January, 2002

Technical Specification for Optical Transceiver Module

SCM6328

SI In Si	55.52Mbps hort Haul termediate Reach ingle 5.0 V 3 µm ransmitter	622.08Mbps Long Haul Long Reach Single 3.3 V 1.55 µm Receiver (2R / 3R)	other other other	2488.32Mbps Intra office Short Reach eiver(2 X 10)
	sc S	CM6328-GL-ZN, SCM6328-CM6328-GL-ZW, SCM6328-UMITOMO ELECT at to make changes in this s	-gl-cw, scm63 FRIC	328-GL-DW
with these symbols before Marning	operties for appropriate use or reading this specification.	ecification uses various picture sy f the product. The symbols and d lowing this instruction may lead t	efinitions are as sho	wn below. Be sure to be familiar
▲ Caution Example of picture symbol		lowing this instruction may lead to		operty damage.
Example of picture symb	indicates prombite	on of actions. Action details are exory actions or instructions. Action		ed thereafter.
(SCM6328)	G	- 1 / 12 -		· · · · · · · · · · · · · · · · · · ·

January, 2002

1. General

Features and applications of SCM6328 are listed below.

Features

* Multi Bit Rate Operation 155Mbps ~ 2.5Gbps

* Power Supply Voltage Single +3.3V

* Compact Package Size 49.0 X 13.59 X 9.8 mm (max.)

* Electrical Interface AC for DATA and LVTTL for Signal Detect and Laser Disable

* Fiber Coupled Power -3 ~ -10dBm into SMF

* Input Power Range -3 ~ -18dBm

* Monitor Functions Laser Bias Monitor, Rear Facet Monitor

* Laser Disable Function

* Signal Detect (SD) Function

* Connector Interface LC Duplex Connector

Applications

*Telecommunications

*Data communications

>High Speed Rack-to-Rack Data Links

- > SONET/SR, SDH/IO Application
- > ATM Application
- > Shelf-to-Shelf Multi Bit Rate Application
- > Subscriber Loop
- > Metropolitan Area Network

2. Block Diagram

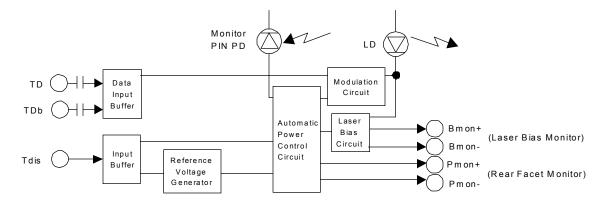


Figure 1. Block Diagram (Transmitter)

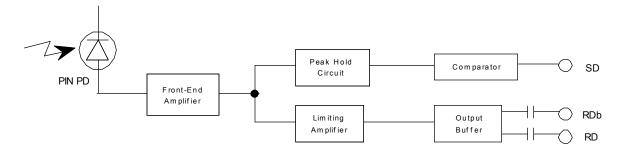


Figure 2. Block Diagram (Receiver)

∧ Caution

 \searrow Do not disassemble this product. Otherwise, failure, electrical shock, overheating or fire may occur.

Handle the lead pins carefully. Use assisting tools or prospective aids as required. A lead pin may injure skin or human body.

January, 2002

3. Package Dimension

3.1 SCM6328-GL-Z#

All dimensions are in mm.

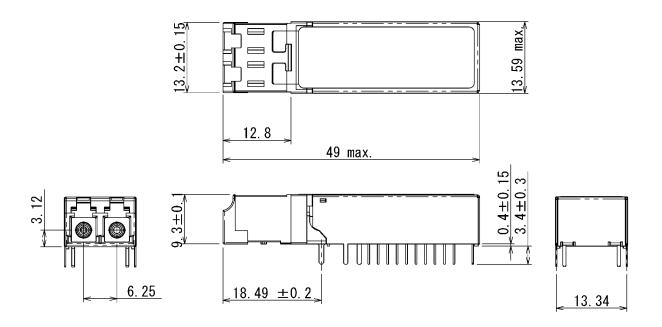


Figure 3. Outline Dimensions (SCM6328-GL-ZN)

