit

0 | When the latch status is not changed or it writes"0" to this bit

1 | When the latch status changing is detected.

.0 Vpp Level Selection Bit for TTL Sync-Input Port (Not used for the S3C8647)

0 [WhenVppis+5V

1 [WhenVppis +3V

NOTES:

1. Countable maximum Hsync pulse width = 7.85 us (when fsync is 4 MHz)

2. To check SOG presence, it uses 64 Csync-I input edge signal.

3. The SYNCONZ2.1 can be used to check the presence of composite-sync signal input.

ELECTRONICS 4-43



CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

SYNCRD — Sync Processor Port Read Data Register FOH Set 1, Bank O
Bit Identifier | 7 | 6 | 5 | 4 | 3 [ 2 [ 1 |
RESET Value - - - - 0 0 0
Read/Write - - - - R R R R
Addressing Mode Register addressing mode only
T-4 Not used for the S3C8639/C863A/C8647
3 Vertical Sync Signhal Output Data Bit (Vsync-O)

0 | Low data
1 [ High data
2 Horizontal Sync Signal Output Data Bit (Hsync-O)
0 | Low data
1 [ High data
A Vertical Sync Signal Input Data Bit (Vsync-I)
0 | Low data
1 [ High data
.0 Horizontal Sync Signal Input Data Bit (Hsync-I)

0 | Low data
1 [ High data

4-44 ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

TBDR — Transmit Pre-Buffer Data Register EFH Set 1, Bank 1
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value X X X X X X X X
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/W

Addressing Mode

.7-0

Register addressing mode only

Write enable when DCSRO0.4 is "1", Read enable anytime When DCON.3 (TBDR
Enable bit) = "1" and DCSR1.1 = "0", the data written into his register will be
automatically downloaded to the DDC Data Shift Register (DDSR) and generate the
interrupt request when the module detects the calling address is matched and the bit
0 of the received data is "1" (DCSRO0.7-6 = "01") and when the data in the DDSR
register has been transmitted with received acknowledge bit, DCSRO0.0 = "0". At this
interrupt service routine, the CPU must write the next data to the TBDR register to
clear DCSR1.1 and for the auto downloading of data to the DDSR register after the
data in the DDSR register is transmitted over again with DCSR0.0 = "0".When
DCON.3 ="1"and DDSR1.1 = "1", the data stored in this register will not be
downloaded to the DDSR register and generated the interrupt request when the
module detects the calling address is matched and the bit O of the received data is
"1". At this interrupt service routine, the CPU must write the current data and rewrite
the next data to the TBDR register to clear DCSR1.1.

If the master receiver doesn’'t acknowledge the transmitted data, DCSRO0.0 = "1", the
module will release the SDA line for master to generate STOP or Repeated START
conditions.

If DCON.3 (TBDR Enable bit) is "0", the module will pull-down the SCL line in the
[IC-Bus interrupt service routine when the DCSRO0.2 is "1". And the module will
release the SCL line if the CPU writes a data to the DDSR registers and the interrupt
pending bit is cleared.

ELECTRONICS

4-45




CONTROL REGISTERS

S3C8639/C863A/P863A/C8647/F8647

TMOCON — Timer mo Control Register D2H Setl
Bit Identifier 7 | e | 5 | 4 | 3 | 2 1 0
RESET Value 0 0 0 0 0 0 0 0
Read/Write RIW R/W R/W R/W R/W R/W R/W R/W

Addressing Mode

7

.6 and .5

NOTES:

Register addressing mode only

Timer MO Input Clock Selection Bit

0 |fosc/128

2 Bit Prescaler Bits

0 0 | No division

0 1 | Divided by 2
1 0 | Divided by 3
1 1 | Divided by 4

Timer MO Capture Mode Selection Bit

0 | Capture on rising mode

1 [ Capture on falling mode

Timer MO Counter Clear Bit (TMOCLR)

0 | No effect

1 | Clear timer MO counter, TMOCNT (when write)

Timer MO Overflow Interrupt Enable Bit (TMOOVINT) (1)

0 | Disable timer MO overflow interrupt

1 | Enable timer MO overflow interrupt

Timer MO Capture Interrupt Enable Bit (TMOINT)

0 | Disable timer MO interrupt (2)

1 | Enable timer MO interrupt

Timer MO Capture Input Selection Bit (TMOCAPSEL)

0 | TMOCAP input pin selection

1 | Vsync output path selection from sync-processor

1. When the captured value is #0FFH, the overflow interrupt does not occurred. If the captured value is changed from

#0FFH to #00H, the overflow interrupt occurs. When the captured value is #00H, the overflow interrupt occurs first.
2. When the timer MO interrupt is disabled, the timer MO overflow interrupt by fog can happen.

4-46

ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 CONTROL REGISTERS

TM1CON — Timer M1 Control Register F5H Set 1, Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 0 0 0 0 0 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7 Capture Signal Source Selection Bit

0 | Signal from timer M2 interval time

1 | Vsync-O from sync-processor

.6 Vsync-O Capture Egde Selection Bit (When TM1CON.7 ="1")

0 | Capture Vsync-O (from sync-processor) on rising edge

1 | Capture Vsync-O (from sync-processor) on falling edge

5 Timer M1 Capture Interrupt Enable Bit (TM1INT)

0 | Disable timer M1 capture

1 | Enable timer M1 capture

4 Timer M1 Capture Pending Bit (TM1PND)

0 | Interrupt is not pending (when read)

Clear this pending bit (when write)

0
1 | Interrupt is pending (when read)
1 [ No effect (when write)

3 Timer M1 Counter Clear Bit (TM1CLR; when write)

0 | No effect

1 | Clear timer M1 counter

2 Timer M1 Overflow Interrupt Enable Bit (TM10OVF)

0 | Disable timer M1 overflow interrupt

1 | Enable timer M1 overflow interrupt

1-.0 Timer M1 Clock Input Selection Bit
0 0 | Hsync-I or Csync-I from sync processor
0 | 1 |fogcl2
1| 0 |fosc/128
1| 1 |fosc/512

ELECTRONICS 4-47



CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

TM2CON — Timer M2 Control Register F6H Set 1, Bank 0
Bit Identifier | 7 | 6 | 5 | 4 | 3 | 2 [ 1 | o
RESET Value 1 1 1 1 1 0 0 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Addressing Mode Register addressing mode only
7-3 5-bit Prescale Bits (TM2PS4-TM2PS0)

0 0 0 0 0 | No division

0] 0] 0] O 1 | Divide by 2

0 0 0 1 0 | Divide by 3

1] 1] 1]1]1|Dvideby32

2 Timer M2 Interrupt Enable Bit (TM2INT)

0 | Disable timer M2 interrupt

1 | Enable timer M2 interrupt

land .0 Timer M2 Capture Interval Time Selection Bits (When TM2CON.5 is "1")
0 0 | Timer M2 interval (by pass)
0 1 [ Timer M2 interval = 10
1 0 | Timer M2 interval © 20
1 1 [ Timer M2 interval ~ 30

NOTES:

1. When the timer M1 capture mode is enabled (TM1CON.5 = "1"), the value of 5/2-bit prescaler is changed only in the
timer M1 capture interrupt routine.

2. When the timer M1 capture mode is disabled (TM1CON.5 ="0"), the value of 5-bit prescaler is changed only in the timer
M2 interval interrupt routine.

4-48 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

CONTROL REGISTERS

WDTCON — Watchdog Time Control Register ECH
Bit Identifier | | 5 | 4 | 3 | 2
RESET Value - - 0 0
Read/Write - - R/W R/W

Addressing Mode

Register addressing mode only

Set 1, Bank O
I 0
0 0
R/W R/W

-4 Not used for the S3C8639/C863A/C8647
3 Hsync-O Divide Enable Bit
0 | Hsync-O = Hsync-I (Non-divide)
1 | Hsync-O = Hsync-I/2
.2-.0 Watchdog Time Generation Control Bits
0| 0| O [tBTOVF (note)
0| O 1 | tBTOVF/2
0 1 0 |tBTOVF/3
0 1 1 [tBTOVF/4
1 0 | O |tBTOVF/5
1 0 1 | tBTOVF/6
1 1 0 |tBTOVF/7
1 1 1 | tBTOVF/8

NOTE: tBTOVF = (1/iggc) = (Divider count of basic timer input clock) © 256

ELECTRONICS

4-49




CONTROL REGISTERS S3C8639/C863A/P863A/C8647/F8647

NOTES

4-50 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INTERRUPT STRUCTURE

INTERRUPT STRUCTURE

OVERVIEW

The SAMS interrupt structure has three basic components: levels, vectors, and sources. The CPU recognizes
eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has more than one
vector address, the vector priorities are established in hardware. Each vector can have one or more sources.

Levels

Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks
can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight
interrupt levels: IRQO-IRQ7, also called level O—level 7. Each interrupt level directly corresponds to an interrupt
request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from device to
device.

The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just
identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels
is determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by
IPR settings lets you define more complex priority relationships between different levels.

Vectors

Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all.
The maximum number of vectors that can be supported for a given level is 128. (The actual number of vectors
used for S3C8-series devices will always be much smaller.) If an interrupt level has more than one vector
address, the vector priorities are set in hardware. S3C8639/C863A/C8647* have ten (nine)* vectors — one
corresponding to each of the ten (nine)* possible interrupt sources.

Sources

A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow.
Each vector can have several interrupt sources. In the S3C8639/C863A/C8647* interrupt structure, each source
has its own vector address.

When a service routine starts, the respective pending bit should be either cleared automatically by hardware or
cleared "manually" by program software. The characteristics of the source's pending mechanism determine which
method would be used to clear its respective pending bit.

ELECTRONICS 5-1



INTERRUPT STRUCTURE S3C8639/C863A/P863A/C8647/F8647

INTERRUPT TYPES

The three components of the SAM8 interrupt structure described before — levels, vectors, and sources — are
combined to determine the interrupt structure of an individual device and to make full use of its available
interrupt logic. There are three possible combinations of interrupt structure components, called interrupt types 1,
2, and 3. The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):

Type 1. One level (IRQn) + one vector (V,) + one source (S;)
Type 2: One level (IRQn) + one vector (V,) + multiple sources (S;—S,,)

Type 3: One level (IRQn) + multiple vectors (V,—V,,) + multiple sources (S;—S,,, S;;1— Sp+m)

In the S3C8639/C863A/C8647 microcontrollers, only interrupt types 1 and 3 are implemented.

Levels Vectors Sources
Type 1: IRQN Vi S1
S1
Type 2: IRQN Vi S2
S3
-------- Sn
Vi S1
Type 3: IRQN V2 S2
V3 S3
———————— Vn I Sn
NOTES: P — Sn+l
1. The number of Sn and Vn value is expandable. |
2. In the S3C8639/C863A/C8647 implementation, FotTm Sn+2
interrupt types 1 and 3 are used. Lo Sn+m

Figure 5-1. S3C8-Series Interrupt Types

5-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INTERRUPT STRUCTURE

S3C8639/C863A/C8647 INTERRUPT STRUCTURE

The S3C8639/C863A/C8647 microcontrollers support ten interrupt sources. Each interrupt source has a
corresponding interrupt vector address. All eight interrupt levels are used in the device-specific interrupt
structure, which is shown in Figure 5-2.

When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt
with the lowest vector address is usually processed first. (The relative priorities of multiple interrupts within a
single level are fixed in hardware.)

When the CPU grants an interrupt request, interrupt processing starts: All other interrupts are disabled and the
program counter value and status flags are pushed to stack. The starting address of the service routine is fetched
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the
service routine is executed.

Levels Vectors Sources Reset/Clear

—— EOH ——  — Timer MO overflow interrupt H/W
IRQ0O —

—— E2H ———  Timer MO capture interrupt H/W
IRQl ——  E4H ——  Timer M2 interval interrupt H/W

—— E6H —— — Timer M1 overflow interrupt H/W
IRQ2 —

—— E8H ——— — Timer M1 capture interrupt S/W
IRQ3 ———  EAH —— — DDC (Multi-master IIC-bus) interrupt ~ S/W
IRQ4 ——  ECH — PO0.0 external interrupt (INTO) SIW
IRQ5 ——  EEH —  PO0.1 external interrupt (INT1) S/W
IRQG —  FOH — P0.2 external interrupt (INT2) S/W
IRQ7 ——— F2H ——— Slave only IIC-bus interrupt (o) S/IW
NOTE: Not used for the S3C8647.

Figure 5-2. S3C8639/C863A/C8647 Interrupt Structure

ELECTRONICS 5-3



INTERRUPT STRUCTURE

S3C8639/C863A/P863A/C8647/F8647

INTERRUPT VECTOR ADDRESSES

All interrupt vector addresses for the S3C8639/C863A/C8647 interrupt structure are stored in the vector address
area of the ROM, 00H-FFH (see Figure 5-3). You can allocate unused locations in the vector address area as
normal program memory. If you do so, please be careful not to overwrite any of the stored vector addresses.
(Table 5-1 lists all vector addresses.)

The program reset address in the ROM is 0100H.

(Decimal)
49,151

33,767

24,535

255

32/48-Kbyte
Addressable
Pregram Memory
(ROM) Area
(S3C863X)

24-Kbyte
Addressable
Pregram Memory
(ROM) Area
(S3C8647)

Interrupt Vector
AddressArea

{

(Hex)
BFFFH

8000H
7FFFH

5FFFH

0100H €4— RESET
OFFH Address

OH

Figure 5-3. ROM Vector Address Area

5-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INTERRUPT STRUCTURE
Table 5-1. S3C8639/C863A/C8647 Interrupt Vectors
Vector Address Request Reset/Clear
Decimal Hex Interrupt Source Interrupt | Priority in | HW | S/W
Value Value Level Level
224 EOH Timer MO overflow interrupt IRQO 0 o]
226 E2H Timer MO capture interrupt 1 o)
228 E4H Timer M2 interval interrupt IRQ1 - o]
230 E6H Timer M1 overflow interrupt IRQ2 0 o]
232 E8H Timer M1 capture interrupt 1 o]
234 EAH DDC (Multi-master 1IC-bus) interrupt IRQ3 - o]
236 ECH P0.0 external interrupt (INTO) IRQ4 - o)
238 EEH PO0.1 external interrupt (INT1) IRQ5 - o]
240 FOH P0.2 external interrupt (INT2) IRQ6 - o]
242 F2H Slave only IIC-bus interrupt (3) IRQ7 - O
NOTES:
1. Interrupt priorities are identified in inverse order: "0" is the highest priority, "1" is the next highest, and so on.
2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority
over one with a higher vector address. The priorities within a given level are fixed in hardware.
3. Not used for the S3C8647.

ELECTRONICS

5-5




INTERRUPT STRUCTURE S3C8639/C863A/P863A/C8647/F8647

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (El, DI)

Executing the Enable Interrupts (EI) instruction enables the interrupt structure. All interrupts are then serviced as
they occur according to the established priorities.

NOTE

The system initialization routine executed after a reset must always contain an El instruction
(assuming one or more interrupts are used in the application).

During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable
interrupt processing. The El and DI instructions change the value of bit 0 in the SYM register. Although you can
directly manipulate SYM.0 to enable or disable interrupts, it is recommended that you use the El and DI
instructions instead.

SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS

In addition to the control registers for specific interrupt sources, four system-level registers control interrupt
processing:

— The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.

— The interrupt priority register, IPR, controls the relative priorities of interrupt levels.

— The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to
each interrupt source).

— The system mode register, SYM, enables or disables global interrupt processing. (SYM settings also enable
fast interrupts and control the activity of external interface, if implemented.)

Table 5-2. Interrupt Control Register Overview

Control Register ID R/W Function Description

Interrupt mask register IMR R/W Bit settings in the IMR register enable or disable interrupt
processing for each of the eight interrupt levels, IRQO-IRQ7.

Interrupt priority register IPR R/W | Controls the relative processing priorities of the interrupt
levels. The eight levels are organized into three groups: A, B,
and C. Group A is IRQO and IRQ1, group B is IRQ2—-IRQ4,
and group C is IRQ5-IRQ?7.

Interrupt request register IRQ R This register contains a request pending bit for each of the
seven interrupt levels, IRQO-IRQ?7.

System mode register SYM R/W | This register enables and disables dynamic global interrupt
processing and fast interrupt processing.

5-6 ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 INTERRUPT STRUCTURE

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source.
Among the system-level control points in the interrupt structure are:

— Global interrupt enabled and disabled (by El and DI instructions or by direct manipulation of SYM.0 )

— Interrupt level enable/disable settings (IMR register)

— Interrupt level priority settings (IPR register)

— Interrupt source enable/disable settings in the corresponding peripheral control registers

NOTE

When writing an application program that handles interrupt processing, be sure to include the necessary
register file address (register pointer) information.

"EI" Instruction . . .
Execution S Q } Interrupt Pending Register Polling
(Read-only) Cycle

!

RESET

Source Interrupts —

Source Interrupts — Interrupt Request Register
Enable (Read-only)
Interrupt Priority Vector
Register j—» Interrupt
Cycle

Global Interrupt Control
(El, Dl instruction)

Global Interrupt Control
(El, DI or SYM.O
manipulation)

Figure 5-4. Interrupt Function Diagram

ELECTRONICS 5-7



INTERRUPT STRUCTURE S3C8639/C863A/P863A/C8647/F8647

PERIPHERAL INTERRUPT CONTROL REGISTERS

For each interrupt source there is a corresponding peripheral control register (or registers) controlling the
interrupts generated by the related peripheral. These registers and their locations are listed in Table 5-3.

Table 5-3. Interrupt Source Control Registers

Interrupt Source Interrupt Level Control Register(s) | Register Location(s)
Timer MO overflow interrupt IRQO TMOCON Set 1, D2H
Timer MO capture interrupt
Timer M2 interval interrupt IRQ1 TM2CON Set 1, bank 0, F6H
Timer M1 overflow interrupt IRQ2 TM1CON Set 1, bank 0, F5H
Timer M1 capture interrupt
DDC (Multi-master [IC-bus) interrupt IRQ3 DCCR Set 1, bank 1, EBH
DCSRO Set 1, bank 1, ECH
P0.0 external interrupt IRQ4 POCONL Set 1, bank 0, E5H
POINT Set 1, bank 0, EBH
PO0.1 external interrupt IRQ5 POCONL Set 1, bank 0, E5H
POINT Set 1, bank 0, EBH
P0.2 external interrupt IRQ6 POCONL Set 1, bank 0, E5H
POINT Set 1, bank 0, EBH
Slave only 1IC-bus interrupt (note) IRQ7 SICSR Set 1, bank 1, F2H

NOTE: Not used for the S3C8647.

5-8 ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 INTERRUPT STRUCTURE

SYSTEM MODE REGISTER (SYM)

The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to
control fast interrupt processing. Figure 5-5 shows the effect of the various control settings.

A reset clears SYM.7, SYM.1, and SYM.O0 to "0". Other SYM bit values (for fast interrupt level selection) are
undetermined.

The instructions El and DI enable and disable global interrupt processing, respectively, by modifying the bit 0
value of the SYM register. In order to enable interrupt processing an Enable Interrupt (EIl) instruction must be
included in the initialization routine, which follows a reset operation. Although you can manipulate SYM.0 directly
to enable and disable interrupts during the normal operation, it is recommended to use the El and DI instructions
for this purpose.

System Mode Register (SYM)
DEH, Set 1, R/W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

Global interrupt enable bit:
0 = Disable all interrupts

External interface tri-state enable bit: 1 = Enable all interrupts

0 = Normal operation (Tri-state disabled)
1 = High impedance (Tri-state enabled) Fast interrupt enable bit:

0 = Disable fast interrupts
Not used for 1 = Enable fast interrupts

S3C8639/C863A/C8647

Fast interrupt level selection bits:

IRQO
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
|RQ7 (note)

PRPRRPPOOOO
PRPOORRFRLROO
POFRPRORFRPRORO

NOTE: Not used for the S3C8647.

Figure 5-5. System Mode Register (SYM)

ELECTRONICS 5-9



INTERRUPT STRUCTURE S3C8639/C863A/P863A/C8647/F8647

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual
interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required
settings by the initialization routine.

Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit
of an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a
level's IMR bit to "1", interrupt processing for the level is enabled (not masked).

The IMR register is mapped to register location DDH in set 1. Bit values can be read and written by instructions
using the Register addressing mode.

Interrupt Mask Register (IMR)
DDH, Set 1, RIW

MSB | .7 .6 5 A4 3 .2 1 .0 |LSB

.
IRQl|RQ0

IRQ2
|RQ4IRQ3

IRQ5

|RQ7 (note)IRQ6

Interrupt level enable bits (7-0):
0 = Disable (mask) interrupt level
1 = Enable (un-mask)interrupt level

NOTE: Not used for the S3C8647.

Figure 5-6. Interrupt Mask Register (IMR)

5-10 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INTERRUPT STRUCTURE

INTERRUPT PRIORITY REGISTER (IPR)

The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels
in the microcontroller’s interrupt structure. After a reset, all IPR bit values are undetermined and must therefore
be written to their required settings by the initialization routine.

When more than one interrupt sources are active, the source with the highest priority is serviced first. If two
sources belong to the same interrupt level, the source with the lower vector address usually has priority. (This
priority is fixed in hardware.)

To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by
the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register
priority definitions (see Figure 5-7):

Group A IRQO, IRQ1

Group B  IRQ2, IRQ3, IRQ4

Group C  IRQ5, IRQ6, IRQ7

IPR IPR IPR
Group A Group B Group C
Al A2 B1 B2 C1 Cc2
B21 B22 Cc21 Cc22
IRQO IRQ1 IRQ2 IRQ3 IRQ4 IRQ5 IRQ6 IRQ7

Figure 5-7. Interrupt Request Priority Groups

As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C.
For example, the setting "001B" for these bits would select the group relationship B > C > A. The setting "101B"
would select the relationship C > B > A.

The functions of the other IPR bit settings are as follows:

— Interrupt group C includes a sub group that has an additional priority relationship among interrupt levels 5, 6,
and 7. IPR.6 defines the subgroup C relationship.

— IPR.5 controls the relative priorities of group C interrupts.

— Interrupt group B includes a subgroup that has an additional priority relationship among interrupt levels 2, 3,
and 4. IPR.3 defines the subgroup B relationship.

— IPR.2 controls interrupt group B.
— IPR.O controls the relative priority setting of IRQO and IRQL1 interrupts.

ELECTRONICS 5-11



INTERRUPT STRUCTURE S3C8639/C863A/P863A/C8647/F8647

Interrupt Priority Register (IPR)
FFH, Set 1, Bank 0, R/'W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

|

Group priority: - |_ Group A
D7 D4 D1 0=1RQ0 >IRQ1
E— 1=IRQ1 > IRQO
0 O O =Notused Group B
0 0 1=B>C>A 0 = IRQ2 > (IRQ3, IRQ4)
0 1 0=A>B>C 1 = (IRQ3, IRQ4) > IRQ2
0 1 1=B>A>C — Subgroup B
1 0 0=C>A>B 0=1RQ3 >IRQ4
1 0 1=C>B>A 1=IRQ4 >IRQ3
1 1 0=A>C>B Group C
1 1 1=Notused 0 = IRQ5 > (IRQ6, IRQ7)

1 = (IRQ6, IRQ7) > IRQ5

— Subgroup C

0 = IRQ6 > IRQ7
1 =IRQ7 > IRQ6

Figure 5-8. Interrupt Priority Register (IPR)

5-12 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INTERRUPT STRUCTURE

INTERRUPT REQUEST REGISTER (IRQ)

You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for
all levels in the microcontroller’s interrupt structure. Each bit corresponds to the interrupt level of the same
number: bit 0 to IRQO, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt request is currently being issued
for that level. A "1" indicates that an interrupt request has been generated for that level.

IRQ bit values are addressable in read-only using Register addressing mode. You can read (test) the contents of
the IRQ register at any time using bit or byte addressing to determine the current interrupt request status of
specific interrupt levels. After a reset, all IRQ status bits are cleared to “0".

You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing
is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can,
however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events
occurred while the interrupt structure was globally disabled.

Interrupt Request Register (IRQ)
DCH, Set 1, Read-only

MSB | .7 .6 5 A4 3 .2 1 .0 |LSB

IRQ3
IRQ4
IRQ5
IRQ6
|RQ7 (note)
Interrupt level request pending bits:
0 = Interrupt level is not pending

1 = Interrupt level is pending

NOTE: Not used for the S3C8647.

Figure 5-9. Interrupt Request Register (IRQ)

ELECTRONICS 5-13



INTERRUPT STRUCTURE S3C8639/C863A/P863A/C8647/F8647

INTERRUPT PENDING FUNCTION TYPES

Overview

There are two types of interrupt pending bits: One type that is automatically cleared by hardware after the
interrupt service routine is acknowledged and executed; the other that must be cleared by the application
program's interrupt service routine.

Pending Bits Cleared Automatically by Hardware

For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding
pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is
waiting to be serviced. The CPU acknowledges the interrupt source, executes the service routine, and clears the
pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written by application
software.

In the S3C8639/C863A/C8647 interrupt structure, the timer MO overflow interrupt (IRQO, vector EOH), the timer
MO capture interrupt (IRQO, vector E2H), the timer M2 interval interrupt (IRQ1, vector E4H), and the timer M1
overflow interrupt (IRQ2, vector E6H) belong to this category of interrupts in which pending conditions are
cleared automatically by hardware.

Pending Bits Cleared by the Service Routine

The second type of pending bit is the one that should be cleared by program software. The service routine must
clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must
be written to the corresponding pending bit location in the source’s mode or control register.

In the S3C8639/C863A/C8647 interrupt structure, pending conditions for all interrupt sources, except the timer
MO overflow/capture, the timer M2 interval interrupt and the timer M1 overflow interrupt, must be cleared by the
program software's interrupt service routine.

5-14 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INTERRUPT STRUCTURE

INTERRUPT SOURCE POLLING SEQUENCE

The interrupt request polling and servicing sequence is as follows:

N o o M w DR

A source generates an interrupt request by setting the interrupt request bit to "1".

The CPU polling procedure identifies a pending condition for that source.

The CPU checks the source's interrupt level.

The CPU generates an interrupt acknowledge signal.

Interrupt logic determines the interrupt's vector address.

The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).
The CPU continues polling for interrupt requests.

INTERRUPT SERVICE ROUTINES

Before an interrupt request is serviced, the following conditions must be met:

Interrupt processing must be globally enabled (EI, SYM.0 = "1")
The interrupt level must be enabled (IMR register)
The interrupt level must have the highest priority if more than one levels are currently requesting service

The interrupt must be enabled at the interrupt's source (peripheral control register)

When all of the above conditions are met, the interrupt request is acknowledged at the end of the instruction
cycle. The CPU then initiates an interrupt machine cycle that completes the following processing sequence:

A wDd R

Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.
Save the program counter (PC) and status flags to the system stack.
Branch to the interrupt vector to fetch the address of the service routine.

Pass control to the interrupt service routine.

When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores
the PC and status flags, setting SYM.0 to "1". It allows the CPU to process the next interrupt request.

ELECTRONICS 5-15



INTERRUPT STRUCTURE S3C8639/C863A/P863A/C8647/F8647

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM (00OH—-FFH) contains the addresses of interrupt service routines that
correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:
Push the program counter's low-byte value to the stack.

Push the program counter's high-byte value to the stack.

Push the FLAG register values to the stack.

Fetch the service routine's high-byte address from the vector location.

Fetch the service routine's low-byte address from the vector location.

I O A o

Branch to the service routine specified by the concatenated 16-bit vector address.

NOTE

A 16-bit vector address always begins at an even-numbered ROM address within the range of 0OOH—-FFH.

NESTING OF VECTORED INTERRUPTS

It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this,
you must follow these steps:

1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).

2. Load the IMR register with a new mask value that enables only the higher priority interrupt.

3. Execute an El instruction to enable interrupt processing (a higher priority interrupt will be processed if it
occurs).

4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the
previous mask value from the stack (POP IMR).

5. Execute an IRET.

Depending on the application, you may be able to simplify the above procedure to some extent.

INSTRUCTION POINTER (IP)

The instruction pointer (IP) is adopted by all the S3C8-series microcontrollers to control the optional high-speed
interrupt processing feature called fast interrupts. The IP consists of register pair DAH and DBH. The names IP of
registers are IPH (high byte, IP15-1P8) and IPL (low byte, IP7-IPO0).

5-16 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INTERRUPT STRUCTURE

FAST INTERRUPT PROCESSING

The feature called fast interrupt processing allows an interrupt within a given level to be completed in
approximately six clock cycles rather than the usual 10 clock cycles. SYM.4-SYM.2 are used to select a specific
interrupt level for fast processing and SYM.1 enables or disables fast interrupt processing.

Two other system registers support fast interrupt processing:
— The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the

program counter values), and

— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated
register called FLAGS' ("FLAGS prime").

NOTES

1. For the S3C8639/C863A/C8647 microcontrollers, the service routine for any of the seven interrupt
levels (IRQO-IRQ7) can be selected for fast interrupt processing.
The S3C8647 microcontroller has six interrupt levels (IRQO-IRQ6) for fast interrupt processing.

2. When you use a fast interrupt in a multi-source interrupt vector, the fast interrupt may not be
processed if you use two sources as interrupt vector in normal mode. But it is possible when you use
only one source as interrupt vector.

Procedure for Initiating Fast Interrupts

To initiate fast interrupt processing, follow these steps:

1. Load the start address of the service routine into the instruction pointer (IP).
2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4-SYM.2)
3. Write a "1" to the fast interrupt enable bit in the SYM register.

Fast Interrupt Service Routine

When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:

The contents of the instruction pointer and the PC are swapped.

The FLAG register values are written to the FLAGS' ("FLAGS prime") register.
The fast interrupt status bit in the FLAGS register is set.

The interrupt is serviced.

o M 0w DR

Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction
pointer and PC values are swapped back.

The content of FLAGS' ("FLAGS prime") is copied automatically back to the FLAGS register.
The fast interrupt status bit in FLAGS is cleared automatically.

Relationship to Interrupt Pending Bit Types

As described previously, there are two types of interrupt pending bits: One is the type that is automatically
cleared by hardware after the interrupt service routine is acknowledged and executed, and the other is the one
that must be cleared by the application program's interrupt service routine. You can select fast interrupt
processing for interrupts with either type of pending condition clear function — by hardware or by software.

ELECTRONICS 5-17



INTERRUPT STRUCTURE S3C8639/C863A/P863A/C8647/F8647

Programming Guidelines

Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the
SYM register, SYM.1. Executing an El or DI instruction globally enables or disables all interrupt processing,
including fast interrupts.

NOTE

If you use fast interrupts, remember to load the IP with a new start address when the fast interrupt service
routine ends.

&~  PROGRAMMING TIP — Setting Up the Interrupt Control Structure

This example shows you how to enable interrupts for select interrupt sources, disable interrupts for other sources,
and set interrupt priorities for the S3C8639/C863A/C8647 interrupt structure. The following is a sample program:
— Disables the watchdog function.

— Enables the following interrupts: P0.0 external interrupt, timer MO capture/overflow, timer M1
capture/overflow, timer M2 interval interrupt, and DDC interrupt.

— Disables the following interrupts: P0.1 and P0.2 external interrupts, and slave only IIC-bus interrupt.
— Sets interrupt priorities as P0.0 > timer M2 > timer MO > timer M1 > DDC.

DI ; Disable interrupts globally
LD BTCON,#0AOH ; Disable watchdog function
LD POCONL,#01H ; P0.0 - enable rising edge interrupts
LD POINT,#01H ;  Enable P0.0 external interrupt

; Disable P0.1 and P0.2 external interrupts
LD TMOCON,#8FH ;  Enable timer MO capture interrupt

;  (capture on rising edges)
;  Enable timer MO overflow interrupt

LD TM1CON,#3CH ;  Enable timer M1 capture/overflow interrupt

LD TM2CON,#3DH ;  Enable timer M2 interval interrupt

LD TM2DATA #249 ;  Setting 1ms interval

LD DCCR,#0A3H ;  Enable DDC interrupt, SCL clock = 100 kHz

LD IMR,#1FH ;  Enable interrupt levels IRQO, IRQ1, IRQ2, IRQ3 and
; IRQ4

LD IPR,#1EH ; IRQ4 >IRQ0 > IRQ1 > IRQ2 > IRQ3
; (P0.0 > timer MO > timer M2 > timer M1 > DDC)

El ;  Enable interrupts globally

5-18 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INTERRUPT STRUCTURE

¥ PROGRAMMING TIP — Programming Level IRQO as a Fast Interrupt

The following example shows you how to program fast interrupt processing for a selected interrupt level — in this

case, for the timer MO capture interrupt:

LD TMOCON,#8FH
LD POCONH,#01H
LDW IPH#TO_INT
LD SYM,#02H

El

FAST_RET: IRET
TO_INT:

(Fast service routine executes)

Enable TMOOVF interrupt

Enable TMOCAP interrupt

Capture mode (on rising signal edges)
Select fo5/8 as the TO clock source

Set P0.4 to capture input mode

IPH = high byte of interrupt service routine
IPL = low byte of interrupt service routine
Enable fast interrupt processing

Select IRQO for fast interrupt service

Enable interrupts

IP = Address of TO_INT (again)

Clear TMOINT interrupt pending bit

LD TMOCON,#8FH
JP T,FAST_RET
ELECTRONICS

5-19



INTERRUPT STRUCTURE S3C8639/C863A/P863A/C8647/F8647

NOTES

5-20 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

INSTRUCTION SET

OVERVIEW

The SAM8RC instruction set is specifically designed to support the large register files that are typical of most
SAMB8RC microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of
the instruction set include:

— A full complement of 8-bit arithmetic and logic operations, including multiply and divide

— No special I/0O instructions (/O control/data registers are mapped directly into the register file)

— Decimal adjustment included in binary-coded decimal (BCD) operations

— 16-bit (word) data can be incremented and decremented

— Flexible instructions for bit addressing, rotate, and shift operations

DATA TYPES

The SAMBRC CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file
can be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the
least significant (right-most) bit.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory
addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."

ADDRESSING MODES

There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA),
Relative (RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please
refer to Section 3, "Addressing Modes."

ELECTRONICS 6-1



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

Table 6-1. Instruction Group Summary

Mnemonic Operands Instruction

Load Instructions

CLR dst Clear

LD dst,src Load

LDB dst,src Load bit

LDE dst,src Load external data memory

LDC dst,src Load program memory

LDED dst,src Load external data memory and decrement
LDCD dst,src Load program memory and decrement

LDEI dst,src Load external data memory and increment
LDCI dst,src Load program memory and increment

LDEPD dst,src Load external data memory with pre-decrement
LDCPD dst,src Load program memory with pre-decrement
LDEPI dst,src Load external data memory with pre-increment
LDCPI dst,src Load program memory with pre-increment
LDW dst,src Load word

POP dst Pop from stack

POPUD dst,src Pop user stack (decrementing)

POPUI dst,src Pop user stack (incrementing)

PUSH src Push to stack

PUSHUD dst,src Push user stack (decrementing)

PUSHUI dst,src Push user stack (incrementing)

6-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands

Instruction

Arithmetic Instructions

ADC dst,src Add with carry

ADD dst,src Add

CP dst,src Compare

DA dst Decimal adjust

DEC dst Decrement

DECW dst Decrement word

DIV dst,src Divide

INC dst Increment

INCW dst Increment word

MULT dst,src Multiply

SBC dst,src Subtract with carry

SUB dst,src Subtract

Logic Instructions

AND dst,src Logical AND

COM dst Complement

OR dst,src Logical OR

XOR dst,src Logical exclusive OR
ELECTRONICS 6-3



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

Table 6-1. Instruction Group Summary (Continued)

Mnemonic Operands Instruction

Program Control Instructions

BTJRF dst,src Bit test and jump relative on false

BTJRT dst,src Bit test and jump relative on true

CALL dst Call procedure

CPIJE dst,src Compare, increment and jump on equal
CPIINE dst,src Compare, increment and jump on non-equal
DJINZz r,dst Decrement register and jump on non-zero
ENTER Enter

EXIT Exit

IRET Interrupt return

JP cc,dst Jump on condition code

JP dst Jump unconditional

JR cc,dst Jump relative on condition code

NEXT Next

RET Return

WEFI Wait for interrupt

Bit Manipulation Instructions

BAND dst,src Bit AND

BCP dst,src Bit compare

BITC dst Bit complement

BITR dst Bit reset

BITS dst Bit set

BOR dst,src Bit OR

BXOR dst,src Bit XOR

TCM dst,src Test complement under mask
™ dst,src Test under mask

6-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

Table 6-1. Instruction Group Summary (Concluded)

Mnemonic

Operands Instruction

Rotate and Shift Instructions

RL
RLC
RR
RRC
SRA
SWAP

dst
dst
dst
dst
dst
dst

CPU Control Instructions

CCF
DI

El
IDLE
NOP
RCF
SBO
SB1
SCF
SRP
SRPO
SRP1
STOP

Src
Src
Src

Rotate left

Rotate left through carry
Rotate right

Rotate right through carry
Shift right arithmetic
Swap nibbles

Complement carry flag
Disable interrupts
Enable interrupts
Enter Idle mode

No operation

Reset carry flag

Set bank 0

Set bank 1

Set carry flag

Set register pointers
Set register pointer 0
Set register pointer 1
Enter Stop mode

ELECTRONICS

6-5



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these
bits, FLAGS.7-FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.3 and
FLAGS.2 are used for BCD arithmetic.

The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank
address status bit (FLAGS.0) to indicate whether bank O or bank 1 is currently being addressed. FLAGS register
can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.

Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register.
For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of
the AND instruction. If the AND instruction uses the Flags register as the destination, then
simultaneously, two write will occur to the Flags register producing an unpredictable result.

System Flags Register (FLAGS)
D5H, Set 1, R/W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

Carry flag (C) J |— Bank address
status flag (BA)
Zero flag (Z) Fast interrupt
status flag (FIS)
Sign flag (S) — — Half-carry flag (H)
Overflow flag (V) — — Decimal adjust flag (D)

Figure 6-1. System Flags Register (FLAGS)

6-6 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

FLAG DESCRIPTIONS

C

FIS

BA

Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the
specified register. Program instructions can set, clear, or complement the carry flag.

Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is
logic zero.

Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the
result. A logic zero indicates a positive number and a logic one indicates a negative number.

Overflow Flag (FLAGS.4)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than
—128. It is also cleared to "0" following logic operations.

Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by
programmers, and cannot be used as a test condition.

Half-Carry Flag (FLAGS.2)

The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a
program.

Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET
instruction is executed.

Bank Address Flag (FLAGS.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently
selected, bank O or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SBO
instruction and is set to "1" (select bank 1) when you execute the SB1 instruction.

ELECTRONICS 6-7



INSTRUCTION SET

S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag Description
C Carry flag
Z Zero flag
S Sign flag
\% Overflow flag
D Decimal-adjust flag
H Half-carry flag
0 Cleared to logic zero
1 Set to logic one
* Set or cleared according to operation
- Value is unaffected
X Value is undefined
Table 6-3. Instruction Set Symbols
Symbol Description
dst Destination operand
src Source operand
@ Indirect register address prefix
PC Program counter
IP Instruction pointer
FLAGS Flags register (D5H)
RP Register pointer
# Immediate operand or register address prefix
H Hexadecimal number suffix
D Decimal number suffix
B Binary number suffix
opc Opcode

6-8

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET

Table 6-4. Instruction Notation Conventions

Notation Description Actual Operand Range
cc Condition code See list of condition codes in Table 6-6.
r Working register only Rn (n = 0-15)
rb Bit (b) of working register Rn.b (n = 0-15, b = 0-7)
ro Bit 0 (LSB) of working register Rn (n = 0-15)
re Working register pair RRp(p=0,2,4,..14)
R Register or working register reg or Rn (reg = 0-255, n = 0-15)
Rb Bit 'b' of register or working register reg.b (reg = 0-255, b = 0-7)
RR Register pair or working register pair reg or RRp (reg = 0-254, even number only, where
p=0,2,..14)
1A Indirect addressing mode addr (addr = 0-254, even number only)
Ir Indirect working register only @Rn (n = 0-15)
IR Indirect register or indirect working register | @Rn or @reg (reg = 0-255, n = 0-15)
Irr Indirect working register pair only @RRp (p=0,2,..,14)
IRR Indirect register pair or indirect working @RRp or @reg (reg = 0—254, even only, where
register pair p=0,2,..14)
X Indexed addressing mode #reg [Rn] (reg = 0-255, n = 0-15)
XS Indexed (short offset) addressing mode #addr [RRp] (addr = range —128 to +127, where
p=0,2,..14)
XL Indexed (long offset) addressing mode #addr [RRp] (addr = range 0-65535, where
p=0,2,..14)
DA Direct addressing mode addr (addr = range 0-65535)
RA Relative addressing mode addr (addr = number in the range +127 to —128 that is
an offset relative to the address of the next instruction)
IM Immediate addressing mode #data (data = 0-255)
IML Immediate (long) addressing mode #data (data = range 0-65535)
ELECTRONICS 6-9




INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

Table 6-5. Opcode Quick Reference

OPCODE MAP
LOWER NIBBLE (HEX)
- 0 1 2 3 4 5 6 7
U 0 DEC DEC ADD ADD ADD ADD ADD BOR
R1 IR1 ri,r2 ri,lir2 R2,R1 IR2,R1 R1,IM r0—Rb
P 1 RLC RLC ADC ADC ADC ADC ADC BCP
R1 IR1 rl,r2 ri,ir2 R2,R1 IR2,R1 R1,IM rl.b, R2
P 2 INC INC SUB SUB SUB SUB SUB BXOR
R1 IR1 ri1,r2 ri,lir2 R2,R1 IR2,R1 R1,IM r0—Rb
E 3 JP SRP/0/1 SBC SBC SBC SBC SBC BTJR
IRR1 IM ri,r2 ri,ir2 R2,R1 IR2,R1 R1,IM r2.b, RA
R 4 DA DA OR OR OR OR OR LDB
R1 IR1 ri1,r2 ri,lir2 R2,R1 IR2,R1 R1,IM r0—Rb
5 POP POP AND AND AND AND AND BITC
R1 IR1 ri1,r2 ri,ir2 R2,R1 IR2,R1 R1,IM rl.b
N 6 COM COM TCM TCM TCM TCM TCM BAND
R1 IR1 ri,r2 ri,lir2 R2,R1 IR2,R1 R1,IM r0—Rb
| 7 PUSH PUSH ™ ™ ™ ™ ™ BIT
R2 IR2 ri1,r2 ri,lir2 R2,R1 IR2,R1 R1,IM rl.b
B 8 DECW DECW PUSHUD | PUSHUI MULT MULT MULT LD
RR1 IR1 IR1,R2 IR1,R2 R2,RR1 IR2,RR1 IM,RR1 rl, x, r2
B 9 RL RL POPUD POPUI DIV DIV DIV LD
R1 IR1 IR2,R1 IR2,R1 R2,RR1 IR2,RR1 IM,RR1 r2, x, rl
L A INCW INCW CP CP CP CP CP LDC
RR1 IR1 rl,r2 ri,ir2 R2,R1 IR2,R1 R1,IM rl, Irr2, xL
E B CLR CLR XOR XOR XOR XOR XOR LDC
R1 IR1 ri,r2 ri,ir2 R2,R1 IR2,R1 R1,IM r2, lrr2, xL
C RRC RRC CPIJE LDC LDW LDW LDW LD
R1 IR1 Ir,r2,RA ri,lrr2 RR2,RR1 | IR2,RR1 | RR1,IML rl, Ir2
H D SRA SRA CPIINE LDC CALL LD LD
R1 IR1 Irr,r2,RA r2,lrrl IA1 IR1,IM Irl, r2
E E RR RR LDCD LDCI LD LD LD LDC
R1 IR1 r1,irr2 r1,lrr2 R2,R1 R2,IR1 R1,IM r1, Irr2, xs
X F SWAP SWAP LDCPD LDCPI CALL LD CALL LDC
R1 IR1 r2,lrrl r2,lrrl IRR1 IR2,R1 DAl r2, Irrl, xs

6-10 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

Table 6-5. Opcode Quick Reference (Continued)

OPCODE MAP
LOWER NIBBLE (HEX)

- 8 9 A B C D E F

U 0 LD LD DJINZ JR LD JP INC NEXT
r1,R2 r2,R1 r1,RA cc,RA r1,IM cc,DA ri

P 1 - - - - - - - ENTER
P 2 EXIT
E 3 WEFI
R 4 SBO

5 SB1
N 6 IDLE
| 7 - - - - - - - STOP
B 8 DI
B 9 El
L A RET
E B IRET

C RCF
H D - - - - - - - SCF
E E CCF
X F LD LD DJINZ JR LD JP INC NOP

r1,R2 r2,R1 r1,RA cc,RA r1,IM cc,DA ri

ELECTRONICS 6-11




INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal”
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (2), sign (S), and overflow (V) flags are used to control the operation of conditional jump
instructions.

Table 6-6. Condition Codes

Binary Mnemonic Description Flags Set
0000 F Always false -
1000 T Always true -
0111 (note) C Carry c=1
1111 (note) NC No carry C=0
0110 (note) z Zero zZ=1
1110 (note) NZ Not zero Z=0
1101 PL Plus S=0
0101 Ml Minus S=1
0100 ov Overflow V=1
1100 NOV No overflow V=0
0110 (note) EQ Equal Z=1
1110 (note) NE Not equal Z=0
1001 GE Greater than or equal (S XOR V)=0
0001 LT Less than (S XOR V) =1
1010 GT Greater than (Z OR(S XOR V))=0
0010 LE Less than or equal (Z OR(S XOR V))=1
1111 (note) UGE Unsigned greater than or equal C=0
0111 (note) ULT Unsigned less than c=1
1011 UGT Unsigned greater than (C=0 AND Zz=0)=1
0011 ULE Unsigned less than or equal (COR 2)=1
NOTES:

1. ltindicates condition codes that are related to two different mnemonics but which test the same flag. For
example, Z and EQ are both true if the zero flag (2) is set, but after an ADD instruction, Z would probably be used;
after a CP instruction, however, EQ would probably be used.

2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

6-12 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET

INSTRUCTION DESCRIPTIONS

This section contains detailed information and programming examples for each instruction in the SAM8RC

instruction set. Information is arranged in a consistent format for improved readability and for fast referencing.
The following information is included in each instruction description:

Instruction name (mnemonic)

Full instruction name

Source/destination format of the instruction operand

Shorthand notation of the instruction's operation

Textual description of the instruction's effect

Specific flag settings affected by the instruction

Detailed description of the instruction's format, execution time, and addressing mode(s)
Programming example(s) explaining how to use the instruction

ELECTRONICS

6-13



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

ADC — Add with carry

ADC

Operation:

Flags:

Format:

Example:

dst,src

dst = dst + src + c

The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected. Two's-
complement addition is performed. In multiple precision arithmetic, this instruction permits the
carry from the addition of low-order operands to be carried into the addition of high-order
operands.

Set if there is a carry from the most significant bit of the result; cleared otherwise.

Set if the result is "0"; cleared otherwise.

Set if the result is negative; cleared otherwise.

Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result
is of the opposite sign; cleared otherwise.

Always cleared to "0".

Set if there is a carry from the most significant bit of the low-order four bits of the result;
cleared otherwise.

IO <uONO

Bytes Cycles Opcode Addr Mode

(Hex) dst  src
| opc | dst | src | 2 4 12 r r
13 r Ir
| opc | src | dst | 3 6 14 R R
15 R IR
| opc | dst | src | 3 6 16 R IM

Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and
register 03H = OAH:

ADC R1,R2 ® R1 = 14H, R2 = 03H

ADC R1,@R2 ® R1 = 1BH, R2 = 0O3H

ADC 01H,02H ® Register 01H = 24H, register 02H = 03H
ADC 0lH,@02H ® Register 01H = 2BH, register 02H = 03H
ADC 0O1H#11H ® Register 01H = 32H

In the first example, destination register R1 contains the value 10H, the carry flag is set to "1",
and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds
03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.

6-14

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET

ADD — Add
ADD dst,src
Operation: dst -

dst + src

The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. Two's-complement addition is performed.

Flags: C. Setif there is a carry from the most significant bit of the result; cleared otherwise.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the
result is of the opposite sign; cleared otherwise.
D: Always cleared to "0".
H: Setif a carry from the low-order nibble occurred.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc | dst | src | 2 4 02 r r
6 03 r Ir
| opc | src | dst | 3 6 04 R R
05 R IR
| opc | dst | src | 3 6 06 R IM
Example: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = OAH:
ADD R1,R2 ® R1 = 15H, R2 = 0O3H
ADD R1,@R2 ® R1 = 1CH, R2 = 03H
ADD 01H,02H ® Register 01H = 24H, register 02H = 03H
ADD 0OlH,@02H ® Register 01H = 2BH, register 02H = 03H
ADD O1H#25H ® Register 01H = 46H

In the first example, destination working register R1 contains 12H and the source working

register R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H
in register R1.

ELECTRONICS

6-15



INSTRUCTION SET

S3C8639/C863A/P863A/C8647/F8647

AND — Logical AND

AND

Operation:

Flags:

Format:

Example:

dst,src

dst = dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the

source are unaffected.

Unaffected.

Set if the result is "0"; cleared otherwise.

Set if the result bit 7 is set; cleared otherwise.
Always cleared to "0".

Unaffected.

Unaffected.

IO<ONO

Bytes

| opc |dst|src| 2

|opc|src|dst| 3

|opc|dst|src| 3

Cycles

Opcode
(Hex)

52
53

54
55

56

Addr Mode
dst  src
r r
r Ir
R R
R IR
R IM

Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = OAH:

AND R1,R2 ® R1 = 02H, R2 = 0O3H

AND R1,@R2 ® R1 = 02H, R2 = 0O3H

AND 01H,02H ® Register 01H = 01H, register 02H
AND 0OlH,@02H ® Register 01H = OOH, register 02H
AND O1H#25H ® Register 01H = 21H

03H
03H

In the first example, destination working register R1 contains the value 12H and the source
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.

