CMOS linear image sensor \$8377/\$8378 series Built-in timing generator and signal processing circuit; single 5 V supply operation S8377/S8378 series is a family of CMOS linear image sensors designed for image input applications. These linear image sensors operate from single 5 V supply with only start and clock pulse inputs, making them easy to use. The signal processing circuit has a charge amplifier with excellent input/output characteristics and allows signal readout at 500 kHz. The photodiodes of S8377 series have a height of 0.5 mm and are arrayed in a row at a spacing of 50 µm. The photodiodes of S8378 series also have a height of 0.5 mm but are arrayed at a spacing of 25 µm. The photodiodes are available in 3 different pixel quantities for each series: 128 (S8377-128Q), 256 (S8377-256Q, S8378-256Q), 512 (S8377-512Q, S8378-512Q) and 1024 (S8378-1024Q). Quartz glass is the standard window material ### **Features** Wide active area Pixel pitch: 50 μ m (S8377 series) 25 μ m (S8378 series) Pixel height: 0.5 mm - On-chip charge amplifier with excellent input/output characteristics - Built-in timing generator allows operation with only start and clock pulse inputs - Maximum operating clock frequency: 500 kHz - Spectral response range: 200 to 1000 nm - Single 5 V power supply operation - 8-pin small package, S8377 and S8378 series are pin compatible. ### Applications - Image input devices - Optical sensing devices ■ Absolute maximum ratings | Parameter | Symbol | Value | Unit | |---------------------------------|---------|-------------|------| | Supply voltage | Vdd | -0.3 to +10 | V | | Gain selection terminal voltage | Vg | -0.3 to +10 | V | | Clock pulse voltage | V (CLK) | -0.3 to +10 | V | | Start pulse voltage | V (ST) | -0.3 to +10 | V | | Operating temperature *1 | Topr | -20 to +60 | °C | | Storage temperature | Tstg | -20 to +80 | °C | ^{*1:} No condensation ### ■ Shape specifications | Parameter | S8377-
128Q | S8377-
256Q | S8377-
512Q | S8378-
256Q | S8378-
512Q | S8378-
1024Q | Unit | |------------------|----------------|----------------|----------------|----------------|----------------|-----------------|------| | Number of pixels | 128 | 256 | 512 | 256 | 512 | 1024 | - | | Package length | 15.8 | 22.2 | 35.0 | 15.8 | 22.2 | 35.0 | mm | | Number of pins | 8 | | | 8 | | | - | | Window material | Quartz | | | Quartz | | | - | ■ Recommended terminal voltage | Parameter | | Symbol | Min. | Тур. | Max. | Unit | |---------------------|-----------|----------|----------|------|----------|------| | Supply voltage | | Vdd | 4.75 | 5 | 5.25 | V | | Gain selection | High gain | \/a | 0 | - | 0.4 | V | | terminal voltage | Low gain | Vg | Vdd-0.25 | Vdd | Vdd+0.25 | V | | Clark and a make as | High | V (CLIC) | Vdd-0.25 | Vdd | Vdd+0.25 | V | | Clock pulse voltage | Low | V (CLK) | 0 | - | 0.4 | V | | Ctart mulas valtage | High | V/ (CT) | Vdd-0.25 | Vdd | Vdd+0.25 | V | | Start pulse voltage | Low | V (ST) | 0 | - | 0.4 | V | ### ■ Electrical characteristics | Parameter | Symbol | Min. | Тур. | Max. | Unit | |--------------------------|---------|------|------|------|------| | Clock pulse frequency *2 | f (CLK) | 0.1 | - | 500 | kHz | | Output impedance | Zo | - | 1 | - | kΩ | | Power consumption | Р | - | 25 | _ | mW | ^{*2:} Ta=25 °C, Vdd=5 V, V (CLK)=V (ST)=5 V, Vg=5 V (Low gain) ■ Electrical and optical characteristics [Ta=25 °C, Vdd=5 V, V (CLK)=V (ST)=5 V] | Parameter | | | S8377 series | | | S8378 series | | | 1.1-26 | |----------------------------------|-----------|--------|--------------|--------------|-------------|--------------|--------------|------|-------------------| | | | Symbol | Min. | Тур. | Max. | Min. | Тур. | Max. | Unit | | Spectral response range | | λ | 200 to 1000 | | 200 to 1000 | | | nm | | | Peak sensitivity wavele | ngth | λр | - | 500 | - | - | 500 | - | nm | | Photo sensitivity | High gain | S | - | 22 | - | - | 22 | - | V/lx⋅s | | | Low gain | _ | - | 4.4 | - | - | 4.4 | - | VIIX | | Dark current | | ΙD | - | 0.08 | 0.24 | - | 0.04 | 0.12 | pA | | Saturation charge | | Qsat | - | 12.5 | - | - | 6.3 | - | рC | | Feedback capacitance *3 | High gain | Cf | - | 1 | - | - | 0.5 | - | PF | | of charge amplifier | Low gain | Cī | = | 5 | - | - | 2.5 | - | PF | | Dark output voltage *4 | High gain | Vd | - | 8.0 | 24 | - | 8.0 | 24 | MV | | | Low gain | | | 1.6 | 4.8 | - | 1.6 | 4.8 | IVIV | | Saturation output | High gain | Vsat | 2.8 | 3.2 | - | 2.8 | 3.2 | - | V | | voltage | Low gain | vsai | 2.1 | 2.5 | - | 2.1 | 2.5 | ı | V | | Saturation exposure *5 | High gain | Foot | - | 145 | - | - | 145 | ı | $mlx \cdot s$ | | Saturation exposure | Low gain | Esat | - | 570 | - | - | 570 | ı | 111 <i>tx</i> · S | | | | | • | 0.1 (-128Q) | - | - | 0.2 (-256Q) | - | | | | Low gain | | ı | 0.15 (-256Q) | - | - | 0.3 (-512Q) | ı | | | Readout noise | | Nr | - | 0.2 (-512Q) | - | - | 0.4 (-1024Q) | - | mV-rms | | | | INI | - | 0.4 (-128Q) | - | - | 0.9 (-256Q) | - | IIIV-IIIIS | | | High gain | | - | 0.5 (-256Q) | - | - | 1.3 (-512Q) | - | | | | | | - | 0.8 (-512Q) | - | - | 