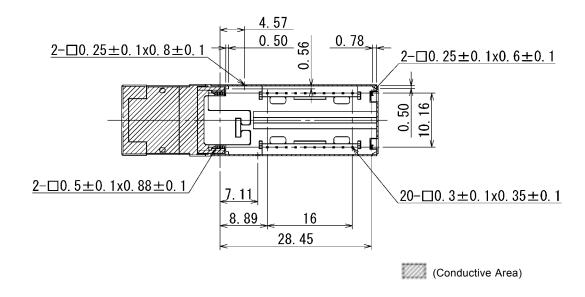
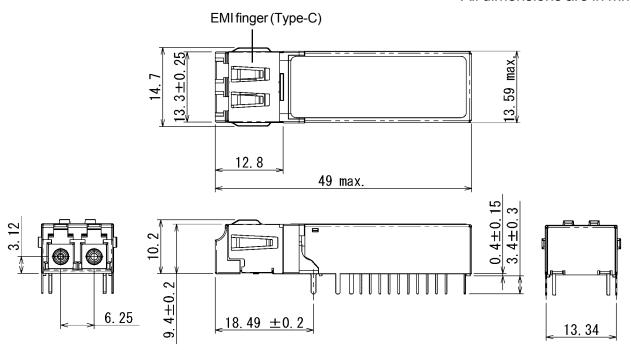



Figure 4. Bottom Side (SCM6328-GL-ZN)

January, 2002

3.2 SCM6328-GL-C#

All dimensions are in mm.

Type-C EMI finger is an option for transceivers to be used on the card-edge with the receptacle protruding through a panel opening. It has fingers on three sides to make electrical contact with the sides of the bezel opening for grounding purpose.

Figure 5. Outline Dimensions (SCM6328-GL-CN)

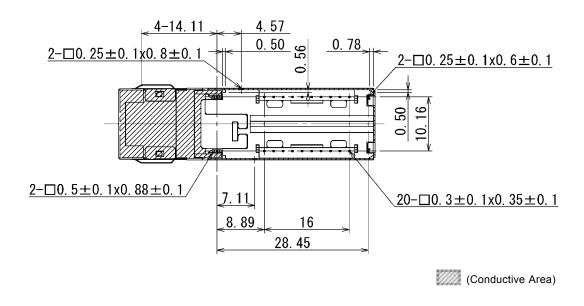
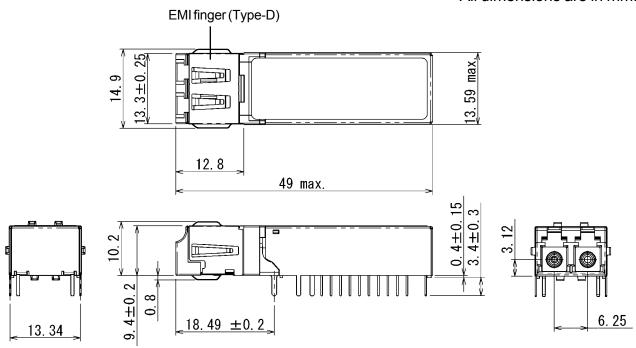



Figure 6. Bottom Side (SCM6328-GL-CN)

January, 2002

3.3 SCM6328-GL-D#

All dimensions are in mm.

Type-D EMI finger is an option for transceivers to be used on the card-edge with the receptacle protruding through a panel opening. It has fingers on four sides to make electrical contact with the sides of the bezel opening for grounding purpose.

Figure 7. Outline Dimensions (SCM6328-GL-DN)

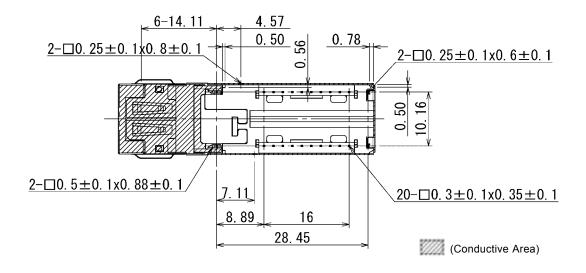
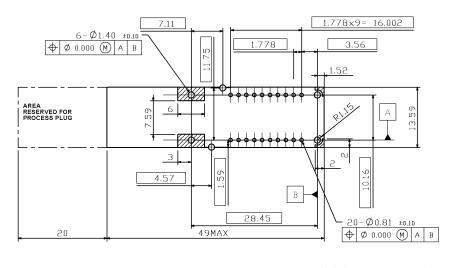