6-16

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

BAND — Bit AND

BAND dst,src.b

BAND dst.b,src

Operation: dst(0) - dst(0) AND src(b)

Flags:

Format:

Example:

or
dst(b) - dst(b) AND src(0)

The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of
the destination (or source). The resultant bit is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc |dst|b|0| Src | 3 6 67 ro Rb
| opc [scibji| dst | 3 6 67 Ro 10

NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four
bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.

Given: R1 = 07H and register 01H = O5H:

BAND R1,01H1 ® R1 = O6H, register 01H = 05H
BAND 0Ol1H.1,R1 ® Register 01H = 05H, R1 = 07H

In the first example, source register 01H contains the value 05H (00000101B) and destination
working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1
value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the
value 06H (00000110B) in register R1.

ELECTRONICS 6-17



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

BCP —Bit Compare

BCP

Operation:

Flags:

Format:

Example:

dst,src.b

dst(0) — src(b)

The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both
operands are unaffected by the comparison.

Unaffected.

Set if the two bits are the same; cleared otherwise.
Cleared to "0".

Undefined.

Unaffected.

Unaffected.

IO<ONO

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc |dst|b|0| Src | 3 6 17 ro Rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Given: R1 = 07H and register 01H = 01H:
BCP R1,01H1 ® R1 = O7H, register 01H = 01H

If destination working register R1 contains the value 07H (00000111B) and the source register
01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit one of
the source register (01H) and bit zero of the destination register (R1). Because the bit values are
not identical, the zero flag bit (2) is cleared in the FLAGS register (OD5H).

6-18

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

BITC —Bit Complement

BITC

Operation:

Flags:

Format:

Example:

dst.b

dst(b) = NOT dst(b)

This instruction complements the specified bit within the destination without affecting any other
bits in the destination.

Unaffected.

Set if the result is "0"; cleared otherwise.
Cleared to "0".

Undefined.

Unaffected.

Unaffected.

IO<ONO

Bytes Cycles Opcode Addr Mode
(Hex) dst

| opc |ast|bjo] 2 4 57 b

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Given: R1 = O7H
BITC R1.1 ® R1 = O5H

If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"
complements bit one of the destination and leaves the value 05H (00000101B) in register R1.
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (OD5H)
is cleared.

ELECTRONICS 6-19



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

BITR — Bit Reset

BITR

Operation:

Flags:

Format:

Example:

dst.b

dst(b) - 0

The BITR instruction clears the specified bit within the destination without affecting any other bits
in the destination.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst

| opc |ast|bjo] 2 4 77 b

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Given: R1 = O7H:
BITR R1.1 ® R1 = O5H

If the value of working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit one
of the destination register R1, leaving the value 05H (00000101B).

6-20

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

BITS — Bit Set
BITS dst.b
Operation: dst(b) - 1

Flags:

Format:

Example:

The BITS instruction sets the specified bit within the destination without affecting any other bits
in the destination.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst

| opc |ast|bj1] 2 4 77 b

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b’
is three bits, and the LSB address value is one bit in length.

Given: R1 = O7H:
BITS R1.3 ® R1 = OFH

If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit
three of the destination register R1 to "1", leaving the value OFH (00001111B).

ELECTRONICS 6-21



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

BOR —BitoR
BOR dst,src.b
BOR dst.b,src

Operation: dst(0) - dst(0) OR src(b)
or
dst(b) - dst(b) OR src(0)

The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the
destination (or the source). The resulting bit value is stored in the specified bit of the destination.
No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc |dst|b|0| Src | 3 6 07 ro Rb
| opc [scibji| dst | 3 6 07 Ro 10
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four
bits, the bit address 'b' is three bits, and the LSB address value is one bit.
Example: Given: R1 = 07H and register 01H = 03H:
BOR R1,01H.1 ® R1 = O7H, register 01H = 03H
BOR 01H2,R1 ® Register 01H = 07H, R1 = 07H

In the first example, destination working register R1 contains the value 07H (00000111B) and
source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs
bit one of register 01H (source) with bit zero of R1 (destination). This leaves the same value
(07H) in working register R1.

In the second example, destination register 01H contains the value 03H (00000011B) and the
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically
ORs bit two of register 01H (destination) with bit zero of R1 (source). This leaves the value 07H
in register O1H.

6-22 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

BTJRF — Bit Test, Jump Relative on False

BTJRF

Operation:

Flags:

Format:

Example:

dst,src.b

If src(b) is a "0", then PC = PC + dst

The specified bit within the source operand is tested. If it is a "0", the relative address is added to
the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRF instruction is executed.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Note 1) (Hex) dst  src

| opc |src|b|0| dst | 3 10 37 RA rb

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b" is
three bits, and the LSB address value is one bit in length.

Given: R1 = O7H:
BTJRF  SKIP,R1.3 ® PC jumps to SKIP location

If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3"
tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the
memory location pointed to by the SKIP. (Remember that the memory location must be within
the allowed range of + 127 to — 128.)

ELECTRONICS 6-23



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

BTJIRT — Bit Test, Jump Relative on True

BTJRT

Operation:

Flags:

Format:

Example:

dst,src.b

If src(b) isa "1", then PC = PC + dst

The specified bit within the source operand is tested. If it is a "1", the relative address is added to
the program counter and control passes to the statement whose address is now in the PC;
otherwise, the instruction following the BTJRT instruction is executed.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Note 1) (Hex) dst  src

| opc |src|b|1| dst | 3 10 37 RA rb

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b" is
three bits, and the LSB address value is one bit in length.

Given: R1 = O7H:
BTJRT SKIP,R1.1

If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1"
tests bit one in the source register (R1). Because itis a "1", the relative address is added to the
PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the
memory location must be within the allowed range of + 127 to —128.)

6-24

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

BXOR — Bit xoR
BXOR dst,src.b
BXOR dst.b,src

Operation: dst(0) - dst(0) XOR src(b)
or
dst(b) - dst(b) XOR src(0)

The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB)
of the destination (or source). The result bit is stored in the specified bit of the destination. No
other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc |dst|b|0| Src | 3 6 27 ro Rb
| opc [scibji| dst | 3 6 27 Ro 10
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four
bits, the bit address 'b' is three bits, and the LSB address value is one bit in length.
Example: Given: R1 = 07H (00000111B) and register 01H = 03H (00000011B):
BXOR R1,01H.1 ® R1 = O06H, register 01H = 03H
BXOR 01H.2,R1 ® Register 01H = 07H, R1 = 07H

In the first example, destination working register R1 has the value 07H (00000111B) and source
register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs
bit one of register 01H (source) with bit zero of R1 (destination). The result bit value is stored in
bit zero of R1, changing its value from 07H to 06H. The value of source register 01H is
unaffected.

ELECTRONICS 6-25



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

CALL — call Procedure

CALL

Operation:

Flags:

Format:

Example:

dst

SP = SP-1
@SP - PCL
SP = SP -1
@SP - PCH
PC = dst

The current contents of the program counter are pushed onto the top of the stack. The program
counter value used is the address of the first instruction following the CALL instruction. The
specified destination address is then loaded into the program counter and points to the first
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used
to return to the original program flow. RET pops the top of the stack back into the program
counter.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst
| opc | dst | 3 14 F6 DA
| opc | dst | 2 12 Fa IRR
| opc | dst | 2 14 D4 A

Given: RO = 35H, R1 =21H, PC = 1A47H, and SP = 0002H:

CALL 3521H ® SP = 0000H
(Memory locations 0000H = 1AH, 0001H = 4AH, where
4AH is the address that follows the instruction.)

CALL @RRO ® SP = 0000H (0000H = 1AH, 0001H = 49H)
CALL #40H ® SP = 0000H (0000H = 1AH, 0001H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the
stack. The stack pointer now points to memory location 0000H. The PC is then loaded with the
value 3521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the
statement "CALL @RRO" produces the same result except that the 49H is stored in stack
location 0001H (because the two-byte instruction format was used). The PC is then loaded with
the value 3521H, the address of the first instruction in the program sequence to be executed.
Assuming that the contents of the program counter and stack pointer are the same as in the first
example, if program address 0040H contains 35H and program address 0041H contains 21H, the
statement "CALL #40H" produces the same result as in the second example.

6-26

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

CCF— Complement Carry Flag

CCF

Operation:

Flags:

Format:

Example:

C - NOT C

The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic
zero; if C = "0", the value of the carry flag is changed to logic one.

C:. Complemented.
No other flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 EF

Given: The carry flag = "0™
CCF

If the carry flag = "0", the CCF instruction complements it in the FLAGS register (OD5H),
changing its value from logic zero to logic one.

ELECTRONICS 6-27



INSTRUCTION SET

S3C8639/C863A/P863A/C8647/F8647

CLR —clear
CLR dst
Operation: dst = "0O"

Flags:

Format:

Example:

The destination location is cleared to "0".

No flags are affected.

Bytes Cycles Opcode

(Hex)
| opc | dst | 2 4 BO
4 B1

Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:

CLR OOH ® Register O0OH
CLR @O01H ® Register 01H

O00H
02H, register 02H = 00H

Addr Mode
dst

R
IR

In Register (R) addressing mode, the statement "CLR O00H" clears the destination register OOH
value to O0H. In the second example, the statement "CLR @O01H" uses Indirect Register (IR)

addressing mode to clear the 02H register value to O0H.

6-28

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET

COM — Complement

COM

Operation:

Flags:

Format:

Example:

dst

dst = NOT dst

The contents of the destination location are complemented (one's complement); all "1s" are
changed to "0s", and vice-versa.

IO<ONO

Unaffected.

Set if the result is "0"; cleared otherwise.

Set if the result bit 7 is set; cleared otherwise.
Always reset to "0".

Unaffected.

Unaffected.

Bytes

opc | dst | 2

Given: R1 = 07H and register 07H = OF1H:

COM R1 ® R1 = OF8H

COM @R1 ® R1

Cycles Opcode Addr Mode

(Hex) dst
4 60 R
4 61 IR

07H, register 07H = OEH

In the first example, destination working register R1 contains the value 07H (00000111B). The
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,
and vice-versa, leaving the value OF8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value
of destination register 07H (11110001B), leaving the new value OEH (00001110B).

ELECTRONICS

6-29



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

CP— Compare

CP

Operation:

Flags:

Format:

Examples:

dst,src

dst — src

The source operand is compared to (subtracted from) the destination operand, and the
appropriate flags are set accordingly. The contents of both operands are unaffected by the
comparison.

C. Setif a "borrow" occurred (src > dst); cleared otherwise.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
opc dst | 2 4 A2 r r
src
6 A3 r Ir
| opc | src | dst | 3 6 A4 R R
A5 R IR
| opc | dst | src | 3 6 A6 R IM

1. Given: R1 = 02H and R2 = O3H:
CP R1,R2 ® Set the C and S flags

Destination working register R1 contains the value 02H and source register R2 contains the
value O3H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1
value (destination/minuend). Because a "borrow" occurs and the difference is negative, C and S
are "1".

2. Given: R1 =05H and R2 = OAH:

CP R1,R2
JP UGE,SKIP
INC R1

SKIP LD R3,R1

In this example, destination working register R1 contains the value 05H which is less than the
contents of the source working register R2 (OAH). The statement "CP R1,R2" generates C = "1"
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"
executes, the value 06H remains in working register R3.

6-30

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

CPIJE — Compare, Increment, and Jump on Equal

CPIJE

Operation:

Flags:

Format:

Example:

dst,src,RA

Ifdst—src = "0",PC = PC + RA
Ir=- Ir+1

The source operand is compared to (subtracted from) the destination operand. If the result is "0",
the relative address is added to the program counter and control passes to the statement whose
address is now in the program counter. Otherwise, the instruction immediately following the
CPIJE instruction is executed. In either case, the source pointer is incremented by one before
the next instruction is executed.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc |src|dst| RA | 3 12 Cc2 r Ir

NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.

Given: R1 = 02H, R2 = 03H, and register 03H = 02H:
CPIJE R1,@R2,SKIP ® R2 = 04H, PC jumps to SKIP location

In this example, working register R1 contains the value 02H, working register R2 the value 03H,
and register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value
02H (00000010B) to 02H (00000010B). Because the result of the comparison is equal, the
relative address is added to the PC and the PC then jumps to the memory location pointed to by
SKIP. The source register (R2) is incremented by one, leaving a value of 04H. (Remember that
the memory location must be within the allowed range of + 127 to —128.)

ELECTRONICS 6-31



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

CPIINE — Compare, Increment, and Jump on Non-Equal
CPIINE dst,src,RA

Operation: Ifdst—src _ "0",PC = PC + RA
Ir=1Ir +1

The source operand is compared to (subtracted from) the destination operand. If the result is not
"0", the relative address is added to the program counter and control passes to the statement
whose address is now in the program counter; otherwise the instruction following the CPIINE
instruction is executed. In either case the source pointer is incremented by one before the next

instruction.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc | src | dst | RA | 3 12 D2 r Ir
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.
Example: Given: R1 = 02H, R2 = 03H, and register 03H = 04H:

CPIUNE R1,@R2,SKIP ® R2 = 04H, PC jumps to SKIP location

Working register R1 contains the value 02H, working register R2 (the source pointer) the value
03H, and general register 03 the value 04H. The statement "CPIINE R1,@R2,SKIP" subtracts
04H (00000100B) from 02H (00000010B). Because the result of the comparison is non-equal,
the relative address is added to the PC and the PC then jumps to the memory location pointed to
by SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.
(Remember that the memory location must be within the allowed range of + 127 to — 128.)

6-32 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET

DA — Decimal Adjust

DA dst
Operation: dst = DA dst
The destination operand is adjusted to form two 4-bit BCD digits following an addition or
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table
indicates the operation performed. (The operation is undefined if the destination operand was not
the result of a valid addition or subtraction of BCD digits):
Instruction Carry Bits 4-7 H Flag Bits 0-3 Number Added Carry
Before DA Value (Hex) Before DA Value (Hex) to Byte After DA
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
ADD 0 A-F 0 0-9 60 1
ADC 0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
0 0-9 0 0-9 00 = -00 0
SUB 0 0-8 1 6—F FA = - 06 0
SBC 1 7-F 0 0-9 A0 = -60 1
1 6—F 1 6—F 9A = - 66 1
Flags: C. Setif there was a carry from the most significant bit; cleared otherwise (see table).
Z: Setif result is "0"; cleared otherwise.
S: Setif result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 40 R
4 41 IR
ELECTRONICS 6-33



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

DA — Decimal Adjust

DA (Continued)

Example: Given: Working register RO contains the value 15 (BCD), working register R1 contains
27 (BCD), and address 27H contains 46 (BCD):

ADD R1,RO ; C- "0",H- "0" Bits4-7 =3, bits0-3=C, R1 - 3CH
DA R1 ; R1 - 3CH + 06

If addition is performed using the BCD values 15 and 27, the result should be 42. The sum is
incorrect, however, when the binary representations are added in the destination location using
standard binary arithmetic:

0001 0101 15
+ 0010 0111 27
0011 1100 = 3CH

The DA instruction adjusts this result so that the correct BCD representation is obtained:

0011 1100
+ 0000 0110

0100 0010 = 42

Assuming the same values given above, the statements

SUB 27H,RO ; C- "0",H- "0", Bits4-7=3,bits0-3=1
DA @R1 ; @R1 - 31-0

leave the value 31 (BCD) in address 27H (@R1).

6-34 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET

DEC — Decrement

DEC

Operation:

Flags:

Format:

Example:

dst

dst = dst—1
The contents of the destination operand are decremented by one.

C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow occurred; cleared otherwise.

D: Unaffected.

H: Unaffected.

Bytes Cycles Opcode

(Hex)

| opc | dst | 2 4 00
01

Given: R1 = 03H and register 03H = 10H:

DEC R1 ® R1 = 02H
DEC @R1 ® Register 03H = OFH

Addr Mode
dst

R
IR

In the first example, if working register R1 contains the value 03H, the statement "DEC R1"
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by

one, leaving the value OFH.

ELECTRONICS

6-35



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

DECW — Decrement Word

DECW dst

Operation: dst = dst-1

The contents of the destination location (which must be an even address) and the operand
following that location are treated as a single 16-bit value that is decremented by one.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 8 80 RR
8 81 IR
Example: Given: RO = 12H, R1 = 34H, R2 = 30H, register 30H = OFH, and register 31H = 21H:
DECW RRO ® RO = 12H,R1 = 33H
DECW @R2 ® Register 30H = OFH, register 31H = 20H
In the first example, destination register RO contains the value 12H and register R1 the value
34H. The statement "DECW RRO0" addresses RO and the following operand R1 as a 16-bit word
and decrements the value of R1 by one, leaving the value 33H.
NOTE: A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW
instruction. To avoid this problem, we recommend that you use DECW as shown in the following
example:

LOOP: DECW RRO

LD R2,R1
OR R2,RO
JR NZ,LOOP

6-36 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

DI — pisable Interrupts

DI

Operation:

Flags:

Format:

Example:

SYM(©) - 0

Bit zero of the system mode control register, SYM.O, is cleared to "0", globally disabling all
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,
but the CPU will not service them while interrupt processing is disabled.

No flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 8F

Given: SYM = 01H:
DI

If the value of the SYM register is 01H, the statement "DI" leaves the new value O0H in the
register and clears SYM.0 to "0", disabling interrupt processing.

Before changing IMR, interrupt pending and interrupt source control register, be sure DI state.

ELECTRONICS 6-37



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

DIV — pivide (Unsigned)

DIV

Operation:

Flags:

Format:

dst,src

dst = src
dst (UPPER) - REMAINDER
dst (LOWER) = QUOTIENT

The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of
the destination. When the quotient is 3 28, the numbers stored in the upper and lower halves of
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned
integers.

C: Setif the V flag is set and quotient is between 28 and 29 —1; cleared otherwise.
Z: Setif divisor or quotient = "0"; cleared otherwise.
S: Setif MSB of quotient = "1"; cleared otherwise.
V: Setif quotientis 3 28 or if divisor = "0"; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc | src | dst | 3 26/10 94 RR R
26/10 95 RR IR
26/10 96 RR IM

NOTE: Execution takes 10 cycles if the divide-by-zero is attempted; otherwise it takes 26 cycles.

Examples:

Given: RO = 10H, R1 = 03H, R2

40H, register 40H = 80H:

DIV RRO,R2 ® RO = 03H,R1 = 40H
DIV RRO,@R2 ® RO = 03H,R1 = 20H
DIV RRO#20H ® RO = 03H,R1 = 80H

In the first example, destination working register pair RRO contains the values 10H (R0) and 03H
(R1), and register R2 contains the value 40H. The statement "DIV RRO,R2" divides the 16-bit
RRO value by the 8-bit value of the R2 (source) register. After the DIV instruction, RO contains
the value O3H and R1 contains 40H. The 8-bit remainder is stored in the upper half of the
destination register RRO (R0O) and the quotient in the lower half (R1).

6-38

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

DJNZ — pecrement and Jump if Non-Zero

DJINZ

Operation:

Flags:

Format:

Example:

r,dst

r- r-1
If r _0,PC = PC + dst

The working register being used as a counter is decremented. If the contents of the register are
not logic zero after decrementing, the relative address is added to the program counter and
control passes to the statement whose address is now in the PC. The range of the relative
address is +127 to —128, and the original value of the PC is taken to be the address of the
instruction byte following the DIJNZ statement.

NOTE: In case of using DINZ instruction, the working register being used as a counter should be set at
the one of location 0COH to OCFH with SRP, SRPO, or SRP1 instruction.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst
| r | opc | dst 2 8 (jump taken) rA RA
8 (no jump) r=0toF

Given: R1 = 02H and LOORP is the label of a relative address:

SRP #0COH
DJINZ R1,LOOP

DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the
destination operand instead of a numeric relative address value. In the example, working register
R1 contains the value 02H, and LOORP is the label for a relative address.

The statement "DINZ R1, LOOP" decrements register R1 by one, leaving the value 01H.
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative
address specified by the LOOP label.

ELECTRONICS 6-39



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

El — Enanple Interrupts
El

Operation: SYM@©) - 1

An El instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to
be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced
when you execute the El instruction.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 4 9F
Example: Given: SYM = 00H:
El

If the SYM register contains the value O0H, that is, if interrupts are currently disabled, the
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.O is the enable bit for
global interrupt processing.)

6-40 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET

ENTER — enter

ENTER

Operation: SP

@SP -

IP
PC
IP

-

-

SP -2

IP
PC

@IP
IP+2

This instruction is useful when implementing threaded-code languages. The contents of the
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the
instruction pointer. The program memory word that is pointed to by the instruction pointer is
loaded into the PC, and the instruction pointer is incremented by two.

Flags: No flags are affected.
Format:

opc
Example:

Bytes

Cycles Opcode
(Hex)
14 1F

The diagram below shows one example of how to use an ENTER statement.

Before After
Address Data Address Data
IP| 0050 IP| 0043
Address Data Address Data
PC 0040 40| Enter 1F PC 0110 40 | Enter 1F
41| AddressH |01 T 41 | AddressH |01
42| AddressL |10 42 | AddressL |10
sp| 0022 43| Address H sp| 0020 —» 43| Address H
]
—» 20 IPH 00 m/—»110 | Routine
—» 21 IPL 50
22| Data Memory 22| Data Memory
Stack Stack
ELECTRONICS 6-41



INSTRUCTION SET

S3C8639/C863A/P863A/C8647/F8647

EXIT — Exit

EXIT
Operation: IP - @SP
SP - SP + 2
PC = @IP
IP = P + 2
This instruction is useful when implementing threaded-code languages. The stack value is
popped and loaded into the instruction pointer. The program memory word that is pointed to by
the instruction pointer is then loaded into the program counter, and the instruction pointer is
incremented by two.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode (Hex)
opc 14 (internal stack) 2F
16 (internal stack)
Example: The diagram below shows one example of how to use an EXIT statement.
Before After
Address Data Address Data
IP| 0050 [q— IP| 0052
Address Data Address Data
pPC | 0040 pPC | 0060
—» 50| PCL old 60 :l _|—> 60 | Main
51| PCH 00
SP| 0022 SP| 0022
[
» 140 | Exit 2F
—» 20| IPH 00
21| IPL 50}
22| Data Memory 22| Data Memory
Stack Stack
6-42 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

IDLE — 1dle Operation

IDLE
Operation:
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle
mode can be released by an interrupt request (IRQ) or an external reset operation.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
opc 1 4 6F - -
Example: The instruction
IDLE
NOP
NOP
NOP

stops the CPU clock but not the system clock.

ELECTRONICS 6-43



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

|NC — Increment
INC dst

Operation: dst = dst + 1
The contents of the destination operand are incremented by one.

Flags: C: Unaffected.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst
| dst | opc | 1 4 rE r
r=20to
F
| opc | dst 2 4 20 R
4 21 IR
Example: Given: RO = 1BH, register 00H = OCH, and register 1BH = OFH:
INC RO ® RO = 1CH
INC OOH ® Register 0OH = ODH
INC @RO ® RO = 1BH, register 01H = 10H

In the first example, if destination working register RO contains the value 1BH, the statement
"INC RO" leaves the value 1CH in that same register.

The next example shows the effect an INC instruction has on register 00H, assuming that it
contains the value OCH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the
value of register 1BH from OFH to 10H.

6-44 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

INCW — Increment Word

INCW

Operation:

Flags:

Format:

Example:

NOTE:

dst

dst = dst + 1

The contents of the destination (which must be an even address) and the byte following that
location are treated as a single 16-bit value that is incremented by one.

C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst

| opc | dst | 2 8 AO RR

8 Al IR

Given: RO = 1AH, R1 = O2H, register 02H = OFH, and register 03H = OFFH:

INCW RRO ® RO = 1AH, R1 =03H
INCW @R1 ® Register 02H = 10H, register 03H = O0OH

In the first example, the working register pair RRO contains the value 1AH in register RO and 02H
in register R1. The statement "INCW RRO0" increments the 16-bit destination by one, leaving the
value O3H in register R1. In the second example, the statement "INCW @R1" uses Indirect
Register (IR) addressing mode to increment the contents of general register 03H from OFFH to
O00H and register 02H from OFH to 10H.

A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the
following example:

LOOP: INCW RRO

LD R2,R1
OR R2,RO
JR NZ,LOOP

ELECTRONICS 6-45



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

IRET — Interrupt Return

IRET

Operation:

Flags:

Format:

Example:

NOTE:

IRET (Normal IRET (Fast)
FLAGS - @SP PC « IP

SP - SP +1 FLAGS - FLAGS'
PC - @SP FIS - 0

SP - SP + 2

SYM@©) - 1

This instruction is used at the end of an interrupt service routine. It restores the flag register and
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the
fast interrupt status bit (FIS, bit one of the FLAGS register, OD5H) is cleared (= "0"). If a fast
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

All flags are restored to their original settings (that is, the settings before the interrupt occurred).

IRET Bytes Cycles Opcode (Hex)
(Normal)
| opc | 1 10 (internal stack) BF

12 (external stack)

IRET Bytes Cycles Opcode (Hex)
(Fast)
| opc | 1 6 BF

In the figure below, the instruction pointer is initially loaded with 100H in the main program
before interrupts are enabled. When an interrupt occurs, the program counter and instruction
pointer are swapped. This causes the PC to jump to address 100H and the IP to keep the return
address. The last instruction in the service routine normally is a jump to IRET at address FFH.
This causes the instruction pointer to be loaded with 100H "again" and the program counter to
jump back to the main program. Now, the next interrupt can occur and the IP is still correct at
100H.

OH
FFH IRET
100H Interrupt
Service
Routine
JP to FFH

FFFFH

In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay
attention to the order of the last two instructions. The IRET cannot be immediately proceeded by
a clearing of the interrupt status (as with a reset of the IPR register).

6-46

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

JP—Jump

JP cc,dst (Conditional)
JP dst (Unconditional)
Operation: If cc istrue, PC - dst

The conditional JUMP instruction transfers program control to the destination address if the
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP
instruction is executed. The unconditional JP simply replaces the contents of the PC with the
contents of the specified register pair. Control then passes to the statement addressed by the

PC.
Flags: No flags are affected.
Format: @)
Bytes Cycles Opcode  Addr Mode
(2 (Hex) dst
| cc | opc | dst 3 8 ccD DA
cc=0toF
| opc | st 2 8 30 IRR
NOTES:
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the
opcode are both four bits.
Example: Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:
JP C,LABEL_W ® LABEL_W = 1000H, PC = 1000H
JP @O00H ® PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the
statement

"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to
that location. Had the carry flag not been set, control would then have passed to the statement
immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents
of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

ELECTRONICS 6-47



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

JR— Jump Relative

JR

Operation:

Flags:

Format:

Example:

cc,dst

If cc istrue, PC = PC + dst

If the condition specified by the condition code (cc) is true, the relative address is added to the
program counter and control passes to the statement whose address is how in the program
counter; otherwise, the instruction following the JR instruction is executed. (See list of condition
codes).

The range of the relative address is +127, —128, and the original value of the program counter is
taken to be the address of the first instruction byte following the JR statement.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(1) (Hex) dst
| cc | opc | dst 2 6 ccB RA
cc=0toF

NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each
four bits.

Given: The carry flag = "1" and LABEL_X = 1FF7H:
JR C,LABEL X ® PC = 1FF7H
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will

pass control to the statement whose address is now in the PC. Otherwise, the program
instruction following the JR would be executed.

6-48

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

INSTRUCTION SET

LD — Load
LD dst,src
Operation: dst = src

Flags:

Format:

The contents of the source are loaded into the destination. The source's contents are unaffected.

No flags are affected.

| dst | opc | src |
| src | opc | dst |
| opc | dst | src |
| opc | src | dst
| opc | dst | src
| opc | src | dst
| opc | dst | src | X
| opc | src | dst | X

Bytes Cycles Opcode

(Hex)

2 4 rC
4 r8

2 4 ro

r=0toF

2 4 C7
4 D7

3 E4
E5

3 E6
D6

3 6 F5
3 6 87
3 6 97

Addr Mode
dst  src
r IM
r R
R r
r Ir
Ir r
R R
R IR
R IM
IR IM
IR R

x[r]

x[r]

ELECTRONICS

6-49



INSTRUCTION SET

S3C8639/C863A/P863A/C8647/F8647

LD — Load
LD
Examples:

(Continued)

Given: RO = 01H, R1 = O0AH, register OOH = 01H, register 01H = 20H,
register 02H = 02H, LOOP = 30H, and register 3AH = OFFH:

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

RO,#10H
RO,01H
01H,RO
R1,@R0
@RO,R1
00H,01H
02H,@00H
00H,#0AH
@O0H,#10H
@O0H,02H
RO,#LOOP[R1]
#LOOP[RO],R1

®

®
®
®
®
®
®
®
®
®
®
®

RO = 10H

RO = 20H, register 01H = 20H

Register 01H =
R1 = 20H, RO

01H, RO = O1H

= 01H

RO = 01H, R1 = OAH, register 01H

Register OOH =
Register 02H =
Register OOH =
Register OOH =
Register O0OH =

20H, register 01H
20H, register O0OH
0AH

01H, register 01H
01H, register 01H

RO = OFFH, R1 = OAH
Register 31H = 0AH, RO = 01H, Rl = OAH

= OAH
20H
01H

10H
02, register 02H = 02H

6-50

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

LDB — Load Bit

LDB

LDB

Operation:

Flags:

Format:

Examples:

dst,src.b
dst.b,src

dst(0) = src(b)
or
dst(b) = src(0)

The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the
source is loaded into the specified bit of the destination. No other bits of the destination are
affected. The source is unaffected.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst  src
| opc | dst|b|O | Src | 3 6 47 ro Rb
| opc [scibji| dst | 3 6 47 Rb 10

NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the
bit address 'b' is three bits, and the LSB address value is one bit in length.

Given: RO = 06H and general register 00H = 0O5H:

05H
04H

LDB RO,00H.2 ® RO
LDB OOH.O,RO ® RO

07H, register OOH
06H, register OOH

In the first example, destination working register RO contains the value 06H and the source
general register OOH the value O5H. The statement "LD RO0,00H.2" loads the bit two value of the
OOH register into bit zero of the RO register, leaving the value 07H in register RO.

In the second example, O0H is the destination register. The statement "LD 00H.0,R0" loads bit
zero of register RO to the specified bit (bit zero) of the destination register, leaving 04H in
general register O0H.

ELECTRONICS 6-51



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

LDC/LDE — Load Memory

LDC/LDE dst,src

Operation: dst = src

This instruction loads a byte from program or data memory into a working register or vice-versa.
The source values are unaffected. LDC refers to program memory and LDE to data memory.
The assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd
number for data memory.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
1.| opc | dst | src | 2 10 C3 r Irr
2.| opc | src | dst | 2 10 D3 Irr r
3.| opc | dst | src | XS | 3 12 E7 r XS [rr]
4.| opc | src | dst | XS | 3 12 F7 XS [rr] r
5.| opc | dst | src | XLy | XLH | 4 14 A7 r XL [rr]
6.| opc | src | dst | XLy | XLH | 4 14 B7 XL [rr] r
7.[ opc Jastioooo| DAL | DAy | 4 14 AT DA
8. opc [scioooo]| DAL | DAy | 4 14 B7 DA
o. opc [astjooor| DAL | DAy | 4 14 A7 ‘ DA
10.[ opc [scjooor| DAL | DAy | 4 14 B7 DA
NOTES:

1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0-1.

2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one
byte.

3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two
bytes.

4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set
of values, used in formats 9 and 10, are used to address data memory.

6-52 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

LDC/LDE — Load Memory

LDC/LDE

Examples:

(Continued)

Given: RO = 11H,R1 = 34H, R2 = 01H, R3 = 04H; Program memory locations
0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory
locations 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:

LDC RO,@RR2 ; RO = contents of program memory location 0104H
; RO = 1AH, R2 = 01H, R3 = 04H

LDE RO,@RR2 ; RO = contents of external data memory location 0104H
; RO = 2AH, R2 = 01H, R3 = 04H

LDC (hote) @RR2,R0 : 11H (contents of RO) is loaded into program memory

; location 0104H (RR2),
;  working registers RO, R2, R3 ® no change

LDE @RR2,R0 ;  11H (contents of RO) is loaded into external data memory
; location 0104H (RR2),
;  working registers RO, R2, R3 ® no change

LDC RO,#01H[RR2] ; RO = contents of program memory location 0105H
; (01H + RR2),
; RO = 6DH, R2 = 01H, R3 = 04H
LDE RO,#01H[RR2] ; RO = contents of external data memory location 0105H
; (01H + RR2), RO = 7DH, R2 = 01H, R3 = 04H
LDC (o) #01H[RR2],RO  : 11H (contents of RO) is loaded into program memory location
; 0105H (01H + 0104H)
LDE #01H[RR2],RO ; 11H (contents of RO) is loaded into external data memory
; location 0105H (01H + 0104H)
LDC RO,#1000H[RR2] ; RO - contents of program memory location 1104H
; (1000H + 0104H), RO = 88H, R2 = 01H, R3 = 04H
LDE RO,#1000H[RR2] ; RO - contents of external data memory location 1104H
; (1000H + 0104H), RO = 98H, R2 = 01H, R3 = 04H
LDC R0,1104H ; RO = contents of program memory location 1104H, RO = 88H
LDE R0,1104H ; RO = contents of external data memory location 1104H,
; RO = 98H
LDC (note) 1105H,RO ;  11H (contents of RO) is loaded into program memory location

. 1105H, (1105H) - 11H

LDE 1105H,R0 ;  11H (contents of RO) is loaded into external data memory
; location 1105H, (1105H) - 11H

NOTE: These instructions are not supported by masked ROM type devices.

ELECTRONICS 6-53



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

LDCD/LDED — Load Memory and Decrement

LDCD/LDED

Operation:

Flags:

Format:

Examples:

dst,src

dst = src
- rm-1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then decremented. The contents of the source are unaffected.

LDCD references program memory and LDED references external data memory. The assembler
makes 'Irr* an even number for program memory and an odd number for data memory.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc | dst | src | 2 10 E2 r Irr

Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = O0CDH, and
external data memory location 1033H = ODDH:

LDCD R8,@RR6 ;  OCDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is decremented by one
; R8 = OCDH, R6 = 10H, R7 = 32H (RR6 = RR6-1)

LDED R8,@RR6 ;  ODDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is decremented by one (RR6 - RR6 —1)
; R8 = ODDH, R6 = 10H, R7 = 32H

6-54

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

LDCI/LDEI — Load Memory and Increment

LDCI/LDEI

Operation:

Flags:

Format:

Examples:

dst,src

dst = src
= rm+1

These instructions are used for user stacks or block transfers of data from program or data
memory to the register file. The address of the memory location is specified by a working register
pair. The contents of the source location are loaded into the destination location. The memory
address is then incremented automatically. The contents of the source are unaffected.

LDCI refers to program memory and LDEI refers to external data memory. The assembler
makes 'Irr* even for program memory and odd for data memory.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc | dst | src | 2 10 E3 r Irr

Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = OCDH and
1034H = OC5H; external data memory locations 1033H = ODDH and 1034H = OD5H:

LDCI R8,@RR6 ;  OCDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 = RR6 + 1)
; R8 = OCDH, R6 = 10H, R7 = 34H

LDEI R8,@RR6 ;  ODDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is incremented by one (RR6 = RR6 + 1)
; R8 = ODDH, R6 = 10H, R7 = 34H

ELECTRONICS 6-55



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

LDCPD/LDEPD — Load Memory with Pre-Decrement

LDCPD/

LDEPD

Operation:

Flags:

Format:

Examples:

dst,src

- rm-1
dst = src

These instructions are used for block transfers of data from program or data memory from the
register file. The address of the memory location is specified by a working register pair and is
first decremented. The contents of the source location are then loaded into the destination
location. The contents of the source are unaffected.

LDCPD refers to program memory and LDEPD refers to external data memory. The assembler
makes 'Irr* an even number for program memory and an odd number for external data memory.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc | src | dst | 2 14 F2 Irr r

Given: RO = 77H, R6 = 30H, and R7 = OOH:
LDCPD @RR6,R0 (RR6 = RR6-1)

77H (contents of RO) is loaded into program memory location
2FFFH (3000H — 1H)

RO = 77H, R6 = 2FH, R7 = OFFH

LDEPD @RR6,R0 (RR6 = RR6-1)
77H (contents of RO) is loaded into external data memory
location 2FFFH (3000H — 1H)

RO = 77H,R6 = 2FH, R7 = OFFH

6-56

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

LDCPI/LDEPI — Load Memory with Pre-Increment

LDCPI/

LDEPI

Operation:

Flags:

Format:

Examples:

dst,src

= rm+1
dst = src

These instructions are used for block transfers of data from program or data memory from the
register file. The address of the memory location is specified by a working register pair and is
first incremented. The contents of the source location are loaded into the destination location.
The contents of the source are unaffected.

LDCPI refers to program memory and LDEPI refers to external data memory. The assembler
makes 'Irr* an even number for program memory and an odd number for data memory.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc | src | dst | 2 14 F3 Irr r

Given: RO = 7FH, R6 = 21H, and R7 = OFFH:
LDCPI @RR6,R0 (RR6 - RR6 +1)

7FH (contents of RO) is loaded into program memory
location 2200H (21FFH + 1H)

RO = 7FH, R6 = 22H, R7 = OOH

LDEPI @RR6,R0 (RR6 = RR6 +1)
7FH (contents of RO) is loaded into external data memory
location 2200H (21FFH + 1H)

RO = 7FH, R6 = 22H, R7 = OOH

ELECTRONICS 6-57



INSTRUCTION SET

S3C8639/C863A/P863A/C8647/F8647

LDW — Load word

LDW

Operation:

Flags:

Format:

Examples:

dst,src

dst = src

The contents of the source (a word) are loaded into the destination. The contents of the source
are unaffected.

No flags are affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst  src

| opc | s | 3 8 c4 RR  RR
cs RR IR

| opc | dst | src | 4 8 cé RR ML

Given: R4 = 06H,R5 = 1CH, R
register 01H = 0O2H, register 02H

LDW

LDW

LDW

LDW

LDW

LDW

RR6,RR4

00H,02H

RR2,@R7
04H,@01H
RR6,#1234H

02H,#0FEDH

®

®
®
®
®

®

05H, R7 = 02H, register 0OH = 1AH,

03H, and register 03H = OFH:

R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH

Register 0OOH = 03H, register 01H = OFH,
register 02H = O3H, register 03H = OFH

R2 = 03H, R3 = OFH,

Register 04H = 03H, register 05H = OFH

R6 = 12H, R7 = 34H

Register 02H = OFH, register 03H = OEDH

In the second example, please note that the statement "LDW 00H,02H" loads the contents of
the source word 02H, 03H into the destination word OOH, 01H. This leaves the value 03H in
general register 0OH and the value OFH in register 01H.

The other examples show how to use the LDW instruction with various addressing modes and

formats.

6-58

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

MULT — Multiply (Unsigned)
MULT dst,src

Operation: dst = dst” src

The 8-bit destination operand (even register of the register pair) is multiplied by the source
operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination
address. Both operands are treated as unsigned integers.

Flags: C. Setifresultis > 255; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if MSB of the result is a "1"; cleared otherwise.
V: Cleared.
D: Unaffected.
H: Unaffected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc | sc | dst | 3 22 84 RR R
22 85 RR IR
22 86 RR IM

Examples: Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = O06H:

MULT O0H, 02H ® Register O0H
MULT OOH, @01H ® Register O0OH
MULT OO0H, #30H ® Register O0OH

01H, register 01H 20H, register 02H = 09H
OO0H, register 01H = 0COH
06H, register 01H = 00H

In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in
the register O0H of the register pair 0OH, 01H) by the source register 02H operand (09H). The
16-bit product, 0120H, is stored in the register pair OOH, 01H.

ELECTRONICS 6-59



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

NEXT — Next

NEXT
Operation: PC - @IP
P - IP + 2
The NEXT instruction is useful when implementing threaded-code languages. The program
memory word that is pointed to by the instruction pointer is loaded into the program counter. The
instruction pointer is then incremented by two.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 10 OF
Example: The following diagram shows one example of how to use the NEXT instruction.
Before After
Address Data Address Data
IP | 0043 IP| 0045
Address Data Address Data
PC| 0120 —» 43| AddressH |01 j__,—> PC| 0130 43| Address H
44| AddressL |10 44 | Address L
45| Address H —» 45| Address H
—»120 | Next —»130 | Routine
Memory Memory

6-60

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

NOP — No Operation

NOP

Operation:

Flags:

Format:

Example:

No action is performed when the CPU executes this instruction. Typically, one or more NOPs are
executed in sequence in order to effect a timing delay of variable duration.

No flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 FF

When the instruction
NOP

is encountered in a program, no operation occurs. Instead, there is a delay in instruction
execution time.

ELECTRONICS 6-61



INSTRUCTION SET

S3C8639/C863A/P863A/C8647/F8647

OR— Logical OR

OR

Operation:

Flags:

Format:

Examples:

dst,src

dst

- dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the
destination. The contents of the source are unaffected. The OR operation results in a "1" being
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is
stored.

IO<ONO

Unaffected.

Set if the result is "0"; cleared otherwise.

Set if the result bit 7 is set; cleared otherwise.
Always cleared to "0".

Unaffected.

Unaffected.

Bytes

opc | dst | src | 2

opc | src | dst | 3

opc | dst | src | 3

Cycles

Opcode
(Hex)

42
43

44
45

46

Addr Mode
dst  src
r r
r Ir
R R
R IR
R IM

Given: RO = 15H, R1 = 2AH, R2 = 01H, register 0OH = 08H, register 01H = 37H, and
register 08H = 8AH:

OR
OR
OR
OR
OR

RO,R1 ® RO = 3FH, R1 = 2AH
RO,@R2 ® RO = 37H,R2 =
O0H,01H ® Register O0H =
01H,@00H ® Register O0OH =
00H#02H ® Register 00H = 0AH

01H, register 01H = 37H
3FH, register 01H = 37H
08H, register 01H = OBFH

In the first example, if working register RO contains the value 15H and register R1 the value
2AH, the statement "OR RO,R1" logical-ORs the RO and R1 register contents and stores the
result (3FH) in destination register RO.

The other examples show the use of the logical OR instruction with the various addressing
modes and formats.

6-62

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

POP — Pop From Stack

POP

Operation:

Flags:

Format:

Examples:

dst

dst = @SP
SP - SP +1

The contents of the location addressed by the stack pointer are loaded into the destination. The
stack pointer is then incremented by one.

No flags affected.

Bytes Cycles Opcode Addr Mode

(Hex) dst
| opc | dst | 2 8 50 R
51 IR

Given: Register 0OH = 01H, register 01H = 1BH, SPH (OD8H) = 00H, SPL (OD9H) = OFBH,
and stack register OFBH = 55H:

POP OOH ® Register O0OH
POP @O00H ® Register O0OH

55H, SP = 00FCH
O1H, register 01H = 55H, SP = O00FCH

In the first example, general register 00OH contains the value 01H. The statement "POP 00H"
loads the contents of location 0OFBH (55H) into destination register 00H and then increments the
stack pointer by one. Register 00H then contains the value 55H and the SP points to location
O0FCH.

ELECTRONICS 6-63



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

POPUD — Pop User Stack (Decrementing)

POPUD

Operation:

Flags:

Format:

Example:

dst,src

dst = src
IR - IR-1

This instruction is used for user-defined stacks in the register file. The contents of the register file
location addressed by the user stack pointer are loaded into the destination. The user stack
pointer is then decremented.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc | src | dst | 3 8 92 R IR

Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and
register 02H = 70H:

POPUD 02H,@00H ® Register OOH = 41H, register 02H = 6FH, register 42H = 6FH
If general register 00H contains the value 42H and register 42H the value 6FH, the statement

"POPUD 02H,@00H" loads the contents of register 42H into the destination register 02H. The
user stack pointer is then decremented by one, leaving the value 41H.

6-64

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

POPUI — Pop User Stack (Incrementing)

POPUI

Operation:

Flags:

Format:

Example:

dst,src

dst = src
IR - IR+1

The POPUI instruction is used for user-defined stacks in the register file. The contents of the
register file location addressed by the user stack pointer are loaded into the destination. The user
stack pointer is then incremented.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc | src | dst | 3 8 93 R IR

Given: Register 0OH = 01H and register 01H = 70H:
POPUI 02H,@00H ® Register OOH = 02H, register 01H = 70H, register 02H = 70H
If general register 00H contains the value 01H and register 01H the value 70H, the statement

"POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user
stack pointer (register 00H) is then incremented by one, changing its value from 01H to 02H.

ELECTRONICS 6-65



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

PUSH — push To Stack

PUSH

Operation:

Flags:

Format:

Examples:

src
SP - SP -1
@SP - src

A PUSH instruction decrements the stack pointer value and loads the contents of the source
(src) into the location addressed by the decremented stack pointer. The operation then adds the
new value to the top of the stack.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | src | 2 8 (internal clock) 70 R

8 (external clock)

8 (internal clock)
8 (external clock) 71 IR

Given: Register 40H = 4FH, register 4FH = 0AAH, SPH = 0OH, and SPL = OOH:

PUSH 40H ® Register 40H = 4FH, stack register OFFH = 4FH,
SPH = OFFH, SPL = OFFH

PUSH @40H ® Register 40H = 4FH, register 4FH = 0AAH, stack register
OFFH = OAAH, SPH = OFFH, SPL = OFFH

In the first example, if the stack pointer contains the value 0000H, and general register 40H the
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to OFFFFH. It
then loads the contents of register 40H into location OFFFFH and adds this new value to the top
of the stack.

6-66

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

PUSHUD — push User Stack (Decrementing)

PUSHUD

Operation:

Flags:

Format:

Example:

dst,src

IR - IR -1
dst = src

This instruction is used to address user-defined stacks in the register file. PUSHUD decrements
the user stack pointer and loads the contents of the source into the register addressed by the
decremented stack pointer.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc | dst | src | 3 8 82 IR R

Given: Register 00OH = 03H, register 01H = 05H, and register 02H = 1AH:
PUSHUD @OOH,01H ® Register OOH = 02H, register 01H = 05H, register 02H = 05H

If the user stack pointer (register 00H, for example) contains the value 03H, the statement
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The
01H register value, O5H, is then loaded into the register addressed by the decremented user
stack pointer.

ELECTRONICS 6-67



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

PUSHUI — push user Stack (Incrementing)

PUSHUI

Operation:

Flags:

Format:

Example:

dst,src

IR- IR+ 1
dst = src

This instruction is used for user-defined stacks in the register file. PUSHUI increments the user
stack pointer and then loads the contents of the source into the register location addressed by
the incremented user stack pointer.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) dst  src

| opc | dst | src | 3 8 83 IR R

Given: Register 00OH = 03H, register 01H = 05H, and register 04H = 2AH:
PUSHUI @OOH,01H ® Register OOH = 04H, register 01H = O05H, register 04H = 05H

If the user stack pointer (register OOH, for example) contains the value 03H, the statement
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H
register value, O5H, is then loaded into the location addressed by the incremented user stack
pointer.

6-68

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

RCF — Reset Carry Flag

RCF

Operation:

Flags:

Format:

Example:

RCF

C-0
The carry flag is cleared to logic zero, regardless of its previous value.

C: Cleared to "0".

No other flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 CF

Given: C="1" or "0":

The instruction RCF clears the carry flag (C) to logic zero.

ELECTRONICS 6-69



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

RET — Return

RET

Operation:

Flags:

Format:

Example:

PC - @SP
SP - SP + 2

The RET instruction is normally used to return to the previously executing procedure at the end
of a procedure entered by a CALL instruction. The contents of the location addressed by the
stack pointer are popped into the program counter. The next statement that is executed is the
one that is addressed by the new program counter value.

No flags are affected.

Bytes Cycles Opcode (Hex)
opc 1 8 (internal stack) AF
10 (external stack)

Given: SP = 00FCH, (SP) = 101AH, and PC = 1234:
RET ® PC = 101AH, SP = OOFEH

The statement "RET" pops the contents of stack pointer location 0OFCH (10H) into the high byte
of the program counter. The stack pointer then pops the value in location OOFEH (1AH) into the

PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to
memory location O0FEH.

6-70

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

RL — Rotate Left

RL

Operation:

Flags:

Format:

Examples:

dst

C - dst(7)
dst (0) = dst(7)
dst(n + 1) = dst(n), n = 0-6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7
is moved to the bit zero (LSB) position and also replaces the carry flag.

C: Setif the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode

(Hex) dst

| opc | dst | 2 4 90 R
4 91 IR

Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:

RL OOH ® Register OOH = 55H, C = "1"
RL @01H ® Register 01H = 02H, register 02H = 2EH, C = "0"
In the first example, if general register OOH contains the value OAAH (10101010B), the statement

"RL OOH" rotates the OAAH value left one bit position, leaving the new value 55H (01010101B)
and setting the carry and overflow flags.

ELECTRONICS 6-71



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

RLC — Rotate Left Through Carry

RLC

Operation:

Flags:

Format:

Examples:

dst
dst(0) - C
C - dst(7)

dst(n + 1) = dst(n),n = 0-6

The contents of the destination operand with the carry flag are rotated left one bit position. The
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

j
t

C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Setif the result is "0"; cleared otherwise.
S: Setif the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 10 R
4 11 IR

Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0"

RLC OOH ® Register O0OH
RLC @01H ® Register 01H

54H, cC ="1"
02H, register 02H = 2EH, C ="0"

In the first example, if general register 00OH has the value OAAH (10101010B), the statement
"RLC OOH" rotates OAAH one bit position to the left. The initial value of bit 7 sets the carry flag
and the initial value of the C flag replaces bit zero of register OOH, leaving the value 55H
(01010101B). The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.