2.1 (-1024Q) | - | | | Photo response non-uniformity *6 | | PRNU | - | - | ±3 | - | - | ±3 | % | ^{*3:} Vg=5 V (Low gain), Vg=0 V (High gain) Where X is the average output of all pixels and ΔX is the difference from the maximum or minimum output and X. ### ■ Spectral response (typical example) KMPDB0213EA ^{*4:} Storage time Ts=100 ms ^{*5:} Measured with a tungsten lamp of 2856 K. ^{*6:} Uniformity is defined under the condition that the device is uniformly illuminated by light which is 50 % of the saturation exposure level as follows: PRNU= $\Delta X/X \times 100$ (%) # ■ Timing chart * The storage time is determined by the start pulse intervals. However, since the charge storage of each pixel is carried out between the signal readout of that pixel and the next signal readout of the same pixel, the start time of charge storage differs depending on each pixel. In addition, the next start pulse cannot be input until signal readout from all pixels is completed. KMPDC0149EA | Parameter | Symbol | Min. | Тур. | Max. | Unit | |--------------------------------|--------------------|------|------|------|------| | Start pulse width | tpw (ST) | 600 | - | ı | ns | | Start pulse rise and fall time | tr (ST), tf (ST) | 0 | 20 | 30 | ns | | Clock pulse width | tpw (CLK) | 1000 | - | 1 | ns | | Clock pulse rise and fall time | tr (CLK), tf (CLK) | 0 | 20 | 30 | ns | | Clock pulse-start pulse timing | t (CLK-ST) | 400 | - | - | ns | | Video delay time 1 | tvd1 | - | 300 | - | ns | | Video delay time 2 | tvd2 | - | 150 | - | ns | # ■ Block diagram KMDDC0150EA # ■ Pin connections | _ 1 111 0011 | 110000 | | | |--------------|--------|------------------------|---| | Pin No. | Symbol | Name of pin | Function | | 1 | CLK | Clock pulse | Pulse input to operate the shift register. The readout time (data rate) equals the clock pulse frequency. | | 2 | ST | Start pulse | Starts the shift register operation. The start pulse intervals determine the signal storage time. | | 3 | Vg | Gain selection voltage | Input of 5 V selects "Low gain" and 0 V selects "High gain" | | 4 | Vdd | Supply voltage | 5 V Typ. | | 5 | NC | | Open | | 6 | Video | Video | Signal output. Positive-going output from 1 V | | 7 | EOS | End of scan | Negative-going signal output obtained at a timing following the last pixel scan. | | 8 | Vss | Ground | | KMPDC0151EA # ■ Dimensional outlines (unit: mm) # S8377-128Q, S8378-256Q * Optical distance from the outer surface of the quartz window to the chip surface # S8377-256Q, S8378-512Q * Optical distance from the outer surface of the quartz window to the chip surface KMPDA0150EB KMPDA0151EB # S8377-512Q, S8378-1024Q * Optical distance from the outer surface of the quartz window to the chip surface KMPDA0152EB # CMOS linear image sensor S8377/S8378 series ### ■ Handling precautions ### (1) Electrostatic countermeasures Although the CMOS linear image sensor is protected against static electricity, proper electrostatic countermeasures must be provided to prevent device destruction by static electricity. For example, such measures include wearing non-static gloves and clothes, and grounding the work area and tools. ### (2) Incident window If the incident window is contaminated or scratched, the output uniformity will deteriorate considerably, so care should be taken in handling the window. Avoid touching it with bare hands. The window surface should be cleaned before using the device. If dry cloth or dry cotton swab is used to rub the window surface, static electricity may be generated, and therefore this practice should be avoided. Use soft cloth, cotton swab or soft paper moistened with ethyl alcohol to wipe off dirt and foreign matter on the window surface. ### (3) UV exposure The CMOS linear image sensor is designed to suppress performance deterioration due to UV exposure. Even so, avoid unnecessary UV exposure to the device. Also, be careful not to allow UV light to strike the cemented portion between the ceramic base and the glass. ### (4) Operating and storage environments Always observe the rated temperature range when handling the device. Operating or storing the device at an excessively high temperature and humidity may cause variations in performance characteristics and must be avoided. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2002 Hamamatsu Photonics K.K. HAMAMATSU PHOTONICS K.K., Solid State Division 1126-1 Ichino-cho, Hamamatsu City, 435-8558 Japan, Telephone: (81) 053-434-3311, Fax: (81) 053-434-5184, http://www.hamamatsu.com U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O. Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 08152-3750, Fax: (49) 08152-2658 France: Hamamatsu Photonics France S.A.R.L.: 8, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10 United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire ALZ 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Norden AB: Smidesvägen 12, SE-171 41 Solan, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01 Italy: Hamamatsu Photonics Italia S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-741