Figure 8. Bottom Side (SCM6328-GL-DN)

Specification: TS-S01D048B January, 2002

Keep-out areas reserved for housing standoffs

Figure 9. Recommended Footprint

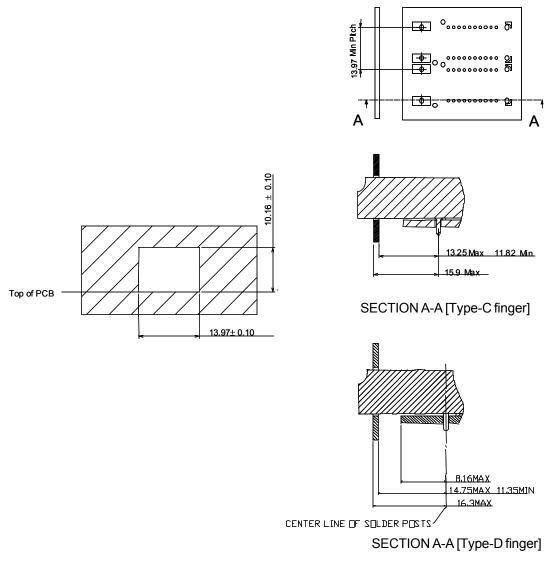
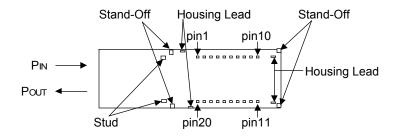


Figure 10. Recommended Bezel Design for Systems Using SFF Transceivers


January, 2002

4. Pin Assignment

No.	Symbol	I/O/P	Level	Description
1	VpdR	Р	+3.3V DC	DC Bias Supply for Receiver PIN-PD. Must be tied to Vcc.
2	VeeR	Р	GND	Power Supply (-) for Receiver.
3	VeeR	Р	GND	Power Supply (-) for Receiver.
4	NC			No User Connection.
5	NC			No User Connection.
6	VeeR	Р	GND	Power Supply (-) for Receiver.
7	VccR	Р	+3.3V DC	Power Supply (+) for Receiver.
8	SD	0	LVTTL	Signal Detect. High level indicates presence of optical input signal (Active High).
9	RDb	0	AC	Inverted Receiver Output Data. Internally AC Coupled and biased LVPECL.
10	RD	0	AC	Non-Inverted Receiver Output Data. Internally AC Coupled and biased LVPECL.
11	VccT	Р	+3.3V DC	Power Supply (+) for Transmitter.
12	VeeT	Р	GND	Power Supply (-) for Transmitter.
13	Tdis	I	LVTTL/LVCMOS	Transmitter Disable (Active High). Defaults to logic 0 (enable TX) when left open.
14	TD	_	AC	Non-Inverted Transmitter Input Data.
				Internally AC Coupled and 1000hm (Differential) terminated input.
15	TDb	I	AC	Inverted Transmitter Input Data.
				Internally AC Coupled and 1000hm (Differential) terminated input.
16	VeeT	Р	GND	Power Supply (-) for Transmitter.
17	Bmon-	0	Analog Voltage	LD Bias Current Monitor. Voltage difference between pins 17 and 18 is proportional
18	Bmon+	0		to the laser bias current.
19	Pmon-	0	Analog Voltage	Rear Facet Monitor. Transmitter output power can be monitored, in terms of rear
20	Pmon+	0		facet monitor PD current, by measuring voltage difference between pins 19 and 20.

Notes:

- 1. I/O/P stand for signal input, signal output, and DC power/bias supply, respectively.
- 2. Refer to figure 13 for details of Bmon and Pmon outputs.

- * Mounting Studs are provided for mechanical support to the circuit board.
- It is recommended that the holes in the circuit board be connected to frame ground.
- * Stand-Offs provide gap between the circuit board and the module to help escape residual water after aqueous wash.

Figure 11. Bottom View

5. Absolute Maximum Ratings

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Storage Case Temperature	9	Ts	-40	-	85	°C	1
Operating Case Temperature		Тс	-5	-	70	°C	2, 6
			-40	Ī	85		3, 6
Supply Voltage		Vcc	0.0	-	4.0	V	
PIN-PD Bias Voltage		VpdR	-	-	7.0	V	
Input Voltage		Vi	0	-	Vcc+0.5	V	4
Lead Soldering	Temperature	Ltemp			260	°C	5
	Time	Ltime			10	sec.	