6-72

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

RR — Rotate Right

RR

Operation:

Flags:

Format:

Examples:

dst

C - dst(0)
dst (7) = dst(0)
dst(n) = dst(n + 1),n = 0-6

The contents of the destination operand are rotated right one bit position. The initial value of bit
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

C: Setif the bit rotated from the least significant bit position (bit zero) was "1".
Z: Setif the result is "0"; cleared otherwise.
S: Setif the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 EO R
El IR

Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

RR OOH ® Register OOH = 98H, C = "1"
RR @01H ® Register 01H = 02H, register 02H = 8BH, C = "1"

In the first example, if general register OOH contains the value 31H (00110001B), the statement
"RR OOH" rotates this value one bit position to the right. The initial value of bit zero is moved to
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".

ELECTRONICS 6-73



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

RRC — Rotate Right Through Carry

RRC

Operation:

Flags:

Format:

Examples:

dst
dst(7) = C
C - dst(0)

dst(n) = dst(n + 1),n = 0-6

The contents of the destination operand and the carry flag are rotated right one bit position. The
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit
7 (MSB).

\4
@]
\4

C: Setif the bit rotated from the least significant bit position (bit zero) was "1".
Z: Setif the result is "0" cleared otherwise.
S: Setif the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during
rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst
| opc | dst | 2 4 Co R
C1 IR

Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H,and C = "0"

RRC OOH ® Register OOH = 2AH,C = "1"
RRC @01H ® Register 01H = 02H, register 02H = 0BH, C = "1"

In the first example, if general register OOH contains the value 55H (01010101B), the statement
"RRC OOH" rotates this value one bit position to the right. The initial value of bit zero ("1")
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both
cleared to "0".

6-74

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

SBO — select Bank 0
SBO

Operation: BANK - 0

The SBO instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,
selecting bank 0 register addressing in the set 1 area of the register file.

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 4 4F
Example: The statement
SBO

clears FLAGS.0 to "0", selecting bank 0O register addressing.

ELECTRONICS 6-75



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

SB1 — select Bank 1

SB1

Operation: BANK - 1

The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,
selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not
implemented in some KS88-series microcontrollers.)

Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 4 SF
Example: The statement
SB1

sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.

6-76 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

SBC — subtract with Carry
SBC dst,src

Operation: dst = dst — src — ¢

The source operand, along with the current value of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the source are
unaffected. Subtraction is performed by adding the two's-complement of the source operand to
the destination operand. In multiple precision arithmetic, this instruction permits the carry
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of
high-order operands.

Flags: C. Setif a borrow occurred (src > dst); cleared otherwise.
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign
of the result is the same as the sign of the source; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;
set otherwise, indicating a "borrow".
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc | dst | src | 2 4 32 r r
6 33 r Ir
| opc | src | dst | 3 6 34 R R
6 35 R IR
| opc | dst | src | 3 6 36 R IM

Examples: Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and
register 03H = OAH:

SBC R1,R2 ® R1 = OCH, R2 = 03H

SBC R1,@R2 ® R1 = 05H, R2 = 03H, register 03H = 0AH

SBC 01H,02H ® Register 01H = 1CH, register 02H = 03H

SBC 01H,@02H ® Register 01H = 15H,register 02H = 03H, register 03H = OAH
SBC O1H#8AH ® Register 01H = 95H; C, S,and V = "1"

In the first example, if working register R1 contains the value 10H and register R2 the value 03H,
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the
destination (10H) and then stores the result (OCH) in register R1.

ELECTRONICS 6-77



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

SCF — set Carry Flag

SCF

Operation:

Flags:

Format:

Example:

cC-1
The carry flag (C) is set to logic one, regardless of its previous value.

C: Setto"1".

No other flags are affected.

Bytes Cycles Opcode
(Hex)

opc 1 4 DF

The statement
SCF

sets the carry flag to logic one.

6-78

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

SRA — shift Right Arithmetic

SRA

Operation:

Flags:

Format:

Examples:

dst

dst (7) = dst(7)
C - dst(0)
dst(n) = dst(n + 1),n = 0-6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit
position 6.

7 6 0

Ex;

\4
@]

C: Set if the bit shifted from the LSB position (bit zero) was "1".
Z: Setif the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode

(Hex) dst

| opc | dst | 2 4 DO R
4 D1 IR

Given: Register 00H = 9AH, register 02H = 03H, register 03H = OBCH,and C = "1":

SRA OOH ® Register O0OH
SRA @02H ® Register 02H

OCD, C - IIOII
03H, register 03H = ODEH, C = "0"

In the first example, if general register OOH contains the value 9AH (10011010B), the statement
"SRA O0O0H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves
the value OCDH (11001101B) in destination register O0H.

ELECTRONICS 6-79



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

SRP/SRPO/SRP1 — set Register Pointer

SRP

SRPO

SRP1

Operation:

Flags:

Format:

Examples:

src
src
src
If src (1) = 1andsrc (0) = Othen: RPO(3-7) -  src(3-7)
If src (1) = Oand src (0) = 1then: RP1(3-7) = src (3-7)
If src (1) = Oand src (0) = Othen: RPO (4-7) -  src (4-7),

RPO (3) - 0
RP1 (4-7) -~ src (4-7),
RP1 (3) - 1

The source data bits one and zero (LSB) determine whether to write one or both of the register
pointers, RPO and RP1. Bits 3—7 of the selected register pointer are written unless both register
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.

No flags are affected.

Bytes Cycles Opcode Addr Mode
(Hex) src

| opc | src | 2 4 31 IM

The statement
SRP #40H

sets register pointer 0 (RPO) at location OD6H to 40H and register pointer 1 (RP1) at location
OD7H to 48H.

The statement "SRPO #50H" sets RPO to 50H, and the statement "SRP1 #68H" sets RP1 to
68H.

6-80

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

STOP — Stop Operation

STOP
Operation:
The STOP instruction stops the both the CPU clock and system clock and causes the
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,
peripheral registers, and I/O port control and data registers are retained. Stop mode can be
released by an external reset operation or by external interrupts. For the reset operation, the
RESET pin must be held to Low level until the required oscillation stabilization interval has
elapsed.
Flags: No flags are affected.
Format:
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
opc 1 4 7F - -
Example: The statement
STOP
NOP
NOP
NOP

halts all microcontroller operations.

ELECTRONICS 6-81



INSTRUCTION SET

S3C8639/C863A/P863A/C8647/F8647

SUB — subtract

SUB

Operation:

Flags:

Format:

Examples:

dst,src

dst = dst —src

The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. Subtraction is performed by adding the
two's complement of the source operand to the destination operand.

IO <uONO

set otherwise indicating a "borrow".

opc dst |
src
| opc | src | dst |
| opc | dst | src |

Given: R1 = 12H, R2 = 03H, register 01H

SUB
SUB
SUB
SUB
SUB
SUB

R1,R2
R1,@R2
01H,02H
01H,@02H
01H,#90H
01H,#65H

®
®
®
®
®

®

R1
R1
Register 01H
Register 01H
Register 01H
Register 01H

OFH, R2
08H, R2

Set if a "borrow" occurred; cleared otherwise.
Set if the result is "0"; cleared otherwise.
Set if the result is negative; cleared otherwise.
Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the
sign of the result is of the same as the sign of the source operand; cleared otherwise.

Always set to "1".
Cleared if there is a carry from the most significant bit of the low-order four bits of the result;

Bytes Cycles Opcode

(Hex)
2 4 22
6 23
3 6 24
25
3 6 26

Addr Mode
dst  src
r r
r Ir
R R
R IR
R IM

21H, register 02H = 03H, register 03H = OAH:

= O03H

= 03H

1EH, register 02H = 03H
17H, register 02H = 03H
91H; C,S,and V = "1"

OBCH;Cand S = "1",V = "0"

In the first example, if working register R1 contains the value 12H and if register R2 contains the
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination
value (12H) and stores the result (OFH) in destination register R1.

6-82

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

SWAP — Swap Nibbles

SWAP

Operation:

Flags:

Format:

Examples:

dst

dst(0 — 3) « dst(4 —-7)
The contents of the lower four bits and upper four bits of the destination operand are swapped.

7 £ 4 3 0
1

C: Undefined.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst

| opc | dst | 2 4 FO R

4 F1 IR

Given: Register 00H = 3EH, register 02H = 03H, and register 03H = 0A4H:
SWAP OOH ® Register OOH = OE3H
SWAP @02H ® Register 02H = 03H, register 03H = 4AH

In the first example, if general register 00H contains the value 3EH (00111110B), the statement
"SWAP 00H" swaps the lower and upper four bits (nibbles) in the O0H register, leaving the value
OE3H (11100011B).

ELECTRONICS 6-83



INSTRUCTION SET

S3C8639/C863A/P863A/C8647/F8647

TCM — Test Complement Under Mask

TCM

Operation:

Flags:

Format:

Examples:

dst,src

(NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand

(mask). The TCM statement complements the destination operand, which is then ANDed with the
source mask. The zero (Z) flag can then be checked to determine the result. The destination and

source operands are unaffected.

Unaffected.

Set if the result is "0"; cleared otherwise.

Set if the result bit 7 is set; cleared otherwise.
Always cleared to "0".

Unaffected.

Unaffected.

IO<ONO

Bytes Cycles

| opc |dst|src| 2

|opc|src|dst| 3

|opc|dst|src| 3 6

Given: RO = 0C7H, R1 = 02H, R2 = 12H, register 0O0H = 2BH, register 01H =

register 02H = 23H:

Opcode
(Hex)

62
63

64
65

66

TCM RO,R1 ® RO = OC7H,R1 = O2H,Z = "1"

TCM RO,@R1 ® RO = OC7H,R1 =

TCM OOH,01H ® Register 0OOH = 2BH, register 01H = 02H,Z = "1"

TCM OOH,@01H ® Register OOH = 2BH, register 01H = 02H,
register 02H = 23H,Z = "1"

TCM O00H,#34 ® Register OOH = 2BH,Z = "0"

Addr Mode
dst  src
r r
r Ir
R R
R IR
R IM
02H, and

02H, register 02H = 23H,Z = "0"

In the first example, if working register RO contains the value 0OC7H (11000111B) and register R1
the value 02H (00000010B), the statement "TCM RO,R1" tests bit one in the destination register
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one

and can be tested to determine the result of the TCM operation.

6-84

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

TM — Test Under Mask

™

Operation:

Flags:

Format:

Examples:

dst,src

dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be
tested are specified by setting a "1" bit in the corresponding position of the source operand
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to
determine the result. The destination and source operands are unaffected.

C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc |dst|src| 2 4 72 r r
73 r Ir
| opc | src | dst | 3 6 74 R R
75 R IR
| opc | dst | src | 3 6 76 R IM

Given: RO = 0C7H, R1 = 02H, R2 = 18H, register 0OO0H = 2BH, register 01H = 02H, and
register 02H = 23H:

™ RO,R1 ® RO = OC7H,R1 = 02H,Z = "0"
™ RO,@R1 ® RO = OC7H, R1 = 02H, register 02H = 23H,Z = "0"
™ OOH,01H ® Register 0OOH = 2BH, register 01H = 02H,Z = "0"
™ OOH,@01H ® Register OOH = 2BH, register 01H = 02H,

register 02H = 23H,Z = "0"
™ OOH#54H ® Register OOH = 2BH, Z = "1"

In the first example, if working register RO contains the value 0C7H (11000111B) and register R1
the value 02H (00000010B), the statement "TM RO,R1" tests bit one in the destination register
for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic
zero and can be tested to determine the result of the TM operation.

ELECTRONICS 6-85



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

WFI — wait For Interrupt

WFI
Operation:
The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take
place during this wait state. The WFI status can be released by an internal interrupt, including a
fast interrupt .
Flags: No flags are affected.
Format:
Bytes Cycles Opcode
(Hex)
opc 1 4n 3F
(n=123..)
Example: The following sample program structure shows the sequence of operations that follow a "WFI"
statement:
Main program
El (Enable global interrupt)
—— WFI (Wait for interrupt)
» (Next instruction)
«+— Interrupt occurs
>

Interrupt service routine

Clear interrupt flag
IRET

I: Service routine completed

6-86 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 INSTRUCTION SET

XOR — Logical Exclusive OR

XOR

Operation:

Flags:

Format:

Examples:

dst,src

dst = dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.

C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.
Bytes Cycles Opcode Addr Mode
(Hex) dst  src
| opc |dst|src| 2 4 B2 r r
6 B3 r Ir
| opc | src | dst | 3 6 B4 R R
B5 R IR
| opc | dst | src | 3 6 B6 R IM

Given: RO = 0C7H, R1 = 02H, R2 = 18H, register 0O0H = 2BH, register 01H = 02H, and
register 02H = 23H:

XOR RO,R1 ® RO = OC5H, R1 = 02H

XOR RO,@R1 ® RO = OE4H, R1 = 02H, register 02H = 23H

XOR O0H,01H ® Register OOH = 29H, register 01H = 02H

XOR OOH,@01H ® Register OOH = 08H, register 01H = 02H, register 02H = 23H
XOR OOH#54H ® Register OOH = 7FH

In the first example, if working register RO contains the value OC7H and if register R1 contains
the value 02H, the statement "XOR RO,R1" logically exclusive-ORs the R1 value with the RO
value and stores the result (OC5H) in the destination register RO.

ELECTRONICS 6-87



INSTRUCTION SET S3C8639/C863A/P863A/C8647/F8647

NOTES

6-88 ELECTRONICS



Clock Circuit

RESET and Power-Down
/O Ports

Basic Timer

Timer MO

Timer M1

Timer M2
Analog-to-Digital Converter
Pulse Width Modulation
Sync Processor

DDC and lIC-Bus Interface
Slave IIC-Bus Interface
Electrical Data
Mechanical Data
S3P863A OTP
Development Tools






S3C8639/C863A/P863A/C8647/F8647

CLOCK CIRCUIT

CLOCK CIRCUIT

OVERVIEW

The clock frequency generated for S3C8639/C863A/C8647 by an external crystal ranges from 8 MHz to 12 MHz

The maximum CPU clock frequency is 12 MHz. The X and X1 pins connect the external oscillator or clock
source to the on-chip clock circuit.

SYSTEM CLOCK CIRCUIT
The system clock circuit has the following components:

— External crystal or ceramic resonator oscillation source (or an external clock source)
— Oscillator stop and wake-up functions

— Programmable frequency divider for the CPU clock (fog¢ divided by 1, 2, 8, or 16)
— System clock control register, CLKCON

C1 XIN

—_ S3C8639/C863A/C8647

C2 XouTt

Figure 7-1. Main Oscillator Circuit
(External Crystal or Ceramic Resonator)

ELECTRONICS

7-1



CLOCK CIRCUIT

S3C8639/C863A/P863A/C8647/F8647

CLOCK STATUS DURING POWER-DOWN MODES

The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:

— In Stop mode, the main oscillator is halted. Stop mode is released and the oscillator is started by a reset
operation or an external interrupt (with RC delay noise filter).

— In Idle mode, the internal clock signal is gated to the CPU, but not to interrupt structure, timers and timer/
counters, and the 1IC-bus interface functions. Idle mode is released by a reset or by an external or internal

interrupt.

Stop Instruction

CLKCON.3,.4

CLKCON.0-.2
3-Bit Signature Code @

|

STOPCON
CLKCON.5,.6
Oscillator
Stop
Main
OoSsC
Oscillator
Wake-up
Noise
Filter
CLKCON.7 1
INT Pin @

w — CPU Clock

xc<
v
xc<

NOTES:

1. An external interrupt (with RC-delay noise filter) can be used
to release Stop mode and "wake up" the main oscillator.
In S3C8639/C863A/C8647, the P0.0-P0.2 and external
interrupts are of this type.

2. For S3C8639/C863A/C8647, the CLKCON signature code
(CLKCON.0-CLKCON.2) should not be '101B' (because no
subsystem clock is implemented).

Figure 7-2. System Clock Circuit Diagram

7-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 CLOCK CIRCUIT

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in set 1, address D4H. It is read/write addressable and has
the following functions:

— Oscillator IRQ wake-up function enable/disable

— Main oscillator stop control

— Oscillator frequency divide-by value

— System clock signal selection

The CLKCON register controls whether or not an external interrupt can be used to trigger a power down mode
release. (This is called the "IRQ wake-up" function.) The IRQ wake-up enable bit is CLKCON.7.

After a reset, the external interrupt oscillator wake-up function is enabled, the main oscillator is activated, and the
fosc/16 (the slowest clock speed) is selected as the CPU clock. If necessary, you can raise the CPU clock

speed to fogc, fogc/2, or fogc/8.

For the S3C8639/C863A/C8647 microcontrollers, the CLKCON.2—CLKCON.0 system clock signature code must
be any value other than "101B". (The "101B" setting is invalid because a subsystem clock is not implemented.)
The reset value for the clock signature code is "000B" and should remain so during the normal operation.

System Clock Control Register (CLKCON)
D4H, Set 1, R/IW

vse| 7| 6| 5| 4| 3] 2| 1] 0| .sp

System clock selection bits:
101B = Invalid selection
Others = Normal operating mode

Oscillator IRQ wake-up enable bit:

0 = Enable IRQ for main system oscillator
wake-up function in power down mode

1 = Disable IRQ for main system oscillator
wake-up function in power down mode

Divide-by selection bits for CPU clock frequency:
00 = fosc/16

01 =fosc/8

10 = fosc/2

11 = fosc (non-divided)

Main oscillator stop control bits:
00 = No effect

01 = No effect

10 = stop main oscillator

11 = No effect

Figure 7-3. System Clock Control Register (CLKCON)

ELECTRONICS 7-3



CLOCK CIRCUIT S3C8639/C863A/P863A/C8647/F8647

NOTES

7-4 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 RESET and POWER-DOWN

RESET and POWER-DOWN

SYSTEM RESET

OVERVIEW

During a power-on reset, the voltage at V, goes to High level and the RESET pin is forced to Low level.

The RESET signal is input through a schmitt trigger circuit where it is then synchronized with the CPU clock.
This procedure brings S3C8639/C863A/C8647 into a known operating status.

To spare time for internal CPU clock oscillation to stabilize, the RESET pin must be held to Low level for a
minimum time interval after the power supply comes within tolerance. The minimum required time for oscillation
stabilization in a reset operation is 1 millisecond.

Whenever a reset occurs during the normal operation (that is, when both V5 and RESET are at High level), the
RESET pin is forced Low and the reset operation starts. All system and peripheral control registers are then reset
to their default hardware values (see Tables 8-1, 8-2, and 8-3).

In summary, the following sequence of events occurs during a reset operation:

— Allinterrupts are disabled.

— The watchdog function (basic timer) is enabled.

— Ports 0-3 are set to input mode.

— Peripheral control and data registers are disabled and reset to their default hardware values.
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.

— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in the ROM
location 0100H (and 0101H) is fetched and executed.

NOTE

To program the duration of the oscillation stabilization interval, you should make the settings appropriate
to the basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use
the basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs),
you can disable it by writing "1010B" to the upper nibble of BTCON.

ELECTRONICS 8-1



RESET and POWER-DOWN S3C8639/C863A/P863A/C8647/F8647

HARDWARE RESET VALUES

Tables 8-1, 8-2, and 8-3 list the reset values for CPU and system registers, peripheral control registers, and
peripheral data registers after a reset operation. The following notation is used to represent reset values:

— A"1" or a"0" shows the reset bit value as logic one or logic zero, respectively.
— An "X" means that the bit value is undefined after a reset.
— A dash ("-") means that the bit is either not used or not mapped.

Table 8-1. Set 1 Register Values After Reset

Register Name Mnemonic Address Bit Values After Reset
Dec Hex 7 6 5 4 3 2 1 0
Timer MO counter register TMOCNT 208 | DOH | O 0 0 0 0 0 0 0
Timer MO data register TMODATA | 209 DiH | O 0 0 0 0 0 0 0
Timer MO control register TMOCON 210 | D2H | O 0 0 0 0 0 0 0
Basic timer control register BTCON 211 D3H | O 0 0 0 0 0 0 0
Clock control register CLKCON 212 | D4H|( O | O|O|O|O|O|O]|O
System flags register FLAGS 213 | D5H | x X X X X X 0 0
Register pointer 0 RPO 214 D6H 1 1 0 0 0 - - -
Register pointer 1 RP1 215 | D7/H | 1 1 0 0 1 - -1 -
Stack pointer (high byte) SPH 216 | D8H | x X X X X X X X
Stack pointer (low byte) SPL 217 D9H | x X X X X X X X
Instruction pointer (high byte) IPH 218 | DAH | x X X X X X X X
Instruction pointer (low byte) IPL 219 | DBH | x X X X X X X X
Interrupt request register IRQ 220 | DCH | O 0 0 0 0 0 0 0
Interrupt mask register IMR 221 | DDH | x X X X X X X X
System mode register SYM 222 | DEH| O | = | = | X X X 0 0
Page pointer register PP 223 | DFH | O 0 0 0 0 0 0 0
NOTES:

1. Asthe SYM register is not used for S3C8639/C863A/C8647, SYM.5 should always be "0". If you accidentally
write a “1” to this bit during the normal operation, a system malfunction may occur.

2. Except for TMOCNT, TMODATA, and IRQ, all registers in set 1 are read/write addressable.

3. You cannot use a read-only register as a destination field for the instructions OR, AND, LD, and LDB. The read-only
registers in the S3C8639/C863A/C8647 register file are: TMOCNT, TMODATA, IRQ, SYNCRD, TM1CNTH, TM1CNTL,
TM1DATAH, TM1DATAL, ADDATA, BTCNT, PWMCNT, and RBDR.

4. Interrupt pending flags that must be cleared by software are noted by shaded table cells.

8-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

RESET and POWER-DOWN

Table 8-2. Set 1, Bank 0 Register Values after Reset

Register Name Mnemonic Address Bit Values After Reset

Dec Hex 4 3 2 1 0
Port O data register PO 224 | EOH | O 0| 0| 0| 0] O
Port 1 data register (0t€) P1 225 |ElH| - | - | -|-|-]10] 0] O
Port 2 data register P2 226 | E2ZH|( O | O | O[O | O|O|O|O
Port 3 data register P3 227 | EBH|{ O | O|O|O|O|O|O]|O
Port O control register (high byte) POCONH 228 | EAH | O | O | O[O | O | O| O[O
Port 0 control register (low byte) POCONL 229 E5H | O 0 0 0 0 0 0 0
Port 1 control register (note) P1CON 230 | EBH | - | - | 0] O] O | O] O] O
Port 2 control register (high byte) P2CONH 231 E/H | O 0 0 0 0 0 0 0
Port 2 control register (low byte) P2CONL 232 | EBH|{ O | O| OO O|O|O|O
Port 3 control register (high byte) P3CONH 233 E9H | O 0 0 0 0 0 0 0
Port 3 control register (low byte) P3CONL 234 |EAH| O | O|O|O|O|O|O|O
Port 0 external interrupt control POINT 235 | EBH | - 0 0 0| - 0 0 0
register
Watchdog time control register WDTCON 2% |ECH | - | - | -| -l Ol O| O[O
Sync control register 0 SYNCONO 237 |EDH|{ O | O | O[O | O | O| O[O
Sync control register 1 SYNCON1 238 |EEH| O | O | O | O | O] O] O] O
Sync control register 2 SYNCON2 239 |EFH| O | O | O | O | O | O] O] O
Sync port read data register SYNCRD 240 | FOH ( - | = | = | - O | O | O | O

NOTE: Not used for the S3C8647.

ELECTRONICS

8-3



RESET and POWER-DOWN

S3C8639/C863A/P863A/C8647/F8647

Table 8-2. Set 1, Bank 0 Register Values after Reset (Continued)

Register Name Mnemonic Address Bit Values After Reset

Dec Hex 7 6 5 4 3 2 1 0
Timer M1 counter register high TM1CNTH 241 FIH | - | - | = | - 0 0 0 0
Timer M1 counter register low TM1CNTL 242 F2H 0 0 0 0 0 0 0 0
Timer M1 data register high TM1DATAH 243 F3H | — | - | = | - 0 0 0 0
Timer M1 data register low TM1DATAL 244 F4H 0 0 0 0 0 0 0 0
Timer M1 control register TM1CON 245 F5H 0 0 0 0 0 0 0 0
Timer M2 control register TM2CON 246 F6H 1 1 1 1 1 0 0 0
A/D converter control register ADCON 247 FrH | — 0 0 0 0 0 0 0
A/D converter data register ADDATA 248 | F8H | x X X X | x@ | x@ | x@ | x@
Pseudo Hsync generation register | PHGEN 249 FOH 0 1 0 1 0 0 1 1
Pseudo Vsync generation register | PVGEN 250 | FAH | O 1 0 1 0 0 1 1
Stop control register STOPCON 251 {FBH|{ O | O|O|O|O|O|O|O

Location FCH is not mapped.

Basic timer counter register BTCNT 253 | FDH 0| 0] O 0
External memory timing register EMT 254 | FEH -
Interrupt priority register IPR 255 FFH X X X X X X X X

NOTES:

1. Except for SYNCRD, TM1CNTH, TM1CNTL, TM1DATAH, TM1DATAL, ADDATA, and BTCNT, all registers in set 1,

bank O are read/write addressable.

2. You cannot use a read-only register as a destination field for the instructions OR, AND, LD, and LDB. The read-only
registers in the S3C8639/C863A/C8647 register file are: TMOCNT, TMODATA, IRQ, SYNCRD, TM1CNTH, TM1CNTL,
TM1DATAH, TM1DATAL, ADDATA, BTCNT, PWMCNT, and RBDR.

w

4. Not mapped for the S3C8647.

Interrupt pending flags that must be cleared by software are noted by shaded table cells.

8-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

RESET and POWER-DOWN

Table 8-3. Set 1, Bank 1 Register Values after Reset

Register Name Mnemonic Address Bit Values After Reset

Dec [ Hex | 7 | 6 | 5| 4| 3| 2 1|10
PWM 0 data register PWMO 224 |EOH | O | O | O O] O] O O] O
PWM 1 data register PWM1 225 |ElH|({ 0O | O | O [ O] O] O | O] O
PWM 2 data register PWM2 226 |E2H | O | O] O O] O] O O] O
PWM 3 data register PWM3 227 |EBH|{ O | O] O[O O] O0O|O0] O
PWM 4 data register PWM4 228 |E4H | O | O | O[O O] O O] O
PWM 5 data register PWM5 229 |EBH| 0O | O | O] O | O] O] O] O
PWM 6 data register (9 PWM6 230 |EBH | O | O | O] O | O] O] O] O
PWM control register PWMCON 231 |E'TH|{ O | O | O | —-|—-1|—-1| -] -
PWM counter register PWMCNT 232 |EBH | O | O] O O] O] O|O0]O
DDC control register DCON 233 | EOH | - | - | - | -] 2]0]0]O0
DDC address register 0 DARO 234 |EAH| 1 | O |1 |O | —-|—-1| -] -
DDC clock control register DCCR 235 |EBH|{ O | O | O[O ]| 1|12 111
DDC control/status register O DCSRO 236 |ECH|{ O | O] O|O]JO|]O|-1]0
DDC control/status register 1 DCSR1 237 |EDH| - | - | - | - | -] 0] 1] O
DDC address register 1 DAR1 238 |EEH | x | x | x | x | x | x | x| -
Transmit prebuffer data register TBDR 239 | EFH | x | x | x | x | x | X [ x | X
Receive prebuffer data register RBDR 240 | FOH | x | x | x | x | x | X [ x | X
DDC data shift register DDSR 241 | FIH | x | x | x | x | x | X [ x | X
Slave 1IC-bus control/status register (4) SICSR 242 |F2H| 0| O |O|O|O|O|O]O
Slave 1IC-bus address register (4) SIAR 243 | F3H | x | x | x | x | x | x | x| -
Slave 1IC-bus data shift register (4) SIDSR 244 | FAH | x | x | x | x | x | x | x | x

Locations F5H-FFH are not mapped.

NOTES:

1. Except for PWMCNT and RBDR, all registers in set 1, bank 1 are read/write addressable.

2. You cannot use a read-only register as a destination field for the instructions OR, AND, LD, and LDB. The read-only

registers in the S3C8639/C863A/C8647 register file are: TMOCNT, TMODATA, IRQ, SYNCRD, TM1CNTH, TM1CNTL,
TM1DATAH, TM1DATAL, ADDATA, BTCNT, PWMCNT, and RBDR.

w

4. Not used for the S3C8647.

Interrupt pending flags that must be cleared by software are noted by shaded table cells.

ELECTRONICS

8-5



RESET and POWER-DOWN S3C8639/C863A/P863A/C8647/F8647

POWER-DOWN MODES

STOP MODE

Stop mode is invoked by the instruction STOP (opcode 7FH) and the stop control register (STOPCON). In Stop
mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the
supply current is reduced to less than 5 mA. All system functions stop when the clock "freezes," but data stored in
the internal register file is retained. Stop mode can be released in one of two ways: by a reset or by an external
interrupt (with RC delay).

NOTE

Do not use stop mode if you are using an external clock source as X input must be restricted internally
to Vgg to reduce current leakage.

Using RESET to Release Stop Mode

Stop mode is released when the RESET signal goes active (High level): all system and peripheral control
registers are reset to their default hardware values and the contents of all data registers are retained. A reset
operation automatically selects a slow clock (1/16) because CLKCON.3 and CLKCON.4 are cleared to "00B".
After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization
routine by fetching the program instruction stored in the ROM location 0100H (and 0101H).

Using an External Interrupt to Release Stop Mode

Only external interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt
you can use to release Stop mode in a given situation depends on the microcontroller's current internal operating
mode. The external interrupts in the S3C8639/C863A/C8647 interrupt structure that can be used to release Stop
mode are:

— External interrupts P0.0 (INTO), P0.1 (INT1), and P0.2 (INT2)

— Timer MO capture interrupt in capture mode (with rising or falling edge trigger at the TMOCAP pin and
Vsync-O from sync-processor.)

Please note the following conditions for Stop mode release:

— If you release Stop mode using an external interrupt, the current values in system and peripheral control
registers are unchanged.

— If you use an external interrupt for Stop mode release, you can also program the duration of the oscillation
stabilization interval. To do this, you must make the control and clock settings appropriate before entering
Stop mode.

— If you use an interrupt to release Stop mode, the CLKCON.4 and CLKCON.3 bit-pair setting remains
unchanged and the currently selected clock value is used.

— The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service
routine, the instruction right next to the one that initiated Stop mode is executed.

8-6 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 RESET and POWER-DOWN

IDLE MODE

Idle mode is invoked by the instruction IDLE (opcode 6FH). In Idle mode, CPU operations are halted while some
peripherals remain active. In idle mode, the internal clock signal is gated away from the CPU, but all peripherals
timers remain active. Port pins retain the mode (input or output) they had at the time Idle mode was entered.

There are two ways to release idle mode:

1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents
of all data registers are retained. The reset automatically selects a slow clock (1/16) because CLKCON.4 and
CLKCON.3 are cleared to "00B". If interrupts are masked, a reset is the only way to release ldle mode.

2. Activate any enabled interrupt, causing Idle mode to be released. When you use an interrupt to release Idle
mode, the CLKCON.4 and CLKCON.3 register values remain unchanged, and the currently selected clock
value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction
right next to the one that initiated Idle mode is executed.

NOTE

Only external interrupts can be used to release Stop mode. To release idle mode, you can use either an
internally-generated or externally-generated interrupt.

ELECTRONICS 8-7



RESET and POWER-DOWN

S3C8639/C863A/P863A/C8647/F8647

&~ PROGRAMMING TIP — Sample S3C8639/C863A/C8647 Initialization Routine

The following sample program shows you how to make initial settings for the S3C8639/C863A/C8647 address
space, interrupt vectors, and peripheral functions. Program comments guide you through the steps:

TMO_REG

<< Base Number Setting >>
DECIMAL
<< Definition >>

EQU 40H
ORG 0000H

<< Interrupt Vector Addresses >>

ORG O0OECH
VECTOR  TMO_OVF_INT
VECTOR  TMO_CAP_INT
VECTOR  TM2 _INT
VECTOR  TMI1_OVF_INT
VECTOR  TM1_CAP_INT
VECTOR DDC_INT
VECTOR POO_INT
VECTOR POL1_INT
VECTOR PO2_INT
VECTOR SIHC_INT

<< Initialize System and Peripherals >>

ORG 0100H
LD BTCON,#0AOH
LD CLKCON,#10H

< System Register Settings >

CLR SYM
CLR EMT
LD SPH,#00H

< Interrupt Settings >
LD IPR,#8FH
LD IMR,#0FH
< Timer MO Settings >

LD TMOCON,#8FH

IRQO
IRQO
IRQ1
IRQ2
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7 (used only S3C863X)

Reset address

Disable watchdog timer

Select divided-by-two oscillator frequency as CPU clock
Enable IRQ for main system oscillator wake-up

Disable fast interrupts; global interrupt disable
No access wait time; select internal stack area
Set stack pointer (stack starts from #0FFH)

Set interrupt priorities as follows:
IRQ3 > IRQ2 > IRQ1 > IRQO
Enable IRQ levels 0, 1, 2, and 3

Enable timer MO overflow and capture interrupts

8-8

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

RESET and POWER-DOWN

& PROGRAMMING TIP — Sample S3C8639/C863A/C8647 Initialization Routine (Continued)

INI_PERI_SET:
SBO
LD POCONH,#0FFH
LD POCONL,#0FFH
LD POINT,#00H
LD P1CON,#00H
LD P2CONH,#0FFH
LD P2CONL,#0FFH
LD P3CONH,#0AAH
LD P3CONL,#0AAH

RAMCLR:

< Timer M1 Settings >

LD TM1CON,#2CH

< Timer M2 Settings >
LD TM2CON,#3DH

< Sync Processor Settings >

LD SYNCONO,#20H
LD SYNCONL1,#80H
LD SYNCON2,#0A0H

< PWM Settings >

SB1
LD PWMCON,#20H

< DDC Tx/Rx Interface Settings >

LD DCON,#0AH
LD DCCR,#0A3H

<< Initialize Data Registers >>

SBO
SRP #0COH

Select bank 0

Set port 0 high byte to push-pull output mode
Set port 0 low byte to push-pull output mode
Disable P0.0, P0.1 and P0.2 external interrupts

Set P1.0-P1.2 to input mode

Set port 2 high byte to n-channel open-drain PWM
output mode

Set port 2 low byte to push-pull PWM output mode
Set port 3 high byte to push-pull output mode

Set port 3 low byte to push-pull output mode

Enable timer M1 capture and overflow interrupt,
Timer M1
clock source is Hsyncl from sync processor

Enable timer M2 capture and overflow interrupt

5 bit counter capture mode
Set negative polarity (500 ns at 8 MHz) for clampO
Pseudo sync output

Select Bank 1
Start PWM counter, PWM counter clock is fogc

Select DDC1 Tx mode
Enable DDC interrupt, DDC clock is 100 kHz

Select bank O
Set register pointer

< Clear all data registers from O0OH to FFH >

LD RO,#0FFH
CLR @RO
DJINZ RO,RAMCLR

Enable timer M2 interrupt

Page 0 RAM clear

ELECTRONICS

8-9



RESET and POWER-DOWN

S3C8639/C863A/P863A/C8647/F8647

& PROGRAMMING TIP — Sample S3C8639/C863A/C8647 Initialization Routine (Continued)

; < Initialize Other Registers >

El

; << Main Loop >>

MAIN: NOP
CALL
CALL
CALL

JR

KEY_SCAN

LED_DISPLAY

JOB

t,MAIN

; < Subroutines >

KEY_SCAN:
NOP

RET
LED_DISPLAY:
NOP

RET
JOB:

NOP

RET

You must execute an El instruction in this position
in the initialization routine to enable servicing of
external interrupts

Start main loop

Sub-program module

Sub-program module

Sub-program module

For main loop

8-10

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

RESET and POWER-DOWN

& PROGRAMMING TIP — Sample S3C8639/C863A/C8647 Initialization Routine (Concluded)

; << Interrupt Service Routines >>

POO_INT:
PUSH
SRPO

POP
IRET
DDC_INT:

PUSH
SRPO

SB1
AND
SBO
POP
IRET

TMO_CAP_INT:
PUSH
SRP
POP
IRET

END

RPO
#60H

RPO

RPO
#50H

DDCR, #11101111B

RPO

RPO
#TMO_REG

RPO

Save old RPO value
Set RPO for P0.0 interrupt service routine

Restore the RPO value
Return from the interrupt

Save old RPO value
Set RPO for IIC-bus interrupt service routine

Clear DDC interrupt pending bit
Restore the RPO value

Return from the interrupt

Save old RPO value
TMO_REG value should be defined

Restore the RPO value
Return from the interrupt

ELECTRONICS

8-11



RESET and POWER-DOWN S3C8639/C863A/P863A/C8647/F8647

NOTES

8-12 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 /0 PORTS

/O PORTS

OVERVIEW

The S3C8639/C863A/C8647 microcontrollers have four I/O ports with a total of 27 pins. And the S3C8647
microcontroller has three 1/0 port 0 with a total of 19 pins. Each port can be flexibly configured to meet
application design requirements. The CPU accesses ports by directly writing or reading port registers. No special
I/O instructions are required. Table 9-1 gives you an overview of port functions:

Table 9-1. S3C8639/C863A/C8647 Port Configuration Overview

Port Configuration Options Programmability
0 8-bit general 1/0 port. Alternatively used for external interrupt inputs Bit programmable
and for timer MO input function.
1 3-bit 1/0 port for normal 1/0 or n-channel open drain output. Bit programmable
(Only S3C863X) | Alternatively used for 11IC-bus clock and data /0.
2 8-bit 1/0 port for normal 1/0, PWM push-pull outputs, PWM n-channel | Bit programmable

open-drain outputs with 5-volt load capability, or Csync signal input.

3 8-bit general I/O port. Alternatively used as n-channel open-drain, Bit programmable
push-pull outputs with 5-volt load capability or for normal input with
pull-up resistor. Multiplexed for alternative use as A/D converter
inputs, ADO-AD3.

ELECTRONICS 9-1



/0 PORTS S3C8639/C863A/P863A/C8647/F8647

PORT DATA REGISTERS

Data registers for ports 0—3 have the format shown in Figure 9-1. Table 9-2 gives you an overview of the port
data register locations:

Table 9-2. Port Data Register Summary

Register Name Mnemonic Decimal Hex Location R/W
Port 0 data register PO 224 EOH Set 1, bank 0 R/W
Port 1 data register P1 225 E1H Set 1, bank 0 R/W

(only S3C863X)

Port 2 data register P2 226 E2H Set 1, bank 0 R/W
Port 3 data register P3 227 E3H Set 1, bank 0 R/W

1/0 Port Data Register Format (n = 0-3)

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

Pn.O

Pn.1
Pn.2
Pn.3
Pn.4
Pn.5

Pn.6

Pn.7

NOTE: Port 1is a 3-bit port. Only bits P1.2-P1.0 of
the port 1 data register are mapped. All the
other S3C8639/C863A 1/0O ports are 8-bit.

Figure 9-1. Port Data Register Format

PORT O

Port 0 is an 8-bit I/O port with individually configurable pins. You can directly access port O pins by writing or
reading the port O data register, PO (set 1, bank 0, EOH). You can use port O for general 1/O, or for the following
alternative functions:

— Low-byte pins (P0.3—P0.0) can be configured as push-pull outputs, while P0.2—-P0.0 as a multiplexed input
pins for external interrupts INT2—INTO with rising or falling edge detection.

— High-byte pins (P0.7—P0.4) can be configured as multiplexed inputs and push-pull outputs. P0.4 can serve as
the timer MO capture input pin (TMOCAP).

Two 8-bit control registers are used to configure port 0 pins: POCONH (set 1, bank 0, E4H) for P0.7-P0.4 and
POCONL (set 1, bank 0, E5H) for P0.3—P0.0. Each byte contains four bit-pairs and each bit-pair configures one
pin. The low-byte port O control register, POCONL, is also used to enable and disable the external interrupts,
INT2—INTO, at pins P0.2—-P0.0, respectively.

9-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 /0 PORTS

Port 0 High-Byte Control Register (POCONH)
The four bit-pairs in the port 0 high-byte control register, POCONH, have the following functions:

— To configure individual port O pins to multiplexed input mode or push-pull output mode.

— To configure alternative input or output functions for P0.7—P0.4.

Bit-pair 1/0 configures the capture signal input pin for timer MO at P0.4.

Port 0 Control Register, High Byte (POCONH)
E4H, Set 1, Bank 0, R/W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

P0.4/TMOCAP

PO.5 (note)
PO.6 (o)
PO.7 (note)

POCONH Pin Configuration Settings:

00 | Normal input mode
01 | Multiplexed input mode (TMOCAP)
1x | Push-pull output mode

NOTE: Not used for the S3C8647.

Figure 9-2. Port 0 High-Byte Control Register (POCONH)

ELECTRONICS

9-3



/0 PORTS

S3C8639/C863A/P863A/C8647/F8647

Port 0 Low-Byte Control Register (POCONL)

The low-byte port 0 pins, P0.3—-P0.0 can be configured individually as inputs or as push-pull outputs. You can
alternatively configure the pins P0.2—P0.0 as external interrupt inputs with rising or falling edge detection.

Port 0 Control Register, Low Byte (POCONL)

E5H, Set 1, Bank 0, R/W

MSB| .7 .6

5 A4 3 .2 1 .0 |LSB

PO.3 (ote)

PO.0/INTO

PO.1/INT1
P0.2/INT2

POCONL Pin Configuration Settings:

00 | Normal input mode

01 | Input mode, rising edge interrupt detection
10 | Input mode, falling edge interrupt detection
11 | Push-pull output mode

NOTE:

Not used for the S3C8647.

Figure 9-3. Port 0 Low-Byte Control Register (POCONL)

9-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 /0 PORTS

Port 0 External Interrupt Control Register (POINT)

The port 0 external interrupt control register, POINT, is used to enable and disable the external interrupts INT2—
INTO at P0.2—-P0.0, respectively, and also to detect and clear external interrupt pending conditions at these pins.

To selectively enable the external interrupts INTO, INT1, and INT2, you set POINT.O, POINT.1, and POINT.2 to
“1", respectively. The application program can poll the corresponding interrupt pending bits — POINT.4 for INTO,
POINT.5 for INT1, and POINT.6 for INT2 — to detect external interrupt pending conditions.

After an external interrupt has been serviced, the service routine must clear the pending condition by writing a “0”
to the appropriate pending bit. Writing a “1” to the pending bit has no effect.

Port 0 External Interrupt Control Register (POINT)
EBH, Set 1, Bank 0, R/'W

MSB - .6 5 A4 - .2 1 .0 |LSB

Not used for Not used for
S3C8639/C863A/C8647 S3C8639/C863A/C8647

Interrupt pending flags for P0.2-P0.0 Interrupt enable bit for P0.2-P0.0
P0.2-P0.0 interrupt pending flags P0.2-P0.0 interrupt enable bits
0 No interrupt pending (when read) 0 Disable interrupt
0 | Clear pending condition (when write) 1 Enable interrupt
1 Interrupt is pending (when read)
1 No effect (when write)

Figure 9-4. Port 0 External Interrupt Control Register (POINT)

ELECTRONICS 9-5



/0 PORTS

S3C8639/C863A/P863A/C8647/F8647

PORT 1 (Only S3C863X)

Port 1 is an 3-bit port with individually configurable pins. You can directly access it by writing or reading the port
1 data register, P1 (set 1, bank 0, E1H). You can use port 1 for normal output, input mode, or n-channel open-

drain output mode.

The port 1 control register, PLCON (set 1, bank 0, E6H) is used to configure port 1 pins. Each byte contains four
bit-pairs and each bit-pair configures one pin.

Bit pair 3/2 configures the IIC-bus clock pin for SCL1 at P1.1. Bit pair 1/0 controls P1.0 when it is set to "11B",
the SDA1 is enabled for 1IC-bus data pin.

Port 1 Control Register (PLCON)
E6H, Set 1, Bank 0, R/W

MSB 7 .6 .5 4 .3 2 A .0 LSB
P1.0/SDA1
P1.1/SCL1
P1.2
Not used for
S3C8639/C863A/C8647

P1CON Pin Configuration Settings:

00
01
10

11

Input mode

Push-pull output mode

N-channel open-drain output mode
(5 V load capability)

Multiplexed mode (SCL1/SDA1)

Figure 9-5. Port 1 Control Register (PLCON)

9-6

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 /0 PORTS

PORT 2

Port 2 is an 8-bit I/O port with individually configurable pins. You can directly access port 2 pins by writing or
reading the port 2 data register, P2 (set 1, bank 0, E2H).

Two 8-bit control registers are used to configure port 2 pins: P2CONH (set 1, bank 0, E7H) which let you select
digital input mode (or TTL input mode), normal or PWM push-pull output mode, or n-channel open drain PWM
output mode. And you can select digital input mode, normal or PWM push-pull output mode at the P2CONL
(set 1, bank 0, E8H)

Port 2 Control Register, High Byte (P2CONH)
E7H, Set 1, Bank 0, R/'W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

P2.4/PWM4

P2.5/PWM5

P2.6/PWM6 (o)
P2.7/Csync-I

P2CONH Pin Configuration Settings:

bits 7,6 | 0x TTL input mode (Csync-I)
1x Push-pull output mode

bits 5-0 | 00 Input mode

01 Push-pull output mode

10 Push-pull PWM output mode (5 V load capability)

11 N-channel open-drain PWM output mode (5 V load capability)

NOTE: Not used for the S3C8647.

Figure 9-6. Port 2 High-Byte Control Register (P2CONH)

ELECTRONICS 9-7



/0 PORTS

S3C8639/C863A/P863A/C8647/F8647

Port 2 Control Register, Low Byte (P2CONL)
E8H, Set 1, Bank 0, R/W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

P2.0/PWMO

P2.1/PWM1

P2.2/IPWM2
P2.3/PWM3

P2CONL Pin Configuration Settings:

Ox | Input mode
10 | Push-pull output mode
11 | Push-pull PWM output mode (5 V load capability)

Figure 9-7. Port 2 Low-Byte Control Register (P2CONL)

9-8

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 /0 PORTS

PORT 3

Port 3 is an 8-bit I/O port with individually configurable pins. You can directly access it by writing or reading the
port 3 data register, P3 (set 1, bank 0, E3H). You can selectively configure P3 pins to input or output mode. In
input mode, you can also select A/D converter input mode (P3.0—P3.3 only) or normal digital input mode (with or
without pull-up resistor). Output mode is push-pull mode or n-channel open-drain mode (P3.4-P3.7 only).

Two 8-bit control registers are used to configure port 3 pins: P3CONH (E9H, set 1, bank 0) for P3.7-P3.4 and
P3CONL (set 1, bank 0, EAH) for P3.3—P3.0. Each byte contains four bit-pairs and each bit-pair configures one
pin.

Port 3 Control Register, High Byte (P3CONH)
E9H, Set 1, Bank 0, R/IW

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

P3.4

P3.5

P3.6
P3.7

P3CONH Pin Configuration Settings:

00 | Input mode

01 | Input mode with pull-up resistor

10 | Push-pull output mode

11 | N-channel open-drain output mode (5 V load capability)

Figure 9-8. Port 3 High-Byte Control Register (P3CONH)

Port 3 Control Register, High Byte (P3CONL)
EAH, Set 1, Bank 0, R/'W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

P3.0/ADCO
P3.1/ADC1

P3.2/ADC2
P3.3/ADC3

P3CONL Pin Configuration Settings:

00 | Input mode

01 | Analog input mode

10 | Push-pull output mode

11 | N-channel open-drain output mode

Figure 9-9. Port 3 Low-Byte Control Register (P3CONL)

ELECTRONICS 9-9



/0 PORTS

S3C8639/C863A/P863A/C8647/F8647

FUNCTION-FIXED PORT

These 1/0O pins are used only for the input and output of video synchronization signals to the sync processor or
DDC & IIC-bus interface. The horizontal and vertical sync signals can be monitored directly through the Sync

Port Read Data Register (SYNCRD).

Sync signal ports

DDC and IlIC-bus interface ports

Csync-I: Composite (SOG) synchronization input port (TTL level)

Hsync-1: Horizontal synchronization input (TTL level)

Vsync-I: Vertical synchronization input and synchro clock (VCLK) for DDC1 (TTL level)

Hsync-O: Horizontal synchronization output from the sync processor

Vsync-O: Vertical synchronization output from the sync processor

Clamp-O: Clamp signal output with programmable width from the sync processor

— SDAO: DDC and lIC-bus interface serial data
— SCLO: DDC and lIC-bus interface serial clock

MSB

SYNC Port Read Data Register (SYNCRD)
FOH, Set 1, Bank 0, Read-only

.6 5 A4 3 .2 1 .0 |LSB

‘ Hsync-I
Vsync-I
Hsync-O
Vsync-O

Not use for
S3C8639/C863A

SYNCRD Pin Configuration Settings:

0 Low data
1 High data

Figure 9-10. Sync Port Read Data Register (SYNCRD)

9-10

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 /0 PORTS

¥~ PROGRAMMING TIP — Configuring I/O Port Pins to Specification

The following sample program shows you how to configure the S3C8639/C863A/C8647 1/O ports to specification.
The program comments explain the effect of the settings:

SBO ;  Select bank 0
LD POCONH,#0FFH ;  Set port 0 high byte to push-pull output mode
LD POCONL,#0D5H ; Set P0.3 to push-pull output mode
;  Set P0.0-P0.2 to rising edge interrupt mode
LD POINT ,#0FH ;  Enable port 0 external interrupt
LD P1CON,#00H ;  Set port 1 to input mode
LD P2CONH,#3FH ;  Set port 2 high byte to PWM n-channel open-drain
; output mode (5-volt capability) and Csync input mode
LD P2CONL,#0FFH ;  Set port 2 low byte to PWM push-pull output mode
LD P3CONH,#0AAH ;  Set port 3 high byte to push-pull output mode
LD P3CONL,#55H ;  Set port 3 low byte to analog input mode

ELECTRONICS 9-11



/0 PORTS S3C8639/C863A/P863A/C8647/F8647

NOTES

9-12 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 BASIC TIMER

1 O BASIC TIMER

OVERVIEW

S3CB8639/C863A/C8647 has a default timer: an 8-bit basic timer.