Notes

- 1. No condensation allowed. 2. SCM6328-GL-#N 3. SCM6328-GL-#W; 1m/s air flow recommended 4. Tdis
- $5. \ Measured \ on \ lead \ pin \ at \ 2mm \ (0.079in.) \ off \ the \ package \ bottom \ \ 6. \ Refer \ to \ Section \ 9-2 \ for \ Tc \ definition.$

▲ Warning

Use the product with the rated voltage described in the specification. If the voltage exceeds the maximum rating, overheating or fire may occur.

Do not store the product in the area where temperature exceeds the maximum rating, where there is too much moisture or dampness, where there is acid gas or corrosive gas, or other extreme conditions. Otherwise, failure, overheating or fire may occur.

January, 2002

6. Electrical Interface

(Unless otherwise specified, Vcc = 3.135 to 3.465 V and all operating temperature shall apply.)

6-1. Transmitter side

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Supply Voltage		Vcc	3.135	3.30	3.465	V	
Supply Current		ldtx		95	200	mA	1, 2
Differential Input Voltage Swing (TD,TDb)		Vin	0.4		2.00	Vp-p	3
Signal Input Rise/Fall Time		tr / tf			120	psec	4
Tdis Input Voltage	High	Vdi	2.0		Vcc	V	5
	Low	Vei	0.0		0.8	V	ວ
Turn-on Time		ton			1	ms	6
Turn-off Time		toff			10	μs	6
LD Bias Monitor Voltage		Vbm	10		500	mV	1, 7
Rear Facet Monitor Voltage	е	Vrfm	10		200	mV	1, 7

Notes

- 1. 50% duty cycle data.
- 2. 2488.32Mbps
- 3. Refer to Figure 14.
- 4. 20 ~ 80%
- LVTTL input. Refer to Section 8, "Relation between Disable Input Voltage and Optical Output Power", for detail.
- 6. Refer to Figure 12.
- 7. The Laser Bias Monitor Current and Rear Facet Monitor Current are calculated as ratios between the corresponding voltages and current sensing resistors, 200Ω , as shown in the Figure 13.

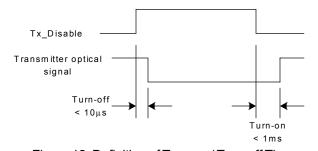
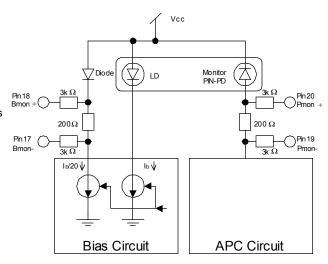
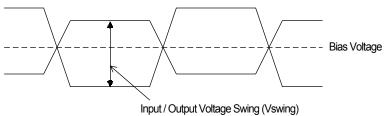



Figure 12. Definition of Turn-on / Turn-off Time

Resistance values are typical. Figure 13. Bmon / Pmon Circuit Detail


6-2. Receiver side

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Supply Voltage		Vcc	3.135	3.30	3.465	V	
Supply Current		Idrx		95	150	mA	
PIN-PD Bias Voltage		VpdR	2.40	3.3	5.25	V	
Differential Output Voltage Swing (RD,RDb)		Vout	0.80		1.90	Vp-p	
SD	High	Vsoh	2.40		Vcc	V	
Output Voltage	Low	Vsol	0.0		0.5		
Data Rise / Fall Time		tr / tf		140 / 120		psec	1
SD Assert Time		ta	2.3		100	μsec	2
SD Deassert Time		td	2.3		350	μsec	

Notes

1.20~80%

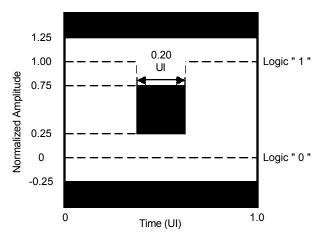
2. 2488.32Mbps, PRBS 2^23-1, NRZ

Differential Input / Output Voltage Swing (Vin / Vout) = 2 X Vswing

Figure 14. Definition of Differential Input / Output Voltage Swing

January, 2002

7. Optical Interface


(Unless otherwise specified, Vcc = 3.135 to 3.465 V and all operating temperature shall apply.)