You can use the basic timer (BT) in two different ways:

— As a watchdog timer, it provides an automatic reset mechanism in the event of a system malfunction.

— Signals the end of the required oscillation stabilization interval after a reset or a Stop mode release.

The functional components of the basic timer block are:
— Clock frequency divider (fogc divided by 4096, 1024, or 128) with multiplexer

— 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH, read-only)
— Basic timer control register, BTCON (set 1, D3H, read/write)
— Watchdog timer control register, WDTCON (set 1, bank 0, ECH, read/write)

ELECTRONICS

10-1



BASIC TIMER S3C8639/C863A/P863A/C8647/F8647

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer
counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1,
address D3H, and is read/write addressable using register addressing mode.

A reset clears BTCON to "00H". This enables the watchdog function and selects a basic timer clock frequency of
fosc/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer

register control bits BTCON.7-BTCON.4.

The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared at any time during the normal
operation by writing a "1" to BTCON.1. To clear the frequency dividers for both the basic timer input clock and
the timer MO clock (unless timer MO uses an external clock source), you should write a "1" to BTCON.O.

Basic Timer Control Register (BTCON)
D3H, Set 1, R/IW

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

Watchdog time enable bits: Divider clear bit for BT and TO:
1010B = Disable watchdog function 0 = No effect
Others = Enable watchdog function 1 = Clear both dividers

(basic timer, timer MO)

Basic timer/counter clear bit:
0 = No effect
1 = Clear basic timer

Basic timer input clock selection bits:
00 = fosc/4096

01 = fosc/1024

10 = fosc/128

11 = Not used

Figure 10-1. Basic Timer Control Register (BTCON)

10-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

BASIC TIMER

WATCHDOG TIME CONTROL REGISTER (WDTCON)

The watchdog time control register, WDTCON, is used to generate various watchdog time and to select Hsync
output. It is located in set 1, bank 0, address ECH, and is read/write addressable using register addressing mode.

Watchdog Time Control Register (WDTCON)
ECH, Set 1, Bank 0, R/W

MSB - - - - .3

2

Not use for S3C8639/C863A/C8647

1 = Hsync-1/2

Hsync-O divide enable bit:
0 = Hsync-I (Non-divide)

Watchdog time generation control bits:

LSB

000
001
010
011
100
101
110
111

tBTOVE

tBTOVF/2
tBTOVF/3
tBTOVF/4
tBTOVF/5
tBTOVF/6
tBTOVF/7
tBTOVF/8

NOTE: tBTOVF = (1/fosc) x (divider count of basic timer input clock) x 256

Figure 10-2. Watchdog Time Control Register (WDTCON)

ELECTRONICS

10-3



BASIC TIMER S3C8639/C863A/P863A/C8647/F8647

BASIC TIMER FUNCTION DESCRIPTION

Watchdog Timer Function

You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7-BTCON.4 to
any value other than "1010B" (The "1010B" value disables the watchdog function). A reset clears BTCON to
"00H", automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by
the current CLKCON register setting),divided by 4096, as the BT clock.

A reset whenever a basic timer counter overflow occurs. During the normal operation, the application program
must prevent the overflow and the accompanying reset operation from occurring. To do this, the BTCNT value
must be cleared (by writing a "1" to BTCON.1) at regular intervals. And you can generate the various watchdog
time by setting WDTCON.2-WDTCON.0.

If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during the normal
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always
broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.

Oscillation Stabilization Interval Timer Function
You can also use the basic timer to program a specific oscillation stabilization interval after a reset or when stop
mode has been released by an external interrupt.

In Stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then
starts increasing at the rate of f55-/4096 (for reset), or at the rate of the preset clock source (for an external

interrupt). When BTCNT.4 overflows, a signal is generated to indicate that the stabilization interval has elapsed
and to gate the clock signal off to the CPU so that it can resume the normal operation.

In summary, the following events occur when Stop mode is released:
1. During the stop mode, a power-on reset or an external interrupt occurs to trigger the stop mode release and

oscillation starts.

2. If a power-on reset occurred, the basic timer counter would increase at the rate of f55-/4096. If an external
interrupt is used to release Stop mode, the BTCNT value increases at the rate of the preset clock source.

3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter overflows.
When a BTCNT.4 overflow occurs, the normal CPU operation resumes.

10-4 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

BASIC TIMER

1/1024

1/128

Bit O

1/4
/4096

fosc—» DIV |———»

=220

Bits 3, 2

A

A

A

A

MUX

Clear

RESET or STOP

Data Bus

Basic Timer Control Register
(Write '1010xxxxB' to Disable)

T

8-Bit Basic Counter
(Read-Only)

— OVF

Watchdog Time
Control Register

[: RESET

NOTE: In a power-on reset operation, the CPU is idle during the required oscillation stabilization
interval when BTCNT.4 is set after releasing from RESET or STOP mode, CPU clock
starts.

Figure 10-3. Basic Timer Block Diagram

ELECTRONICS

10-5



BASIC TIMER

S3C8639/C863A/P863A/C8647/F8647

¥~ PROGRAMMING TIP — Configuring the Basic Timer

This example shows how to configure the basic timer to sample specifications:

ORG
RESET DI
SBO
LD
LD
CLR
CLR

MAIN LD

LD

LD
NOP
NOP

0100H

BTCON,#0AAH
CLKCON,#98H
SYM
SPL

#0COH

BTCON,#A2H

BTCON,#52H

WDTCON,#03H

T,MAIN

Disable all interrupts

Select bank 0

Disable the watchdog timer
Non-divided clock

Disable global and fast interrupts
Stack pointer low byte = "0"
Stack area starts at OFFH

Set register pointer = 0COH
Enable interrupts

Watchdog timer disable
Basic timer/counter clear

Enable the watchdog timer
Basic timer clock: f55-/4096

Clear basic timer counter

Watchdog time: teTovr/4

10-6

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 TIMER MO

1 1 TIMER MO

OVERVIEW

The 8-bit timer MO is for monitor application. Timer MO includes capture timer mode using the appropriate
TMOCON setting.

Timer MO has the following functional components:

— Clock frequency divider (fogc divided by 128 or 8 ) with multiplexer

— 2-bit prescaler for the timer MO input clock

— 8-bit counter (TMOCNT; setl, DOH, read-only) and 8-bit reference data register (TMODATA, setl, D1H, read-
only)

— Timer MO capture or overflow interrupt (IRQO, vector E2H, EOH) generation

— Timer MO control register, TMOCON (set 1, D2H, read/write)

FUNCTION DESCRIPTION

CAPTURE TIMER FUNCTION

The timer MO module can generate two interrupts: the timer MO capture interrupt (TMOINT), and the timer MO
overflow interrupt (TMOOVF). TMOINT belongs to interrupt level IRQO, and is assigned the separate vector
address, E2H. TMOOVF is interrupt level IRQO, vector EOH.

The TMOINT and TMOOVF pending conditions are automatically cleared by hardware after they are serviced.

In capture timer mode, a signal edge that is detected at the TMOCAP pin opens a gate and loads the current
counter value into the timer MO data register (TMODATA). You can select rising or falling edge to trigger this
operation.

Both kinds of timer MO interrupts can be used in capture mode: the timer MO overflow interrupt is generated
whenever a counter overflow occurs; the timer MO capture interrupt is generated whenever the counter value is
loaded into the timer MO data register.

By reading captured data value in TMODATA, and assuming a specific value for the timer MO clock frequency,
you can calculate the internal time of the signal being input to the TMOCAP pin or the vertical sync output signal
being output from the sync-processor module.

ELECTRONICS 11-1



TIMER MO

S3C8639/C863A/P863A/C8647/F8647

Timer MO Control Register (TMOCON)
You use the timer MO control register, TMOCON, to

— Select the timer MO operating mode (capture mode)

— Select the timer MO input clock frequency

— Clear the timer MO counter, TMOCNT

— Enable the timer MO overflow interrupt and timer MO capture interrupt
— Select a 2-bit prescaler value for the Timer MO input clock

— Select the timer MO capture input source

TMOCON is located in set 1, at address D2H, and is read/write addressable using Register addressing mode.

A reset clears TMOCON to "00H". This sets timer MO to disable capture timer mode, selects an input clock
frequency of fo5/128, and disables timer MO overflow and capture interrupts. You can clear the timer MO

counter at any time during the normal operation by writing a "1" to TMOCON.2.

The timer MO overflow interrupt (TMOOVF) is in the interrupt level IRQO and has the vector address EOH. When
the timer MO capture interrupt is disabled, the Timer MO overflow interrupt by clock (fy5c) is possible. When a

timer MO overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by

hardware.

To enable the timer MO capture interrupt (IRQO, vector E2H), you must write TMOCON.1 to "1". There is no
pending bit cleared by software or static read bit which is H/W pending. After the interrupt request is serviced, the
pending condition is automatically cleared by hardware.

Timer MO Control Register (TMOCON)
D2H, Set 1, RIW

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

Timer MO input clock Timer MO capture input selection bit:
selection bit: 0 = TMOCAP input pin selection

0 = fosc/128 1 = V-sync output path selection from
1 = fosc/8 sync-processor

2-bit prescaler bits:
00 = No division
01 = Divide by 2
10 = Divide by 3
11 = Divide by 4

Timer MO capture interrupt enable bit:
0 = Disable the timer MO capture interrupt
1 = Enable the timer MO capture interrupt

Timer MO overflow interrupt enable bit:
0 = Disable the timer MO overflow interrupt

Timer MO capture mode selection bit: - .
1 = Enable the timer MO overflow interrupt

0 = Capture on rising mode
1 = Capture on falling mode

Timer MO counter clear bit:
0 = No effect
1 = Clear timer MO counter (when write)

NOTE: When the captured value is #OFFh, the overflow interrupt does not occur.
When the vlaue of capture is changed from #0FFh to #00h, the overflow interrupt
always occurs. When the captured value is #00h, the overflow interrupt occurs in
advance.

Figure 11-1. Timer MO Control Register (TMOCON)

11-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

TIMER MO

BLOCK DIAGRAM

Vsync-O
from sync
processor

Bit 2
OVINT
| Bit7 || Bits6,5 » IRQO
(Timer MO Overflow
v \ 2B / Data Bus Bit 3
A TMOCLR
fosc/128
_— > 2-Bit 8-Bit Counter
»| Pre- —» (Read-Only) R
fosc/8 scaler TMOCNT Clear
Bit 1
TMOCAP TMOINT B—> rQo
+ (Timer MO Capture)

Timer MO Data Register
(Read-Only)
TMODATA

!

Data Bus

[]

Timer MO control register

Figure 11-2. Timer MO Functional Block Diagram

ELECTRONICS

11-3



TIMER MO S3C8639/C863A/P863A/C8647/F8647

NOTES

11-4 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 TIMER M1

1 2 TIMER M1

OVERVIEW

The 12-bit timer M1 is an 12-bit timer/counter for monitor application. Timer M1 offers capture/overflow timer
mode using the appropriate TM1CON setting.

Timer M1 has the following functional components:

— Clock frequency selector as the timer M1 clock (fogc divided by 512, 128, or 2, Hsync-I or Csync-I from sync-
processor) with multiplexer
— Capture signal selector from V-syncO (sync-processor) or the timer M2 interval time

— 12-bit counter (TM1CNTH, TM1CNTL; setl, bankO, F1H, F2H, read-only) and 12-bit reference data register
(TM1DATAH, TM1DATAL; setl, bank0, F3H, F4H, read-only)

— Timer M1 capture or overflow interrupt (IRQ2, vector E8H, E6H) generation
— Timer M1 control register, TM1CON (set 1, bank0, F5H, read/write)

FUNCTION DESCRIPTION

Overflow Timer Function

The timer M1 module generates an overflow signal whenever the timer M1 counter overflow occurs. If you set the
timer M1 overflow interrupt enable bit, TM1CON.2, to "1", an interrupt is generated whenever an overflow state is
detected. After the interrupt request is generated, the counter register value is cleared and counting resumes
from "O0H".

The timer M1 overflow interrupt pending condition is automatically cleared by hardware when it has been
serviced.

Capture Timer Function

The Timer M1 module can generate, the timer M1 capture interrupt (TM1INT). TM1INT belongs to interrupt level
IRQ2, and is assigned the vector address, E8H.

In capture timer mode, a capture signal from Vsync-O (sync-processor) or the timer M2 interval timer opens a
gate and loads the current counter value into the timer M1 data register (TM1DATA). You can select Vsync-O or
the timer M2 interval timer as the capture signal source to trigger this operation.

By reading captured data value in TM1DATAH and TM1DATAL, and assuming a specific value for the timer M1
clock frequency, you can calculate the frequency of the signal being input to the Hsync-1 or Csync-I from sync-
processor by capture signal.

ELECTRONICS 12-1



TIMER M1 S3C8639/C863A/P863A/C8647/F8647

Timer M1 Control Register (TM1CON)
You use the timer M1 control register, TM1CON, to

— Select the capture signal source

— Select the timer M1 clock input

— Clear the timer M1 counter, TM1CNTH and TM1CNTL

— Enable the timer M1 capture and overflow interrupt

— Clear the timer M1 capture interrupt pending bit

— Select Vsync-O capture edge as capture signal source (When TM1CON.7 ="1")

TM1CON is located in set 1, bankO, at address F5H, and is read/write addressable using Register addressing
mode.

The setting for bit-pair TM1CON.0 and TM1CON.1 selects the timer M1 counter clock input. The timer M1
capture and overflow interrupt (TM1INT, TM1OVF) are in the interrupt level IRQ2, but has the different vector
address (E8H, E6H respectively).

TM1CON.4 is the interrupt pending flag for the timer M1 capture interrupt. To clear a timer M1 interrupt pending
condition, the interrupt service routine must write a "0" to TM1CON.4 after the CPU has acknowledged the
request. TM1CON.3 is flag to clear the 12-bit Timer M1 counter.

TM1CON.7 is flag to select the capture signal source (timer M2 interval time or Vsync-O from sync-processor)
and TM1CON.6 is flag to select the capture edge as the Vsync-O capture signal source.

A reset operation clears TM1CON to "00H", selecting the Hsync-I or Csync-l from sync-processor are the timer
M1 clock and disabling the timer M1 capture and overflow interrupt.

12-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 TIMER M1

Timer M1 Control Register (TM1CON)
F5H, Set 1, R/W

MSB | .7 .6 5 A4 3 .2 1 .0 |LSB

Timer M1 capture Timer M1 clock input selection bits:
signal source 00 = Hsync-l or Csync-I from sync-processor
selection bit: 01 =fosc/2
0 = Signal from the 10 = fosc/128
timer M2 interval 11 =fosc/512
time

1 = Vsync-O from

Timer M1 overflow interrupt enable bit:
sync-processor

0 = Disable the timer M1 overflow interrupt
1 = Enable the timer M1 overflow interrupt

Vsync-O capture source edge

selection bit (when TM1CON.7=1): Timer M1 counter clear bit (when write):
0 = Vsync-O rising edge 0 = No effect
from sync-processor 1 = Clear timer M1 counter
1 = Vsync-O falling edge
from sync-processor Timer M1 capture interrupt pending bit:
0 = Interrupt i snot pending (when read)
Timer M1 capture interrupt enable bit: 0 = Clear the pending bit (when write)

0 = Disable the timer M1 capture interrupt 1 = Interrupt is pending (when read)
1 = Enable the timer M1 capture interrupt 1 = No effect (when write)

Figure 12-1. Timer M1 Control Register (TM1CON)

ELECTRONICS 12-3



TIMER M1 S3C8639/C863A/P863A/C8647/F8647

BLOCK DIAGRAM

(The TM1CNTL and

TM1CON.3 TM1CNTH registers

are read-only.)

| TM1CON.1-0 |
Hsync-I/Csync-I Clear 8 4
from sync processor ———» / TM1CON.2
fosc/l2 ————» o
12-Bit Counter OVF
MUX ——» . .

fosc/128 ——» TMICNTL : TMICNTH IRQ2
fosc/512 —p .

12
Clear

TM1CON.5 W CAP :ITM1CON. 2
l IRQ2

/ \ <4—| TM1CON.7
TM1CON.6 /T \ L Capture signal Timer M1 Diata Register TM1CON.5

from timer M2 TM1DATAL : TM1DATAH

interval time

(TM2CONL1,0)
Vsync-O from (The TM1DATAL and TM1DATAH

sync-processor registers are read-only.)

Figure 12-2. Timer M1 Functional Block Diagram

12-4 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 TIMER M2

1 3 TIMER M2

OVERVIEW

The interval timer M2 is no-counter timer for monitor application. Timer M2 offers interval timer mode using the
appropriate TM1CON setting.

Timer M2 has the following functional components:

— 5-bit scaler by fy5/1000 for timer M2 interval source

— Timer M1 capture interval time source selector (When TM1CON.5 is "1") with 2-bit scaler
— Timer M2 interval interrupt (IRQ1, vector E4H) generation

— Timer M2 control register, TM2CON (set 1, F6H, read/write)

FUNCTION DESCRIPTION

Interval Timer Function

The timer M2 module generates an interval interrupt whenever the TM2CON.2 is "1". TM2INT belongs to the
interrupt level IRQ1, and is assigned the separate vector address, E4H. The TM2INT pending condition is
automatically cleared by hardware when it has been serviced.

Timer M2 Control Register (TM2CON)

You use the timer M2 control register, TM2CON, to

— Select the interval time signal source by 5-bit scaler
— Enable the timer M2 interval interrupt
— Select timer M1 capture interval time by 2-bit scaler (When TM1CON.5 ="1")

TM2CON is located in set 1, bankO, at address F6H, and is read/write addressable using Register addressing
mode.

A reset operation clears TM2CON to "F8H" (11111000B), thereby setting the 5-bit scaler value to be divided
by 32.

ELECTRONICS 13-1



TIMER M2

S3C8639/C863A/P863A/C8647/F8647

Timer M2 Control Register (TM2CON)

F6H, Set 1, R/W

MSB| .7 .6 5 A4

3

1 .0 |LSB

5-bit scaler bits:

00000 = No division
00001 = Divide by 2
00010 = Divide by 3

11111 = Divide by 32

Timer M1 capture interval time
selection bits:

00 = Timer M2 interval (bypass)
01 = Timer M2 interval x 10

10 = Timer M2 interval x 20

11 = Timer M2 interval x30

Timer M2 interval interrupt enable bit:
0 = Disable the timer M2 interval interrupt
1 = Enable the timer M2 interval interrupt

NOTES:

1. When the timer M1 capture mode is enabled (TM1CON.5 ="1"), the value of 5-bit or

2-bit scaler can be changed only in the timer M1capture interrupt routine.

2. When the timer M1 capture mode is disabled (TM1CON.5 = "0"), the value of 5-bit

scaler can be changed only in the timer M2 interval interrupt routine.

Figure 13-1. Timer M2 Control Register (TM2CON)

13-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

TIMER M2

BLOCK DIAGRAM

TM2CON.7-.3

TM2CON.2
A
5-Bit } IRQ1
fosc/1000 —p Scaler

(Timer M2 Interval Interrupt)

|-
Ll

Bt —— L
2-Bit o /10

| £ . .
Scaler ? Divider " Timer M1 capture signal

>

A A

TM2CON.1,.0

Figure 13-2. Timer M2 Functional Block Diagram

ELECTRONICS

13-3



TIMER M2 S3C8639/C863A/P863A/C8647/F8647

NOTES

13-4 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ANALOG TO DIGITAL CONVERTER

ANALOG-TO-DIGITAL CONVERTER

OVERVIEW

The 8-bit A/D converter (ADC) module of S3C8639/C863A/C8647 employs successive approximation logic to
convert analog levels entering one of the four input channels to equivalent 8-bit digital values. The analog input
level must lie between the Vp, and Vg, values. The A/D converter has the following components:

— Analog comparator with successive approximation logic

— DI/A converter logic (resistor string type)

— 8-bit ADC control register (ADCON)

— Four multiplexed analog data input pins (ADC0-ADC?3)

— 8-bit A/D conversion data output register (ADDATA) (S3C863X)
— 4-bit A/D conversion data output register (ADDATA) (S3C8647)
— 8-bit digital input port (Alternatively, 1/O port )

— Vpp, and Vgg, pins (S3C863X)

FUNCTION DESCRIPTION

To initiate an analog-to-digital conversion procedure, write the channel selection data in the A/D converter control
register ADCON to select one of the four analog input pins (ADCn, n = 0-3) and set the conversion start or
enable bit, ADCON.0. The read-write ADCON register is located in set 1, bankO, at address F7H.

During the normal conversion, ADC block initially sets the successive approximation register to 80H
(approximately the half-way point of an 8-bit register). This register is then updated automatically in each
conversion step. The successive approximation block performs 8-bit conversions for one input channel at a time.
You can dynamically select different channels by manipulating the channel selection bit value (ADCON.5-.4) in
the ADCON register. To start the A/D conversion, you should set, ADCON.O. When a conversion is completed,
ADCON.3, the end-of-conversion (EOC) bit, is automatically set to 1 and the result is dumped into the ADDATA
register where it can be read. The A/D converter then enters an idle state. Remember to read the contents of
ADDATA before another conversion starts. Otherwise, the previous result will be overwritten by the next
conversion result.

NOTE

As the A/D converter does not include any sample-and-hold circuitry, it is very important to keep the
fluctuation in the analog level at the ADCO—ADCS3 input pins to an absolute minimum during the
conversion process. Any change in the input level, perhaps due to noise, will invalidate the result. If the
chip enters to STOP or IDLE mode in conversion process, there will be a leakage current path in A/D
block. You must use STOP or IDLE mode after A/D converting operation is finished.

ELECTRONICS 14-1



ANALOG TO DIGITAL CONVERTER S3C8639/C863A/P863A/C8647/F8647

CONVERSION TIMING

The A/D conversion process requires 4 steps (8 clock edges) to convert each bit. Therefore, a total of 48 clocks
are required to complete an 10-bit conversion. With an 8 MHz f, clock frequency, one clock cycle is 1 ns

(when ADCON.2, .1 are "01"). If each bit conversion requires 4 clocks, the conversion rate is calculated as
follows:

start (4 clocks) + (4 clocks/bit © n bits) + EOC (4 clocks) = 4(n+2) clocks, 1 ns x 4(n+2) = 4(n+2) s at 8 MHz
where, n = 4 (S3C8647), 10 (S3C863x)

A/D CONVERTER CONTROL REGISTER (ADCON)
The A/D converter control register, ADCON, is located at address F7H in set 1, bankO. It has four functions:

— Analog input pin selection (bits 4,5 and 6)
— End-of-conversion status detection (bit 3)
— Clock source selection (bits 2 and 1)

— A/D operation start or enable (bit 0)

After a reset, the ADCO pin is automatically selected as the analog data input pin, and the start bit is turned off.

You can select only one analog input channel at a time. Other analog input pins (ADC0—-ADC3) can be selected
dynamically by manipulating the ADCON.6-.4 bits.

A/D Cconverter Control Register (ADCON)
F7H, Set 1, Bank 0, R/W (EOC bit is read-only)

MSB - .6 5 4 3 .2 A .0 LSB
Not used for the Start or enable bit:
S3C8639/C863A/C8647 0 = Disable operation
1 = Start operation
A/D input pin selection bits: Clock source select:
6 5 4 A/D input pin 0 0 | fosc/16
01 fosc/8
0 0 O ADCO (P3.0) 1 0 | fosc/a
0 0 1 ADC1 (P3.1) 11| fosc
0 1 0 ADC2 (P3.2)
0 11 ADC3 (P3.3) End-of conversion bit (read-only):
Others Not used 0 = Conversion is not complete

1 = Conversion is complete

Figure 14-1. A/D Converter Control Register (ADCON)

14-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ANALOG TO DIGITAL CONVERTER

INTERNAL REFERENCE VOLTAGE LEVELS

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input
level must remain within the range of AVgg (Vggo) 10 AVRer (Vppo)-

Different reference voltage levels are generated internally along the resistor tree during the analog conversion
process for each conversion step. The reference voltage level for the first conversion bit is always 1/2 Vpp,.

BLOCK DIAGRAM

ADCON.2-.1

v

ADCON.6-.4
(Analog Input Pin Select) Clock fosc/n
Select
l L l To ADCON.3
ADCON.0 (EOC Flag)
B (ADC Enable)
¢ Analog Succgssiv_e
Input Pins L > Comparator Approximation
ADC3-ADCO MUX Logic & Register
(P3.3-P3.0) BP—»
| ADCON.0
= . (ADC Enable)
Conversion
8-Bit D/A AVREF Result (ADDATA
Converter (S3C863X) [— (VDD2) F8H, Set 1, Bank 0)
4-Bit D/A — AVss
Converter (S3C8647) (Vss2)
To Data Bus
Figure 14-2. A/D Converter Functional Block Diagram
A/D Converter Data Register (ADDATA)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 (note) | Bijt 2 (note) | Bjt 1 (ote) | Bjt O (note)

NOTE: Not mapped for the S3C8647.

ELECTRONICS 14-3



ANALOG TO DIGITAL CONVERTER

S3C8639/C863A/P863A/C8647/F8647

Table 14-1. A/D Converter Electrical Characteristics (S3C863X)

(To = —40°C to +85°C, Vpp=3.0V to 55V, Vgg= 0V)

Parameter Symbol Conditions Min Typ Max Unit
Resolution - 8 - bit
Total accuracy Vpp=5V - - +2 LSB

Conversion time = 5ns
Integral linearity error ILE AVpep =5V - +1
Differential linearity error DLE AVgg=0V - 1
Offset error of top EOT +1 +
Offset error of bottom EOB +0.5 +
Conversion time () tcoN | 8-bit conversion 20 - 170 ns
48" nlfggc @,
n=14,68,16
Analog input voltage VIAN - AVgg - AVpep \Y
Analog input impedance RAN — 2 1000 - MW
Analog reference voltage AVREF - 25 - Vb \Y
Analog ground AVss - Vss - Vgg+ 0.3 \
Analog input current IADIN | AVRgg = Vpp =5V - - 10 mA
Analog block Current @) IaADC | AVRgg = Vpp =3V - 1 3 mA
AVger = Vpp = 3V 0.5 15 mA
AVger = Vpp =5V 100 500 nA
When power down mode
NOTES:
1. "Conversion time" is the time required from the moment a conversion operation starts until it ends.
2. lapc is an operating current during the A/D conversion.
3. fogc is the main oscillator clock.
14-4 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

ANALOG TO DIGITAL CONVERTER

Table 14-2. A/D Converter Electrical Characteristics (S3C8647)
(Ty = —40°C to +85°C, Vpp=4.0V to 55V, Vgg= 0V)

Parameter Symbol Conditions Min Typ Max Unit
Resolution - - 4 - bit
Absolute accuracy () - 4 bit conversion - - +0.5 LSB

3

24 x nffgge @),

n=1,48,16
Conversion time ) tcon 3 - - us
Analog input voltage VIAN - Vss - Vbp v
Analog input impedance RAN - 2 - - MwW
NOTES:
1. Excluding quantization error, absolute accuracy values are within = 0.5 LSB.
2. "Conversion time" is the time required from the moment a conversion operation starts until it ends.
3. fogc is the main oscillator clock.

ELECTRONICS 14-5



ANALOG TO DIGITAL CONVERTER S3C8639/C863A/P863A/C8647/F8647

NOTES

14-6 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 PULSE WIDTH MODULATION

1 5 PULSE WIDTH MODULATION

PWM MODULE

The S3C8639/C863A/C8647 microcontrollers include seven 8-bit PWM circuits, PWM0O-PWM®6. The S3C8647
microcontroller includes six 8-bit PWM circuits, PWMO-PWMD5. The operation of all PWM circuits is controlled by
a single control register, PWMCON.

The PWM counter, a 8-bit incrementing counter, is used by the 8-bit PWM circuits. To start the counter and
enable the PWM circuits, set PWMCON.5 to "1". If the counter is stopped, it retains its current count value.
When restarted, it resumes counting from the retained count value.

By modifying the prescaler value, you can divide the input clock by one (non-divided), two, three, or four. The
prescaler output is the clock frequency of the PWM counter.

The PWM counter overflows when it reaches "3FH", and then continues counting from zero.

ELECTRONICS 15-1



PULSE WIDTH MODULATION S3C8639/C863A/P863A/C8647/F8647

PWM CONTROL REGISTER (PWMCON)

The control register for the PWM module, PWMCON, is located in set 1, bank 1, at register address E7H. You
use PWMCON bit settings to control the following functions in the 8-bit:

— PWM counter operation: stop/start (or resume counting)

A reset clears PWMCON to "00H", disabling all PWM functions.

PWM Control Register (PWMCON)
E7H, Set 1, Bank 1, R/W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

2-bit prescaler for

PWM counter clock:
00 = Non-divided Not used for S3C8639/C863A/C8647
01 = Divide by 2
10 = Divide by 3
11 = Divide by 4

PWM counter enable bit:
0 = Stop the PWM counter
1 = Start the PWM counter

Figure 15-1. PWM Control Register (PWMCON)

15-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 PULSE WIDTH MODULATION

PWMO-PWM6

The S3C8639/C863A/C8647 microcontrollers include seven 8-bit PWM circuits, PWM0O-PWM®6. The S3C8647
microcontroller include six 8-bit PWM circuits, PWMO0-PWMD5. Each 8-bit PWM data unit is comprised of an 8-bit
basic frame. The 8-bit PWM circuits have the following components:

— 8-bit counter

— 8-bit comparators

— 8-bit PWM data registers (PWMO—PWM5, PWM6 (note))
— PWM output pins (PWM0-PWM5, PWM6 (note))

The PWMO-PWMG6 circuits are controlled by the PWMCON register (set 1, bank 1, E7H).

NOTE: Not used for the S3C8647.

7

G

8-Bit PWMO0O-PWMS5,
PWM6(°) Registers

7

(=

8-Bit PWMO0O-PWMS5,
PWM6(°) Registers

2)

/ ' 8-Bit Counter "1" When Reg > Counter PWMO-PWMS5,
fosc T 2-BitP.S. (6-Bit + 2-Bit Counter) VG

"0" When Reg < Counter .
9% Output Pins

PWMCON.5

(s

Data Bus

NOTE: Not used for the S3C8647.

Figure 15-2. Block Diagram for PWMO-PWM6

ELECTRONICS 15-3



PULSE WIDTH MODULATION S3C8639/C863A/P863A/C8647/F8647

PWMO-PWM6 FUNCTION DESCRIPTION

All the seven 8-bit PWM circuits have an identical function and each has its own 8-bit data register and 8-bit
comparator. Each circuit compares a unique data register value to the 8-bit PWM counter.

The PWMO-PWM6 data registers are located in set 1, bank 1, at locations EOH-E6H, respectively. These data
registers are read/write addressable. By loading specific values into the respective data registers, you can
modulate the pulse width at the corresponding PWM output pins, PWM0-PWM6. (PWMO-PWM6 correspond to
port 2 pins P2.0-P2.6.)

The level at the output pins toggles High and Low at a frequency equal to the counter clock, divided by 64 (25).
The duty cycle of the 8-bit PWM pins ranges from 0% to 98.44% (63/64), based on the corresponding data
register values.

To determine the output duty cycle of an 8-bit PWM circuit, its 8-bit comparator sends the output level High when
the data register value is greater than the lower 8-bit count value. The output level is Low when the data register
value is less than or equal to the lower 8-bit count value. The output level at the PWMO0-PWMB6 pins remains at
Low level for the first 256 counter clocks. Then, each PWM waveform is repeated continuously, at the same
frequency and duty cycle, until one of the following three events occurs:

— The counter is stopped

— The counter clock frequency is changed

— A new value is written to the PWM data register

STAGGERED PWM OUTPUTS

The PWMO-PWM6 outputs are staggered to reduce the overall noise level on the pulse width modulation
circuits. If you load the same value to the PWMO-PWM6 data registers, a match condition (data register value is
equal to the 8-bit count value) will occur on the same clock cycle for all the seven 8-bit PWM circuits.

For example, the PWMO output is delayed by one-half of a counter clock, PWM1 output by one-half of a counter
clock, PWM2 output by one-half of a counter clock, and so on for the subsequent clock cycles (see Figure 15-4).

NOTE: The S3C8647 microcontroller includes just six 8-bit PWM circuits, PWM0-PWM5.

15-4 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

PULSE WIDTH MODULATION

Counter

Value
(HEX) o4 40H 80H

Counter . ______]

SUUTTTUUY T Uy

PWMn = "0"

100 ns

PWMn = "1"

3.2 us

PWMn =20 H

<4+—» | 100 ns

PWMn = 3FH
PWM Cycle

6.4 us

A
Y

NOTES:

1. A counter clock value of 8 MHz is assumed for all timing values.
2. 'n'=0to 6, for PWMO-PWM5, PWM6 3,

3.  Not used for the S3C8647.

Figure 15-3. PWM Waveforms for PWMO-PWM6

ELECTRONICS

15-5



PULSE WIDTH MODULATION

S3C8639/C863A/P863A/C8647/F8647

OH (After RESET)

Counter
Clock

PWMO

PWM1

PWM2

PWM3

Dol
1/2 Clock Delay

Match occurs; —»> e

PWMO toggles to

high level.

1/2 Clock Delay
—»| |e
1/2 Clock Delay
—»>| |

Figure 15-4. PWM Clock to PWMO-PWM6 Output Delays

15-6

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 PULSE WIDTH MODULATION

PWM COUNTER

The PWM counter is an 8-bit incrementing counter. The same 8-bit counter is used by all PWM circuits. To
determine the PWM module's base operating frequency, the counter is compared to the PWM data register
value.

PWM DATA REGISTERS

A reset operation disables all PWM output. The current counter value is retained when the counter stops. When
the counter starts, counting resumes from the retained value.

PWM CLOCK RATE

The timing of the 8-bit output channel is based on the maximum 12 MHz CPU clock frequency. The 2-bit
prescaler value in the PWMCON register determines the frequency of the counter clock. You can set
PWMCON.6 and PWMCON.7 to divide the CPU clock frequency by one (non-divided), two, three, or four.

As the maximum CPU clock rate for the S3C8639/C863A/C8647 microcontrollers is 12 MHz, the maximum base
PWM frequency is 187.5 kHz (12 MHz divided by 64). This assumes a non-divided CPU clock.

ELECTRONICS 15-7



PULSE WIDTH MODULATION

S3C8639/C863A/P863A/C8647/F8647

¥~ PROGRAMMING TIP — Programming PWMO to Sample Specifications

This sample program executes a test of the PWM block. The program parameters are as follows:

— The oscillation frequency of the main crystal is 8 MHz
— PWM frequency is 125 kHz

RESET: DI
SBO

LD
LD
SB1
OR

SBO
El

PWMstart:
SB1
LD
SBO
RET

P2CONH,#11111111B
P2CONL,#11111111B

PWMCON,#00100000B

PWMO, #80H

Disable global interrupts
Select bank O

Select n-channel open-drain PWM output
Select push-pull PWM output

Select bank 1

PWMCON.5 - 1, start the counter
PWM counter clock is fogc

Select bank O
Enable global interrupts

Select bank 1
Load PWMO data
Select bank 0

15-8

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

1 6 SYNC PROCESSOR

OVERVIEW

The S3C8639/C863A/C8647 multi-sync signal processor (sync processor) is designed to process horizontal
(Hsync) and vertical (Vsync) signals that are input to a multi-sync monitor. The sync processor can perform the
following functions:

— Detect sync input signals (Vsync-l, Hsync-I, and Csync-I, also called Screen-On-Green, or SOG)
— Output a programmable pseudo sync generation signal

— Detect the polarity of sync input signals
— Separate and output sync signals (Hsync-O, Vsync-O, and Clamp-O)

The sync processor circuits are controlled by three control registers: SYNCONO, SYNCON1, and SYNCONZ2.
Vsync SEPARATION

SYNCONO register setting controls the output path of the sync processor’s 5-bit counter. Using the 5-bit counter,
the sync processor can separate the Vsync signal from composite (H+V) sync signal.

The counter value increments when a High level sync signal is detected and decrements when a Low level signal
is detected. No overflow or underflow can occur. That is, the 5-bit counter increments until it reaches the
maximum value of 11111B and then stops or decrements until it reaches the minimum value of 00000B. You can
select fOSC/2 or fOSC/3 as the counter’s clock input source.

When SYNCONO.5 is "1", a High signal level is output to a multiplexer whenever the counter value reaches
11111B and a Low level is output when the counter value reaches 00000B. The signal level remains constant
when the counter value is less than 11111B or greater than 00000B.

CLAMP SIGNAL OUTPUT

SYNCONLI register settings control Clamp signal output and pulse width. Clamp output can be completely
inhibited, or it can be generated at two, four, or eight times fOSC. You can specify the signal edge on which the
selected Clamp pulse width is to be output (“front porch” or “back porch”). When SYNCON1.7-.6 is set to "00",
the clamp signal output is inhibited. In this case the clamp signal level (Clamp-O) can be either "low" (when
SYNCONL1.4 is set to "1") or "high" (when SYNCON1.4 is "0").

ELECTRONICS 16-1



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

Logic for Detecting Sync-On-Green (SOG)

Special logic in the sync processor block can compare Hsync and Csync input signals to detect Sync-On-Green
(SOG). The interrupt SOG through Csync-I port is detected automatically at the SOG detection block. You can
confirm to SOG by means of reading SYNCON2.2 (SOG detection bit).

Pseudo Sync Generator

SYNCONZ2 settings (SYNCON2.4 = “0") control the pseudo Hsync and Vsync generation registers value (See
figure 16.1 and 16.2). The polarity of these frequencies is always positive, with pulse width of 2us (eight fsync
clock, when fsync is 4 MHz) and 6 x PHGEN periods, respectively. The pseudo sync generator supports factory
testing of the sync processor block and also protects a system against the effect of unexpected signals in
transition period while mode changing.

Pseudo Hsync Generation Register (PHGEN)
F9H, Set 1, Bank 0, R/W

7 .6 5 A4 3 .2 1 .0 |LSB

Pseudo Hsync generation bits:

When SYNCONZ2.4 (generation pseudo H/Vsync generation mode) = "0"
- Positive polarity only

- Pulse width: 2 us (eight fsync clock, when fsync is 4 MHz)

- Range: 15.68 kHz (PHGEN = FFh) -400 kHz (PHGEN = 10h)

Figure 16-1. Pseudo Hsync Generation Register (PHGEN)

Pseudo Vsync Generation Register (PVGEN)
FAH, Set 1, Bank 0, R/W

MSB | .7 .6 5 A4 3 .2 1 .0 |LSB

Pseudo Vsync generation bits:

When SYNCONZ2.4 (generation pseudo H/Vsync generation mode) = "0"
- Positive polarity only

- Pulse width: 6 PHGEN periods

- PVGEN value must be in [2-255] range

Figure 16-2. Pseudo Vsync Generation Register (PVGEN)

16-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

Hsync & Vsync Polarity Detection, Unmixed Hsync Detection and Hsync Blanking

The polarity of Hsync & Vsync signal input to Hsync-1 & Vsync-I pin is automatically detected. If the Hsync
polarity is negative, SYNCONL1.0 equals to "0". If the Hsync polarity is positive, SYNCON1.0 equals to "1". This
polarity detection bit (SYNCON1.0) may be not accurate when the sync level is not in a transitional condition.

And if the Vsync polarity is negative, SYNCON1.1 equals to “1”. This polarity detection bit (SYNCON1.1) may be

not accurate when the sync level is not in a transitional condition.

In composite sync mode, if SYNCON2.7 is set to "1", the current period of checked Hsync is stable, unmixed
with Vsync signal. If SYNCONZ2.7 is "0", the current period of checked Hsync is mixed with Vsync signal, in which
case it is recommended not to calculate the sync frequency. In this mode, the Hsync signal is automatically

blanked during the Vsync signal extraction period.

Table 16-1. VESA Monitor Timing Standards & PHGEN/PVGEN Value

Standard Standard Resolution Line Num. Pseudo Pseudo
Hsync Freq. | Vsync Freq. [Hf/VT] Hf/((PHGEN) | Vf/(PVGEN)
[kHZz] [HZ] [kHZz] [HZ]
31.469 59.940 640 "~ 480 525 31.49 (127) 59.65 (66)
37.861 72.807 520 38.09 (105) 73.26 (65)
37.500 75.000 500 37.73 (106) 74.87 (63)
35.156 56.250 800 " 600 625 35.08 (114) 56.23 (78)
37.879 60.317 628 38.09 (105) 60.27 (79)
48.077 72.188 666 48.19 (83) 72.57 (83) Reset Value
46.875 75.000 625 47.06 (85) 75.41 (78)
35.522 43.479 1024 " 768 817 35.71 (112) 43.76 (102)
48.363 60.004 806 48.19 (83) 59.64 (101)
56.476 70.069 806 56.33 (71) 69.72 (101)
60.023 75.029 800 59.70 (67) 74.62 (100)
63.995 70.016 1152~ 864 914 63.49 (63) 70.23 (113)
77.487 85.057 911 76.92 (52) 85.09 (113)
75.000 75.000 1280~ 960 1000 75.47 (53) 75.47 (125)
63.974 60.013 1280~ 1024 1066 63.49 (63) 60.12 (132)
79.976 75.025 1066 80.00 (50) 75.18 (133)
75.000 60.000 1600~ 1200 1250 75.47 (53) 60.08 (157)
107.043 85.022 1259 108.11 (37) 85.52 (158)

NOTE: Pseudo Hsync frequency = fsync/PHGEN value

Pseudo Vsync frequency = Pseudo Hsync frequency/(8 © PVGEN value)

ELECTRONICS

16-3



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR CONTROL REGISTER 0 (SYNCONO)

The sync processor control register 0, SYNCONO, is located in set 1, bank 0, at address EDH. It is read/write
addressable. SYNCONO bits 4-0 hold the 5-bit counter value which is used for compare function. Whenever a
High signal level is detected, the count value is incremented by one until it reaches the maximum value of
"11111B" (No overflow occurs). Whenever a Low signal level is detected, the count value is decremented by one

until it reaches the minimum value of "00000B" (No underflow occurs).

NOTE

When the composit sync is inputted, compare mode is also called Vsync separation mode. In this mode,
output to the multiplexer is enabled. When the counter value is "11111B", the output is High level; when

the counter value is "00000B", the output is Low level. Whenever the counter value is less than ( <)
"11111B", or greater than ( >) "00000B", the previous output level is retained.

SYNCONO settings also control the following sync processor functions:

— Horizontal or composite sync input (Hsync-1 or Csync-I) selection
— Automatically enable Hsync blanking or Hsync signal bypass

— Vsync port input or 5-bit counter compare mode
— Select the clock source for Vsync-O

See Figure 16-3 for a detailed description of SYNCONO register settings.

SYNC Processor Control Register 0 (SYNCONO)
EDH, Set 1, Bank 0, R/'W

MSB| .7 .6 5

4

3

2

Sync input selection bit:
0 = Hsync-I
1 = Csync-I

Hsync blanking enable bit:

0 = Disable (Hsync signal bypass)
(When SYNCONO.5="0")

1 = Enable automatically Hsync
blanking (during Vsync signal
extraction period)

(When SYNCONO.5="1")

5-bit compare counter value bits:

LSB

High signal: increment until "11111B"
Low signal: decrement until "00000B"

Vsync-O output source selection bit
(during Vsync signal extraction period):
0 = Select Vsync-I port input
(when separate sync input mode)
1 = Select 5-bit compare output
(when composite sync input mode)

Figure 16-3. Sync Processor Control Register 0 (SYNCONO)

16-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

SYNC PROCESSOR CONTROL REGISTER 1 (SYNCON1)

The sync processor control register 1, SYNCONL, is located in set 1, bank 0, at address EEH. It is read/write
addressable. Using SYNCONL1 settings, you can:

— Generate a clock pulse for Clamp signal output

— Select “front porch” or “back porch” mode for Clamp-O

— Control Clamp-O, Vsync-O, and Hsync-O status

— Detect Hsync & Vsync polarity

See Figure 16-3 for a detailed description of SYNCONL1 register settings.

SYNC Processor Control Register 1 (SYNCON1)
EEH, Set 1, Bank 0, R/'W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

—I—
Clamp output signal generation bits Hsync polarity detection bit: @
(CSG1,0): 0 = Negative
00 = Inhibit clamp signal output 1 = Positive
01 = (fosc x 2) clock pulse

(250 ns at 8 MHz fosc) Vsync polarity detection bit: @
10 = (fosc x 4) clock pulse 0 = Negative
(500 ns at 8 MHz fosc, 1 = Positive
333 ns at 12 MHz fosc)
11 = (fOSC x 8) clock pulse Hsync ouput status bit:
(1 us at 8 MHz, 0 = Do not invert (by pass)
666 ns at 12 MHz) 1 = Invert Hsync-O signal
Front/back porch clamp-O mode selection bit: Vsync ouput status bit:
0 = Output clamp signal after rising 0 = Do not invert (by pass)
edge of Hsync-I (front porch) 1 = Invert Vsync-O signal
1 = Output clamp signal after falling

d fH -l k h
edge of Hsync-l (back porch) Clamp signal ouput status bit:

0 = Negative polarity
1 = Positive polarity

NOTES:

1. To check Hsync/Vsync polarity, it uses 16 clocks of timer M2 (fx/1000). If the Vsync
polarity is changing, this bit will be updated after a typical delay of 2 ms, at 8 MHz fosc
(1.33 ms at 12 MHz fosc)

2.  The SYNCONL1.0 may not be accurate when the Hsync-I is composite sync signal
input.

Figure 16-4. Sync Processor Control Register 1 (SYNCON1)

ELECTRONICS 16-5



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR CONTROL REGISTER 2 (SYNCON2)

The sync processor control register 2, SYNCONZ2, is located in set 1, bank 0, at address EFH. It is read/write
addressable. Using SYNCONZ2 settings, you can:

— Detect mixed and unmixed Hsync period in composite sync

— Select the pseudo sync generation enable mode

— Select the clock source for the 5-bit counter

— Sync signal output disable or enable

— SOG signal detection

— 5-bit up/down counter latch status changing detection

— Vpp level selection for TTL sync input ports

See Figure 16-5 for a detailed description of SYNCON2 register settings.

SYNC Processor Control Register 2 (SYNCON2)
EFH, Set 1, Bank 0, R/W

MSB | .7 .6 5 A4 3 .2 1 .0 |LSB

Unmixed Hsync detection bit VDD level selection bit for
(when SYNCONO.5 is "1", read only) TTL sync input ports (only S3C863X)
0 = Mixed Hsync period with 0 =When Vbop is +5 V

Vsync of composite sync 1 =When VoD is +3V

input @

1 = Unmixed Hsync periods

5-bit up/down counter latch status
changing detection bit:®
0 = When the latch status is not

Not used for KS88C6332/C6348 (only "0") changed or it writes "0" to this bit

5-bit counter source clock (fsync) input

1 = When the latch status changing is

: ; detected
selection bit:
0 = fosc/3 (when fosc is 12 MHz) SOG detection bit:
1 = fosc/2 (when fosc is 8 MHz) 0 = No SOG signal (when read)
* Countable maximum Hsync pulse width: 0 = Clear SOG detection 5-bit
7.85 us (when fsync is 4 MHz) counter (when write)

Pseudo sync generation disable bit:
0 = Enable pseudo Hsync/Vsync generation

1 = Csync-l is SOG signal (to check SOG
presence, it uses 64 Csync input edge
signal)

(positive polarity only) Sync signal output disable bit:
1 = Normal sync-processor operation (by pass) 0 = Enable sync signal output

NOTES:

1 = Inhibit sync signal otput
(output level is low)

1. The SYNCONZ2.7 is still cleared before read this bit or it has been in mixed Hsync period.
2. The SYNCON2.1 can be used to check the presence of composite sync signal input

Figure 16-5. Sync Processor Control Register 2 (SYNCONZ2)

16-6

ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

OVF 4-Bit
Counter 49— fosc/1000
> Vsync 3-Bit
Polari _ _
Dgt:(r;'ttgr Up/Down <4—e—» To Timer MO/Timer M1
Counter Capture Input
> Hsync
Polarity
Detector Port Read NF.

Vsync-I
(VCLK)

f -
foscg fsync > 5-Bit Up/Down
0sc Counter
V -
3 » | (SYNCONO.4-.0) T T :——I> ll Vsync-0
SYNCON2.5 ¢ SYNCONO.5 SYNCONL1.3
Data Bus
K7< SYNCON2.4
Pseudo
Vsync
Generator
8-Bit Scaler 8-Bit Scaler
—>
(PHGEN) —> | 18 (PVGEN)

Pseudo Ciam

Hsync SignaFI) —o—

Generator Generator fo—[>°——. Clamp-O

2 Hsync Blanking SYNCONL.4
To12-Bit 4 NF. : <— SYNCON15
Counter TM1 Polarity :
Hsync-I
Csync-| T TC ® il Hsync-O
SYNCON1.2
f SYNCONO.6
SYNCONO.7
SYNCONZ2.4

SOG Detection Logic —— » SYNCON2.2

Figure 16-6. Sync Processor Block Diagram

ELECTRONICS 16-7



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

DETECTING SYNC SIGNAL INPUT

You can detect the presence of a sync signal in two ways — directly or indirectly. The direct detection method
can be implemented in read port. The indirect detection method is interrupt-driven and uses the
S3C8639/C863A/C8647 sync processor hardware. These methods are explained in detail below.

Direct Detection Method

By reading the input status directly on the sync input pins Vsync-I, Hsync-I, Csync-l, you can detect the presence
of the incoming sync for a corresponding output.

To enable direct sync input detection, you set SYNCONO.5 to “0” (for Vsync-1), SYNCONO.7 to “0” (for Hsync-1),
and SYNCONO.7 to “1” (for Csync-I).

You then read the state of the input pin(s) over a period of time to detect transitions in the signal level(s). If a
transition is detected, it can be assumed that a sync signal is present.

Indirect Detection Method

To indirectly detect vertical sync input at the Vsync-I pin, you use register settings to assign either the timer MO
capture interrupt to this pin.

For indirect detection of horizontal or composite input at the Hsync-I or Csync-I pin, you use the timer 1 input
clock source to generate a timer M1 capture/overflow interrupt by capture signal from timer M2 interval or Vsync-
O from sync-processor, when a signal level transition occurs. Or to detect composite sync , you can confirm to
presence with checking SYNCONZ2.1. (This bit is used to check the presence of composite sync signal input.)

When the correct settings have been made, the application software polls for the respective interrupts to
determine the presence of sync input signals, as follows:
— Indirect Vsync input detection
Check for the occurrence of a timer MO capture interrupt (IRQO).
— Indirect Hsync input detection
Check for the occurrence of a timer M1 capture/overflow interrupt (IRQZ2).
— Indirect Csync input detection (SOG)
Check for the occurrence of a timer M1 capture/overflow interrupt (IRQZ2).

16-8 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

AUTO-DETECTING SYNC SIGNAL POLARITY

The S3C8639/C863A/C8647 sync processor lets you detect automatically the polarity of Vsync or Hsync signals
by hardware. To check H/Vsync polarity, it uses 16 clocks of timer M2 (f55-/1000).

You can detect the polarity of Hsync signal inputted to Hsync-I port through checking SYNCON1.0 by the 5-bit
counter of sync processor. If SYNCONL1.0 is “1”, the polarity of the inputting Hsync signal is positive. When
SYNCONL1.0 is “0”, the polarity of Hsync signal is negative. But when the inputted sync signal to Hsync-I is
composite sync signal (H+Vsync signal), the staus of SYNCON1.0 may not be accurate.

To detect the polarity of Vsync signal, it uses SYNCONL1.1. If SYNCON1.1 is “1”, the polarity of Vsync signal is
positive. When the polarity of Vsync signal is negative, SYNCON1.1 is “0". If Vsync polarity is changing,
SYNCON1.1 will be updated after a typical delay of 2ms, at 8 MHz fyg¢ (1.33ms at 12 MHz fygc).

Positive Type

Negative Type

Vsync Frequency:

. . Max: 200 Hz (5 ms)
4—p 1«
[} [}

Y

Vsync Pulse Width:
Min: 10us
Max: 600 us

Figure 16-7. Vsync Input Timing Diagram

ELECTRONICS 16-9



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

Positive Type

> >
| | | |
Hsync Pulse Width: Hsync Frequency:
Min: 0.5 us Max: 160 kHz (6.25 us)
Max: 7.85 us

Figure 16-8. Hsync Input Timing Diagram

16-10

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

EXTRACTING VSYNC OUTPUT

When the Vsync input at Hsync-1 or Csync-I (P2.7) also contains Hsync signals, you must extract the Vsync
component from the Hsync (or Csync) input. To do this, you use the 5-bit up/down counter.

To extract the Vsync component of the input signal, you first set the 5-bit up/down counter to operate in compare
mode (SYNCONO.5 = “1"). Vsync output is enabled only when the minimum or maximum threshold value is
reached.

During vertical blanking, the counter decreases until it reaches a minimum value while the Hsync-I or Csync-I
signal level is negative. Or, the counter value increases until it reaches a maximum value while the Hsync-I or
Csync-I signal level is positive (no overflow or borrow occurs).

The timer M1 capture interrupt (IRQ2) can be enabled to verify that the Vsync signal has been extracted
successfully from the mixed input signal.

Composite
i Nl U |
(Hsync-I

Input)

1
;

5-bit
Counter
Value

5-bit
Counter
Output

>

Figure 16-9. Vsync Extraction Using an Up/Down Counter

ELECTRONICS 16-11



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

CLAMP SIGNAL OUTPUT

Clamp signal output (Clamp-O) must be synchronized with Hsync output. The Clamp-O signal can be transmitted
to a vertically or horizontally driven integrated circuit to provide a pedestal level for image signals with

programmable pulse width.

The Clamp signal is output on the “front porch” of an Hsync signal (NO SOG condition) or on the "back porch" of
an Csync signal (SOG condition). You can control the polarity of clamp output signal with using SYNCONL1.4.
If you want to the negative pulse of clamp signal, you must set SYNCONL1.4 to “0". If you set SYNCON1.4 to "1",

the polarity of clamp output signal is positive.

Source Hsync
[} [}
JR— | |
Image Signal i i
: N D Pedestal
' ' ! Level
[} [} [}
[} [} [}
[} [} [}
Clamp-O Port ! ! !
Output : L :
| | |
Front Porch
(No SOG) Back Porch
Source Hsync
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
Image Signal ' R DO Pedestal
: Level
i
[}
[} [} [}
[} [} [}
[} [} [}
[} [} [}
Clamp-O Port ! ! !
Output : : :
: : Back Porch :
Front Porch
(No SOG)
Figure 16-10. Clamp-O Signal (SOG and NO SOG Condition)
16-12 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

DIFFERENTIATING SOG FROM NO SOG

The pulse width at the Csync-I pin is different in SOG and NO SOG conditions. In a SOG condition, the pulse
width at Csync-l and Hsync-I1 is identical. If a NO SOG condition exists, Csync-I has a wider pulse width than
Hsync-1 because the Csync-I pulse is truncated at the base of the pedestal level (see Figure 16-10).

To differentiate the Csync pulse, you must delay the Csync-I pulse for about 150 ns and then compare its phase
with that of the Hsync-I pin signal.

To indicate a SOG condition, comparator logic for Hsync and Csync sets the SYNCON2.2 flag to “1” whenever
Csync status differs from Hsync status more than 32 times at the rising edge of Hsync-I. To perform the
comparison, first detect the polarity of the Hsync-I signal. Then configure the pin for positive output. (Csync-I is
always positive and requires no special settings.) To recognize the SOG condition, you can poll the SYNCON2.2
status flag to detect when it is set to “1”".

150 ns 150 ns
b e h e
11
| [}
Csync Port Input ! |
! |
T —_1 I
11
4 4
Hsync Port Input
After 150 ns delay SOG After 150 ns delay NO SOG

Figure 16-11. Sync Input at the Hsync-l and Csync-I Pins

Hsync-O

|
i
|

|

Clamp-O !

Maximum delay is 250 ns

[} [}

D

Programmable Clamping Width (0, 250
ns, 500 ns, 1 us)

Figure 16-12. Clamp-O Signal Delay Timing

ELECTRONICS 16-13



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

& PROGRAMMING TIP — Programming the Sync Processor

This example shows how to program the sync processor to sample specifications. The sample program performs
the following actions:

— Confirm the presence of sync signal input
— Detect the polarity of Hsync or Vsync signal input

¥/ skl
;/I** Title : Definition Flag Ram for user (00h - OFh)

I

I

[k kkkkkkkokokokokokokokokokokokokokokekekekekokekokok

DeGausport equ 3 ;P0.3=Degauss control pin(Active High)
Suspndport equ 4 ;P0.4=Suspend control pin(High)
Offport equ 5 ;P0.5=0ff control pin(Low)
Muteport equ 7 ;P0.7=Video mute control pin(Low)
SelfRastport equ 0 ;P1.0=Self-Raster input pin

S1 equ 1 ;P1.1=S-correction 1

S2 equ 2 ;P1.2=S-correction 1

;X-Ray equ 0 ;Not used

;Rotation equ 1 ;P2.1=Pwm1 Out (Rotation)
;H-Size equ 2 ;P2.2=Pwm2 Out (H-Size)
;Contrast equ 3 ;Not used

;Brightness equ 4 ;Not used

JACL equ 5 ;P2.5=Pwm5 Out (ACL)
Hsize_Min equ 6 ;Not used

ModelSelport equ 7 ;P2.7=Model Sel.input pin(14":L/15":H)
Pwrkeyport equ 0 ;P3.0=S/W power key input pin
Ledport equ 5 ;P3.5=LED control

SCL equ 6 ;P3.6=SCL(S/W IIC.bus)

SDA equ 7 ;P3.7=SDA

;Fixed port.

;H_Input equ 1 ;H-Sync. Input

;V_Input equ 2 ;V-Sync. Input

;Clamp equ 3 ;Clamp Output

;H_Out equ 4 ;H-Sync. Output

;V_Out equ 5 ;V-Sync. Output

;DDC_Clock equ 6 ;DDC Clock

;DDC_Data equ 7 ;DDC Data

Hsynclport equ 0 ;SYNCRD.0=Hsyncl pin
Vsynclport equ 1 ;SYNCRD.1=Vsyncl pin
VsyncOport equ 3 ;SYNCRD.3=VsyncO pin

16-14 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

/I Define flags

SyncP_FGRO
HSyncFin_FG
VSyncFin_FG
VstblFreq_FG
HstblFreq_FG
NormSync_FG
SetSepSync_FG
MixedSync_FG
DdcHighSpd_FG

SyncP_FGR1
HPolarity FG
VPolarity_FG
HNosync_FG
VNosync_FG
NoSync_FG
OverHsync_FG
OverRange FG

Mute_FGR
Vmute FG
ChkSyncStus_ FG
MuteWaiting_ FG
MuteRelse FG
PwrOnWait_FG
PsyncOut_FG
NormMwait_FG

Time_FGR
KeyDetect FG
DeGTime_FG
ChkPwrKey_FG

Status_FGR
SfRasterin_FG
Recall_FG
UserDel FG
FindSyncSrc_FG

EepRom_FGR
UserArea_FG
ClosHsync_FG
SavedEep FG
EepDataRd_FG
NoFactSave FG

Tda9109_FGR
TdaWrite_FG
TdaRead FG

EQU
equ
equ
equ
equ
equ
equ
equ
equ

EQU
equ
equ
equ
equ
equ
equ
equ

EQU
equ
equ
equ
equ
equ
equ
equ

EQU
equ
equ
equ

EQU
equ
equ
equ
equ

EQU
equ
equ
equ
equ
equ

EQU
equ
equ

OFRPNWMUTONO

=
>

PNWAOUOTONO

N
>

PNWAOUOITONO

g o ~NO
w
=y

o
=
>

OO N

5h

whoo1OoONO

2
1

;SYNC-PROCESSOR

;Hsync signal counting every 10ms

;Vsync signal find flag(Vsync capture interrupt)
;Stable Vsync frequency input status

;Stable Hsync frequency input status

;Normal sync output mode(No pseudo sync signal)
;Indicate separate sync mode

;Mixed sync input period(composite sync input mode)
;DDC1 high speed mode(over 400Hz)

;Hsync polarity => 1=positive, 0=negative
;Vsync polarity => 1=positive, 0=negative
;Hsync freq. < 10KHz

;Vsync freq. < 40Hz

;No Vsync & No Hsync signal

;Hsync over range : over 62KHz

;Vsync over range : over 135Hz

;Being video mute

:Video mute time end

;Being video mute extension

;Video mute release

;Power-on mute delay(2sec)
;Pseudo sync output status

;Count mute extension time(350ms)

;Key detecting per 10ms
;Degaussing time(3sec)
;Checking power-key status per 10ms

:Self-Raster mode

;Recall function(Continuous key=3sec)
;Delete user data in EEPROM(Continuous key=5sec)

;Checking EEPROM user data area
;Searching closest Hsync mode

;Factory data saved EEPROM ?
;EEPROM data read after mode changing
;EEPROM data read after mode changing

:Write PWM data to TDA9109
:Read from TDA9109

ELECTRONICS

16-15



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

Dpms_FGR EQU 0%h ;

DpmsStart FG equ 7 ;DPMS mode start(3sec after abnormal sync signal)
ChkDpmsCon_FG equ 6 ;DPMS condition input(H<10KHz,V<40Hz)
PwrOffin_FG equ 5 ;Power Saving Mode

OffMode_FG equ 4 ;Off mode

Suspend_FG equ 3 ;Suspend mode

StandBy_FG equ 2 ;Standby mode

IIC_FGR EQU 0Ah

DDCCmd_FG equ 7 ;Get DDC2B+ command

LastByte FG equ 6 ;Last Tx Data

CommkFail_FG equ 5 ;Communication fail(Not ACK)
ReWrite_FG equ 4 ;Rewrite to EEPROM

ReRead FG equ 4

Ddc2mode_FG equ 3

RevAOmatch_FG equ 2

Ddc2BTxmode FG equ 1

CheckSum EQU 0Bh :DDC2B+

ByteCnt EQU O0Ch ;Count number of Tx data

SendType EQU 0Dh ;Reply type

NumTxdByte EQU OEh ;#(Total Tx byte -1) in master Tx mode
xXCntr EQU OFh ;Number of Rx data

;//** *

;//** *

[k kkkkkkokkokokokokokokokokokokokokekokokokekekkekokokok

TB1mSR EQU 10h ;1ms interval register(basic time reg.)
TB10mMSR EQU 11h ;10ms(Count Hsync event signal)
TB100mMSR EQU 12h ;100ms(Func valid time => 7sec)
DLY1ImSR EQU 13h ;1ms(Cehcking writecycle time => 10ms)
M10mSR EQU 14h ;10ms(Checking mute time => sec,350ms)
S100mSR EQU 15h ;100ms(Saving start time => 2sec)
DG100mSR EQU 16h ;100ms(Degaussing time => 3sec)
DPMS100mSR EQU 17h ;Check DPMS start(after No Sync : 3sec)
ChkSRasTime EQU 18h ;Check self-raster input(maintain 70ms ?)
HCount EQU 20h ;Double byte(even address + odd address)
; EQU 21h

HFreqStCnt EQU 22h

FreqSpCnt EQU 23h

AverageHf EQU 24h

HfHighNew EQU 25h ;Current value of Hsync freq high byte
HfLowNew EQU 26h

HfHighData EQU 27h ;Saved value of Hsync freq high byte
HfLowData EQU 28h ;Real Hsync frequency = Low nibble of Hfreq high data +

;Hfreq low data

16-16 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

;ex> if, HfHighData=#x2h,
;HfLowData=#58h => Hsync frequency = 258h=60.0Khz

Vcount EQU 30h ;total number of timerO counter within Vsync period

; EQU 31h ;Double Byte

NoVTime EQU 32h ;Checking the sustaining time of no Vsync signal
;if NoVTime > 30ms(under 33Hz) => Mute

VFreqCHigh EQU 33h ;Temp storage of TimerO(Vsync) overflow count

TOOvfCntr EQU 34h ;No vsync-int. service if DDC1 high freq. Mode

ViCurrNew EQU 35h ;Current Vsync freq

VFregData EQU 36h ;Saved Vsync freq.

VclkCntr EQU 37h ;For auto recovery of DDC mode (DDC2B -> DDC1)

PolaCntr EQU 38h ;Count number of polarity checking

VPolaCntr EQU 39h ;Increment when positive polarity

UmodeNo EQU 40h ;Matched number of user mode

FmodeNo EQU 41h ;Factory mode

ReadData EQU 42h ;Readed Data from EEPROM

EP_BPlus EQU 50h ;EEPROM & RAM data

EP_CONTRAST EQU 51h ;KA2504

EP_RGain EQU 52h

EP_GGain EQU 53h

EP_BGain EQU 54h

EP_CoffBRIGHT EQU 55h ;KA2504

EP_RCutoff EQU 56h

EP_GCutoff EQU 57h

EP_BCutoff EQU 58h

EP_ACL EQU 5%9h ;PWM5

EdidAddr EQU 80h ;Pagel RAM register

;EDID address(00~7Fh:128-byte)

i/l WORKING REGISTERS -> GENERNAL RAM

R14 EQU EepSubAddr ;Sub address of EEPROM/TDA9109

‘R15 EQU EepWrData :Data to write in EEPROM/TDA9109
;---> KA2504 Pre-amp control

'R14 EQU PreAmpSubAddr ;Sub address

;R15 EQU PreAmpCitriData ;Data address

;// Buffer for DDC2B+ protocol

MBusBuff EQU 0BOh ;For DDC2B+(00h-0BFh:16-byte)
AbusDstAddr EQU 0BOh
AbusSrcAddr EQU O0Blh
AbusPLength EQU 0B2h

AbusCommand EQU 0B3h

; EQU OBFh

ELECTRONICS 16-17



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

s HHHHHHHHHHHHHHHHHHHHHHHHHH

! DDC EDID AREA : 00h - 7Fh (128-Byte : Page 1)

T R R R R R R
[k

;/[** Title : Define Control register's flags

I

: J**
[k
;// 11C.bus Control Register

;// DCON
BUFEN equ 3 ;TX/Rx pre-buffer data register enable(0:Normal,
;1. Pre-buffer Mode)
DDCI1IMAT equ 2 ;DDC address match(0:Not match, 1:match)
DDC1EN equ 1 ;DDC1 Tx mode enable
SCLF equ 0 ;SCL falling edge detection
;// DCCR(DDC Clock Control Reg)
DTXACKEN equ 7
DCLKSEL equ 6
DINTEN equ 5
DPND equ 4
CCR3 equ 3
CCR2 equ 2
CCR1 equ 1
CCRO equ 0
;// DCSRO(DDC Control/Status Reg0)
DMTX equ 7
DSTX equ 6
DBB equ 5
DDCEN equ 4
DAL equ 3
DADDMAT equ 2
equ 1 ;Not Used for the KS88C6332/48/P6348
DRXACK equ 0
;// DCSR1(DDC Control/Status Regl)
STCONDET equ 2 ;IIC-Bus Stop Condition Detect
DBUFEMT equ 1 ;Data buffer empty status
;(0:Write to TBDR, 1:TBDR -> DDSR) when Tx
DBUFFUL equ 0 ;Data buffer full status
;(0:Read from RBDR, 1:DDSR -> RDBR) when Rx
;TBDR ;Transmit pre-buffer data register
;RBDR ;Receive pre-buffer data register
:DDSR ;DDC data shift register
;/l Sync-processor control register
;// SYNCONO
SIS equ 7 ;Sync input selection(0:Hsync, 1:Csync)

16-18

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

HBLKEN equ 6 ;Hsync Blanking Enable(0:Bypass, 1:Blanking)
VOSS equ 5 ;VsyncO source selection(0:Vsyncl, 1:5-bit compare out)
i/ SYNCON1
CLMP1 equ 7 ;
CLMPO equ 6 ;ClampO pulse width
FBPS equ 5 ;Front/Back porch selection(0:back, 1:front)
CLMPS equ 4 ;ClampO polarity control(0:negative, 1:positive)
VOS equ 3 ;VsyncO polarity control(0:by-pass, l:invert)
HOS equ 2 ;HsyncO polarity control(0:by-pass, l:invert)
VPOL equ 1 ;Vsync polarity detection(0:negative, 1:positive)
;Read only
HPOL equ 0 ;Hsync polarity detection(0:negative, 1:positive)
;Read only
;// SYNCON2
UNMIXHSYNC equ 7 ;Unmixed Hsync detection
;(0:Mixed sync, 1:Unmixed sync), Read only
CCSS equ 5 ;5-bit counter clock selection(0:fosc/2, 1:fosc/3)
PSGEN equ 4 ;Pseudo Sync Generation Disable
SYNOD equ 3 ;Sync Signal Output Diasble
SOGI equ 2 ;SOG check
UP5BSDET equ 1 ;5-Bit Up/Down Counter Status Changing Det.
VDDLS equ 0 ;VDD Level Selection(0:VDD=5V,1:VDD=3V)
;/l Watch-dog(Basic) Timer
BTCLR equ 1
Il Timer MO
TOEDGSEL equ 4 ;Timer MO Capture Mode Selection
TOCLR equ 3 ;Counter clear
TOOVINT equ 2 ;Overflow interrupt enable
TOINT equ 1 ;Capture enable
TOCAPSEL equ 0 ;Capture input selection
;(0:External pin, 1:Vsync from sync-processor)
/1 Timer M1
T1CAPSEL equ 7 ;Capture signal source selection
;(0:Timer2, 1:VsyncO from P)
VEDGSEL equ 6 ;VsyncO capture edge selection(0:rising, 1:falling)
T1CAPEN equ 5 ;Capture interrupt enable
T1PND equ 4 ;Capture interrupt pending flag
T1CLR equ 3 ;Counter clear
T1OVFINT equ 2 ;Overflow interrupt enable
Al Timer M2
T2INT equ 2
CAPINTV1 equ 1
CAPINTVO equ 0

ELECTRONICS 16-19



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

;// Pre-Amp Sub-address Mapping

PSubA_Cont
PSubA_SBnBr

PSubA RGain
PSubA_ GGain
PSubA BGain
PSubA CoBr
PSubA RCo
PSubA GCo
PSubA BCo
PSubA_Sw

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

00h
01h

02h
03h
04h
05h
06h
07h
08h
0Ah

;// EEPROM Address Mapping

EPA_CoBr
EPA_Cont
EPA_RGain
EPA_GGain
EPA_BGain
EPA_RCo
EPA_GCo
EPA_BCo
EPA_ACL

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

OF6h
OF7h
OF8h
OF9h
OFah
OFBh
OFCh
OFDh
OFeh

e DDC2ab comunication command code

I_Reset
I_ldReq

I_AsgnAdr
I_CapReq
I_AppIRprt

|_Attention
I_ldReply
|_CapReply

|_GetVCP
|_VCPFReply
|_SetVCP
I_GetTiming
|_ResetVCPF
|_DisableVCPF
|_EnableVCPF

equ
equ

equ
equ
equ

equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

OFOh
OF1h

OF2h
OF3h
OF5h

OEOh
OE1h
OE3h

0lh
02h
03h
07h
09h
0Ah
0Bh

:Slave address=DCh

:Contrast control

;bit7=Soft Blanking(1:ON, 0:0FF)
;Bit6-5=Cut-off control offset current switch
;(CS2:160uA, CS1:80uA)
;Bit4-0=Brightness control

:R Gain Control
:G Gain Control
:B Gain Control

;Cut-off brightness control

:R Cut-off control
:G Cut-off control
:B Cut-off control

;Blanking On-Off Control

;KA2504 Cut-off Brightness
:KA2504 Cut-off Contrast

;KA2504 R-Gain

;KA2504 R-Cut off

16-20

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

SaveCurrSet equ 58h

|_TimingReport equ 4Eh

|_GetEdid equ 54h

SaveEdid equ 69h

DelUser equ 50h

AllModeSve equ 52h

SaveColorSet equ 7Dh

BrtContMax equ 0D2h

[k kkkkkkokkokokokokokokokokokokokokokekokokekokokokok

;/¥* Title : Interrupt Vector Table

I

[k kkkkkkkkokokokokokokokokokokokokokokekokokekokokokok
ORG 0O0EOh
VECTOR TMOOVf_Int ;Timer MO overflow int.(IRQO)
VECTOR VSyncDet_Int ;Timer MO capture int.(IRQO)
VECTOR TM2Intv_Int ;Timer M2 interval int.(IRQ2)
ORG 0OES8h
VECTOR TM1Cap_Int ;Timer M1 capture int.(IRQ1)
ORG 00OEAh
VECTOR DDCnFA_Int ;DDC IIC-bus Tx/Rx int.(IRQ3)
ORG 0100h

[k

;/[** Title : Main Program start from here *

;//** *

[k

[k kkkkkkkkokokokokokokokokokokokokokokokokokekekokekokok

J/** Title : << System Reg. Files Initialization >> *

;//** *

;//** *

[k

RESET: DI ;Disable interrupt
CLR PP ;Source, Destination = page0
CLR SYM ;Disable fast interrupt
LD SPL,#0FFh ;Stack pointer
SRP  #0COh ;Working reg. area
LD IMR,#00001111B ;Timer MO,M1,M2, & DDC Int.

:bit7 -> not used
:bit6 -> not used
:bit5 -> not used

ELECTRONICS 16-21



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

SBO
CLR EMT
LD IPR,#00010001B

LD CLKCON,#18h
LD BTCON,#0A2h
LD WDTCON,#00h
LD STOPCON,#5Ah

;Initialize Sync-processor control register

LD SYNCON2,#10100000B
LD SYNCON1,#11000000B

LD SYNCONO0,#00100000B

LD PHGEN,#83
LD PVGEN,#101
;Initialize Timer control register

LD TMOCON,#10001111B

LD TM1CON,#00001100B

LD TM2CON,#00111101B

;bit4 -> not used

;bit3 -> IRQ3 DDC Int.

;bit2 -> IRQ2 Timer M1 Cap. Int.

;bitl -> IRQ1 Timer M2 Int.

;bit0 -> IRQO Timer MO Cap. & Ovf. Int.
;Select bank 0

;0 wait, Internal stack area

;Group priority(int) undefined(A>B>C)
:TM2/TM1 > TMO > DDC

;CPU=fx(no division)

;WatchDog Timer Disable

;Watchdog Time = tBTOVF

;Stop Function Disable

;Bit7=read only

;ClampO=negative polarity
;VsyncO=5-bit counter compare output
;Automatic Hsync blanking,

;SyncO source=Vsyncl port

;Pseudo Hsync = 48.19KHz

;Pseudo Vsync = 59.64KHz

;TimerO clock source=@8MHz/8=1MHz(1us)
;Capture rising mode

;Enable capture/overflow interrupt

;Capture source=Vsync output path

;from sync-processor

;source=Hsyncl

;Capture disable

;Capture Source=Timer2 interval time*10(10ms)
;Enable capture interrupt

;Timer2 interval=@8MHZz/(8*1000)=1ms

AAAAAAAAAAAAAAAAAAAAAA

ChkDDC2Bi
ChkDDCRecover
ChkHVPres
ChkHVPol

MAIN:

;Check H/Vsync presence
;Check H/Vsync polarity

skkkkkkkkkkkkkkhkkkkkhhkkkkkhhkkkkkhhkk
’

ke DDC2Bi service routine
™
JR Z,DDC2BPrtn

SB1

*kkkkkk

IIC_FGR,#01<<DDCCmd_FG

;DDCCmd_FG=0 ?

16-22

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

™ DCSRO0,#01<<DBB ;End of Rx(Not usy) ?
JR NZ,DDC2BPrtn

SBO

CLR  RxXCntr ;RXXCntr <- #00h

AND lIC_FGR,#0FFh-(01<<DDCCmd_FG) JACtIC_FG <-0
CALL DDC2biRxd

DDC2BPrtn SBO
RET

jeeekk DDC mode checking service routine  *xxxx*

AAAAAAAAAAAAAAAAAA

ChkDdcRecover ™ IIC_FGR,#01<<Ddc2BIn_FG ;Already DDC2B mode ?
JR NZ,ChkDdcRtn
SB1

™ DCON,#01<<SCLF
JR NZ,ChkDdc2In

ChkDdcRtn SBO
RET
ChkDdc2In ™ DCON,#01<<DDC1EN ;DDC1 Tx mode ?

JR NZ,ChkDdcRtn

CP VclkCntr,#128

JR ULE,ChkDdcRtn

OR DCON,#01<<DDC1EN :Switch back to DDC1 from DDC2B
AND DCON,#0FFh-(01<<SCLF)

AND 1lIC_FGR#0FFh-(01<<Ddc2BIn_FG)
CLR  VclkCntr

LD TBDR,#00h

LD PP.#11h

LD EdidAddr,#01h

CLR PP

JR ChkDdcRtn

DDC2BiRxd NOP
RET
[k
;/** Title : Check H/V presence, a kind of sync source and mode changing
;//**
;//**
I+ Inputs:
/¥ Outputs:
;/I** Preserves:
/¥ Corrupts: RO,
[P kkkkkkkkkkkkkkkkkkokokakokkokokekokokokokokokokokokokokekekekekekekekokekeckook
ChkHVPres: ™ SyncP_FGRO,#01<<HSyncFin_FG ;Checking period of Hsync frequency
;is 10ms by timer M1/2 interrupt

JR Z,ChkPresnVsync
AND  SyncP_FGRO,#0FFh-(01<<HSyncFin_FG)
; ; Every by 10ms
CALL Chkl1OmsTimer ; Time counter(100ms,1sec,2sec,3sec,7sec)

ELECTRONICS 16-23



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

CheckHV_Range

ChkHsyncData

ChkPresnVsync

ChkVsyncSrc

NoPresVsync

SkipChkVsyncSrc :
ChkSOGsignal

CountVfreq

StableFreqin

CALL
JP

CALL
JP
CALL
JP

CP
JP
™
JP
AND
™
JP
OR

AND
JP

CLR
™
JR
™
JR
OR
AND
AND
OR
RET

CALL
OR
OR

™
JP
OR
JP

™
JR
AND

CALL
CALL
JP
CALL
JP

™

ChkHNosyncRange
C,SyncOffState

UHSyncChk
C,SyncOffState
UPolaChk
C,SyncOffState

NoVTime,#25

UGT,ChkVsyncSrc
SyncP_FGRO0,#01<<VSyncFin_FG
Z,ChkHVPrtn

SyncP_FGRO,#0FFh-(01<<VSyncFin_FG)

Status FGR,#01<<FindSyncSrc_FG
NZ,SkipChkVsyncSrc
Status FGR,#01<<FindSyncSrc_FG

:Under 10KHz ?
;Check changing rate of Hsync frequency

;If changing rate > 00Hz
;Check Polarity data

;If NoVTime > 25ms(under 40Hz) => Mute

;Being Vsync signal(Vsync interrupt) ?

;Already find sync source ?

;First checking source is
;composite sync then seperate sync

SyncP_FGRO,#0FFh-(01<<SetSepSync_FG)

ChkSOGsignal

NoVTime

Status FGR,#01<<FindSyncSrc_FG
NZ,NoPresVsync
SyncP_FGRO0,#01<<SetSepSync_FG
NZ,NoPresVsync
SyncP_FGRO0,#01<<SetSepSync_FG
SYNCONO,#0FFh-(01<<VOSS)
SYNCONO,#0FFh-(01<<HBLKEN)
TM1CON,#01<<T1CAPEN

ClIrSyncSrcFlag
SyncP_FGR1,#01<<VNosync_FG
Dpms_FGR,#01<<ChkDpmsCon_FG

SyncP_FGR1,#01<<HNosync FG
Z,SyncOffState
SyncP_FGR1,#01<<NoSync_FG
SyncOffState

SYNCONZ2,#01<<SOGlI
Z,CountVfreq
SYNCONL1 #01<<FBPS

NormalVfCnt
UVSyncChk
C,SyncOffState
ChkHVRange
C,SyncOffState

Mute_FGR,#01<<MuteRelse_FG

;New sync source ?

;No Vsync input

;Changing to separate-sync mode

;Enable Timer M1 capture mode

;VNosync_FG <- 1
;ChkDpmsCon_FG <- 1
;(Start DPMS check)
;No Hsync & No Vsync

:Mute

;Check SOG signal input ?
;Back porch

;Calculate Vsync freq.
;Check changing rate of sync frequency

;Check video signal range
;Range Over !

16-24

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

ChkHVPrtn

ChkMuteTime

ChkStblVsync

NormalSyncOut

LoadDAC

MuteDelay

MuteRelease

JR
RET

™

JP
™
JP
™
JR
OR
RET

™
JR
OR
RET

CALL
CALL
LD
AND
OR

CALL
CALL
CALL
CALL

OR

OR
AND
™
JR
CLR
RET

OR

CLR
RET

AND
AND
AND
OR
OR

LD
LD

CALL

Z,ChkMuteTime

Mute FGR,#01<<ChkSyncStus_FG ;Checking sync status every Vsync
;signal event

Z,VMuteRtn

Mute FGR,#01<<MuteWaiting_FG ;Already previous mute-release step ?

NZ,MuteRelease

SyncP_FGRO,#01<<HstblFreq_FG ;Stable Hsync input ?

NZ,ChkStblVsync
Mute FGR,#01<<ChkSyncStus_FG

SyncP_FGRO0,#01<<VstblFreq_FG ;Stable Vsync input ?
NZ,NormalSyncOut
Mute FGR,#01<<ChkSyncStus_FG

PosiPolOut ;Adjust polarity to positive
PolaUpDate ;Polarity data update
SYNCON2,#10110000B ;Normal sync operation
Mute_FGR,#0FFh-(01<<PsyncOut_FG)
SyncP_FGRO0,#01<<NormSync_FG ;Re-start polarity checking
UpdateHDuty ;Adjust Hsync duty value in KB2511
AdjModeSize ;Adjust mode size according to Hsync freq. range
B_PlusOut ;Adjust B+ reference value in KB2511

S Correct ;Adjust S-correction port

EepRom_FGR,#01<<EepDataRd_FG ;Load PWM data
;(processing in '"MAIN' routine)
Mute FGR,#01<<MuteWaiting_FG ;Start time checking for mute extension
Mute_FGR,#0FFh-(01<<ChkSyncStus_FG)
Mute_ FGR,#01<<PwrOnWait_FG
NZ,MuteDelay
M10mSR ;2sec

Mute_FGR,#01<<NormMwait_FG ;Load image data -> 350ms delay
; -> Mute release
M10mSR

Mute FGR,#0FFh-(01<<ChkSyncStus_FG)
Mute FGR,#0FFh-(01<<MuteWaiting_FG)
Mute_FGR,#0FFh-(01<<Vmute FG)

Mute FGR,#01<<MuteRelse_FG

PO,#01<<Muteport ;P0.7 <- 1 : mute port release
R14 #PSubA_SBnBr ;Off soft blanking(bit7 <- 0, KA2504)
R15,#00h ;R14= device(KA2504) sub-address,

:R15= control data
Preamp_RGB_Drv

ELECTRONICS

16-25



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

RET
SyncOffState: ™ Status FGR,#01<<SfRasterin_FG ;Self-raster mode ?
JR NZ,VMuteRtn
™ Mute FGR,#01<<PsyncOut FG ;Already pseudo sync output mode ?
JR NZ,VMuteRtn
VideoMute AND  PO,#0FFh-(01<<Muteport) ;V-Mute(P0.7=Active low) <- 0
AND SYNCON1,#11110011B ;Pseudo Sync=only positive Pol.
LD SYNCON2,#10100000B ;Pseudo sync Enable
LD PHGEN,#83 ;Pseudo Hsync = 48.19KHz
LD PVGEN,#101 ;Pseudo Vsync = 59.64KHz
MutePross LD R14,#PSubA_SBnBr ;Soft blanking(bit7 <- 1)
LD R15,#80h
CALL Preamp_RGB_Drv
OR P1,#01<<S1 ;P1.2(S1) <- High (Free run=48KHz)
AND P1,#0FFh-(01<<S2) ;P1.3(S2) <- Low
OR Mute FGR,#01<<Vmute FG ;Set video mute flag
OR Mute FGR,#01<<PsyncOut FG ;Set pseudo sync output flag
AND Mute_FGR,#0FFh-(01<<MuteRelse FG) ;Clear mute release status flag
AND Mute FGR,#0FFh-(01<<MuteWaiting_FG) ;Clear mute extension start flag
AND Mute FGR,#0FFh-(01<<NormMwait FG)
AND  SyncP_FGRO,#0FFh-(01<<NormSync_FG) ;Clear sync relation register data
AND  SyncP_FGRO,#0FFh-(01<<HstblFreq_FG)
AND  SyncP_FGRO0,#0FFh-(01<<VstblFreq_FG)
OR Mute FGR,#01<<ChkSyncStus_FG
CALL ClIrSyncSrcFlag ;Return to default sync source checking mode
VMuteRtn RET
ClIrSyncSrcFlag ™ SyncP_FGRO0,#01<<DdcHighSpd_FG ;DDC1 high speed(over 400Hz) mode ?
JR NZ,CIrFlagRtn
OR SYNCONO,#01<<VOSS ;VsyncO=5-bit compare output for composite sync
OR SYNCONO,#01<<HBLKEN
AND TM1CON,#0FFh-(01<<T1CAPEN) ;Disable Timerl capture mode
AND  Status_FGR,#0FFh-(01<<FindSyncSrc_FG)
AND  SyncP_FGRO,#0FFh-(01<<SetSepSync_FG)
ClrFlagRtn RET ;Sync source checking: composite -> separate ->composite
S [[FRRRRRRRRkkkkkkkkkkkkakakokokokokokokokokokokokokokokokokekokekekekekeekeok
S-Correction

J1** Title

Hsync freq. < 35KHz => S1=L, S2=L
(R5=xxKHz) < 40KHz => S1=L, S2=H
< 49KHz => S1=H, S2=L
< 60KHz => S1=H, S2=H

/I nnnnnnn
)

H_CountLoad

nnnnnnnnnnnnnnnnnn

AAAAAAA

LD R4,HfHighData
AND R4,#00000011B
LD R5,HfLowData

16-26

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

DIV RR4,#10

RET
S Correct CALL H_CountLoad
CP R5,#35 ;Under 35Khz
RET
[k
I+ Title Adjust Horizontal Duty Cycle(TDA9109)

; Hsync freq. < 35KHz => 00h(TDA9109 address)=48h
: < 41KHz => 00h=49h
: < 46KHz => 00h=4Ah
; < 52KHz => 00h=4Bh
; < 56KHz => 00h=4Ch

UpdateHDuty CALL H_CountLoad
CP R5,#35 ;Under 35KHz
RET
[k
JE* Title Adjust Mode Size(PWM6, 14/15")
;15" H_sync freq. < 41KHz => PWM6=#1Bh

; (R5=xxKHz) < 46KHz => PWM6=#4Ah
; < 50KHz => PWM6=#50h
; < 56KHz => PWM6=#91h
; < 62KHz => PWM6=#CDh
[ [k Rdkkkkkkkknkkxokkekkakookakedokakeokaookakeckskookakaookakeokokaoek

AdjModeSize CALL H_CountLoad
CP R5,#41 ;Under 41Khz
RET
[k kkkkkkkkkokakokokokokokokokokokokokokokokokokekokekekekeook
JE* Title Adjust B_Plus Output
[k
B_PlusOut LD R6,EP_BPIus ;EP_BPlus=KA2511 B+ referance data

CALL H_CountLoad

CP R5,#41 ;Under 41Khz
ADD R6,#0 ;51KHz - 55.9KHz

ModeBplusOut LD R14,#0Bh ;B+ sub-address
LD R15,R6 ;B+ data

OR Tda9109 FGR,#01<<TdaWrite FG

ELECTRONICS 16-27



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

CALL WriteCycle

RET
[k
;/[** Title : Check mode change and h/v frequency range for mode detection
I Normal Fh <= 500Hz
W/l Normal Fv <= 1Hz
> if there is in the sync range , Set carry
I HfHighNew --> bit7---> H-polarity
I bit6---> V-polarity
;//**

;/** Inputs: RO,R1
/¥ Outputs:

/I** Preserves:
;¥ Corrupts:
;[[FFFRRRk Rk kokkkkkkokakekdokakeoakookaksdokakeokakoeakeookakeckakeokaookakecokakoekeookokeookook

[k
;/[** Title : Check New polarity and old polarity

I
[k
UPolaChk ™ SyncP_FGRO,#01<<NormSync_FG ;Pseudo sync output status ?
JR Z,PolChkRtn
LD RO,SyncP_FGR1
AND  RO0,#11000000b
LD R1,HfHighData ;bit 7 & 6 are used for POL.
AND R1,#11000000b
CP RO,R1
JR NE,PolaUpDate ;Compare hv_polarity.
PosiPolOut ™ SyncP_FGR1 #01<<HPolarity FG
JR Z,InvHPola
AND  SYNCONL1,#0FFh-(01<<HOS) ;HOS=HsyncO status(polarity) control bit
ChkVPola ™ SyncP_FGR1,#01<<VPolarity FG

JR Z,InvVPola
AND  SYNCONL,#0FFh-(01<<VOS) ;VOS=VsyncO status(polarity by-pass)
PolChkRtn RCF

RET

InvHPola OR SYNCONL1,#01<<HOS ;HsyncO=Invert Hsyncl signal
JR ChkVPola

InvVPola OR SYNCONL1,#01<<VOS

JR PolChkRtn

PolaUpDate LD R4,HfHighNew
AND  R4,#00000011b
LD R5,SyncP_FGR1

AND  R5,#11000000b ;Masking except polarity flag
OR R4,R5

LD HfHighData,R4

SCF

16-28 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

;/[** Title : Compare Vertical Frequency

I
I
[k
UVSyncChk: LD RO,VfCurrNew
CP RO,VFreqData
JR ULT,RevVSub
SUB RO,VFregData
CmpFvRNg CP RO,#1 ;Compare 1Hz
JR UGT,UpdateVfData
OR SyncP_FGRO,#01<<VstblFreq_FG ;Set stable Vsync signal input flag
RCF
RET
RevVSub LD RO,VFreqgData ;\VFreqData= saved stable Vsync frequency
SUB  RO,VfCurrNew ;VfCurrNew= inputted new Vsync frequency
JR CmpFvRng
UpdateVfData AND  SyncP_FGRO,#0FFh-(01<<VstblFreq_FG)
LD VFreqData,VfCurrNew ;Refresh v-frequency
SCF
RET

[k
;/[** Title : Compare Horizontal Frequency

;//**
;//**
¥/ ekttt
UHSyncChk LD RO,HfLowNew
SUB RO,HfLowData ;RO = |HfLowNew - HfLowData|
LD R1,HfHighNew
LD R2,HfHighData
AND  R2,#00000011b ;R1 = |HfHighNew - HfHighData|
SBC R1,R2
JR C,RevHSub
CmpFhRNg CP R1,#00h ;HfHighNew =/ HfHighData ?
JR NE,UpdateHfData
™ SYNCONO,#01<<VOSS ;Composite sync signal ?
JR Z,ChkNormHfRng
CP RO,#9 ;Compare 1KHz
JR UGT,UpdateHfData
JR StbIHsynclIn
ChkNormHfRng CP RO,#4 ;Changing rate < 500Hz ?

JR UGT,UpdateHfData

ELECTRONICS 16-29



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

StbIHsynclIn

RevHSub

UpdateHfData

OR

LD
LD
DIV
LD
RCF
RET

LD
SUB
LD
LD
AND
SBC
JR

AND
AND
OR
LD
SCF
RET

SyncP_FGRO,#01<<HstblFreq_FG

R4,HfHighNew
R5,HfLowNew
RR4 #10

AverageHf,R5

RO,HfLowData
RO,HfLowNew
R1,HfHighData
R2,HfHighNew
R1,#00000011b
R1,R2
CmpFhRNg

;Set stable Hsync signal input flag

SyncP_FGRO,#0FFh-(01<<HstblFreq_FG)
HfHighData,#11000000B
HfHighData,HfHighNew

HfLowData,HfLowNew

;Refresh h-frequency

-h nnnnnnn
)

*kkk

nnnnnnnnn

/1** Title : Normalize vertical Counter

AAAAAAA

0/l counter source = @8M/8 =1us(Timer0 capture mode)
> X = Vcount(70h,71h)
I Fv=1000000 / x

J¥* Inputs:  Vcount,Vcount+1(=net #TOCNT)
/7 Outputs: VICurrNew

/I** Preserves:
;¥ Corrupts:

-h nnnnnnn
)

*kkk

:Calculation method-1.

NormalVfCnt

ContiSub

CLR
LD
DIV
LD
LD
DIV
LD
RCF
RRC
RRC

LD
LD
CLR

RCF
SUB
SBC

nnnnnnnnn

R4
R5,Vcount
RR4 #10
R6,R5
R5,Vcount+1
RR4 #10
R7,R5

R6
R7

R4,#0C3h
R5,#50h
RO

R5,R7
R4,R6

AAAAAAA

;Vsync interval time(Vcount=#0XXXXXus)

; LHOXXXXX us(frequency) = 1000000/0XXXXX
;= (1000000/10) / (OXXXXX/10)

;High = (100000 /2) / (00XXXX/2)

;Vcount/10
:Low
;RRB(time=XX.XXms)/2

;#C350=50000

16-30

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

FiniviCal

NoVsyncSignal

JR
ADD
JR
JR
LD
RET

CLR
RET

C,FinivfCal

RO,#1 ;RO=xxHz(Frequency=1/Time)
C,NoVsyncSignal ;Overflow(over 256Hz) ?
ContiSub

VfCurrNew,RO

VfCurrNew :VfCurrNew <- 00Hz

/I nnnnnnn
)

AAAAAAA

nnnnnnnnnnnnnnnnn

;/[** Title : Check H/V Sync Range

,/ k%
I
: J**
: J**
% Inputs:
/¥ Outputs:
;/[** Preserves:
/¥ Corrupts:

27Khz(10Eh) < Fh < 62KHz(15" 26Ch)
40Hz(28h) < Fv < 135Hz(87h)

¥/ ik
ChkHVRange:

ChkVfregRange

NormHVsyncin

AAAAAAA

RCF
SUB
SBC
JR

AND
AND

CP
JR
CP
JR

AND
AND
AND
AND
NOP
NOP
NOP
NOP
OR

™
JR

nnnnnnnnnn

R2,HfHighNew
R3,HfLowNew

AAAAAAA

R3,#0Eh
R2,#01
C,OverHfRange
R2,HfHighNew
R3,HfLowNew

#10Eh=27KHz

R3,#6Ch

R2,#02
NC,OverHfRange
SyncP_FGR1 #0FFh-(01<<NoSync_FG)
SyncP_FGR1 #0FFh-(01<<OverHsync_FG)

#26Ch=62KHz

VfCurrNew,#40 :40Hz
ULT,NoVsyncin
VfCurrNew,#135 :135Hz

UGT,OverRange

SyncP_FGR1,#0FFh-(01<<VNosync_FG)
SyncP_FGR1 #0FFh-(01<<NoSync_FG)
SyncP_FGR1 #0FFh-(01<<OverRange FG)
PO,#0FFh-(01<<Suspndport) ;Stop Suspend

PO0,#01<<Offport ;Stop Off

Dpms_FGR, #01<<PwrOffIn_FG
Z,ClrDpmsFlags

;Power off/suspend mode ?

ELECTRONICS

16-31



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

PreAmpRelese

ClrDpmsFlags

ChkHVRrtn
OverHfRange
OverRange

NoVsyncin

OverRngRtn

CALL
CALL
CLR

CALL

CLR
AND
™
JR
CALL
RCF
RET

OR
OR
JR
OR
JR

OR
OR

™
JR
OR
SCF
RET

CtrlPreAmp ;Control pre-amp
InitialkKB2511 ; TDA9109(Initializing) G
M10mSR

VideoMute ;Set power on condition
DPMS100mSR ;Clear dpms checking counter
Dpms_FGR,#00000011B ;Clear DPMS flags

Status_FGR,#01<<SfRasterIn_FG ;Self Raster in ?
Z,ChkHVRrtn
SfRasterEnd ;Release self raster input mode

SyncP_FGR1,#01<<OverHsync_FG
SyncP_FGR1,#01<<OverRange_FG

ChkVfregRange

SyncP_FGR1,#01<<OverRange FG

OverRngRtn

SyncP_FGR1,#01<<VNosync_FG

Dpms_FGR,#01<<ChkDpmsCon_FG ;Start checking the maintaining time of
;dpms mode

SyncP_FGR1,#01<<HNosync FG ;No Hsync & No Vsync ?

Z,0verRngRtn
SyncP_FGR1,#01<<NoSync_FG

/I nnnnnnnnnnnnn
)

*

nnnnnnnnnnnnnnnnn

;/** Title : Check Horizontal No sync Range

o Fh < 10Khz(64h)

I

I

I+ Inputs:
/¥ Outputs:
;/[** Preserves:
/¥ Corrupts:

/I nnnnnnnnnnnnn
)

*

ChkHNoSyncRange LD

HNosyncRange

LD

SUB
SBC
JR

AND
AND
RET

OR
OR
RET

nnnnnnnnnnnnnnnnn

RO,HfHighNew

R1,HfLowNew

R1,#64h ;#64h=100=10.0KHz
RO0,#00

¢,HNosyncRange

SyncP_FGR1,#0FFh-(01<<HNosync_FG)

SyncP_FGR1 #0FFh-(01<<NoSync_FG)

SyncP_FGR1,#01<<HNosync_FG ;HNosync_FG <-1
Dpms_FGR,#01<<ChkDpmsCon_FG ;Start DPMS condition counting

16-32

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

;/[¥* Title : Check H/V polarity for every 5ms

I

I

/7 Inputs: Vsyncl port data, SYNCON1.0

;/** Outputs: HPolarity FG/VPolarity FG (in SyncP_FGR1)
;/[** Preserves:

/¥ Corrupts:
[k

ChkHVPol: ™ SYNCONO,#01<<VOSS ;Composite sync(H+V) ?
JR Z,ChkSepSyncPol
™ SYNCONL1,#01<<HPOL ;Hsync polarity=positive ?