7-1. Transmitter side

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Average Output Power	Po	-10.0		-3.0	dBm	1
Extinction Ratio	Er	8.2			dB	1
Center Wavelength	λc	1266		1360	nm	
Spectral Width (RMS)	Δλ			4	nm	
Eye Mask for Optical Output	Comp	liant with Bello	core GR-253 C	ORE and ITU	G957	
Jitter Generation	Tjpk			0.1	Ulp-p	2
	Tjrms			0.01	Ulrms	2

Note 1. Measured at 2488.32Mbps PRBS2^23-1, 50% duty cycle, NRZ, Tdis = L (Tdis = H : Max -45dBm)

Measured with a bandpass filter having a high-pass cutoff freguency of 12kHZ and a low-pass cutoff freguency of 20MHZ.

Relation between Input Signal and Optical Output Signal

and Optica	ı Gütpüt Ölç	griai			
Input	Signal	Optical Output Signal			
TD TDb					
High Low		ON (High)			
Low	High	OFF (Low)			
High	High	Undefined			
Low	Low	Undefined			

Figure 15. Optical Pulse Mask with Fourth Order
Bessel-Thomson Filter Specified in ITU-T G.957

Do not look at the laser beam projection area (e.g. end of optical connector) with naked eyes or through optical equipment while the power is supplied to this product. Otherwise, your eyes may be injured.

7-2. Receiver side

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Center Wavelength	-	1260		1580	nm	
PD Responsivity		0.7	0.95	1.1	Α/W	
Minimum Sensitivity	Pmin		-24.0	-18.0	dBm	1, 2
Overload	Pmax	-3.0			dBm	1, 2
SD Assert Level	Pa		-27.0	-18.0	dBm	2
SD Deassert Level	Pd	-40.0	-29.5		dBm	
SD Hysteresis	Phys	0.5	2.5		dB	
Reflectance	REFr		-14		dB	

Notes

8. Relation between Disable Input Voltage and Optical Output Power

Disable Input Voltage	Optical Output Power
"L"(0 ~ 0.8V)	Enabled
"H"(2.0V ~ Vcc)	Disabled (<-45dBm)

^{*}Note: Enabled for no Disable input (Pin 13 open)

^{2.} SONET OC-48c data pattern filled with a 2^23 -1 PRBS payload.

^{1.} BER=10^-10

^{2.} Measured at 2488.32Mbps, PRBS 2^23-1, NRZ

January, 2002

9. Recommended Information

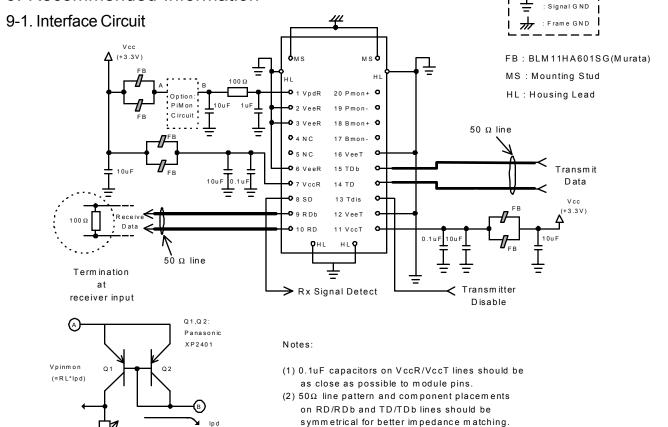
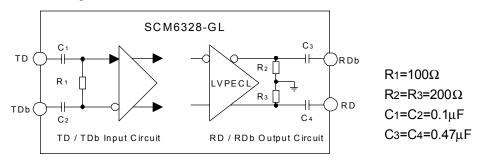



Figure 16. Recommended Interface Circuit

(3) VeeR and VeeT are not internally connected to each other.

Figure 17. Data Input / Output Circuit

9-2. Tc Definition

Ipd(A)=A*Pin(W)

A: 0.7 to 1.1 (A/W

Tc is def

2.5 KΩ typ.

PiMon Circuit

Tc is defined as surface temperature of this point.

Forced convection (minimum 1.0m/s) is recommended to ensure Tc be kept below its absolute maximum rating where the ambient temperature is close to the maximum allowed Tc.