JR NZ,HVposiPola

AND  SyncP_FGR1,#0FFh-(01<<HPolarity FG)
AND  SyncP_FGR1,#0FFh-(01<<VPolarity_FG)
OR TM1CON,#01<<VEDGSEL

OR TMOCON,#01<<TOEDGSEL

JR ChkHVPol_rtn

HVposiPola OR SyncP_FGR1,#01<<HPolarity FG
OR SyncP_FGR1,#01<<VPolarity FG
AND TM1CON,#0FFh-(01<<VEDGSEL)
AND  TMOCON,#0FFh-(01<<TOEDGSEL)
JR ChkHVPol_rtn

ChkSepSyncPol ™ SYNCONL1,#01<<HPOL ;Seperated sync signal
JR NZ,HposiPola
AND  SyncP_FGR1,#0FFh-(01<<HPolarity FG)
JR ChkVsyncPol

HposiPola OR SyncP_FGR1 #01<<HPolarity FG
ChkVvsyncPol CP SYNCON1,#01<<VPOL
JR ZVNegaPola
OR SyncP_FGR1,#01<<VPolarity FG
AND TMI1CON,#0FFh-(01<<VEDGSEL)
AND  TMOCON,#0FFh-(01<<TOEDGSEL)
RET

VNegaPola AND  SyncP_FGR1,#0FFh-(01<<VPolarity_FG)
OR TM1CON,#01<<VEDGSEL
OR TMOCON,#01<<TOEDGSEL
ChkHVPol_rtn RET
¥/ Aniaiakeksieieieieieieiiniaiiaiaieieieieieeisiaioiisieiaieitsiiiiieisieaiiiiedeies
;/** Title : Timer 0 overflow interrupt(interval=256us(1us*256))
;//**
;//**
I Inputs: fosc(@8MHZz)/8=1us(Timer0 clock source)
;/I** Outputs: Overflow count for Vsync interval
;/I** Preserves:

ELECTRONICS 16-33



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

;¥ Corrupts:
,// nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

TMOOVf_Int: PUSH PP ;256us interval interrupt
CLR PP
INC VFreqCHigh ;Overflow counter for Vsync freq. calculation
INC TOOvfCntr
POP PP
IRET

Rk

/I¥* Title : Timer 1 capture interrupt(TLDATA=Number of Hsync signal for 10ms)
;//**

;//**

/¥ Inputs: Hsync signal(event counter source)

/¥ Outputs: Number of Hsync signal for 10ms(separate sync input mode)

;/I** Preserves:

;¥ Corrupts:
[k

TM1Cap_Int: SBO
PUSH PP
CLR PP
AND TMI1CON,#0FFh-(01<<T1PND) ;Pending clear
™ TM1CON,#01<<T1CAPEN ;Composite sync signal ?

JR Z,T1CapRtn

LD HfHighNew, TM1DATAH :TM1DATA is 12-bit event counter for 10ms
LD HfLowNew, TM1DATAL
CLR  AverageHf
OR SyncP_FGRO,#01<<HSyncFin_FG ;Set Hsync signal find flag
OR Time_FGR,#01<<KeyDetect FG ;Key scanning(interval time=every 10ms)
OR Time_FGR,#01<<ChkPwrKey FG ;Power key checking
T1CapRtn POP PP
IRET
[Pk
;/I** Title : Timer 2 base time interrupt(interval=1ms)
[ [x*
.
I Inputs: fosc(@8MHZz)/(1000*8)=1ms interrupt
/7 Outputs: Number of Hsync signal for 10ms(composite sync input mode)
;/I** Preserves:
/¥ Corrupts:
[k

T2Intv_Int: SBO ;1ms interval timer
PUSH PP
PUSH RO
CLR PP
™ SYNCONO,#01<<VOSS ;Separated sync signal ?

JP Z,T2IntvIrtn

16-34 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

CompSyncCalcu LD HFreqStCnt,HFreqSpCnt
LD HFreqSpCnt, TM1CNTL
™ SYNCON2,#01<<UNMIXHSYNC ;Mixed sync signal
;(Hsync period with Vsync signal) ?
JR Z MixedSynclnput
™ SyncP_FGRO0,#01<<MixedSync_FG
JR Z ,NormHcount

MixedSynclInput ADD HCount+1,AverageHf ;if input sync is mixed sync input for this 1ms period

ADC HCount#0
JR BaseTimer
NormHcount LD RO,HFreqSpCnt
SUB  RO,HFreqStCnt
ADD HCount+1,R0O ;RO=number of Hsync signal for 1ms

ADC HCount#0
BaseTimer ™ SYNCON2,#01<<UNMIXHSYNC ;Not finish mixed-sync period ?
JR Z,Check10ms
AND  SyncP_FGRO,#0FFh-(01<<MixedSync_FG)
Check10ms INC  TB1mSR
CP TB1mSR,#10
JR ULT,T2Intvirtn

LD HfHighNew,HCount ;Number of Hsync signal for 10ms
LD HfLowNew,HCount+1

CLR TB1ImSR

LDW  HCount#00h

OR SyncP_FGRO0,#01<<HSyncFin_FG ;Set Hsync signal find flag

OR Time_FGR,#01<<KeyDetect FG ;Key scanning

OR Time_FGR,#01<<ChkPwrKey FG ;Power key checking
T2Intvirtn POP RO

POP PP

IRET

[[FrFFrRRikk ki koo kokakkokekdokakokeockkkeoekakokekokokok
;/I** Title : 10msec time base
I
j[[FrRFRRRikk ke k koo koskakkekekokaokeokkkeekakokekoookokok
Chk10msTimer: ™ Mute_FGR,#01<<NormMwait_FG
JR Z,PwrUpMTime
INC M10mSR
CP M10mSR,#35 ;Mute delay=350ms
JR UGT,SetMuteChkTime
JR TimeB10mS

PwrUpMTime ™ Mute_ FGR,#01<<PwrOnWait_FG
JR NZ,TimeB10mS
INC M10mSR
CP M10mSR,#200 ;Power-up mute=2sec
JR ULE,TimeB10mS
OR Mute_ FGR,#01<<PwrOnWait_FG
AND Mute FGR,#0FFh-(01<<Vmute FG)

ELECTRONICS 16-35



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

SetMuteChkTime  AND  Mute FGR,#0FFh-(01<<NormMwait_FG)

OR Mute FGR,#01<<ChkSyncStus_FG ;ChkSyncStus_FG <-1
TimeB10mS DEC TB1OmSR

JR ne,TBaseRtn

LD TB1OmSR,#10
[FrrRRRRkkkkkk ko ke Rk ke ke ek ke,
;/[¥* Title : 100msec time base

;//**
¥/ ekttt
Timel00mS CALL ChkDegEndTime
™ SyncP_FGR1,#01<<OverRange_ FG ;Over range ?
JR NZ,CheckDpmsin
™ Dpms_FGR,#01<<ChkDpmsCon_FG ;DPMS condition ?
JR Z,TBaseRtn
CheckDpmsin CP DPMS100mSR,#30 ;3sec ?
JR UGE,SetDpmsChk
INC DPMS100mSR
JR TBaseRtn
SetDpmsChk OR Dpms_FGR,#01<<DpmsStart FG

TBaseRtn RET

[k
;/[** Title : Degaussing time check
;//**

ChkDegEndTime ™ Time_FGR,#01<<DeGTime_FG
JR Z,ChkDegEndRet
DEC DG100mSR
JR NE,ChkDegEndRet
AND  PO,#0FFh-(01<<DeGausport) ;Degaussing(3sec) Off
AND Time_FGR,#0FFh-(01<<DeGTime_FG)
ChkDegEndRet RET

s [FRFRRRRRRRkkkkkkkkkkkkkkkkokokakokokokokokokokokokokokokokokokokokokekekekekekekokekook

J/I** Title : TimerO Vsync edge interrupt

: J**

: J**

7 Inputs : VFreqCHigh(=TO0 ovf count), TODATA(=TO capture data)
;/¥* Outputs: Vcount(=Vsync interval time[us])

;/[** Preserves:

/¥ Corrupts:

[ kkkkkkkkkkkkkkkkakokokakokokokokkokokokokokokokokokokokokokekekekekeekekeook

VSyncDet_Int: PUSH PP
CLR PP
CLR NoVTime
CP TOOVfCntr,#10 ;Over 400Hz(DDC1 mode) ?

16-36 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

JR UGT,VsyncDetSrv
CLR  TOOvfCntr

OR SyncP_FGRO0,#01<<DdcHighSpd_FG

POP PP
IRET

VsyncDetSrv SBO

OR  SyncP_FGRO,#01<<VSyncFin_FG

LD Vcount,VFreqCHigh
MULT Vcount,#255

ADD  Vcount+1,VFreqCHigh
ADC Vcount#0

ADD  Vcount+1, TMODATA
ADC Vcount#0

CLR  VFregCHigh

CLR  TOOvfCntr

;bit finsih vsync counter
:Number of Timer0 overflow counter

;VFreqCHigh*256

;Veount(2-byte)=(#Overflow*256)+TOCNT

AND  SyncP_FGRO,#0FFh-(01<<DdcHighSpd_FG)

CheckDdcVclk ™ IIC_FGR#01<<Ddc2mode FG

JR NZ,SetMixSyncFlag

SB1

™ DCON,#01<<DDC1EN

JR NZ,SetMixSyncFlag

INC VclkCntr
SetMixSyncFlag SBO

TM  SYNCONO,#01<<VOSS

JR Z V/syncDetlrtn

:Correct DDC2B mode ?

:DDC1 mode ?

;Increment Vsync counter for DDC recovery

OR SyncP_FGRO0,#01<<MixedSync_FG

VsyncDetlrtn POP PP
IRET

[k
;/¥* Title : Interrupt for multi master 12c bus processor
Ix - Vector address --> 00F8h for Irgl

;//**

;/I** Inputs: PC/Control jig -> Monitor (DDC1/2B/2B+)
;//** Outputs: Monitor -> PC/Control jig (DDC1/2B/2B+)
;/I** Preserves:

;¥ Corrupts:

/I nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
)

DDCnFA_Int: SB1
PUSH PP
CLR PP

DDC1 Tx protocol processor — -----

™ DCON,#01<<DDC1EN
JR Z,DDC2Routine

™ DCON,#01<<SCLF

JP Z,EdidTx

LD PP, #11h

;Normal interface mode(No DDC1) ?

;Is falling edge detected at SCL pin ?
;DDC1 EDID Tx

ELECTRONICS

16-37



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

CLR
CLR
AND
AND
POP
SBO
IRET

TBDR ;First EDID(#00h)

EdidAddr

DCON,#0FFh-(01<<DDC1EN) ;DDC1 -> Normal IIC-bus
DCCR,#0FFh-(01<<DPND) ;Clear IIC.bus int. pending bit
PP

DDC2 protocol mode checking

DDC2Routine ™
JP
™
JR
™
JP
™
JP

OR
OR
PUSH
LD
ADD
LD
INC
POP
CLR
AND
DdcSrvRtn AND
POP
SBO
IRET

DCSRO0,#01<<DMTX ;Master Tx : DDC2B+ (Monitor -> PC)
NZ,Master

DCSRO0,#01<<DSTX ;Slave Tx : DDC2Bi (Monitor <-> PC)
NZ,ChkDDC2mode

DCON,#01<<DDC1MAT ;DDC2B(#A0h) mode ?

Nz,DDC2Bmode
IIC_FGR,#01<<RevAOmatch_FG ;Already received slave address #A0h ?
Nz,DDC2Bmode

IIC_FGR,#01<<Ddc2mode_FG
IIC_FGR,#01<<DDCCmd_FG ;If Rx mode(DDC2B+/Ci), set DDCCmd_FG
RO

RO,#MBusBuff :DDC2B+ : PC -> Monitor

RO,RxXCntr

@RO0,RBDR ;@ (#MBuUsBuUff+RxXCntr) <- RBDR(=Rx buffer)
RxXCntr

RO

VclkCntr ;DDC error checking timer
DCON,#0FFh-(01<<DDC1EN) ;DDC1 -> Normal IIC-bus interface mode
DCCR,#0FFh-(01<<DPND) ;Clear IIC.bus int. pending bit

PP

DDC2B protocol processor

ChkDDC2mode AND
™
JP

™
JR

™
JR
OR

CP
JR
LD
INC

IIC_FGR,#0FFh-(01<<RevAOmatch_FG)
DCON,#01<<DDC1MAT ;Address match as #A0h(DDC2B mode)
Z,DDC2BiPrss

DCSRO0,#01<<DRXACK :Is ACK received ?
NZ,DdcCommFail

IIC_FGR,#01<<Ddc2BTxmode_ FG

NZ,EdidTx

IIC_FGR,#01<<Ddc2BTxmode_ FG ;Set match flag of slave Tx mode
;address(#A1h)

DDSR,#00h :In this case : AOh -> 00h ->P & S -> Alh -> ..

NE,EdidTx

PP,#11h :In this case : AOh -> 00h -> S -> Alh ->

EdidAddr ;EdidAddr : 00h -> 01h (Repeat start case)

16-38

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

EdidTx LD PP, #11h

CcpP EdidAddr,#7Fh ;EDID=00h~7Fh(Pagel)

JR ULE,PrepNextAddr

CLR  EdidAddr ;First data
PrepNextAddr LD TBDR,@EdidAddr :TBDR=Tx buffer

™ DCSR1,#01<<DBUFEMT
JR NZ,Reload TxBuff
INC EdidAddr

AND DCCR,#0FFh-(01<<DPND) ;Clear IIC.bus int. pending bit
POP PP
SBO
IRET
ReloadTxBuff INC EdidAddr
LD TBDR,@EdidAddr ;For keeping normal pre-buffer mode

INC  EdidAddr
AND DCCR,#0FFh-(01<<DPND)

POP PP
SBO
IRET
DdcCommpFail LD PP,#11h
CLR TBDR :First data of EDID
CLR  EdidAddr
AND DCSRO,#0FFh-(01<<DSTX) :Return slave Rx mode
AND DCCR,#0FFh-(01<<DPND) ;Clear IIC.bus int. pending bit
POP PP
SBO
IRET
:/ DDC1 -> DDC2B mode
DDC2Bmode CLR  VcIkCntr ;For DDC1 recovery mode
OR IIC_FGR#01<<Ddc2mode_ FG
CcpP RBDR,#0A0h ;Slave address ?

JR EQ,RevDdc2bAddr
LD PP #11h

CP RBDR,#00h ;Sub-address ?
JR NE,RandomAddr
CLR TBDR ;First data of EDID(#00h)
CLR  EdidAddr
AND DCCR,#0FFh-(01<<DPND) ;Clear IIC.bus int. pending bit
POP PP
SBO
IRET
RandomAddr LD TBDR,@RBDR
LD EdidAddr,RBDR
AND DCCR,#0FFh-(01<<DPND) ;Clear IIC.bus int. pending bit
POP PP
SBO
IRET
RevDdc2bAddr OR IIC_FGR,#01<<RevAOmatch_FG ;Set slave address(#A0h) match flag

ELECTRONICS 16-39



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

AND
LD
CLR
AND
POP
SBO
IRET

IIC_FGR,#0FFh-(01<<Ddc2BTxmode_FG) ;Clear slave Tx address match flag

PP #11h
EdidAddr

DCCR #0FFh-(01<<DPND)
PP

DDC2Bi protocol processor

DDC2BiPrss

CountZero:

CLR
CP
JR
DEC

PUSH
LD

LD
INC
POP
JP

AND
JP

PP

ByteCnt,#1
ULE,CountZero
ByteCnt

RO
RO,NumTxdByte
TBDR,@RO
NumTxdByte

RO

DdcSrvRtn

DCSRO,#0FFh-(01<<DSTX)
DdcSrvRtn

;Clear IIC.bus int. pending bit

:Check the Number of Tx Data

:Load Tx Data to TBDR

:Return Slave Rx Mode

/I nnnnnnn
)

AAAAAAA

nnnnnnnnnnnnnnnnn

;/[¥* Title : Mater transmitter processor

S

Master:

AAAAAAA

nnnnnnnnnnnnnnnnn

PUSH IMR

LD IMR,#00000011B

El

™ DCSR1,#01<<MISPLS
JR NZ,CommpFail

™ DCSRO,#01<<DAL

JR NZ,CommpFail

™ DCSRO0,#01<<DRXACK
JR NZ,CommpFail

PUSH RO

PUSH R2

PUSH R3

PUSH R4

PUSH R5

PUSH R6

CALL TxdComPart

POP R6

POP R5

POP R4

POP R3

:Enable TO/T1/T2 int.

;Mispalced condition error

;Bus arbitration failed during communication

:Not received ACK

;DDC2B+ communication (Monitor -> PC(Control jig))

16-40

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

POP R2
POP RO
DI
POP IMR
POP PP
AND DCCR,#0FFh-(01<<DPND) ;Clear IIC.bus int. pending bit
SBO
IRET
CommpFail CLR SendType ;SendType <- #00h
CLR ByteCnt ;ByteCnt <- #00h
DI
AND DCSRO,#0FFh-(01<<DBB) ;Stop IIC.bus interface
AND DCCR,#0FFh-(01<<DPND) ;Clear IIC.bus int. pending bit
POP IMR
POP PP
SBO
IRET
;***** SendType Fkkkk
;Fkkxk 1 : Attention Fokkkk
kool 2 : Reply Identify il
jrrkkk 3 : Reply Capability Fhkkk
phkkkk 4 Reply ch Fokkkk
;***** 5 Reply T|m|ng *kkkk
jrrkkk 6 : Reply All mode save(EDID data dump) Fkkkk
jFkkdok 7 : Reply Factory Save Fkkkk
jrrkkk Common parts transmit data Fhkkk
Maleiaiele Master Transmit in 1IC Interrupt Fehdkkk
TxdComPart: NOP
NOP
RET
VepThl ;DB V_HPosition ;520 ;0 'HPosition Vcp
;DB V_VPosition :$30 ;1 'VPosition Vcp
;DB V_HSize $22 ;2 HSize Vcp
;DB V_VSize $32 ;3 IVSize Vcp
;DB V_Pincushion :$24 ;4 IPincushion Vcp
;DB V_Trapezoid ;$42 ;5 ITrapeziod Vcp
;DB V_Parallel :$40 ;6 !Parallel Vcp
;DB V_Pinbalance :$26 ;7 'Pinbalance Vcp
;DB V_VLinearity $3A ;8 VLinearity Vcp
;DB V_Tilt :$44 ;9 ITilt Vep
;DB V_HSizeMin $E4 ;10 IHSizeMin Vcp
;DB V_SSelect ;3Ch ;11
;DB V_VMoire :58h 12
;KA2504 Pre-amp
ELECTRONICS 16-41



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

;DB V_Contrast
;DB V_RGain
;DB V_GGain
;DB V_BGain
;DB V_CoffBright
;DB V_RCOff
;DB V_GCOff
;DB V_BCOff
;DB V_ACL

;DB V_Degauss

$12
:16h
:18h
:1Ah
:10h
;6Ch
:6Eh
;70h
:F6h
:01h

)
kkkkk
)
kkkkk
)

kkkkk
)

kkkkk
)

*kkk

AAAAAAAAAAAAAAA

Pre_Amp Data Transfer Format

IIC_P_Amp_Start
Slave Address #0DCh

*kkkkk

*kkkkk

*kkkkk

*kkkkk

13
14
15
16

;18
;19
;20
21
22

jrrkkk Sub Address  :Rgb_Drv_Tbl Fkkkkk
hkkkk Data :@DataAddr ek
phkkkk 1 C_P_ Am p_Stop Fokkkkk
Preamp_RGB_Drv: PUSH RO
PUSH R1
PUSH R2
SBO
CLR R2
Preamp_One_Drv  CALL IICbus_Start
LD RO,#0DCh ;KA5204 slave address(#0DCh)
CALL P_Amp_Drv_Byte
™ IIC_FGR,#01<<CommFail_FG
JR NZ,KA2504Stop
LD RO,R14 ;KA2504 sub-address
CALL P_Amp_Drv_Byte
™ IIC_FGR,#01<<CommFail_FG
JR NZ,KA2504Stop
LD RO,R15 ;KA2504 control data
CALL P_Amp_Drv_Byte
KA2504Stop CALL IICbus_Stop
™ IIC_FGR,#01<<CommFail_FG
JR Z,PreAmpDrvRtn
AND lIC_FGR,#0FFh-(01<<CommfFail_FG)
INC R2
CP R2,#2 :Error ?
JR ULE,Preamp_One_Drv
PreAmpDrvRtn POP R2
POP R1
POP RO
RET

16-42

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

Rgb_Drv_Thl DB 00h ;Pre_amp (Contrast)

DB 01lh ;Pre_amp (Brightness)
DB 02h ;Pre_amp (R_Gain)
DB 03h ;Pre_amp (G_Gain)
DB 04h ;Pre_amp (B_Gain)
DB 05h ;Pre_amp (OSD Contrast)
DB 07h ;Pre_amp (R_Cutoff)
DB 08h ;Pre_amp (G_Cutoff)
DB 09h ;Pre_amp (B_Cutoff)
DB 0Ah ;Switch

;e PreAmp DISPLAY INITIDAL ik

;Fkkkkok Mfr. : samsung electronc Fkkdekokok

;****** Type KA2504 *kkkkkk

jrrkkk PreAmp Start Condition Fkkkkkk

[ICbus_Start OR BTCON,#01<<BTCLR ;Clear Watch-dog timer
OR P3,#11000000B ;P3.7/6 <- High(SDA,SCL)
Call DelayNop ;IIC-Start

AND  P3,#0FFh-(01<<SDA)
Call DelayNop

AND P3,#0FFh-(01<<SCL)
RET

jmmmm- IIC_Bus Clock Generation -

IIC_Clock _1Bit OR P3,#01<<SCL ;Clock Generation.
CALL DelayNop
AND  P3,#0FFh-(01<<SCL)
CALL DelayNop
RET

DelayNop NOP
NOP
RET

j-m--- lIC Stop Condition ~ —=--m-

[ICbus_Stop AND  P3,#0FFh-(01<<SDA)
NOP
NOP
NOP
OR P3,#01<<SCL
CALL DelayNop
OR P3,#01<<SDA ;SDA <- High(Stop condition)

ELECTRONICS 16-43



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

RET

SHIFT LEFT ONE BYTE ~ --------

Parameter :

R10 : Shift Data ~  ----—----
R11 : Bit Counter = ----—---

P_Amp_Drv_Byte LD

ShiftLeft

Gen_Clock

ACK_Check

ACK_OK

ACK_Fail

Data_Low

CtrIPreAmp

CtrlPreDrv_Sub

RLC
JR
OR

OR
NOP
NOP
AND
DJINZ

AND
CALL
OR
NOP
NOP
NOP
™
JR

OR

AND
AND
RET

OR
AND
OR
RET

AND
JR

CALL
CALL
CALL

CALL
CALL
CALL
RET

™
JR

LD

R1,#8

RO
NC,Data_Low
P3,#01<<SDA

P3,#01<<SCL :Clock Generation.

P3,#0FFh-(01<<SCL)

R1,ShiftLeft ;R1=DataCntr
P3CONH,#00111111B ;SDA(P3.7)=Input
DelayNop

P3,#01<<SCL ;Acknowledge clock
P3,#01<<SDA ;JAck in ?
NZ,ACK_Fall

P3CONH,#11000000B  ;SDA(P3.7)=Output
P3,#0FFh-(01<<SCL)
IIC_FGR,#0FFh-(01<<CommFail_FG)

P3CONH,#11000000B  ;SDA(P3.7)=Output
P3,#0FFh-(01<<SCL)
IIC_FGR,#01<<CommFail_FG

P3,#0FFh-(01<<SDA)
GEN_Clock

TimeDelay
TimeDelay
CtrlPreDrv_Sub

TimeDelay

TimeDelay
CtrlPreDrv_Sub

EepRom_FGR,#01<<SavedEep FG
NZ,LdEepRGB

EP_CoffBRIGHT,#0CO0Oh

16-44

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

LdEepRGB

CtrIKA2504

RepeatPreamp

LD
LD
LD
LD
LD
LD
LD
LD
JR

LD
CALL
LD
INC
CALL
LD
INC
CALL
LD
INC
CALL
LD
INC
CALL
LD
INC
CALL
LD
INC
CALL
LD
INC
CALL
LD

LD
CALL
LD

LD
LD
CALL
SB1
LD
SBO

LD
LD
CALL
LD
LD
CALL

EP_CONTRAST #0FFh
EP_RGain #3Fh
EP_GGain,#39h
EP_BGain,#32h
EP_RCutoff,#8Ah
EP_GCutoff,#80h
EP_BCutoff,#0A6h
EP_ACL,#76h
CtrIKA2504

R14,#EPA_CoBr
ReadEepData

EP_CoffBRIGHT,ReadData

R14
ReadEepData

EP_CONTRAST,ReadData

R14

ReadEepData
EP_RGain,ReadData
R14

ReadEepData
EP_GGain,ReadData
R14

ReadEepData
EP_BGain,ReadData
R14

ReadEepData
EP_RCutoff,ReadData
R14

ReadEepData
EP_GCutoff,ReadData
R14

ReadEepData
EP_BCutoff,ReadData

R14,#EPA ACL
ReadEepData
EP_ACL,ReadData

R14,#PSubA_SBnBr
R15,#80h
Preamp_RGB_Drv

PWM5,EP_ACL

R14 #PSubA_ Cont
R15,EP_CONTRAST
Preamp_RGB_Drv
R14,#PSubA_CoBr
R15,EP_CoffBRIGHT
Preamp_RGB_Drv

;Brightness data

:Contrast data

:R-Gain

:G-Gain

:B-Gain

:R-CutOff

:G-CutOff

:B-CutOff

;ACL data

;Brightness & Soft blanking

JACL

ELECTRONICS

16-45



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

LD
LD
CALL
LD
LD
CALL
LD
LD
CALL
LD
LD
CALL
LD
LD
CALL
LD
LD
CALL
RET

R14,#PSubA_RGain
R15,EP_RGain
Preamp_RGB_Drv
R14#PSubA_GGain
R15,EP_Ggain
Preamp_RGB_Drv
R14,#PSubA_BGain
R15,EP_Bgain
Preamp_RGB_Drv
R14,#PSubA_RCo
R15,EP_Rcutoff
Preamp_RGB_Drv
R14 #PSubA GCo
R15,EP_GCutoff
Preamp_RGB_Drv
R14,#PSubA_BCo
R15,EP_Bcutoff
Preamp_RGB_Drv

:KA2504 sub address
:DataAddr

; Initialize IIC.bus control register

IniDDCmodule SB1

Tx ACK signal
IIC.bus Tx/RX int.
DDC1 Tx int.

;100KHz clock speed

;#0A0h=Monitor address(DDC2B)
;#6Eh=Monitor address(DDC2B+/2Bi)
;DCSR.7/6=Master/Slave mode
;DCSR.5=Start/Stop(When write),

;busy signal status(Read)

:DCSR.4=Enable DDC module
;DCSR.3=Arbitration procedure status
;DCSR.2=Address-as-slave status

:DCSR.1=General call
:DCSR.0=ACK bit status
:First EDID data

LD DCCR,#10100100b ;Enable
;Enable
:Include
CLR DCSRO
LD DARO,#0A0Oh
LD DARL#6Eh
LD DCSRO0,#00010000B
CLR TBDR
LD PP #11h
INC EdidAddr
CLR PP
SBO
RET
jrkkkk Read 1Byte in EEPROM ik
jrrkkk by S/W IIC.bus interface il
Read1Byte: PUSH RO
PUSH R1

16-46

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

LdTdaSlave

ShiftStart
DataShift

SDAB8bit

ReStartSignal

DataRxStart

RotateConti

PUSH
CALL
™
JR

LD
CLR
JR

LD
LD
AND

LD
RLC
JP
AND
OR
NOP
NOP
AND
DJINZ
AND
OR
NOP
NOP
NOP
™
JP
OR
AND

CP
JR
CP
JR

LD
INC
JR

CALL
LD
INC
JR

AND
NOP
LD
OR
™
JR
RCF
JR

R2

[ICbus_Start ;IIC.bus protocol start
Tda9109 FGR,#0l<<TdaRead FG
NZ,LdTdaSlave

RO,#0A0h :Random read= #A0h -> Slave -> S -> #A1lh -> READ
R2

ShiftStart

RO,#8Dh #8C/8Dh=TDA9109 salve address

R2,#2

Tda9109 FGR,#0FFh-(01<<TdaRead FG)

R1,#8 ;1byte

RO ;Rotate left SDADATA(=R0)
C,Datal

P3,#0FFh-(01<<SDA) ;Data 0

P3,#01<<SCL ;Clock Generation.

P3,#0FFh-(01<<SCL)
R1,DataShift

P3CONH,#00111111B ;SDA(P3.7)=Input
P3,#01<<SCL ;Acknowledge clock
P3,#01<<SDA ;Ack in ?
NZ,CommuniFail

P3CONH,#11000000B ;SDA(P3.7)=Output
P3,#0FFh-(01<<SCL)

R2,#02 ;SDACNTR=R2
UGE,DataRxStart

R2,#01

UGE,ReStartSignal

RO,R14 :SDADATA <- R14
R2 :SDACNTR++
ShiftStart

[ICbus_Start

RO,#0A1lh :SDADATA <- #0A1lh
R2 :SDACNTR++
ShiftStart

P3CONH,#00111111B ;SDA(P3.7)=Input
R1,#8

P3,#01<<SCL :SCL <- High
P3,#01<<SDA :Data value check
NZ,SetCF

DataRotate

ELECTRONICS

16-47



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

SetCF
DataRotate

No_ACK

GenlicStop

Datal

ReadEepData:

ContiDataRead

Read2nd

Read3rd

CmpReadData

SCF
RLC
AND
DJINZ
LD

OR
OR
OR
NOP
NOP
AND
ALL
POP
POP
POP
RET

OR
OR
NOP
NOP
AND
JP

PUSH
PUSH
PUSH
PUSH
CLR
CALL
CP
JR

CP
JR

CP
JR

LD
XOR
XOR
INC
JR

LD
INC
JR

LD
INC
JR

CP
JR
CP
JR

RO
P3,#0FFh-(01<<SCL)
R1,RotateConti
ReadData,R0

P3CONH,#11000000B
P3,#01<<SDA
P3,#01<<SCL

P3,#0FFh-(01<<SCL)
[ICbus_Stop

R2

R1

RO

P3,#01<<SDA
P3,#01<<SCL

P3,#0FFh-(01<<SCL)
SDABbit

R3

R4

R5

R6

R3

Read1Byte
R3,#2
UGT,CmpReadData
R3,#1
UGT,Read3rd
R3,#0
UGT,Read2nd
R4,ReadData
R5,R4

R6,R5

R3
ContiDataRead
R5,ReadData
R3
ContiDataRead
R6,ReadData
R3
ContiDataRead

R4,R5
EQ,RdDataRtn
R4,R6
EQ,RdDataRtn

:SCL <- Low
;End of 1byte ?

;SDA(P3.7)=0utput
;SDA <- High(ACK=High):communication end
;SCL <- High(9th clock)

:SCL <- Low

:Clock Generation.

:R3=0

;R3=1

;R3=2

16-48

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

CP R5,R6
JR EQ,RdDataRtn
™ IIC_FGR,#01<<ReRead_FG
JR NZ,RdDataRtn
OR IIC_FGR#01<<ReRead FG
CLR R3
JR ContiDataRead
RdDataRtn AND lIC_FGR,#0FFh-(01<<ReRead_FG)
POP R6
POP R5
POP R4
POP RS
RET
;e Write 1Byte in EEPROM Fdkkkk
jrrkkk by S/W IIC.bus interface Fkkkkkk
Write1Byte: PUSH RO
PUSH R1
PUSH R2
CALL IICbus_Start ;IIC.bus protocol start
™ Tda9109 FGR,#01<<TdaWrite FG
JR NZ,WriteTDA
LD RO,#0A0h ;Write : #A0h -> Sub -> Data
CLR R2
JR WriteStart
WriteTDA LD RO,#8Ch ;#8Ch=TDA9109 salve address
CLR R2
WriteStart LD R1,#8
TxDataShift RLC RO
JR C,TxDatal
AND  P3,#0FFh-(01<<SDA) ;Data 0
AND  P3,#0FFh-(01<<SDA) ;Data 0
OR P3,#01<<SCL ;Clock Generation.
NOP
NOP
AND  P3,#0FFh-(01<<SCL)
Tx1Byte DJIJNZ R1,TxDataShift ;Acknowledge check
AND P3CONH,#00111111B ;SDA(P3.7)=Input
OR P3,#01<<SCL ;Acknowledge clock
NOP
NOP
NOP
™ P3,#01<<SDA ;Ack in ?
JR NZ,CommuniFail

ELECTRONICS

16-49



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

NextBWrite OR P3CONH,#11000000B
AND  P3,#0FFh-(01<<SCL)
CcpP R2,#2
JR UGE,EepWriteEnd
CcpP R2,#1
JR UGE,DataTxStart
LD RO,R14
INC R2
JR WriteStart
DataTxStart LD RO,R15
INC R2
JR WriteStart
TxDatal OR P3,#01<<SDA
OR P3,#01<<SCL
NOP
NOP
AND  P3,#0FFh-(01<<SCL)
AND  P3,#0FFh-(01<<SDA)

JR Tx1Byte

CommuniFail OR P3CONH,#11000000B

;SDA(P3.7)=0utput

;SDADATA <- R14(Address)
;SDACNTR++

;SDADATA <- R15(Data)

;SDACNTR++

:Clock Generation.

;SDA(P3.7)=0utput

OR  IIC_FGR,#01<<CommFail_FG

JP GenlicStop
AND
JP GenlicStop

EepWriteEnd

IIC_FGR,#0FFh-(01<<CommFail_FG)

)
kkkkkk
)

kkkkkk
)

AAAAAAAAAAAAAAAAAAA

Write 4Byte in EEPROM
by S/W IIC.bus interface

K*kkkkk

K*kkkkk

AAAAAAAAAAAAAAAAAAA

WriteNByte: PUSH RO
PUSH R1
PUSH R2
CALL lICbus_Start
LD RO,#0A0h
LD R2,#6
NextTx1Byte LD R1,#8
TxNDataShift RLC RO
JR C,TxNDatal
AND  P3,#0FFh-(01<<SDA)
OR P3,#01<<SCL
NOP
NOP
AND  P3,#0FFh-(01<<SCL)
TxN1Byte DJIJNZ R1,TxNDataShift

OR P3,#01<<SCL

AND P3CONH,#00111111B
™ P3,#01<<SDA

JR NZ,CommuniFail

;1IC.bus protocol start

;Page write= #A0h->Word->D1>D2->D3->D4->STOP
:Word addr -> D1 -> D2 -> D3 -> D4

:Data O
:Clock Generation

;Acknowledge clock
;SDA(P3.7)=Input
;Ackin ?

:Fail

16-50

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

;Check write cycle(Typ=6ms, Max=10ms)

OR P3CONH,#11000000B ;SDA(P3.7)=Output
AND  P3,#0FFh-(01<<SCL)
LD RO,R14 ;SDADATA <- R14(Address)
CP R2,#5
JR ULE,DataTxNStart
DEC R2
JR NextTx1Byte
DataTxNStart LD RO,R15 ;SDADATA <- R15(Data=#0FFh)
DINZ R2,NextTx1Byte
JR EepWriteEnd ;Stop condition
TxNDatal OR P3,#01<<SDA
OR P3,#01<<SCL ;Clock Generation.
NOP
NOP
AND  P3,#0FFh-(01<<SCL)
AND  P3,#0FFh-(01<<SDA)
JR TxN1Byte
WriteCycle: SBO
CALL WritelByte
™ Tda9109 FGR,#01<<TdaWrite FG
JR NZ,ChkReWrite
CLR DLY1ImSR
CALL WriteWait
ChkReWrite ™ IIC_FGR,#01<<ReWrite_FG ;ReWrite ?
JR NZzZ,CIrReWrite
™ IIC_FGR,#01<<CommFail_FG
JR Z,CIrReWrite ;WrCycleRtn
OR IIC_FGR,#01<<ReWrite_FG
JR WriteCycle
ClrReWrite AND lIC_FGR,#0FFh-(01<<ReWrite_FG)
AND lIC_FGR,#0FFh-(01<<CommfFail_FG)
WrCycleRtn AND Tda9109 FGR,#0FFh-(01<<TdaWrite FG)
RET
[k
A7 Title : Waiting for write time whk
[k
WriteWait: PUSH RO ;Check write cycle
PUSH R1
lICbusRestart CALL lICbus_Start ;1IC.bus protocol start
LD RO,#0A0Oh
LD R1,#8 ;1byte
SlaveAOh RLC RO ;Rotate left SDADATA(=R0)
JP C,ACKDatal
AND  P3,#0FFh-(01<<SDA) ;Data O

ELECTRONICS

16-51



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

OR P3,#01<<SCL
NOP
NOP
AND  P3,#0FFh-(01<<SCL)
TxAOhData DJIJNZ R1,SlaveAOh
AND P3CONH,#00111111B
OR P3,#01<<SCL
NOP
NOP
NOP
™ P3,#01<<SDA
JR NZ,RechkWrCycle
EndWrCycle AND P3,#0FFh-(01<<SCL)
OR P3CONH,#11000000B
CALL IICbus_Stop
POP R1
POP RO
RET
RechkWrCycle CP DLY1mSR,#10
JR UGE,EndWrCycle
AND  P3,#0FFh-(01<<SCL)
OR P3CONH,#11000000B
CALL IICbus_Stop
JR [ICbusRestart
ACKDatal OR P3,#01<<SDA
OR P3,#01<<SCL
NOP
NOP
AND  P3,#0FFh-(01<<SCL)
JR TxAOhData
;//10ms delay routine
TimeDelay PUSH R4
PUSH R5
LD R4,#9
WaitLoopO LD R5,#250
WaitLoopl NOP
NOP
DJIJNZ R5,WaitLoopl
ContiDec DINZ R4,WaitLoop0
POP R5
POP R4
RET
; < EDID Data >
DDCDUMP: LD PP, #11h
LDW RR2#DDCData
LD R4,#00h

:Clock Generation.

;SDA(P3.7)=Input

;Acknowledge clock

;Ack in ?

;SDA(P3.7)=0utput

:Over 10ms ?

;SDA(P3.7)=0utput

:Clock Generation.

;Write-waiting time=10ms

;R4=Address(00h-7Fh:128-Byte)

16-52

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

WriteEDID LDCI R5@RR2 ;R5=Data
LD @R4,R5
INC R4

CP R4,#80h
JR ULT,WriteEDID

CLR PP
RET
DDCData DB 00h,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh,00h

DB 4CH,2DH,70H,4DH,00H,00H,00H,00H

DB 0AH,05H,01H,00H,2EH,1FH,17H,71H,0E8H,07H,65H,0A0H,57H,46H,9AH,26H
DB 10H,48H,4CH,0FFH,0FEH,00H,01H,01H,01H4,01H,01H,01,01H,01H,01H,01H
DB 01H,01H,01H,01H,01H,01H,68H,29H,00H,80H,51H,00,24H,40H,30H,90H

DB 33H,00H,32H,0E6H,10H,00H,00H,18H,01H,01H,01H,01H,01H,01H,01H,01H
DB 01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H

DB 01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H

DB 01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,01H,00H,0BAH

; < EDID Data >

EDIDtoRAM: PUSH RO ;Write EDID(128-btye) to EEPROM page0
PUSH R1
PUSH R2
PUSH PP
LD PP #11h
LD R4,#00h ;R4=RAM address(50h-CFh:128-Byte)
LD R14,#00h :R14=Start address of EDID
CALL IICbus_Start ;IIC.bus protocol start
LD RO,#0A0h ;Sequential read operation
CLR R2 ; <= #A0h(Page0) -> Word -> S -> #A1h -> EAD....
Shift1Byte LD R1,#8 ;1byte
RotateData RLC RO ;Rotate left SDADATA(=RO0)
JP C,SeqgDatal
AND  P3,#0FFh-(01<<SDA) ;Data 0
OR P3,#01<<SCL ;Clock Generation.
NOP
NOP
AND  P3,#0FFh-(01<<SCL)
Chk1ByteEnd DJINZ R1,RotateData
AND P3CONH,#11110011B ;SDA(P3.5)=Input
OR P3,#01<<SCL ;Acknowledge clock
NOP
NOP
NOP
™ P3,#01<<SDA ;JAck in ?

JP NZ,CommuniFail
OR P3CONH,#00001100B ;SDA(P3.5)=0utput
AND P3,#0FFh-(01<<SCL)

CP R2,#02 ;SDACNTR=R2
JR UGE,DataRx

ELECTRONICS 16-53



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

;SDADATA <- R14
;SDACNTR++

;SDADATA <- #0A1lh
;SDACNTR++

;SDA(P3.5)=Input

;SCL <- High
:Data value check

:SCL <- Low
;End of 1byte ?

;SDA(P3.5)=0utput

;ACK generation
;SCL <- High(9th clock)

:SCL <- Low

:R4=50h~CFh, RO=Read data

;00~7Fh : EDID

;Communication stop

:Clock Generation.

:R14=Sub address

:R15=Data

CP R2,#01
JR UGE,ReStart
LD RO,R14
INC R2
JR ShiftlByte
ReStart CALL lICbus_Start
LD RO,#0A1h
INC R2
JR ShiftlByte
DataRx AND P3CONH,#11110011B
NOP
LD R1,#8
DataRead OR P3,#01<<SCL
™ P3,#01<<SDA
JR NZ,SetCFlag
RCF
JR RxRotate
SetCFlag SCF
RxRotate RLC RO
AND  P3,#0FFh-(01<<SCL)
DIJNZ R1,DataRead
OR P3CONH,#00001100B
AND  P3,#0FFh-(01<<SDA)
OR P3,#01<<SCL
NOP
NOP
AND  P3,#0FFh-(01<<SCL)
LD @R4,R0
INC R4
CP R4.,#80h
JR ULE,DataRx
POP PP
JP No_ACK
SeqDatal OR P3,#01<<SDA
OR P3,#01<<SCL
NOP
NOP
AND  P3,#0FFh-(01<<SCL)
JP Chk1ByteEnd
JRHRkkk TDA9109 Initializing
InitialkB2511: CLR R14
Conti2511Ini LDW RR2#TdaFRunThbl
ADD R3,R14
LDC R15@RR2
OR Tda9109 FGR,#01<<TdaWrite FG

16-54

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

CALL WriteCycle

INC R14

CP R14,#0Fh ;00-0Fh ?
JR ULE,Conti2511Ini

RET

i/l KB2511 Default Data

;H_Duty(40) / H Posi(40) / Free Run(00) / HFocus(90)
;HFocusKey(10) / Vramp(CO0) / VPosi(40) / S Correct(20)
;C Correct(20) / Keystone(A0) / EW Size(CO0) / B Plus(40)
;V Moire(00) / Side Pin(A0) / Parallel(AO) / VFocus(20)

TdaFRunThl DB 4Bh,40h,15h,9Fh,14h,0C0h,40h,16h ;9109(0-7)
DB 32h,0A0h,0C0h,30h,00h,0A0h,0A0N,20h  ;48KHz free running
[[FFFRRRR Rk ke kdokakxkakeokaaookakeokakoeakaookakecokakoeiakaookakeookaookokaookok
[ [FFxRRRRRx The H/W IIC Read/Write Programming Tip Fhxkk kA kkkkk
[ [FFFRRRR Rk kkkkkkdokakxkakeokaaookakeokakoeakaookakecokakoeiakeookakeookaookokaookok

Rxmode equ 6 ;IIC Receive Mode Flag

RXACK equ 0 ;Acknowledgement Check Flag
IIC_FGR EQU 10h ;IIC Status Control Check Register
CommpFail_FG equ 3 ;IIC Communication Fail Check Flag
EepromWri_FG equ 2 ;Eeprom Writing Flag

ICRead FG equ 1 ;IIC Reading Flag

RW_End_FG equ 0 ;IIC Read/Write Ending Check Flag
RxTemp EQU 20h ;Temporary Receiving Data Register
TxTemp EQU 21h ;Temporary Transmitting Data Register
ICCNTR EQU 22h ;IIC Read/Write Counter Register
Sub_Addr EQU 23h ;Slave Device Sub-address
Trans_Data EQU 80h ;Transmitting Data

Rx_Data EQU 90h ;Receiving Data
[k

;//********** < N_Byte erte Program > kkkkkkkkkkkk

[k
;/IS(Start) -> AOh -> SubAddress -> N-ByteData -> P(Stop)
Write_NByte: LD Sub_Addr,#10h ;Sub_Addr = Subaddress
LD Trans_Data,#01h ;Trans_Data = Tx Data(8-Byte)
LD Trans_Data+1,#23h
LD Trans_Data+2,#45h
LD Trans_Data+3,#67h
LD Trans_Data+4,#89%h
LD Trans_Data+5,#0Abh
LD Trans_Data+6,#0CDh
LD Trans_Data+7,#0Efh
LD TxTemp,#80h
OR IC_FGR,#01<<EepromWri_FG ;Enable Eeprom Write
AND lIC_FGR,#0FFh-(01<<IICRead_FG)
CALL Write_Cycle
RET

ELECTRONICS 16-55



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

Write_Cycle:

[IC_Write:

Write_Rtn

W_Rtn
WriteWait:
W_Loop0

W_Loopl

Conti_Dec

SB1
LD
LD
OR
LD
OR
SBO

™
JR
™
JR
CLR
JR

AND
™
JR
CALL

AND
AND
RET

PUSH
PUSH
LD

LD
NOP
NOP
NOP
DJINZ
DJINZ
POP
POP
RET

DCON,#08h
DCCR,#00100101b
DCSRO0,#11010000b
TBDR,#0A0h
DCSRO0,#00100000b

IIC_FGR,#01<<RW_End_FG
NZ,Write_Rtn
IC_FGR,#01<<CommpFail_FG
Z,1C_Write

IICCNTR

W_Rtn

IIC_FGR,#0FFh-(01<<RW_End_FG)
IC_FGR,#01<<EepromWri_FG
Z,W_Rtn

WriteWait

IIC_FGR,#0FFh-(01<< CommFail_FG)
IIC_FGR #0FFh-(01<<EepromWri_FG)

R4

R5
R4,#15
R5,#250

R5,W_Loopl
R4,W_Loop0
R5
R4

;Select Bank 1

;Enable Prebuffer Register

;Enable 1IC Interrupt

;Master Tx Mode & I[IC Module Enable
;#0A0h=Slave Device Address

;IIC Start Signal Generation

;Select Bank 0

:Communication Fail Check

:Clear Tx Counter

;Eeprom Writing Check

;Eeprom Write Waiting Time

;Write-waiting time=10ms
;at Fosc=12MHz

*kkk

*kkk

nnnnnnnnnnnnnnnnnnn

*kk

ICBUS_INT:

*kkk

*kkk

SB1
™
JR

CP
JR

CP

nnnnnnnnnnnnnnnnnnn

DCSRO0,#01<<RxACK
NZ,Com_Fail

IICCNTR,#0
EQ,WriteAddr

ICCNTR#1

JR EQ,WriteData

™

DCSRO0,#01<<RxMode

:Select Bank 1
:ACK Check

:Is It Read/Write Mode?

16-56

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

JR Z,lICReadMode

CP 1ICCNTR,#9

JR ULT,Conti_Wri

AND DCSRO0,#11011111b

CLR IICCNTR

OR IIC_FGR#01<<RW_End_FG
JR lIC_Rtn

Conti_Wri INC IICCNTR
INC TxTemp
LD TBDR,@TxTemp
IIC_Rtn AND DCCR,#11101111b
SBO
IRET

[ICReadMode: CP lICCNTR,#2
JR EQ,ModeChange

CP 1lICCNTR,#10
JR ULT,Conti_Read

AND DCSRO0,#11011111b

CLR IICCNTR

LD @RxTemp,RBDR

OR IIC_FGR,#01<<RW_End FG

JR lIC_Rtn
Conti_Read CP IICCNTR#9

JR EQ,DisA _lIC
ComRead INC IICCNTR

LD Rx Temp,RBDR

INC Rx Temp

JR lIC_Rtn
DisA_lIC AND DCCR,#01111111b

JR ComRead
ModeChange INC IICCNTR

JR lIC_Rtn
WriteAddr LD TBDR,Sub_Addr

INC IICCNTR

JR lIC_Rtn
WriteData TM lIC_FGR,#01<<IICRead_FG

JR NZ,Read Mode
LD TBDR,Trans_Data

INC IICCNTR
JR lIC_Rtn
Com_Fail: OR IIC_FGR#01<<CommpFail FG

JICCNTR(2-9) = 8-Byte Write

;Stop Signal Output
;Clear Tx Counter
;Write Ending Flag Set

;@TxTemp = Transmitting Data
;IIC-Bus Int. Pending Bit Clear
;Select Bank 0

;Interrupt Return

;JIICCNTR(3-10) => 8-Byte Read

;Stop Signal Output

;Clear Rx Counter
;@RxTemp = Last Rx Data
;Read Ending Flag Set

;@Rx Temp = Received Data

;Disable ACK Signal

;#0Alh(Read Mode) Write

:TBDR <- Slave Device Subaddress

:Read Mode Check

:TBDR <- First Tx Data

J1IC Comm. Fail

ELECTRONICS

16-57



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

;Stop Signal Output

:Read Mode Slave Address
;Change to Read Mode

:Master Receive Mode
;IIC Restart Signal Output

AND DCSRO0,#11011111b

JR lIC_Rtn
Read_Mode LD TBDR,#0Alh

INC IICCNTR

OR DCSRO0,#10000000b

AND DCSRO,#10111111b

OR DCSRO0,#00100000b

JR lIC_Rtn
[k
,/ kkkhkhkkkkkhk < N_Byte Read Program > *kkkkkhkhkhkkkk

/I nnnnnnnnnnnnnnnn
)

nnnnnnnnnnn

;S(Start) -> AOh -> Sub Address -> RS(Restart) -> Alh -> N-Byte Read -> P(Stop)

Read_1Byte: LD
LD
OR
CALL
RET

ReadCycle: SB1
LD
LD
OR
LD
OR
SBO

IIC_Read ™
JR
™
JR
CLR

R_Rtn: AND
AND
AND
AND
RET

Sub_Addr,#10h
RxTemp,#90h

IIC_FGR,#01<<lICRead _FG

ReadCycle

DCON,#08h

DCCR,#10100101b
DCSRO0,#11010000b

TBDR,#0A0h

DCSRO0,#00100000b

IIC_FGR,#01<<RW_End_FG

NZ,R_Rtn

[IC_FGR #01<<CommkFail_FG

Z,lIC_Read
ICCNTR

:Slave Device Subaddress

;Read Mode Flag Set

;Select bank 1

;Enable Prebuffer Register

;Enable 11C-Bus Interrupt

;Master Tx Mode & I[IC Module Enable
;#0A0h=Slave Device Address

;IIC Start Signal Generation

;Select Bank 0

:IIC Comm. Fail Check

IIC_FGR #0FFh-(01<<RW_End_FG)
IIC_FGR #0FFh-(01<<CommFail_FG)
IIC_FGR,#0FFh-(01<<IlICRead_FG)
IIC_FGR #0FFh-(01<<EepromWri_FG)

16-58

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

[l#include "S3C863A.h"
/l#include "insam8.h"

I type definition
typedef unsigned char usch;
typedef unsigned int  usin;

[[RRkkk

/I macro definition

[ R Rk

#define BitTru(sfr,bit) (sfr & (1<<bit))

#define BitFals(sfr,bit) (I(sfr & (1<<bit)))
#define BitSet(sfr,bit) (sfr |= (1<<bit))
#define BitClr(sfr,bit) (sfr &= ~(1<<bit))
#define BitTgg(sfr,bit) (sfr *= (1<<bit))

[] FRFFERRRkkkkkkk

[/l interrupt vector

[] FRFFERRRkkkkkkk

#define t2intv_int (Oxee)
#define tlcap_int (Oxf6)
#define ddcnfa_int (Oxf8)
#define tOovf_int (0xfa)
#define vsync_int (0xfc)

I

/I Port function definition
I

/I port0

#define MUTEPORT
#define STBYPORT
#define SUSPNDPORT
#define OFFPORT
#define LEDPORT

wWNPEFk OO

/I port3

#define DEGAUSPORT 0
#define CS1 3
#define CS2 4
#define CS3 5
#define SCL 6
#define SDA 7

/I TimerO capture interrupt

ELECTRONICS

16-59



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

[ FRRRRRRR Rk xx
/I Control register definition
[ FRRRRRRR Rk xx
/I sync-processor part

/I SYNCONO

#define HIPORT 7 /I Hsync input selection (or Csync-1)
#define HBLKEN 6 /I Enable Hsync blanking

#define UDCNTOUT 5 /' Vsyncl port selection (or 5-bit compare output)
/l SYNCON1

#define CLMP1 7 /I Clamp generation

#define CLMPO 6

#define BPORCH 5 /I Back porch clamp signal (or front porch)
#define CLMPPOL 4 /I Clamp signal polarity

#define INVTVPOL 3 /I Invert Vsync-O signal (or by-pass)
#define INVTHPOL 2 /I Invert Hsync-O signal (or by-pass)
#define POSIVPOL 1 /I Positive Vsync-I polarity (or negative)
#define POSIHPOL 0 /I Positive Hsync-I polarity (or negative)
/l SYNCON2

#define UNMIXHPERI 7 /I Unmixed Hsync periods

#define CNT5SRC 5 /I 5-bit counter source

#define DISPSEUDO 4 /l Disable pseudo sync

#define DISSYNCOUT 3 /I Inhibit sync signal output

#define SOGI 2 / SOG detection

#define COMPSYNC 1 /I Composite sync detection

#define SYNCSRC 1

#define VDD3VSEL 0 /l When Vdd=3V

/I DDC(IIC) part
// DCON (DDC Control Reg.)

#define PREBUFEN 3 /I Enable pre-buffer data register
#define DDC1IMAT 2 /I DARO address match

#define DDC1EN 1 /I Enable DDC1 module

#define SCLF 0 /I Detect falling edge of SCL line
/l DCCR (DDC Clock Control Reg.)

#define DTXACKEN 7 /I Enable transmit acknowledge
#define DCLKSEL 6 /I Tx clock source selection
#define ENDDCINT 5 /I Enable DDC module interrupt
#define DDCPND 4 /I DDC module interrupt pending
/l DCSRO (DDC Control/Status Reg.0)

#define MST 7 /I 1=master, O=slave mode
#define TXD 6 /I 1=transmit, O=receive mode
#define BUSSTSP 5 /I 1=bus busy or start signal
#define ENDDC 4 /I DDC module enable

#define AL 3 /I Arbitration lose

#define DATAFLD 2 /I 1=data field, O=address field
#define NACK 0 /I Not received acknowledge

/l DCSR1 (DDC Control/Status Reg.1)

#define STOPDET 2 /I Stop condition detection
#define BUFEMT 1 /I Data buffer empty

#define BUFFUL 0 /I Data buffer full

16-60 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

/I Timer part
/I BTCON (Watch-dog timer)
#define WDCLR 1

/I TMOCON (TimerOQ)
#define CAPFALL
#define TOCLR
#define TOOVFINT
#define TOCAPINT
#define TOCAPVS

OFrR,NWM

/I TM1CON (Timerl)
#define TLCAPVS
#define TLCAPFLEG
#define TLCAPINT
#define TLPND
#define TICLR
#define TLOVFINT

NWh~OOOoON

/ITM2CON (Timer2)
#define T2INT 2

/I Clear Basic timer counter

/I Capture on falling mode

/I Clear TimerO counter

/I Enable Timer0 overflow interrupt

/I Enable Timer0O capture interrupt

/I Capture source selection(1:Vsync, 0:TMOCAP)

/I Capture source selection(1:Vsync, 0:T2 interval)
/' VsyncO capture edge selection
/I Enable Timerl capture

/I Timerl pending bit

/I Clear Timerl counter
/I Enable Timerl overflow interrupt

/I Enable Timer2 interrupt

/ AAAAAAAAAAAAAAAAAAA
Definition of Slave Address

********************************************************************/

#define DEFL 0x8C
#define EEP OxAO0
#define PREAMP oxDC
#define OosD OxBA
[[ FFFRRR Rk kdokkkokkokok

/I General Registers definition
[ FRRRRRRRRkkddkkkkkckkkx

I

#define bit0 0

struct reg00 {
usin keydetect
usin mvaccel
usin chkhfreq
usin keyscan
usin degaussing
usin keyactive
usin chksvtime

}; /I time_fgr

Ll el el

struct reg01 {
usin pwronmute
usin selfrasin
usin recall 0 1;

Lyl

/I; Deflection processor

/l; EEPROM
/I; Video Amplifier
/I; OSD processor

ELECTRONICS

16-61



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

usin userdel

usin powerdown

usin overrange

usin vsyncdet
}; /Il status_fgr

Ll el el e

struct reg02 {
usin ddc2b 01
usin ddccmd 01
usin ddcciTxd 01
}; [/ ddc_fgr

struct reg03 {
usin novsync
usin nohsync
usin nohvsync
usin dpmsstart
usin dpmscond
}; [/ dpms_fgr

Ll

struct reg04 {
usin dataread
usin datasave
usin usedeeprom
usin nearhfreq
usin endmodesrch
usin nofactmode

}; [/l eeprom_fgr

Ll el il el L

[[rrRFrrRkkkkkakkkkdkdkkkokkok koo

/

code usch edid_tbl[0x80]= {
0x00,0xff,0xff,0xff,0xff,0xff,0xff,0x00,
0x4c,0x2d,0x70,0x4d,0x00,0x00,0x00,0x00,
0x0a,0x05,0x01,0x00,0x2e,0x1f,0x17,0x71,
0xe8,0x07,0x65,0xa0,0x57,0x46,0x9a,0x26,
0x10,0x48,0x4c,0xff,0xfe,0x00,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x68,0x29,
0x00,0x80,0x51,0x00,0x24,0x40,0x30,0x90,
0x33,0x00,0x32,0xe6,0x10,0x00,0x00,0x18,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x00,0xba

16-62 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

#include <S3C863A.h>
#include <insam8.h>
#include <define.h>

#define COMP_RANGE 10 /I KHz (tolerance of composite-sync)
#define SEP_RANGE 5 /I KHz

#define NoH_RANGE 10 /l under 10KHz

#define HF_MIN 28 /I normal hsync range=28KHz-96KHz
#define HF_MAX 96

#define VF_MIN 40 /I normal vsync range=40Hz-160Hz
#define VF_MAX 160

usch delta_hf; /[ output to Timer2 interrupt routine
usin hfreq_save; Il output

usch vfreq_save;

extern usin hf_new; [/l from Timerl(sep-sync)/Timer2(comp-sync) interrupt
extern usin vcount; /[ from Vsync interrupt

extern usch novsynctime; /[ from Vsync interrupt

extern usch tdpms100ms;

extern struct reg00 time_fgr;
extern struct reg01 status_fgr;
extern struct reg03 dpms_fgr;
extern struct reg04 eeprom_fgr;

static usin hf_old;
static usch vf_new;
static usch vf_old;
static usch tmutel0ms;

static struct regO {
usin stbvfreq
usin stbhfreq
usin ddchighspd
usin
usin posihsync
usin posivsync :

} syncp_fgr0, *psyncp_fgro;

/I not used

PRORPRER

static struct regl {
usin scrnmute
usin muterelse
usin psyncout
usin endmute
usin normmute
usin quitpsync

} syncp_fgri,;

Ll el il el L

ELECTRONICS 16-63



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

extern void selfraster_end(void);

extern void osd_off(void);

extern void deflect_ini(void);

extern void ctrl_preamp(void);

extern void timedelay _ms10(void);
extern void write_swiic(usch, usch, usch);

usch chk_hnosync_range(void);
usch chk_hf_change(void);
usch chk_pol_change(void);
usch chk_vf_change(void);
usch chk_hv_range(void);

void pseudosync_gen(void);
void chng_vsync_src_sep(void);
void chng_vsync_src_comp(void);
void mute_release(void);

void quit_psync_out(void);

void s_correct(void);

void h_lin_out(void);

void update_hsync(usin hfnew);
void stable _hsync(usin hfave);
void pola_update(void);

void set_posi_pola(void);

void chkmutetime(void);

I
/I Strat sync-processor function
void syncprocessor(void)

{
psyncp_fgr0 = &syncp_fgro;

/I check hsync frequency & polarity

if(chk_pol_change())
pseudosync_gen();

else if(time_fgr.chkhfreq==1) {
time_fgr.chkhfreq=0;
chkmutetime();

if(chk_hnosync_range() || chk_hf_change())

pseudosync_gen();

}

/I check vsync source, frequency & status

/I Vsync freq. is under 40Hz
if(novsynctime>25) {
novsynctime=0;
dpms_fgr.novsync=1,
if(dpms_fgr.nohsync==1)
dpms_fgr.nohvsync=1;
if(BitFals(SYNCON2,COMPSYNC))
chng_vsync_src_sep();
else
chng_vsync_src_comp();
pseudosync_gen();

/I 'main.c'
/[ 'osd_drv.c'
/! "initial.c’
/l 'initial.c
/l 'initial.c
/I 'swiic.c'

/l 10ms flag

/! video mute

/I Change Vsync input source to Vsync-I port

/' Vsync-| port -> 5-bit U/D counter output

16-64

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

}
/' Vsync freq. is over 40Hz

else if(status_fgr.vsyncdet==1) {
dpms_fgr.novsync=0;
dpms_fgr.nohvsync=0;
status_fgr.vsyncdet=0;
if(BitTru(SYNCON2,SOGI)) {

BitSet(SYNCON1,BPORCH);

BitCIr(SYNCONO,HIPORT);

}
/I Calculate Vsync freq.

if(vcount)

vf_new=500000/vcount;

if(chk_vf_change() || chk_hv_range())

pseudosync_gen();

/I Normal H/Vsync signal input

/I test condition of video-mute release
else if(syncp_fgrl.muterelse==1)

/I Video-mute processing routine

else if(syncp_fgrl.endmute==1)

mute_release();

else if(syncp_fgrO.stbhfreq==1
&& syncp_fgr0.stbvfreq==1)
quit_psync_out();

[ FHRFFERRR Rk kkk

/I This function is executed when
/I 1. mode change

/I 2. no/over sync input

/I 3. polarity change

[ FHRFFERRR Rk kk

void pseudosync_gen(void)

{

if(status_fgr.selfrasin==
&& syncp_fgrl.psyncout==0){

BitCIr(PO,MUTEPORT);
BitSet(SYNCON1,POSIVPOL);
BitSet(SYNCON1,POSIHPOL);

BitCIr(SYNCON2,DISPSEUDO);

BitSet(P3,CS1);

osd_off():

/I Vsync interrupt flag

/I Back porch clamp signal
/I Select Csync port

/I 'vcount' is a interval time
/[ veount(time)= 2us * num. of Timerl counter
/I freq=1/time

/I change rate of Vfreq > 1Hz, or Over frequency range

/I after video-mute has been released

/[ 'endmute’ flag is set after ‘quit_psync_out()'
/I and if mute-delay time is passed.

/[ output : pseudo-sync -> input sync-signal

/I self-raster mode or already mute processing ?
/I active low
/I pseudo-Vsync polarity is positive

/I pseudo-sync gen.
/Il control s-correction cap.(free run=48KHz)

/I OSD window off

ELECTRONICS

16-65



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

syncp_fgrl.scrnmute=1;
syncp_fgrl.psyncout=1,;
syncp_fgrl.quitpsync=0;
syncp_fgrl.muterelse=0;
syncp_fgrl.endmute=0;
syncp_fgr0.stbvfreq=0;
syncp_fgr0.stbhfreq=0;
eeprom_fgr.datasave=0;
time_fgr.chksvtime=0;
}
}

/I Change Vsync input source : Vsync-1 port <-> 5-bit up/down counter output

1l

void chng_vsync_src_sep(void)

{
BitCIr(SYNCONO,UDCNTOUT);
BitCIr(SYNCONO,HBLKEN);
BitSet(TM1CON,T1CAPINT);

}

void chng_vsync_src_comp(void)

{
BitSet(SYNCONO,UDCNTOUT);
BitCIr(TM1CON,T1CAPINT);

BitCIr(SYNCON2,COMPSYNC);
BitCIr(SYNCON2,SOGlI);

}

/I after stable sync signal input

I

void quit_psync_out(void)

{
pola_update();
set_posi_pola();
if(syncp_fgrl.quitpsync==0) {

BitSet(SYNCON2,DISPSEUDO);

syncp_fgrl.psyncout=0;
syncp_fgrl.quitpsync=1;

s_correct();
h_lin_out();

eeprom_fgr.dataread=1;

if(status_fgr.pwronmute==1) {
syncp_fgrl.normmute=1,;
tmute10ms=0;
}
}
}

/I Change Vsync input source to Vsync-I port
/I Disable Hsync blanking
/I Enable Timerl capture mode

/I Input source: Vsync-1 -> 5-bit u/d counter output
/I Disable T1 capture interrupt

/I Change calculation method of Hsync frequency

/I => 10ms interval -> sum(each 1ms counter by 10)
/I Clear latch status of 5-bit u/d couner

/I Clear SOG detection counter

/I setting positive polarity for H/Vsync-O

/I quit pseudo-sync gen.

/I loading PWM data from EEPROM in 'eeprom_rdwr.c'

/I power-on muting time:2sec
/I load data -> 300ms delay -> mute release

16-66

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

/I after stable sync signal input & video-mute waiting & DAC output

void mute_release(void)

{
syncp_fgrl.scrnmute=0;
/Isyncp_fgrl.endmute=0;
syncp_fgrl.muterelse=1,
BitSet(PO,MUTEPORT);

usch hfkhz_load(usin hfreq)
{
usin hfreq_khz;
hfreq_khz=hfreq;
hfreq_khz &= 0xO03ff;
hfreq_khz /= 10;
return hfreq_khz;

[ Frkiekckkkkek Hekckok

/I Checking the condition of no Hsync signal
[ Frkiekckkkkek Hekckok

usch chk_hnosync_range(void)

{

usch hf_khz;

hf_khz=hfkhz_load(hf_new);

if(hf_khz < NoH_RANGE) {
/l under 10KHz
dpms_fgr.nohsync=1;
return 1;

}

else {
dpms_fgr.nohsync=0;
dpms_fgr.nohvsync=0;
return O;

[ Frkkickkkickkekdkkckokokdiekokokok

/I Check changing rate of Hsync frequency
/I Tolerance of stable hsync signal

/Il is under 500Hz(seperate-sync)

[ Frkkickkkickkekdkkckokokdiekokokok

usch chk_hf_change(void)

{

usin hfreq, hf_ave, temp;
hf_ave=(hf_new+hf_old)/2;
hf_old=hf_new;
delta_hf=hf_ave/10;

_DI0);
temp=hfreq_save&0x03ff;

/I release mute-port(P0.0)

/I hsync range is under 100KHz

/I KHz

ELECTRONICS

16-67



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

}

1

hfreg=(temp>=hf_new)? (temp-hf_new):(hf_new-temp)

_EI(); /I always positve value
if(BitTru(SYNCONO,UDCNTOUT) && (hfreq>COMP_RANGE)) {
update_hsync(hfreq); /[ update freq. of hsync input signal
return 1;
}

else if((BitFlas(SYNCONO,UDCNTOUT) && (hfreq>SEP_RANGE)) {
update_hsync(hfreq);
return 1;

}

else
stable_hsync(hf_ave); /I stable state of hsync input
return O;

}

void update_hsync(usin hfnew)

{

}

1

syncp_fgr0.stbhfreq=0;
hfreq_save &= 0xc000; /I bit 15,14=polarity
hfreqg_save |= hfnew;

void stable _hsync(usin hfave)

{

}

I

syncp_fgrO.stbhfreq=1;
hfreq_save &= 0xc000;
hfreq_save |= hfave;

nnnnnnnnnnnnnnn

/I Check changing rate of Vsync frequency
/I Tolerance of stable Vsync signal is under 1Hz

I

nnnnnnnnnnnnnnn

usch chk_vf_change(void)

{

usch temp;
vf_old=vf_new;
vfreq_save=vf_new;

temp=(vf_old>=vf_new)? (vf_old-vf_new):(vf_new-vf_old);

if(temp>1) { [/l temp=|vf_old-vf_new]|
syncp_fgr0.stbvfreq=0;
return 1;

}

else { /I stable Vsync signal
syncp_fgr0.stbvfreq=1;
return O;

16-68 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

"

nnnnnn *kkk

/I Checking polarity change

"

nnnnnn *kkk

usch chk_pol_change(void)

}

if(syncp_fgrl.psyncout==0) {
if(syncp_fgr0.posivsync != BitTru(SYNCONZ1,POSIVPOL)) {
pola_update();
return 1;
}
else if(BitFals(SYNCONO,UDCNTOUT)) {
/I separate-sync
if(syncp_fgr0.posihsync != BitTru(SYNCONZ1,POSIHPOL)) {
pola_update();
return 1;
}
else {
set_posi_pola();
return O;
}
}
}

return O;

/I update polarity flags
void pola_update(void)

{

usin hf_temp, pola_temp;

if(BitTru(SYNCONO,UDCNTOUT)) {
/I composite-sync
if(BitTru(SYNCONZ1,POSIVPOL)) {
syncp_fgr0.posivsync=1;
syncp_fgr0.posihsync=1,;

else {
syncp_fgr0.posivsync=0;
syncp_fgr0.posihsync=0;
}
}

else {
/I seperate-sync
if(BitTru(SYNCONZ1,POSIVPOL))
syncp_fgr0.posivsync=1;
else
syncp_fgr0.posivsync=0;
if(BitTru(SYNCONZ1,POSIHPOL))
syncp_fgr0.posihsync=1,;
else
syncp_fgr0.posihsync=0;
}

hf_temp=hf_new;

ELECTRONICS

16-69



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

hf temp &= 0x03ff;
pola_temp=*(usin *)psyncp_fgro0;
pola_temp <<= 8;

pola_temp &= 0xc000;

hf_temp |= pola_temp;
hfreq_save=hf_temp;

void set_posi_pola(void)

if(syncp_fgr0.posivsync==1)
BitCIr(SYNCONLZ,INVTVPOL);
else
BitSet(SYNCONZ1,INVTVPOL);
if(syncp_fgr0.posihsync==1)
BitCIr(SYNCONLZ,INVTHPOL);
else
BitSet(SYNCONL1,INVTHPOL);

[ FHERRRRRk Hhxx
/I Check range of the H/Vsync signal
[ FHERRRRR Hhxx
usch chk_hv_range(void)
{
usch hf_khz;
hf_khz=hfkhz_load(hf_new);
/I checking range of Hsync/Vsync signal
if(hf_khz<HF_MIN || hf_khz>HF_MAX
[| vf_new<VF_MIN || vf_new>VF_MAX) {
status_fgr.overrange=1;
return 1;

}

else {

/I masking except polarity flags

/I bitl5/14=polarity, bit9~0=Hsync frequency

/I by-pass Vsync signal

/I inverting Vsync signal

/I normal H/Vsync signal (28KHz<Hf<95KHz, 40Hz<Vf<160Hz)

status_fgr.overrange=0;
if(status_fgr.powerdown==1) {
/loff(DPMS) mode -> Normal sync mode
BitClr(PO,SUSPNDPORT);
timedelay_ms10();
BitSet(P0,OFFPORT);

write_swiic(DEFL,HDUTY,0);
deflect_ini();

ctrl_preamp();

tmute10ms=0;
pseudosync_gen();
status_fgr.pwronmute=0;
status_fgr.powerdown=0;

}
tdpms100ms=0;

/I release suspand port(12V line)
Il release off port(5V line)
/I h-duty off

/I free running

[/l video-mute
/[ waiting time=2sec

16-70

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

dpms_fgr.dpmsstart=0;
if(status_fgr.selfrasin==1)
selfraster_end();
return O;

}
}

/Il control s-correction cap.
void s_correction(void)

{
usch hf_khz;

hf khz=hfkhz_load(hfreq_save);

if(hf_khz<33) {

}
else if(hf_khz<36) {
.

}

/I Control H-linearity with PWM6
void h_lin_out(void)
{
usch hf_khz;
hf khz=hfkhz_load(hfreq_save);
if(hf_khz<=30) {

}

[] FFRFFIR AR Ak

/I 10ms timer for video-mute
[] FFRFFIR AR KA Ak

void chkmutetime(void)

{

if(syncp_fgrl.normmute==1) {
if(++tmute10ms>30) {
syncp_fgrl.normmute=0;
syncp_fgrl.endmute=1;

}

else if(status_fgr.pwronmute==0) {

if(++tmute10ms>200) {
status_fgr.pwronmute=1,;
syncp_fgrl.endmute=1;
}
}
}

/I mute delay time=300ms

/I mute delay time=2sec

ELECTRONICS

16-71



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

#include <S3C863A.h>
#include <insam8.h>
#include <define.h>

usch novsynctime
usin vcount;

usch vclkentr;

usin hf_new;

usch tbasel0ms;

usch tkeyact100ms;
usch tdgaus100ms;
usch tsavel00ms;
usch tdpms100ms;
usch DDC_rxtxbuf[32];

/l to "syncproc.c"
/l to "syncproc.c"
/l to "syncproc.c"
/l to "syncproc.c"

/I ddc comm. buffer.

/I 1'st byte = dest. address (2Bi: 6Eh(Host to Display), 6Fh(DtoH))
/I 2'nd byte = src. address (2Bi: 51h(HtoD), 6Eh(DtoH))

/l 3'rd byte = length

/I 4'th byte = command

extern usch delta_hf;
extern usch wrcycletime;
extern usch *txdata;
extern usch bytecnt;
usch tOovfent;

extern struct reg00 time_fgr;
extern struct reg01 status_fgr;
extern struct reg02 ddc_fgr;
extern struct reg03 dpms_fgr;
extern struct reg04 eeprom_fgr;

extern tinyp usch tinyp *edidaddr;
extern tinyp usch DDC_page1[0x80];

#define END_DDC Ox7f

void ms10timer(void);
void ddc2bi(void);

/I Timer0O overflow interrupt (count Vsync interval)

interrupt [tOovf_int] void tOovf_interrupt(void)

I

{
usch pp_copy;
pp_copy=PP;
PP=0;

/I from "syncproc.c"
/I from "swiic.c"
/I from "ddc2bci.c"

:DDC

/I push pp

16-72

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

}

tOovfcnt++;

PP=pp_copy;

/I Timer0 capture interrupt (capture Vsync signal)

1

interrupt [vsync_int] void vsync_interrupt(void)

{

}

usch pp_copy;

_SBO();
pp_copy=PP;
PP=0;
novsynctime=0;

if(t0ovfcnt>10) { /' Under 195Hz (256*2*10 us) ?
status_fgr.vsyncdet=1,
vcount=(TMODATA+(tOovfcnt*256));
tOovfcnt=0;
/I increment vsync counter for DDC1 recovery
_SB1();
if(ddc_fgr.ddc2b==0 && BitFals(DCON,DDC1EN))

velkentr++;

_SB0();

}

else
tOovfcnt=0;

PP=pp_copy;

/I Timerl capture interrupt (event counter for Hsync signal(seperate-sync))

1

interrupt [t1cap_int] void tlcap_interrupt(void)

{

usin temp, pp_copy;

_SBO();

pp_copy=PP;

PP=0;

BitClr(TM1CON,T1PND); /I clear pending bit

if(BitTru(TM1CON,T1CAPINT)) {
temp=(usin) TM1DATAH;
temp <<= §;
temp += (usin)TM1DATAL,;

hf_new=temp; /I Hsync frequency for 10ms(Timer2 interval * 10)

delta_hf=0;
}
PP=pp_copy;

ELECTRONICS

16-73



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

/I Timer2 interval interrupt (1ms interval int. & Calcu
1

interrupt [t2intv_int] void t2intv_interrupt(void)
{

usin hf_cnt;

usch pp_copy;

static usch hf_startcnt;

static usch hf_stopcnt;

static usin hcount;

static usch thaselms;

static usch tbasel0ms;

_SBO0();

pp_copy=PP;
PP=0;

if(BitTru(SYNCONO,UDCNTOUT)) {
hf_startcnt=hf_stopcnt;
hf stopcnt=TM1CNTL,;
if(BitFals(SYNCONZ2,UNMIXHPERI))
hcount += delta_hf;
else {
hf _cnt=hf_stopcnt-hf_startcnt;
hcount += hf_cnt;
}
}
if((++tbaselms)>=10) {
tbaselms=0;
time_fgr.chkhfreq=1;
time_fgr.keyscan=1,;
ms10timer();
if(BitTru(SYNCONO,UDCNTOUT))
hf_new=hcount;
}
novsynctime++;
PP=pp_copy;
}

void ms10timer(void)
{
wrcycletime++;
if(++tbasel0ms>10) {
tbasel0ms=0;
/I Check degaussing time

. Hsync freq.(comp-sync))

/I Over 10ms ?

/I set reletive reg. to time

/I Hsync freq.(number of Hsync event for 10ms)

if(time_fgr.degaussing==1 && !(--tdgaus100ms)) {

BitClIr(P3,DEGAUSPORT);
time_fgr.degaussing=0;

}
if(dpms_fgr.dpmscond==1) {

16-74

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SYNC PROCESSOR

if(++tdpms100ms>30) /I 3sec
dpms_fgr.dpmsstart=1,

}

else if(time_fgr.chksvtime==1 && !(--tsave100ms)) {
time_fgr.chksvtime=0; Il 2sec
eeprom_fgr.datasave=1,

}

if(time_fgr.keyactive==1 && !(--tkeyact100ms))
time_fgr.keyactive=0; Il 7sec

/I Multi-master 11IC.bus interrupt (DDC & FA)
1

interrupt [ddcnfa_int] void multillC_interrupt(void)
{

usch pp_copy, *pt;

int edid_addtemp, ddc_addtemp;

static usch *rxbuf_addr;

static usch rxcntr;

static struct reg {
usin revAOaddress : 1;
}iic_fgr;

_SB1();

pp_copy=PP;
PP=0;

edid_addtemp=(int)edidaddr;
ddc_addtemp=(int)DDC_pagel,; /I start address of ram buffer with EDID

if(BitFals(DCON,DDC1EN)) {
/I DDC2 mode
if(BitTru(DCSRO,MST)) {
/I master mode
_NOP();

}

else if(BitTru(DCSRO0,TXD)) {
/I slave Tx mode
iic_fgr.revAOaddress=0;

if(BitFals(DCON,DDC1MAT)) // DDC1 match mode ?
ddc2bi();
else if(BitTru(DCSRO,NACK)) { /I NACK ?
// DDC communication error
TBDR=0;
edidaddr=DDC_pagel,; /I edid <- start address
BitClr(DCSRO,TXD); / return slave Rx mode
}
else {

ELECTRONICS 16-75



SYNC PROCESSOR

S3C8639/C863A/P863A/C8647/F8647

}

/I transmit EDID data

if(edid_addtemp > (ddc_addtemp+END_DDC))

edidaddr=DDC_page1,
TBDR=*edidaddr;
edidaddr++;

}
}

/I slave receive mode

else if(BitTru(DCON,DDC1MAT) || iic_fgr.revAOaddress==1) {

/I slave address = AOh
if(BitTru(DCSRO,DATAFLD)) {
if(RBDR==0x00) {
TBDR=0;
edidaddr=DDC_page1,;
}
else {
pt=(usch*)RBDR,;
TBDR=*pt;
edidaddr=DDC_pagel+RBDR;
}
}

else
iic_fgr.revAOaddress=1;
}
else {
/I slave address = 6Eh
ddc_fgr.ddccmd=1,
if(rxentr++ < 32)
rxbuf_addr=DDC_rxtxbuf+rxcntr;
*rxbuf_addr=RBDR;
}
vclkentr=0;
ddc_fgr.ddc2b=1;
}
/I not yet changed to DDC2B (still DDC1 mode)
else if(BitFals(DCON,SCLF)) {
/l EDID Tx mode
if(edid_addtemp > (ddc_addtemp+END_DDC))
edidaddr=DDC_pagel,;
TBDR=*edidaddr;
edidaddr++;
}
else {
TBDR=0;
edidaddr=DDC_pagel,;
BitCIr(DCON,DDC1EN);
}
BitClr(DCCR,DDCPND);
PP=pp_copy;
_SBO0();

// DDC2Bi protocol service

/I sub-address=00h ?

/l ramdom addressing case

/I address field

/I check buffer overflow
/I receive ddc command/data

/I DDC1 recover timer
/I change DDC1 to DDC2 mode

// DDC -> normal IIC

/I clear pending bit

16-76

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SYNC PROCESSOR

1
void ddc2bi(void)
{
if (bytecnt-- > 1) {
TBDR = *txdata;
txdata++;
}
else
BitCIr(DCSRO0,TxD);

Tx buffer pointer

/l return slave Rx mode

ELECTRONICS

16-77



SYNC PROCESSOR S3C8639/C863A/P863A/C8647/F8647

NOTES

16-78 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DDC MODULE

1 ; DDC MODULE

OVERVIEW

The S3C8639/C863A/C8647 microcontroller supports the DDC (Display Data Channel) interface. A pair of serial
data (SDAO) and serial clock (SCLO) line (except DDC1 mode) is provided to carry information between the
master and peripheral that are connected to the bus. The SDAO and SCLO lines are bi-directional. The DDC1
mode uses vertical sync input at the Vsync-1 or VCLK (VCLK is input-only). DDCL1 is implemented physically
using VCLK input and SDAO output.

Protocols for the DDC2B, DDC2Bi, and DDC2B+ are supported in hardware by multi-master IIC-bus logic and in
software by the EDID (Extended Display Identification) and VDIF (Video Display Interface) formats.

To control DDC interface, you write values to the following registers:

— DDC Control Register, DCON

— DDC Clock Control Register, DCCR

— DDC Control/Status Registers 0,1, DCSRO0,1
— DDC Data Shift Register, DDSR

— DDC Address Registers 0,1, DARO,1

— Transmit Pre-buffer Data Register, TBDR
— Receive Pre-buffer Data Register, RBDR

ELECTRONICS 17-1



DDC MODULE S3C8639/C863A/P863A/C8647/F8647

DDC CONTROL REGISTER (DCON)

The programmable DCON register to control the DDC is located at E9H in set 1, bank 1. It is read/write
addressable. Only four bits are mapped in this register.

The DCON.0 setting lets you detect falling edges at the serial clock, SCLO. If the DCON.O is set to "0", the SCLO
(serial clock) is still high after reset (when read), or the bit can be cleared by S/W written "0" (when write). If the
DCON.1 is set to "1", falling edge is detected at SCLO pin after RESET or after this bit is cleared by S/W.

NOTE

When the DDC interrupt is occurred, SCLO line is not pull-down at the following cases:

— DDC1 mode
— Tx/Rx pre-buffer data registers ‘enable’ bit, DCON.3 is "1" (only slave mode).

The DCON.1 setting lets you select normal [IC-bus interface mode or DDC1 transmit mode. If you select normal
[IC-bus interface mode (DCON.1 = "0"), SCLO pin is selected for clock line and the SCLO falling edge (SCLF)
interrupt is disabled. Or if you select DDC1 transmit mode (DCON.1 = "1"), VCLK pin is selected for clock line
and the SCLF interrupt is enable.

The DCON.2 is a DDC address match bit and read-only. When the received DDC address matches to DARO
register, DCON.2 is "1". And when it is start, stop or reset condition, DCON.2 is "0". To enable transmit or receive
pre-buffer data register, DCON.3 is used. When the transmit or receive pre-buffer data register is not used,
DCON.3 is "0" (normal 1IC-bus mode). DCON.3 is set by writing One to it or by reset. If DCON.3 is "1", the
transmit or receive pre-buffer data register is enable.

DDC Control Register (DCON)
E9H, Set 1, Bank 1, R/W (Bit 2 is read-only)

MSB - - - - 3 .2 1 .0 |LSB

Not used for the ; i
SCLO (Serial Clock) falling

S3CB639/CB63A/CBE47 edge detection bit (SCLF):

0 = SCLO is high after
RESET (when read)

0 = Cleared by S/W written
"0" (when write)

1 = Falling edge is detected
(when read)

1 = No effect (when write)

Transmit or receive pre-buffer data register
enable bit:
0 = Normal 1IC-bus mode
(Pre-buffer data registers are not used)
1 = Pre-buffer data registers enable mode
(This bit is set by writing one to it or by

reset)
DDC1 transmit mode enable bit:
DDC address match bit (read-only): 0 = lIC-bus interface mode
0 = When start or stop or reset (SCLO pins is also selected)
1 =When the received DDC address 1 = DDC1 transmit mode
matches to DARO register (VCLK pin is also selected)

Figure 17-1. DDC Control Register (DCON)

17-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DDC MODULE

DDC Clock Control Register (DCCR)

The DDC clock control register, DCCR, is located at EBH in set 1, bank 1. It is read/write addressable. DCCR
settings control the following functions:

— CPU acknowledge signal (ACK) enable or suppress

— DDC clock source selection (fogc/10 or fo5c/256)

— DDC interrupt enable or disable
— DDC interrupt pending control
— 4-bit prescaler for the serial clock (SCLO)

When DCCR.7 bit is set to "1", it is enable to acknowledgment signal. DCCR.6 is bit for transmit clock source
selection by fyg/10 or fo5c/256. DCCR.3-DCCR.0 bits (CCR3-CCRO) are 4-bit prescaler for the transmit clock

(SCLO). The SCLO clock may be "Stretched" if a slow slave device holds the clock for clock synchronization.

In the S3C8639/C863A/C8647 interrupt structure, the DDC interrupt is assigned level IRQ3, vector EAH. To
enable this interrupt, you set DCCR.5 to "1". Program software can then poll the DDC interrupt pending
bit(DCCR.4) to detect DDC interrupt request. When the CPU acknowledges the interrupt request from the DDC,
the interrupt service routine must clear the interrupt pending condition by writing a "0" to DCCR.4.

DDC Clock Control Register (DCCR)
EBH, Set 1, Bank 1, R/W

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

Transmit acknowledge (ACK)
enable bit:

0 = Disable ACK generation
1 = Enable ACK generation

Transmit clock 4-bit prescaler bits:

The transmit clock (SCLO) frequency is
determined by the clock source selection
(DCCR.6) and this 4-bit prescaler

Transmit clock source selection bit: value, according to the following formula:

0 = fosc/10

1 =fosc/256 SCLO clock = ICCLK/(DCCR.3-DCCR.0) + 1
DDC module interrupt enable bit: where, [ICCLK is fosc/10 (DCCR.6 ="0") or
0 = Disable DDC interrupt IICCLK is fosc/256 (DCCR.6 = "1")

1 = Enable DDC interrupt

DDC module interrupt pending flag:

0 = When write "0" to this bit (write "1" has no effect)

0 = When DCSR0.4 is "0"

1 = When slave address match occurred

1 = When arbitration lost (master mode)

1 = When a 1-byte transmit or receive operation is terminated

1 = As soon as the DDC1 mode is enable after the prebuffer is used

Figure 17-2. DDC Clock Control Register (DCCR)

ELECTRONICS 17-3



DDC MODULE

S3C8639/C863A/P863A/C8647/F8647

Table 17-1. Sample Timing Calculations for the DDC Transmit Clock (SCLO)

DCCR.3-DCCR.O
Value
(IICLK = 4 MHz)

IICLK
(DCCR.3-DCCR.0
Settings + 1)

DCCR.6 = 0 (fosc/10)

DCCR.6 = 1 (fg/256)

[ICLK =400 kHz [ICLK =15.625 kHz
0000 [ICLK/1 400 kHz 15.625 kHz
0001 [ICLK/2 200 kHz 7.1825 kHz
0010 [ICLK/3 133.3 kHz 5.2038 kHz
0011 [ICLK/4 100 kHz 3.9063 kHz
0100 [ICLK/5 80.0 kHz 3.1250 kHz
0101 [ICLK/6 66.7 kHz 2.6042 kHz
0110 [ICLK/7 57.1 kHz 2.2321 kHz
0111 [ICLK/8 50.0 kHz 1.9531 kHz
1000 [ICLK/9 44.4 kHz 1.7361 kHz
1001 [ICLK/10 40.0 kHz 1.5625 kHz
1010 lICLK/11 36.4 kHz 1.4205 kHz
1011 [ICLK/12 33.3 kHz 1.3021 kHz
1100 [ICLK/13 30.8 kHz 1.2019 kHz
1101 [ICLK/14 28.7 kHz 1.1160 kHz
1110 [ICLK/15 26.7 kHz 1.0417 kHz
1111 [ICLK/16 25.0 kHz 0.9766 kHz

17-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DDC MODULE

DDC CONTROL/STATUS REGISTER 0 (DCSRO)

The DDC control/status register 0, DCSRO, is located at ECH in set 1, bank 1. It is read/write addressable.
Although the DCSRO register is read/write addressable, four bits are read only: DCSR0.3-DCSRO0.0.

DCSRO register settings are used to control or monitor the following functions:

— Master/slave transmit or receive mode selection

— Bus busy status flag

— DDC module enable or disable

— Failed bus arbitration procedure status flag

— Received address register match status flag

— Last received bit status flag (No ACK ="1", ACK ="0")

DCSRO0.3 is automatically set to "1" when a bus arbitration procedure fails over serial I/O interface, while the 11C-
bus is set to master mode. If slave mode is selected, DCSRO0.3 is automatically set to "1" if the value of
DCSRO0.7-.4 are changed by program when the busy signal bit, DCSRO0.5 is "1", and the DDC address/data field
classification bit, DCSRO0.2 is "0". When the DDC module is transmitting a One to SDAO line but detected a Zero
from SDAO line in master mode at the slave mode, DCSRO0.3 is set.

DDC Control/Status Register 0 (DCSRO0)
ECH, Set 1, Bank 1, R/W (Bit 3-0 is read-only)

MSB| .7 .6 5 A4 3 .2 1 .0 |LSB

|
Master/Slave Tx/Rx mode selection bits: Received acknowledgement
00 = Slave receive mode (default mode) (ACK) bit:
01 = Slave transmit mode 0 = ACK is received
10 = Master receive mode 1 = ACK is not received
11 = Master transmit mode
Bus busy Signa| b|t Not Used for the S3C8639/C863A
0 = Bus is not busy (when read)

0 = Stop condition generation (when write)
1 = Bus is busy (when read)
1 = Start condition generation (when write)

DDC address/data field classification bit:

0 = When reset or START/STOP, or when the
received data is in the data field.

1 = When received slave address

DDC module enable bit: matches to DARO, DAR1 register or

0 = Disable DDC module general call

1 = Enable DDC module

Arbitration lost bit:
0 = Bus arbitration status okay
1 = Bus arbitration failed during serial /10

Figure 17-3. DDC Control/Status Register 0 (DCSRO0)

ELECTRONICS 17-5



DDC MODULE S3C8639/C863A/P863A/C8647/F8647

DDC CONTROL/STATUS REGISTER 1 (DCSR1)

The DDC control/status register 1, called DCSR1, is located at EDH in set 1, bank 1. It is read/write addressable.
Only three bits are mapped in this register. Two bits are read-only: DCSR1.1 and DCSR1.0.

DCSR1 register settings are used to control or monitor the following functions:

— Stop condition detection flag
— Data buffer empty status flag
— Data buffer full status flag

DDC Control/Status Register 1 (DCSR1)
EDH, Set 1, Bank 1, R/W (Bits 1 and O are read-only)

MSB - - - - - 2 1 .0 |LSB

Not used for the S3C8639/C863A/C8647 Data buffer full status bit:

0 = When the CPU reads the
received data from the
RBDR register or STOP
condition

1 = When thd data or matched
address is transferred from
the DDSR register to the
RBDR register

Stop condition detection bit:

0 = When it writes "0" to this bit, and
reset or master mode

1 = When a stop condition isdetected
after START and slave address
reception

Data buffer empty status bit:

0 = When the CPU writes the transmitting data into the
TBDR register

1 = When the data of the TBDR register loads to the DDSR
register or when a stop condition is detected in PCSR0.7-6
(slave transmission mode) = "01"

Figure 17-4. DDC Control/Status Register 1 (DCSR1)

17-6 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DDC MODULE

DDC DATA SHIFT REGISTER (DDSR)

The DDC data shift register for DDC interface, called DDSR, is located at F1H in set 1, bank 1. It is read/write
addressable. The transmitted data output serially from most significant bit (MSB) after writing a data to DDSR. In
addition, the received data from the 11IC-bus input to DDSR serially from least significant bit (LSB). DDSR register
capable to write while DCSRO0.4 is set to "1" and DCON.3 is set to "0", and to read anytime regardless of
ICSRO.4.

DDC Data Shift Register (DDSR)
F1H, Set 1, Bank 1, R/IW

MSB | .7 .6 5 A4 3 .2 1 .0 |LSB

8-bit data shift register for DDC Tx/Rx operations:
Write enable when DCSRO0.4 is "1" and DCON.3 is
"0". Read enable anytime.

Figure 17-5. DDC Data Shift Register (DDSR)

ELECTRONICS 17-7



DDC MODULE S3C8639/C863A/P863A/C8647/F8647

DDC ADDRESS REGISTER 0 (DARO)

The DDC address register 0 for DDC interface, called DARO, is located at EAH in set 1, bank 1. It is read/write
addressable. This register is consisted of 4-bit slave address latch (DAR0.3—DARO.0 is not mapped at the
S3C8639/C863A/C8647). DARO register is capable to write when DCSRO0.4 is "0", and to read anytime regardless
of DCSRO0.4. 4-bits of the DARO register are operate only when receive the slave address.

DDC Address Register 0 (DARO)
EAH, Set 1, Bank 1, R/W

MSB | .7 .6 5 A4 - - - - LSB

4-Slave address bits: Not used for the

These bits are operated only S3C8639/C863A/C8647
when receive the slave address.

Write enable when DCSRO0.4 is

"0". Read enable anytime.

Figure 17-6. DDC Address Register 0 (DAROQ)

DDC ADDRESS REGISTER 1 (DAR1)

The DDC address register 1 for DDC interface, called DARL, is located at EEH in set 1, bank 1. It is read/write
addressable. This register is consisted of 7-bit slave address latch (DARL1.0 is not mapped at the
S3C8639/C863A/C8647). DAR1 register is capable to write when DCSRO0.4 is "0", and to read anytime regardless
of DCSRO0.4. 7-bits of the DARL register are operate only when receive the slave address.

DDC Address Register 1 (DAR1)
EEH, Set 1, Bank 1, R/W

MSB| .7 .6 5 A4 .3 2 1 - LSB

7-slave address bits: Not used for the

These bits are operated only S3C8639/C863A/C8647
when receive the slave address.

Write enable when DCSRO0.4 is

"0". Read enable anytime.

Figure 17-7. DDC Address Register 1 (DAR1)

17-8 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DDC MODULE

TRANSMIT PRE-BUFFER DATA REGISTER (TBDR)

The transmit pre-buffer data register, called TBDR, is located at EFH in set 1, bank 1. It is read/write
addressable. TBDR register is capable to write when DCSRO0.4 is "1", and to read anytime regardless of
DCSRO0.4.

When DCON.3 (TBDR enable bit) = "1" and DCSR1.1 = "0", the data written into this register will be
automatically downloaded to the DDC data shift register (DDSR) and generate the interrupt request when the
module detects the calling address is matched and the bit O of the received data is "1" (DCSRO0.7-6 = "01") and
when the data in the DDSR register has been transmitted with received acknowledge bit, DCSRO0.0 = "0".

At this interrupt service routine, the CPU must write the next data to the TBDR register to clear DCSR1.1 and for
the auto downloading of data to the DDSR register after the data in the DDSR register is transmitted over again
with DCSR0.0 = "0". When DCON.3 ="1" and DCSR1.1 = "1", the data stored in this register will not be
downloaded to the module detects the calling address is matched and the bit O of the received data is "1".

At this interrupt service routine, the CPU must write the current data and rewrite the next data to the TBDR
register to clear DCSRL1.1. If the master receiver doesn't acknowledge the transmitted data, DCSRO0.0 = "1", the
module will release the SDA line for master to generate STOP or repeated START conditions. If DCON.3 (TBDR
enable bit) is "0", the module will pull-down the SCL line in the 1IC-bus interrupt service routine when the
DCSRO0.2 is "1". And the module will release the SCL line if the CPU writes a data to the DDSR registers and the
interrupt pending bit is cleared.

Transmit Pre-buffer Data Register (TBDR)
EFH, Set 1, Bank 1, R/W

MSB | .7 .6 5 A4 5 3 .2 .1 | LSB

8-bit transmit pre-buffer data register: Write enable
when DCSRO0.4 is "1". Read enable anytime.

Figure 17-8. Transmit Pre-buffer Data Register (TBDR)

ELECTRONICS 17-9



DDC MODULE S3C8639/C863A/P863A/C8647/F8647

RECEIVE PRE-BUFFER DATA REGISTER (RBDR)

The receive pre-buffer data register, called RBDR, is located at FOH in set 1, bank 1. It is read-only addressable.
RBDR register is capable to read anytime.

RBDR register will be updated after a data byte is received when the DCSRO0.2 is "1"and the DCSR1.0 will be "1".
The read operation of RBDR register will clear the DCSR1.0. After the DCSR1.0 is cleared, the register can load
the received data again and set the DCSRL1.0.

Receive Pre-buffer Data Register (RBDR)
FOH, Set 1, Bank 1, Read only

MSB

\‘
o

5 A4 5 3 .2 .1 | LSB

8-bit receive pre-buffer data register:
It is read only register.
Read enable anytime.

Figure 17-9. Receive Pre-buffer Data Register (RBDR)

[} [}

[} [}

[} [}

[} [}

[} [}

[} [}

[} [}

1st 2nd 8th ! 9th ! 1st
VCLK | | [ . i : I : | ]
[tV =P | ! l | | | | |
| ! | ! | | | | | |
! i<— L —€ tH P — tv —p — tv —p — tv —p
[}

| Max.25kHz !
<—>
[}

Where, tv = Data valid time (min. 30 us)
tH = VCLK high pulse width (min. 20 us)
tL = VCLK low pulse width (min. 20 us)
(Max. VCLK input frequency = 25 kHz)

NOTE: MSB (Most Significant Bit) first output in each bytes.

Figure 17-10. DDC1 Mode Timing Diagram (One-Byte Transfer)

17-10 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DDC MODULE
Address Register
(DARO)
(DAR1)
scLo [l «9—> Control Logic
(DCCR, DCSRO0, DCSR1) 0 rrrrrI
DDC Data Shifter B SDAO
1 > (DDSR) «—
4 N I
A
DDC Control Logic —» IRQ3 IRQ3

(From Sync Processor)
(VCLK = Max. 25 kHz)

Vsync-| ——m»

"BUFEN"

"DDC1EN"

/

=
Receive
Pre-buffer
Transmit Data Register
Pre-buffer (RBDR)
Data Register
(TBDR)
v
Data Bus

Figure 17-11. DDC Module Block Diagram

ELECTRONICS

17-11




DDC MODULE S3C8639/C863A/P863A/C8647/F8647

THE DDC INTERFACE

DDC2BI MODE

Overview

DDC2B capable graphic hosts have limited and mono-directional communications with the display devices. At the
contrary, DDC2Bi mode is an extension of the DDC2B level in order to offer a bi-direction communication
between the computer graphic host and the display device. DDC2Bi brings DDC2B+ functionality to DDC2B
graphic hosts using a simple S/W driver. So DDC2Bi display device is made by simple S/W upgrade to DDC2B+
capable displays. DDC2Bi protocol relies on the DDC2B H/W definition and the Access bus messages protocol.
The Graphic host behaves as an IIC single master host, and the display device behaves as an IIC slave device.
The DDC2Bi is a modification of the Access bus multi-master protocol to fit single master communication.

DDC2Bi Host and Display Device

DDC2Bi host is considered as an IIC single master capable device. The virtual 1IC slave address of the host is
50/51H. But DDC2Bi display device is considered as a fixed address display device (6E/6F), and uses only IIC
slave mode to communicate with the host.

A display dependent devices are geographically located around the display and follow the same DDC2Bi data
protocol than the display device. And fixed address IIC slave devices group all the existing stand-alone and
brain-less IIC slave device. These devices can coexist and be connected to the DDC/IIC-bus.

DDC2Bi S/W Implementation

In order to describe the display that the received message is of DDC2Bi type, the source address byte bit O is set.
And when the host expects an answer from the display, the host reads the answer message at the display device
slave address 6FH. The checksum is still computed by using the 50H, virtual host address.

A null message can be defined as an Access bus message without any data byte. The null message is used in
the following cases:

— To detect that the display is DDC2Bi capable by reading it at 6FH, 1IC slave address.