(SCM6328)

January, 2002

10. Reliability Test Program

GR-468-CORE Issue 1, December 1998 Laser Module

HEADING	TEST	REFERENCE	CONDITIONS	SAM	1PLIN	G
				LTPD	SS	С
	Mechanical	MIL-STD-883	5 times/axis			
	Shock	Method 2002	1,500G, 0.5ms	20	11	0
Mechanical	Vibration	MIL-STD-883	Cond. A 20G, 20-2,000	20	11	0
Integrity		Method 2007	Hz, 4min/cy, 4cy/axis			
	Thermal Shock	MIL-STD-883	Delta T=100°C	20	11	0
		Method 1011	0°C to 100°C			
	Solderability	MIL-STD-883	(steam aging not	20	11	0
		Method 2003	required)			
	Accel. Aging	(R)-4-53 Section	85°C; rated power			-
	(High Temp.)	5.18	1,000 hrs. for pass/fail	-	25	
			2,000, 5,000 hrs. for info.		10	
Endurance	Low Temp.	-	min. storage T	20	11	0
	Storage		1,000 hrs. for pass/fail			
			2,000 hrs. for info.			
	Temperature	Section 5.20	-40°C to +85°C			
	Cycling		500 for pass/fail	20	11	0
			1,000 for info.	-	11	-
	Damp Heat	MIL-STD-202	85°C/85%RH 1,000hrs.	20	11	0
		Method 103 or				
		IEC-60068-2-3				
	Cyc. Moist. Res.	Sec. 5.23	-	20	11	0
Special Tests	Internal	MIL-STD-883	Max. 5,000ppm water	20	11	0
	Moisture	Method 1018	vapour			
	ESD Threshold	Section 5.22		-	6	-

SS: Sample Size

C: Maximum number of failure allowed to pass the test.

11. Laser Safety

This product uses a semiconductor laser system and is a laser class 1 product acceptable FDA, complies with 21CFR 1040. 10 and 1040.11. Also this product is a laser class 1 product acceptable IEC 60825-1.

Class 1 Laser Product

⚠ Caution

 \bigcirc

If this product is used under conditions not recommended in the specification or this product is used with unauthorized revision, classfication for laser product safety standard is invalid. Classify the product again at your responsibility and take appropriate actions.

January, 2002

12. Other Precaution

Under such a strong vibration environment as in automobile, the performance and reliability are not guaranteed.

The governmental approval is required to export this product to other countries. To dispose of these components, the appropriate procedure should be taken to prevent illegal exportation.

This module must be handled, used and disposed of according to your company's safe working practice.

Be sure to carry out correct soldering for connection to peripheral circuits in order to prevent contact failure or short-circuit. Otherwise, a strong laser beam may cause eye injury, overheating or fire.

Do not put this product or components of this product into your mouth. This product contaions material harmful to health.

Be sure to turn the power off when you touch this product connected to the printed circuit boards. Otherwise, electric shock may occur.

Dispose this product or equipment including this product properly as an industrial waste according to the regulations.

13. Ordering Information

SCM6328 - GL - $\square\square$ (LC Duplex Receptacle, Metallized)

^LOperating Case Temperature

N : $Tc=-5\sim70 \circ C$ W : $Tc=-40\sim85 \circ C$

-EMI Shield Finger Option

Z: Without Finger

C: With Type-C Finger

D: With Type-D Finger

14. For More Information

U.S.A.

ExceLight Communications, 4021 Stirrup Creek Drive, Suite 200 Durham, NC 27703

Tel. +1-919-361-1600 / Fax. +1-919-361-1619

E-mail: info@excelight.com http://www.excelight.com

Europe

Sumitomo Electric Europe Ltd., 220, Centennial Park, Elstree, Herts, WD6 3SL, United Kingdom

Tel.+44-208-953-8681 Fax.+44-208-207-5950

E-mail: photonics@sumielectric.com

http://www.sumielectric.com

Japan

Sumitomo Electric Industries, Ltd. (International Business Division), 3-12, Moto-Akasaka 1-chome Minato-ku Tokyo 107-8468

Williato-ku Tokyo To7-0400

Tel. +81-3-3423-5771 / Fax. +81-3-3423-5099

E-mail:product-info@ppd.sei.co.jp

http://www.sei.co.jp/Electro-optic/index_e.html

(SCM6328)