— To describe the host that the display does not have any answer to give to the host
— The enable application report has not been sent prior application messages exchange with the host

DDC2Bi Communication

In the DDC2Bi communication, it is capable to retrials when a communication fails (bus error or bad checksum).
So the host is responsible for resending its message and trying to get an answer from the display again. When
the communication fail is occurred, the DDC2Bi devices must answer by the retry of host.

The DDC2Bi capable device must properly send and receive all its supported messages. This determines the
maximum internal data communication buffer required size for proper display operation. If the device receive a
message which size is lager than the maximum supported by the device, the message be accepted entirely by
the device, but does not need to be supported internally, and then be discarded. Therefore the DDC2Bi capable
device must acknowledge all received data bytes from the host.

17-12 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DDC MODULE

THE 1IC-BUS INTERFACE

The S3C8639/C863A/C8647 IIC-bus interface has four operating modes:

— Master transmitter mode
— Master receive mode
— Slave transmitter mode

— Slave receive mode
Functional relationships between these operating modes are described below.

START AND STOP CONDITIONS

When the IIC-bus interface is inactive, it is in slave mode. The interface is therefore always in slave mode when
a start condition is detected on the SDA line. (A start condition is a High-to-Low transition of the SDA line while
the clock signal, SCL, is High level.) When the interface enters master mode, it initiates a data transfer and
generates the SCL signal.

A start condition initiates a one-byte serial data transfer over the SDA line and a stop condition ends the transfer.
(A stop condition is a Low-to-High transition of the SDA line while SCL is High level.) Start and stop conditions
are always generated by the master. The IIC-bus is “busy” when a start condition is generated. A few clocks after
a stop condition is generated, the IIC-bus is again “free”.

When a master initiates a start condition, it sends its slave address onto the bus. The address byte consists of a
7-bit address and a 1-bit transfer direction indicator (that is, write or read). If bit 8 is “0”, a transmit operation
(write) is indicated; if bit 8 is “1”, a request for data (read) is indicated.

The master ends the indicated transfer operation by transmitting a stop condition. If the master wants to continue
sending data over the bus, it can the generate another start condition and another slave address. In this way,
read-write operations can be performed in various formats.

ELECTRONICS 17-13



DDC MODULE S3C8639/C863A/P863A/C8647/F8647
[} [}
[} [}
[} [}
[} [}
SCLK /m— — - ]
: :
[} [}
[} [}
: START STOP :
: Condition Condition :
: :
[} [}
sbA T~ |\ S 77Tt TT= B
In : :
[} [}
TP T === === == [}
[} [}
[} [}
[} [}
! !

Figure 17-12. Start and Stop Conditions

Data must
remain stable
while clock is
HIGH

data allowed

T T T

[}
i
: Change of
[}
[}
[}

[}

g
Start
condition
hold time

[}
[}
[} [}
o

Stop

Data must
remain stable

while clock is

HIGH

condition
setup

[}

g
Start
condition
hold time

Figure 17-13. Input Data Protocol

17-14

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DDC MODULE

DATA TRANSFER FORMATS

Every byte put on the SDA line must be eight bits in length. The number of bytes which can be transmitted per
transfer is unlimited. The first byte following a start condition is the address byte. This address byte is transmitted
by the master when the 1IC-bus is operating in master mode. Each byte must be followed by an acknowledge
(ACK) bit. Serial data and addresses are always sent MSB first.

Single Byte Write Mode Format

Slave
S Address W A DATA A P

"0" (write) Data Transferred (Data + Acknowledge)

Multigle Byte Write Mode Format

Slave Sub
S Address W A Address A DATA A DATA A P

"0" (write) Data Transfired (Data n + icknowledge)

Auto Increment of Sub Address

Single Byte Read Mode Format

Slave
S Address R A DATA A P

"1" (read) Data Transferred (Data + Acknowledge)

Multigle Byte Read Mode Format

Slave Sub Slave
S | address| W | A |address| A | S |address| R | A | DATA | A| DATA | A| P

"0" (write) Data Transferred (Data n + Acknowledge)

NOTES:
1. S:start, A: acknowledge, P: stop
2. The "Sub Address" indicates the internal address of the slave device.

Figure 17-14. lIC-Bus Interface Data Formats

ELECTRONICS 17-15



DDC MODULE

S3C8639/C863A/P863A/C8647/F8647

ACK SIGNAL TRANSMISSION

To complete a one-byte transfer operation, the receiver must send an ACK bit to the transmitter. The ACK pulse
occurs at the ninth clock of the SCL line (eight clocks are required to complete the one-byte transfer). The clock
pulse required for the transmission of the ACK bit is always generated by the master.

The transmitter releases the SDA line (that is, it sends the SDA line High) when the ACK clock pulse is received.
The receiver must drive the SDA line Low during the ACK clock pulse so that SDA is Low during the High period

of the ninth SCL pulse.

The ACK bit transmit function can be enabled and disabled by software (DCCR.7). However, the ACK pulse on
the ninth clock of SCL is required to complete a one-byte data transfer operation.

Start Condition

SCLK -t
from 1 8 9
Master

Data Output -
from
Transmitter

i

- bt

Data Output |
from :
Receiver!

| |
Clock toiou{tput Clock'to putput
|
|
|

AN
|

Figure 17-15. Acknowledge Response from Receiver

17-16

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DDC MODULE

READ-WRITE OPERATIONS

When operating in transmitter mode, the 1IC-bus interface interrupt routine waits for the master (the
KS88C6332/C6348) to write a data byte into the IIC-bus data shift register (DDSR). To do this, it holds the SCL
line Low prior to transmission.

In receive mode, the 1IC-bus interface waits for the master to read the byte from the IIC-bus data shift register
(DDSRY). It does this by holding the SCL line Low following the complete reception of a data byte.

BUS ARBITRATION PROCEDURES

Arbitration takes place on the SDA line to prevent contention on the bus between two masters. If a master with a
SDA High level detects another master with an SDA active Low level, it will not initiate a data transfer because
the current level on the bus does not correspond to its own. The master which loses the arbitration can generate
SCL pulses only until the end of the last-transmitted data byte. The arbitration procedure can continue while data
continues to be transferred over the bus.

The first stage of arbitration is the comparison of address bits. If a master loses the arbitration during the
addressing stage of a data transfer, it is possible that the master which won the arbitration is attempting to
address the master which lost. In this case, the losing master must immediately switch to slave receiver mode.

ABORT CONDITIONS

If a slave receiver does not acknowledge the slave address, it must hold the level of the SDA line High. This
signals the master to generate a stop condition and to abort the transfer.

If a master receiver is involved in the aborted transfer, it must also signal the end of the slave transmit operation.
It does this by not generating an ACK after the last data byte received from the slave. The slave transmitter must
then release the SDA to allow a master to generate a stop condition.

CONFIGURING THE lIC-BUS

To control the frequency of the serial clock (SCL), you program the 4-bit prescaler value in the DCCR register.
The 1IC-bus interface address is stored in lIC-bus address register, DIARO/DARL. (By default, the 11IC-bus
interface address is an unknown value.)

ELECTRONICS 17-17



DDC MODULE S3C8639/C863A/P863A/C8647/F8647

NOTES

17-18 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 SLAVE lIC-BUS INTERFACE

1 8 SLAVE IIC-BUS INTERFACE (Only S3C863X)

OVERVIEW

The S3C8639/C863A microcontroller supports a slave only IIC-bus serial interface.

A dedicated serial data line (SDA) and a serial clock line (SCL) carry information between bus master and slave
devices which are connected to the IIC-bus. The SDA is bi-directional. But in the S3C8639/C863A/C8647, the
SCL line is uni-directional (input only).

S3CB8639/C863A microcontroller can receive and transmit serial data to and from master. When the IIC-bus is
free, the SDA and SCL lines are both at high level.

To control slave-only IIC-bus operations, you write values to the following registers:

— Slave only IIC-bus control/status register, SICSR
— Slave only lIC-bus Tx/Rx data shift register, SIDSR
— Slave only IIC-bus address register, SIAR

Start and Stop conditions are always generated by the master. A 7-bit address value in the first data byte that is
put onto the bus after the Start condition is initiated determines which slave device the bus master selects. The
8th bit determines the direction of the transfer (read or write).

Every data byte that is put onto the SDA line must total eight bits. The number of bytes which can be sent or
received per bus transfer operation is unlimited.

Refer to the IIC-bus interface (slave Tx/Rx) of chapter 17 for the protocol of the slave IIC-bus at the
S3C8639/C863A.

ELECTRONICS 18-1



SLAVE lIC-BUS INTERFACE

S3C8639/C863A/P863A/C8647/F8647

SLAVE ONLY IIC-BUS CONTROL/STATUS REGISTER (SICSR)

The slave only IIC-bus control/status register, SICSR, is located in set 1, bank 1, at address F2H. SICSR register
settings are used to control or monitor the following slave 1IC-bus functions (see figure 18-4):

— Slave IIC-bus acknowledgement (ACK) signal generation enable or suppress

— Slave lIC-bus module enable
— Slave IIC-bus Tx/Rx interrupt enable

— Slave IIC-bus Tx/Rx interrupt pending condition control

— Slave IIC-bus Tx/Rx mode status detect/control

— Slave IIC-bus busy status detect

— Slave IIC-bus address match status detect

— Received acknowledge signal detect (No ACK =*"1", ACK = “0")

Slave Only IIC-Bus Control/Status Register (SICSR)

F2H, Set 1, Bank 0, RIW

MSB 7 .6

5 A4 3 .2 1 .0 LSB

Slave IIC-bus acknowledgement
(ACK) enable bit:

0 = Disable ACK generation

1 = Enabel ACK generation

Slave [IC-bus module enable bit:

0 = Disable IIC-bus module

1 = Enabel IIC-bus module
(Enable serial data Tx/Rx)

0 = Disable interrupt
1 = Enable interrupt

0 = When SICSR.6 is "0"

Slave IIC-bus last received

bit status flag:

0 = Last-received bit is "0"
(ACK was received)

1 = Last-received bit is "1"
(ACK was not received)

Slave address match bit :
0 = when start or stop or reset

Slave 1IC-bus Tx/Rx interrupt enable bit: condition is generated

1 = when received slave address
value matches to SIAR register

Slave 1IC-bus Tx/Rx interrupt pending bit: lIC-bus busy status bit:
0 = No interrupt pending (when read), 0 = lIC-bus is not busy
clear pending condition (when write) 1 = IIC-bus is busy

1 = When 1-byte Tx/Rx is terminated Slave 1IC-bus Tx/Rx mode status bit:
1 = When slave address match occurred 0 = Slave receiver mode (default mode)

1 = Slave transmitter mode

Figure 18-1. Slave only lIC-Bus Control/Status Register (SICSR)

18-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

SLAVE lIC-BUS INTERFACE

SLAVE ONLY IIC-BUS TRANSMIT/RECEIVE DATA SHIFT REGISTER (SIDSR)

The slave IIC-bus data shift register, SIDSR, is located in set 1, bank 1, at address F4H. In a transmit operation,
data that is written to the IIC is transmitted serially.

The SICSR.6 setting enables or disables serial transmit/receive operations. When SICSR.6 = “1", data can be
written to the shift register. The slave [IC-bus shift register can, however, be read at any time, regardless of the

current SICSR.6 setting.

MSB

Slve Only IIC-Bus Transmit/Receive Data Shift Register (SIDSR)

F4H, Set 1, Bank 1, R/IW

706|543 2]1]|.0].s

8-bit data shift register for slave 11C-bus
Tx/Rx operations:

When SICSR, 6 = "0", write operation is enabled.
You can read the SIDSR data value at anytime,
regardless of the current SICSR.6 setting.

Figure 18-2. Slave Only IIC-Bus Tx/Rx Data Shift Register (SIDSR)

SLAVE ONLY IIC-BUS ADDRESS REGISTER (SIAR)

The address register for the 1IC-bus interface, SIAR, is located, in set 1, bank 1, at address F3H. It is used to
store a latched 7-bit slave address. This address is mapped to IAR.7—-IAR.1; bit O is not used (see figure 18-3).

The latched slave address is compared to the next received slave address.

Slave Only 1IC-Bus Address Register (SIAR)
F3H, Set 1, Bank 1, R/W

MSB 6| 5| 4| 3| 2|2 -].ss
7-bit slave address, latched from the 1IC-bus Not used for the
S3C8639/C863A

These bits are operate only when receive the slave address.
When SICSR.6 ="0", read operation is enabled. You can read
the SIDSR data value at any time, regardless of the current
SICSR.6 setting.

Figure 18-3. Slave only IIC-Bus Address Register (SIAR)

ELECTRONICS

18-3



SLAVE lIC-BUS INTERFACE

S3C8639/C863A/P863A/C8647/F8647

SCLL I «—»

11IC-Bus
Control Logic

(SICSR)

Address Register
(SIAR)

!

A

Comparator
pk
4

A4

I T 1 I T 1
Data Shifter
(SIDSR)

L1 11 1 1 1

L » IRQ7
«—> [l SDAL

AN

NS

Data Bus

NOTE: The lIC-bus interrupt (IRQ7) is generated when a 1-byte receive or transmit
operation is terminated before the shift operation has been completed.

Figure 18-4. lIC-Bus Block Diagram

18-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

ELECTRICAL DATA

1 9 ELECTRICAL DATA

OVERVIEW

In this section, S3C8639/C863A/C8647 electrical characteristics are presented in tables and graphs. The

information is arranged in the following order:

— Absolute maximum ratings

— D.C. electrical characteristics

— Data retention supply voltage in stop mode

— Stop mode release timing when initiated by a reset
— 1/O capacitance

— A/D Converter electrical characteristics

— A.C. electrical characteristics

— Input timing measurement points for P0.0—P0.2 and TMOCAP

— Oscillation characteristics
— Oscillation stabilization time
— Clock timing measurement points for X,

— Schmitt trigger characteristics

— Power-on reset circuit characteristics

ELECTRONICS

19-1



ELECTRICAL DATA S3C8639/C863A/P863A/C8647/F8647

Table 19-1. Absolute Maximum Ratings

(To= 25°C)

Parameter Symbol Conditions Rating Unit
Supply voltage Vb - —-0.3to +6.5 Vv
Input voltage Vi, Type G-3 (n-channel open drain) -03t0o+7.0

Vi, All port pins except V|1 -0.3 to Vpp +0.3

Output voltage Vo All output pins -03 to Vpp +0.3
Output current loH One I/O pin active -10 mA
High

All /O pins active - 60
Output current oL One I/O pin active + 30
Low

Total pin current except port 3 + 100

Sync-processor 1/O pins and IIC-bus + 150

clock and data pins
Operating Ty - —40 to +85 °C
temperature
Storage Tste - - 65 to +150
temperature

Table 19-2. D.C. Electrical Characteristics
(T, = —-40 °C to +85°C, Vpp = 3.0V to 5.5V (S3C863X), Vpp = 4.0V to 5.5V (S3C8647))

Parameter | Symbo Conditions Min Typ Max Unit
I
Input High Vigr | Allinput pins except V5, Vyz and V 0.8 Vpp - Vb \Y
voltage Vie | XN Vpp—0-5 Vop
Viwz | TTL input (Hsync-I, Vsync-1, and Csync-I) 2.0 Voo
Vs | SCLO/SDAO, SCL1/SDA1 0.7Vpp Voo
Input Low Vi1 | Allinput pins except V| , and V| 5 - 0.2 Vpp
voltage Vi | XN 0.4
Viiz | TTL input (Hsync-1, Vsync-l, and Csync-I) 0.8
V4 |SCLO/SDAO, SCL1/SDA1 0.3Vpp
Output High | Vg | Vpp =5V £10%; lgy =— 15 mA (S3C863x), | Vpp— 1.2 -
voltage loy = — 14 MA (S3C8647); Port 3.6-3.7
Vonz |Vpp =5V +10%,; lgy = —4 mA (S3C863x),
loy = —3.6 MA (S3C8647),
Port 1.2, Port 3.0-3.5
Vons | Vpp =5V +10%; lgy = —2 mA; Vpp—1.0
Port 0, 2, Clamp-0O, H, and Vsync-O
Vona |Vpp =5V £10%; lgy = —6 MA;
Port 1.0-P1.1, SCLO and SDAO

19-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 ELECTRICAL DATA

Table 19-2. D.C. Electrical Characteristics (Continued)
(T = —40°C to +85°C,Vpp = 3.0V to 5.5V (S3C863X), Vpp = 4.0V to 5.5V (S3C8647))

Parameter Symbol Conditions Min Typ Max Unit
Output Low Vo1 | Vpp =5V £10%; I, =15 mA - - 0.4 \Y
voltage Port 3.6-3.7

Vorz | Vpp =5V £10%; o =4 mA 0.4
Port 3.0-3.5 and Port 1.2
Vois | Vpp =5V £10%; 1o =2 mA 0.4
Port 0, 2, Clamp-0O, H, and Vsync-O
Vora | Vpp =5V £10%; 1o =6 mA 0.6
Port 1.0-1.1; SCLO and SDAO
Input High v | Vin= Vob - - 3 A
leakage current All input pins except Xy, Xout
lunz | Vin= Vop; Xour only - - 20
Iz | Vin = Vop: Xy only 2.5 6 20
Input Low e | Vin =0V, Allinput pins except Xy, - - -3
leakage current Xout, RESET , Hsyncl & Vsyncl
L2 Vin=0V; Xyt only - - -20
s | Vin=0V; Xy only -25 -6 -20
Output High Lot |Voutr=Vop - - 3
leakage current
Output Low o1 |[Vour=0V - - -3
leakage current
Pull-up resistor Rui |[Vin=0V;Vpp=5V+10% 20 47 80 kw
Ports 3.7-3.4
Ryz Vin=0V; Vpp =5V +10% 150 280 480
RESET only
Pull-down Rp Vin=0V; Vpp =5V +10% 150 300 500
resistor Hsyncl & Vsyncl
Supply current Ibp1 Vpp =5V *+10% - 10 20 mA
(note) Operation mode; 12 MHz crystal
Cl1=C2=22pF
lIpp2 | Vpp =5V *10% 4 8
Idle mode; 12 MHz crystal
Cl1=C2=22pF
Ibpps | Vpp =5V *10% 100 150 HA
Stop mode

NOTE: Supply current does not include drawn internal pull-up/pull-down resistors and external loads of output.

ELECTRONICS 19-3



ELECTRICAL DATA S3C8639/C863A/P863A/C8647/F8647

Table 19-3. Data Retention Supply Voltage in Stop Mode

(T, = —40°Cto + 85 °C)

Parameter Symbol Conditions Min Typ Max Unit
Data retention VbbDRr Stop mode 2 - 55 \Y
supply voltage
Data retention IbDDR Stop mode, Vpppr = 2.0V - - 5 HA
supply current

NOTES:
1. During the oscillator stabilization wait time (t,, 1), all CPU operations must be stopped.
2. Supply current does not include drawn through internal pull-up resistors and external output current loads.
RESET
Oscillation
Ociﬂs Stabilzation
<«—1—— Stop Mode >| <> / Time
|<— Data Retention Mode —» <>
VbD | it
* Normal
VDDDR < Operating
Execution of Mode
STOP Instrction
RESET \ i’
. u twAIT
NOTE: twaAIT is the same as 4096 x 16 x 1/fosc. <«—>
Figure 19-1. Stop Mode Release Timing When Initiated by a Reset
Table 19-4. Input/Output Capacitance
(Th = —40°Cto +85°C, Vpp = 0V)

Parameter Symbol Conditions Min Typ Max Unit
Input Cn f = 1 MHz; unmeasured pins - - 10 pF
capacitance are connected to Vg
Output Cout
capacitance
I/O capacitance Co

ELECTRONICS

19-4



S3C8639/C863A/P863A/C8647/F8647

ELECTRICAL DATA

Table 19-5. A/D Converter Electrical Characteristics (S3C863X)

(T = —40°C to +85°C, Vpp=3.0V to 55V, Vgg= 0V)

When power down mode

Parameter Symbol Conditions Min Typ Max Unit
Resolution - 8 - bit
Total accuracy Vpp=5V - - +2 LSB

Conversion time =5 s
Integral linearity error ILE AVpep =5V - +1
Differential linearity error DLE AVgg=0V - 1
Offset error of top EOT +1 +
Offset error of bottom EOB +05 *
Conversion time @) tcon | 8-bit conversion 20 - 170 ns
48 x nffoge @),
n=1,4,8,16
Analog input voltage ViaN - AVgg - AViee \%
Analog input impedance RAN - 2 1000 - MW
Analog reference voltage AVREF - 25 - Vop \Y%
Analog ground AVss - Vss - Vgg+ 0.3 \
Analog input current IADIN | AVRgg = Vpp = 5V - - 10 mA
Analog block Current @ labc | AVRgr = Vpp =5V - 1 3 mA
AVger = Vpp = 3V 0.5 15 mA
AVger = Vpp =5V 100 500 nA

NOTES:

1. "Conversion time" is the time required from the moment a conversion operation starts until it ends.
2. lapc is an operating current during the A/D conversion.

3. fogc is the main oscillator clock.

ELECTRONICS

19-5




ELECTRICAL DATA

S3C8639/C863A/P863A/C8647/F8647

Table 19-6. A/D Converter Electrical Characteristics (S3C8647)

(To = —40°C to +85°C, Vpp=4.0V to 55V, Vgg= 0V)

Parameter Symbol Conditions Min Typ Max Unit
Resolution - - 4 - bit
Absolute accuracy (1) - 4 bit conversion - - +0.5 LSB

24 x nffgge @),

n=1,48,16
Conversion time ) tcon 3 - - us
Analog input voltage VIAN - Vss - Vbp M
Analog input impedance RAN - 2 - - MW
NOTES:
1. Excluding quantization error, absolute accuracy values are within = 0.5 LSB.
2. "Conversion time" is the time required from the moment a conversion operation starts until it ends.
3. fogc is the mean oscillator clock.

ELECTRONICS

19-6



S3C8639/C863A/P863A/C8647/F8647 ELECTRICAL DATA

Table 19-7. A.C. Electrical Characteristics

(T = —40°C to +85°C,Vpp = 3.0V to 5.5V (S3C863X), Vpp = 4.0V to 5.5V (S3C8647))

Parameter Symbol Conditions Min Typ Max Unit
Noise Filter INTS INTO-2 and TMOCAP (RC 300 - - ns
INF1L delay)
INF2 RESET only (RC delay) 1000 - -
INF1L g tNF1H g
h tNF2 g h g
\ 0.8 VbD
N 7 0.2 Vbb N

Figure 19-2. Input Timing Measurement Points for P0.0-P0.2 and TMOCAP

ELECTRONICS 19-7



ELECTRICAL DATA S3C8639/C863A/P863A/C8647/F8647

Table 19-8. Oscillation Characteristics

(T, = —40°C + 85°C)

Oscillator Clock Circuit Conditions Min Typ Max Unit
Main crystal or c1 Vpp=3.0V to 55V 8 - 12 MHz
ceramic 1 Xy (S3C863X)

J: = Vpp=4.0V to 55V
|l.— Xout
c2 (S3C8647)
External clock N Vpp=30V to 55V 8 - 12 MHz
(main) N (S3C863X)
Xour Vpp=4.0V to 5.5V
(S3C8647)

NOTE: The maximum oscillator frequency is 12 MHz. If you use an oscillator frequency higher than 12 MHz, you cannot
select a non-divided CPU clock using CLKCON settings. That is, you must select one of the divide-by values.

Table 19-9. Oscillation Stabilization Time
(T, = —-40 °C to +85°C, Vpp = 3.0V to 5.5V (S3C863X), Vpp = 4.0V to 5.5V (S3C8647))

Oscillator Test Condition Min Typ Max Unit
Crystal Vpp = 3.0V (0r40V) to 55V - - 20 ms
Ceramic Vpp = 3.0V (or4.0V) to 5.5V - - 10
External clock Xy input high and low level width 25 - 500 ns

(txrr tx)

NOTE: Oscillation stabilization time is the time required for the CPU clock to return to its normal oscillation frequency after
a power-on occurs, or when Stop mode is released.

1/fx
< >
tXL tXH
< > < >
XIN Vob-0.5V
N 7 N 04V

Figure 19-3. Clock Timing Measurement Points for X

19-8 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

ELECTRICAL DATA

Vout

VDD

Vss

> t--—————————————q - —— =

O S

D VN

A=0.2 VDD
B =0.4 Vbb
C=0.6 VbD
D =0.8 VbDp

Figure 19-4. Schmitt Trigger Characteristics (Normal Port; except TTL Input)

Table 19-10. Power-on Reset Circuit Characteristics

(T, = —40°C to +85°C,Vpp = 3.0V to 5.5V (S3C863X), Vpp = 4.0V to 5.5V (S3C8647))

Parameter Symbol Conditions Min Typ Max Unit
Power-on reset release VobLVD 2.3 2.65 3.0 \Y
voltage 31@ | 34@ | 3.7@
Power-on reset detection Vivb 2.3 2.65 3.0 \Y
voltage 31@ | 34@ | 3.7@

Power supply voltage off toss 10 - - ms
time
Power-on reset circuit IbpPR Vpp =5V *+10% 100 150 mA
consumption current (@)

Vpp =3.3V 60 100 mA

NOTES:

1. Current contained when power-on reset circuit is provided internally.

2. Only S3C8647.

ELECTRONICS

19-9




ELECTRICAL DATA S3C8639/C863A/P863A/C8647/F8647

VDD —\ /—
VLVD VDDLVD

A
\ 4

toff

Figure 19-5. Power-on Reset Timing

19-10 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 MECHANICAL DATA

2 O MECHANICAL DATA

OVERVIEW

The S3C8639/C863A/C8647 microcontroller is available in a 42-pin SDIP package (Samsung part number 42-
SDIP-600) and a 44-QFP package (Samsung part number 44-QFP-1010B).

#42 #22 Y 0-15°
Y | I I e e e e e e e e e e s 6 A e 6 6 I i y f
N
; 3
S ) O 42-SDIP-600 O 5 -
3 "2
)
v
S A o [ I _V_\ o
#1 #21 %
B 39.50 MAX oo 2
« > H| =
39.10z0.2 o| o
< »| vl <o
/ \| A A
| A\ = /
: U : : A A
I 1Y A 4
[} [} [}
|| 0.50 0.1 g a
(1] +l
(1.77) 1.00 01 1778 a0 8
—> [ e «— 2l o
NOTE: Dimensions are in millimeters.

Figure 20-1. 42-Pin SDIP Package Dimensions (42-SDIP-600)

ELECTRONICS 20-1



MECHANICAL DATA S3C8639/C863A/P863A/C8647/F8647

P 13.20+03 o
0-8’
10.00 0.2 +0.10
< > ¥ 0.15 -0.05
! ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
A
I — — 1
I — —
CT—] — 1
® S I — —
+ + 11
2| |8 = — 44-QFP-1010B — 2] 0.10 MAX
o S CT—] — 1
— - O— — 11
CT—] — 11 o
I — O — ~
#44 CIT— — 3
" T T T 8
il | o
i fr | A\ &
A4 H H i H H H H H g 0
#1 L +0.10: 4
~ ‘0.35-0.05 0.05 MIN
0.80 S (1.00) >He—
<+ Mg _ || 205010
- 2.30 MAX
NOTE: Dimensions are in millimeters.

Figure 20-2. 44-Pin QFP Package Dimensions (44-QFP-1010B)

20-2 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 MECHANICAL DATA

#32 #17 Y 015°
| I s Y s S e Y s Y s s I s Y s Y Y Y s Y s Y s o | y f
A
N
o
: ) O 32-SDIP-400 O
o
. Al S e S s I [ S O ) S
#1 #16
o
B 27.88 MAX - S| %
< » + =
27.48 +0.20 o e}
- | [0s) o
< " (%] T}
/ \ A A
l L\ Y v
: U : : A A
I ! ! Y
[} [} [}
|| 0.45 +0.10 zZ 3
" 1778 | &
1.37 1.00 £ 0.10 : = o
HCEUIN I IR — 3| 2

NOTE: Dimensions are in millimeters.

Figure 20-3. 32-Pin SDIP Package Dimensions (32-SDIP-400)

ELECTRONICS 20-3



MECHANICAL DATA

S3C8639/C863A/P863A/C8647/F8647

NOTE: Dimensions are in millimeters.

e #17 o8
t AAHAHAAAAAAAAAAR ] T
; 32-SOP-450A ;f:,' j
[qV) 4
S O ooV
v HHHHHHHHHHEHHHHE =—tT
e #16 0.25 " 0,05 S
-
g 20.30 MAX v 3 % 3
) 19.90 £ 0.20 VI g czv
« > TN
/ \‘ A 4
S[o10mAx]
| | L 4
(0.43) _i 0.40 +0.10 $H 1.27 g
— e > e «— 9
o

Figure 20-4. 32-Pin SOP Package Dimensions (32-SOP-450A)

20-4

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 S3P863A OTP

2 1 S3P863A OTP

OVERVIEW

The S3P863A single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the
S3C8639/C863A microcontrollers. It has an on-chip EPROM instead of masked ROM. The EPROM is accessed
by serial data format.

The S3P863A is fully compatible with the S3C8639/C863A, both in function and in pin configuration. Because of
its simple programming requirements, the S3P863A is ideal for use as an evaluation chip for the
S3C8639/C863A.

\_/
PO.0O/INTO E 1 42 (3 P3.7
PO.1/INT1 ] 2 O 41 3 P36
P0.2/INT2 & 3 40 (1 P3.5
P0.3 ] 4 Q 39 [ P34
P0.4/TMOCAP ™ 5 38 (= P3.3/AD3
P05 TH 6 37 B3 P3.2/AD2
PO6 C 7 36 (3 P3.1/AD1
P0.7 T4 8 35 /= P3.0/ADO
SDAT/P1.0/SDA1 T 9 34 (3 VbDD2
SCLK/P1.1/SCL1 ] 10 S3P863A 33 (3 Vss2
Vop1 O 11 32 (3 P2.7/Csync-1 (SOG)
Vss1 ] 12 (42-SD|P) 31 Hsync-l
Xout & 13 30 /3 Vsync-l
XiN &3 14 29 (3 Vsync-O
VPP/TEST (GND) ] 15 28 3 Hsync-O
SDAO ] 16 27 /= Clamp-O
SCLO O 17 26 = P2.6/PWM6
RESET/RESET ™ 18 25 (3 P2.5/PWM5
P12 O 19 24 3 P2.4/PWM4
P2.0/PWMO ] 20 23 3 P2.3/PWM3
P2.1/PWM1 ] 21 22 (3 P2.2/IPWM2
NOTE: The bolds indicate an OTP pin hame.

Figure 21-1. S3P863A Pin Assignments (42-SDIP Package)

ELECTRONICS 21-1



S3P863A OTP

S3C8639/C863A/P863A/C8647/F8647

guguououuoun

P3.2/AD2
P3.1/AD1
P3.0/AD0O
VDD2
Vss2
P2.7/Csync-1 (SOG)
Hsync-I
Vsync-I
Vsync-O
Hsync-O
Clamp-O

o
S
': =] = <\t
< NN A OO M
S0 cm®mmm
[N W W a W~ s W W a W a W a W a
aooonnnnmnmni
SN MO ANTITOOODONNOLWS
TITTTTOONMOOOM
P05 1 33
P0.6 =/ 2 Q 32
P0.7 ™ 3 31
SDAT/P1.0/SDA1 ] 4 30
SCLK/P1.1/SCL1 =3 5 S3P863A 29
Vpp1 ] 6 28
Vss1 O 7 (44-QFP) 27
Xout (3 8 26
XIN 9 25
VPP/TEST (GND) . 10 24
SDAO [ 11 23
ANMSTIODOMNOO O AN
A A AN NN
gutbuotbouoot
SI—NOHNO(‘OWLOLO
O(L})JHEEEZ-EEEE
omrss==<£====
¥ &840 oooo
F Q@< o< uwno
w AN AN N AN NN N
»w Laoao aoaon
w
14
NOTE: The bolds indicate an OTP pin hame.

Figure 21-2. S3P863A Pin Assignments (44-QFP Package)

21-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 S3P863A OTP

Table 21-1. Descriptions of Pins Used to Read/Write the EPROM

Main Chip During Programming
Pin Name Pin Name Pin Number I/O Function
P1.0 SDAT 9(4) /0 Serial data pin. Output port when reading and input
port when writing. Can be assigned as a Input/push-
pull output port.
P1.1 SCLK 10 (5) I Serial clock pin. Input only pin.
TEST Vpp (TEST) 15 (10) I Power supply pin for EPROM cell writing (indicates
that OTP enters into the writing mode). When 12.5
V is applied, OTP is in writing mode and when 5 V
is applied, OTP is in reading mode. (Option)
RESET RESET 18 (13) I Chip Initialization
Vop1/Vssi Vop1/Vssi 11/12 (6/7) [ Logic power supply pin. Vp should be tied to +5 V
during programming.

NOTE: Parentheses indicate 44-QFP OTP pin humber.

Table 21-2. Comparison of S3P863A and S3C8639/C863A Features

Characteristic S3P863A S3C8639/C863A
Program Memory 48-Kbyte EPROM 32/48-Kbyte mask ROM
Operating Voltage (Vpp) 30V to 55V 3.0V to 5.5V

OTP Programming Mode Vpp =5V, Vpp (TEST) = 12.5V

Pin Configuration 42 SDIP, 44 QFP 42 SDIP, 44 QFP

EPROM Programmability User Program 1 time Programmed at the factory

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the V(TEST) pin of the S3P863A, the EPROM programming mode is entered. The

operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in
Table 21-3 below.

Table 21-3. Operating Mode Selection Criteria

Vpp | Vpp (TEST) | REG/MEM | Address (A15-A0) R/W Mode
5V 5V 0 OOO0OH 1 EPROM read
125V 0 0O0CH 0 EPROM program
125V 0 0O0CH 1 EPROM verify
125V 1 OE3FH 0 EPROM read protection
NOTE: "0" means Low level; "1" means High level.

ELECTRONICS

21-3



S3P863A OTP

S3C8639/C863A/P863A/C8647/F8647

D.C. ELECTRICAL CHARACTERISTICS

Table 21-4. D.C. Electrical Characteristics

(T = —40°C to +85°C,Vpp = 3.0V to 5.5V)

Parameter Symbol Conditions Min Typ Max Unit
Input High v | Vin= Vob - - 3 A
leakage current All input pins except Xy, Xout

Iz | Vin= Vop; Xour only - - 20
Iz | Vin = Vop: Xy only 25 6 20
Input Low e | Vin =0V, Allinput pins except X,y - - -3
leakage current Xout, RESET , Hsync-I and Vsync-|
L2 Vin=0V; Xyt only - - -20
s | Vin=0V; Xy only -25 -6 -20
Output High Lot |Voutr=Vop - - 3
leakage current
Output Low o1 |[Vour=0V - - -3
leakage current
Pull-up resistor Rui |[Vin=0V;Vpp=5V+10% 20 47 80 kw
Port 3.7-3.4
Ru» ViN=0V;Vpp =5V *10% 150 280 480
RESET only
Pull-down Rp ViN=0V;Vpp =5V *10% 150 300 500
resistor Hsync-l and Vsync-I
Supply current lbp1 | Vpp =5V *10% - 10 20 mA
(note) Operation mode; 12 MHz crystal
Cl=C2=22pF
lbp2 | Vpp =5V +10% 4 8
Idle mode; 12 MHz crystal
Cl=C2=22pF
Ibp3 Vpp =5V *+10% 100 150 HA
Stop mode
NOTE: Supply current does not include drawn internal pull-up/pull-down resistors and external loads of output.
21-4 ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647

S3F8647 FLASH MCU

2 2 S3F8647 FLASH MCU

OVERVIEW

The S3F8647 single-chip CMOS microcontroller is the FLASH version of the S3C8647 microcontrollers.
It has an on-chip FLASH ROM instead of masked ROM. The FLASH ROM is accessed in serial data format.

The S3F8647 is fully compatible with the S3C8647, both in function and in pin configuration. Because of its
simple programming requirements, the S3F8647 is ideal for use as an evaluation chip for the S3C8647.

Vss/Vss

XouTt

XIN

VPP/TEST
PO.0/INTO
PO.1/INT1
RESET/RESET
P0.2/INT2
P0.4/TMOCAP
SDA

SCL
P2.0/PWMO
P2.1/PWM1
P2.2/PWM2
P2.3/PWM3
P2.4/PWM4

Aonononaonnannnonn

O©oO~NOOThWNPE

O

O

S3F8647

(32-SDIP)

O

guouuouuoououuun

VDD/VDD
P3.7/SCLK
P3.6/SDAT
P3.5

P3.4
P3.3/AD3
P3.2/AD2
P3.1/AD1
P3.0/AD0O
P2.7/Csync-1(SOG)
Hsync-I
Vsync-|
Vsync-O
Hsync-O
Clamp-O
P2.5/PWM5

Figure 22-1. S3F8647 Pin Assignments (32-SDIP Package)

ELECTRONICS

22-1



S3F8647 FLASH MCU

S3C8639/C863A/P863A/C8647/F8647

Vss/Vss

XouTt

XIN

VPP/TEST
PO.0/INTO
PO.1/INT1
RESET/RESET
P0.2/INT2
P0.4/TMOCAP
SDA

SCL
P2.0/PWMO
P2.1/PWM1
P2.2/PWM2
P2.3/PWM3
P2.4/PWM4

Aonononaonnannnonn

O©oO~NOOUTWNPE

PR ERRR R
OURNWNEREO

N

O

S3C8647

(32-SOP)

O

32
31

29
28
27
26
25
24
23
22
21
20
19
18
17

guouuouuoououuun

VDD/VDD
P3.7/SCLK
P3.6/SDAT
P3.5

P3.4
P3.3/AD3
P3.2/AD2
P3.1/AD1
P3.0/AD0O
P2.7/Csync-1(SOG)
Hsync-I
Vsync-I
Vsync-O
Hsync-O
Clamp-O
P2.5/PWM5

Figure 22-2. S3F8647 Pin Assignments (32-SOP Package)

22-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

S3F8647 FLASH MCU

Table 22-1. Descriptions of Pins Used to Read/Write the FLASH ROM

Main Chip During Programming
Pin Name Pin Name Pin Number I/O Function
P3.6 SDAT 30 /0 Serial data pin. Output port when reading and input
port when writing. Can be assigned as a Input/push-
pull output port.
P3.7 SCLK 31 I Serial clock pin. Input only pin.
TEST Vpp (TEST) 4 I Power supply pin for EPROM cell writing (indicates
that OTP enters into the writing mode). When 12.5
V is applied, OTP is in writing mode and when 5 V
is applied, OTP is in reading mode. (Option)
RESET RESET 7 I Chip Initialization
Vpp/Vss Vpp/Vss 32/1 [ Logic power supply pin. Vp should be tied to +5 V

during programming.

Table 22-2. Comparison of S3F8647 and S3C8647 Features

Characteristic S3F8647 S3C8647
Program Memory 24-Kbyte flash ROM 24-Kbyte mask ROM
Operating Voltage (Vpp) 40V to 55V 40V to 5.5V

OTP Programming Mode

Vpp =5V, Vpp (TEST) = 12.5V

Pin Configuration

32 SDIP

32 SDIP

EPROM Programmability

User Program 1 time

Programmed at the factory

ELECTRONICS

22-3




S3F8647 FLASH MCU

S3C8639/C863A/P863A/C8647/F8647

D.C. ELECTRICAL CHARACTERISTICS

(Vpp = 40V to 5.5V)

Table 22-3. D.C. Electrical Characteristics

Parameter Symbol Conditions Min Typ Max Unit
Input High v | Vin= Vob - - 3 A
leakage current All input pins except Xy, Xout

Iz | Vin= Vop; Xour only - - 20
Iz | Vin = Vop: Xy only 25 6 20
Input Low e | Vin =0V, Allinput pins except X,y - - -3
leakage current Xout, RESET , Hsync-I and Vsync-|
L2 Vin=0V; Xyt only - - -20
s | Vin=0V; Xy only -25 -6 -20
Output High Lot |Voutr=Vop - - 3
leakage current
Output Low o1 |[Vour=0V - - -3
leakage current
Pull-up resistor Rui |[Vin=0V;Vpp=5V+10% 20 47 80 kw
Port 3.7-3.4
Ru» ViN=0V;Vpp =5V *10% 150 280 480
RESET only
Pull-down Rp ViN=0V;Vpp =5V *10% 150 300 500
resistor Hsync-l and Vsync-I
Supply current Ibpp1 | Vpp =5V *10% - 10 20 mA
(note) Operation mode; 12 MHz crystal
Cl=C2=22pF
lbp2 | Vpp =5V +10% 4 8
Idle mode; 12 MHz crystal
Cl=C2=22pF
Ibp3 Vpp =5V = 10% 100 150 HA
Stop mode
NOTE: Supply current does not include drawn internal pull-up/pull-down resistors and external loads of output.
22-4 ELECTRONICS




S3C8639/C863A/P863A/C8647/F8647 S3F8647 FLASH MCU

NOTES

ELECTRONICS 22-5



S3C8639/C863A/P863A/C8647/F8647 DEVELOPMENT TOOLS

2 3 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for
S3C7, S3C9, S3C8 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2.
Samsung also offers support software that includes debugger, assembler, and a program for setting options.

SHINE

Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked
help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be
sized, moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates
object code in standard hexadecimal format. Assembled program code includes the object code that is used for
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and
an auxiliary definition (DEF) file with device specific information.

SASM88

The SASM88 is an relocatable assembler for Samsung's S3C8-series microcontrollers. The SASM88 takes a
source file containing assembly language statements and translates into a corresponding source code, object
code and comments. The SASM88 supports macros and conditional assembly. It runs on the MS-DOS operating
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked
with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by
HEX2ROM, the value "FF" is filled into the unused ROM area upto the maximum ROM size of the target device
automatically.

TARGET BOARDS

Target boards are available for all S3C8-series microcontrollers. All required target system cables and adapters
are included with the device-specific target board.

ELECTRONICS 23-1



DEVELOPMENT TOOLS

S3C8639/C863A/P863A/C8647/F8647

OTPs

One time programmable microcontroller (OTP) for the S3C8639/C863A microcontroller and OTP programmer
(Gang) are now available.

IBM-PC AT or Compatible

T RS-232C

Target
Application
System

A

Probe
Adapter

v

SMDS2+
v
+“—> PROM/OTP Writer Unit
<+—> RAM Break/Display Unit
é +“—> Trace/Timer Unit
+“—> SAMS8 Base Unit < Pob >
<+—> Power Supply Unit

TB886332B/6348B
(TB8639/863A)
Target Board

EVA
Chip

Figure 23-1. SMDS Product Configuration (SMDS2+)

23-2

ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647 DEVELOPMENT TOOLS

TB886332B/6348B (TB8639/863A) TARGET BOARD

The TB886332B/6348B (TB8639/863A) target board is used for the S3C8639/C863A microcontroller. It is
supported by the SMDS2+ development system.

TB886332B/6348B

To User_Vcc (TB 8639/863A)
off OO O|on

RESET Idle Stop

O 2] S8

Vcc

1]

GND

J101 J101

144 QFP
S3E8630 1 42 1 44
EVA Chip

®)

100-Pin Connector

50-Pin Connector
50-Pin Connector

21 22 22 23

External
Triggers

© cHr  smps2+ | OO Q| sMpsz2

©) cHe swi

r---
|
|
|
e - =
r---
|
|
|
e - =

SM1335B

Figure 23-2. TB886332B/6348B (TB8639/863A) Target Board Configuration

ELECTRONICS 23-3



DEVELOPMENT TOOLS S3C8639/C863A/P863A/C8647/F8647

TB886424A (TB8647) TARGET BOARD

The TB886424A (TB8647) target board is used for the S3C8647 microcontroller. It is supported by the SMDS2+
development system.

TB886424A
To User_Vcc (TB 8647)

off OO O] on
RESET 0
Idle Stop g |:|
5@5 . > 74HC11 <+} <+j
| | :) D D
- zZ
©]
25
S
(8}
£ Jio1
c
o
O
= 144 QFP
& S3E8630 1 30
8 EVA Chip
= S
o} B
1 2
c
(@]
O
£
o
o
Lo
External 15 | 16
Triggers : !
[}
© cH smps2+ | OO Q| sMbs2 Lo
©) cHe swi
SM1339A

Figure 23-3. TB886424A (TB8647) Target Board Configuration

23-4 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

DEVELOPMENT TOOLS

Table 23-1. Power Selection Settings for TB886332B/TB886348B (TB8639/863A)

"To User_Vcc" Operating Mode Comments
Settings
The SMDS2/SMDS2+
To User_vee TB886332B | _ supplies V to the target
OFFE)m ON (TTB%%?B%?;gf A Ve —b ST artget board (evaluation chip) and
- \ — ves ystem the target system.
V|CC
SMDS2/SMDS2+
To User V The SMDS2/SMDS2+
0 ser_vce TB886332B | Eyiernal supplies V¢ only to the
OFFm ON TTB%%%%%&%BA Vec —p| Target target board (evaluation chip).
( \ )| Vs System The target system must have
[ h its own power supply.
V|CC
SMDS2/SMDS2+

Table 23-2. Power Selection Settings for TB886424A (TB8647)

"To User_Vcc" Operating Mode Comments
Settings
To User V The SMDS2/SMDS2+
0 Lser_vce TBS886424A supplies V to the target
OFFE)m ON (TB8647) Ve —b ST artget board (evaluation chip) and
- , — ves ystem the target system.
V|CC
SMDS2/SMDS2+
To User Ve The SMDS2/SMDS2+
— TBS86424A [ External supplies V¢ only to the
OFFm ON (TB8647) Vee —p| Target target board (evaluation chip).
, — ves System The target system must have
[ h its own power supply.
V|CC
SMDS2/SMDS2+

ELECTRONICS

23-5



DEVELOPMENT TOOLS S3C8639/C863A/P863A/C8647/F8647

SMDS2+ SELECTION (SAMS)

In order to write data into program memory that is available in SMDS2+, the target board should be selected to
be for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.

Table 23-3. The SMDS2+ Tool Selection Setting

"SW1" Setting Operating Mode

swosz| (XY smos2+ RIW* 4— R/W* TARGET

BOARD
SMDS2+

Table 23-4. Using Single Header Pins as the Input Path for External Trigger Sources

Target Board Part Comments

Connector from

external trigger
EXTERNAL sources of the

TRIGGERS application system

(::) CH1 1 1

© o

You can connect an external trigger source to one of the two external

trigger channels (CH1 or CH2) for the SMDS2+ breakpoint and trace
functions.

IDLE LED
This LED is ON when the evaluation chip (S3E8630) is in idle mode.
STOP LED

This LED is ON when the evaluation chip (S3E8630) is in stop mode.

23-6 ELECTRONICS



S3C8639/C863A/P863A/C8647/F8647

DEVELOPMENT TOOLS

PO.0/INTO
PO.1/INT1
P0.2/INT2
P0.3
P0.4/TMOCAP
P0.5

P0.6

PO0.7
P1.0/SDA1
P1.1/SCL1
VDD1

Vss1
TEST(GND)
SDAO

SCLO
RESET
P1.2
P2.0/PWMO
P2.1/PWM1
P2.2/PWM2

J101
o I 40
|2 39
= |3 38
= |4 37
=5 36
= |6 I 35

o
0|7 3 34
= |8 = 33
|9 ) 32
| 10 T 31
|11 8 30
|12 S 29
= |13 B 28
|14 Qe 27
=15 2 26
— |16 25
|17 24
— |18 23
— |19 22
— |20 21

guuuuduobutbtuuguoobuuug

P3.7

P3.6

P3.5

P3.4
P3.3/AD3
P3.2/AD2
P3.1/AD1
P3.0/AD0O
VDD2

Vss2
P2.7/Csync-I
Hsync-I
Vsync-I
Vsync-O
Hsync-O
Clamp-O
P2.6/PWM6
P2.5/PWM5
P2.4/PWM4
P2.3/PWM3

Figure 23-4. 40-Pin

Connector for TB886332B/6348B (TB8639/A)

Vss

TEST
PO.0/INTO
PO.1/INT1
RESET
P0.2/INT2
P0.4/TMOCAP
SDA

SCL
P2.0/PWMO
P2.1/PWM1
P2.2/IPWM2
P2.3/PWM3
P2.4/PWM4
P2.5/PWM5

J101
o I 30
|2 29
|3 w 28
|4 =} 27
|5 3 26
— =)

6 o 25
|7 = 24
|8 o 23
=9 o 22
| 10 5 21
|11 ® 20
= |12 § 19
|13 18
— | 14 17
|15 16

gutbuuguouobuouuoun

VbD

P3.7

P3.6

P3.5

P3.4
P3.3/AD3
P3.2/AD2
P3.1/AD1
P3.0/AD0O
P2.7/Csync-1(SOG)
Hsync-I
Vsync-I
Vsync-O
Hsync-O
Clamp-O

Figure 23-5. 30-Pin Connector for TB886424A (TB8647)

ELECTRONICS

23-7



DEVELOPMENT TOOLS S3C8639/C863A/P863A/C8647/F8647

Target Board Target System
J101
1 42
S |1 40 1 40
3
=]
9 = Target Cable for 42-SDIP Package — |
g Part Name: AP42SD-G |
o Order Code: SM6520
=
(0%
o
o
© (20 21 21 20 21 29

Figure 23-6. TB886332B/6348B (TB8639/A) Adapter Cable for 42-SDIP Package

Target Board Target System
Jio1
1 32
8 |1 30 1 30
3
=]
9 = Target Cable for 30-SDIP Package — |
g — Part Name: AP30SD-G ]
o Order Code: SM6520
=
(¢
o
o
© (15 16 16 15 16 17

Figure 23-7. TB886424A (TB8647) Adapter Cable for 32-SDIP Package

23-8 ELECTRONICS



	s3c8639_rev.2.1_072001.pdf
	02-address space
	Untitled
	Untitled


