

S5U13502 Dot Matrix Graphics LCD Controller

ISA Bus Interface Considerations

Document Number: X16-AN-003-06

Copyright © 1995, 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1 INTRODUCTION		RODUCTION
	1.1	Reference Material
2	16-BIT ISA BUS INTERFACE	
	1.2	PAL Equations
	1.3	Additional Discrete Logic Description
	1.4	S1D13502 Default Setup
	1	1.4.1 Configuration Options
	1	1.4.2 Register Setting
3	8-BI	T ISA BUS INTERFACE
	1.5	S1D13502 Default Setup
	1	1.5.1 Configuration Options
	1	1.5.2 Register Setting
		List of Figures
Figu	re 8:	16-Bit ISA Bus Implementation
Figu	re 9:	8-Bit ISA Bus Implementation

THIS PAGE LEFT BLANK

1 INTRODUCTION

The S1D13502 is a general purpose LCD controller capable of interfacing to a variety of microprocessors. This interface is accomplished through the use of minimal external circuitry. This application note describes the interface between the S1D13502 and the ISA Bus.

1.1 Reference Material

Refer to the S1D13502 Hardware Functional Specification (X16-SP-001-xx) for complete AC timing details.

This document makes no attempts to describe the operation of the ISA Bus, please refer to the appropriate ISA Bus documentation for complete information.

2 16-BIT ISA BUS INTERFACE

For the purpose of the example shown below, the following conditions are set by default:

- 1. Indexing I/O with addresses 0310h and 0311h (see Configuration Options)
- 2. 128Kbytes of display memory occupying \$C and \$D segments (see Configuration Options)

Note

This memory configuration will conflict with a VGA card installed on the same bus, therefore either a serial terminal or monochrome display adapter is recommended as the primary console.

This section provides the necessary equations and settings to complete the interface between the S1D13502 and the 16-bit ISA Bus.

Note

A PAL was used instead of discrete logic to reduce external component count.

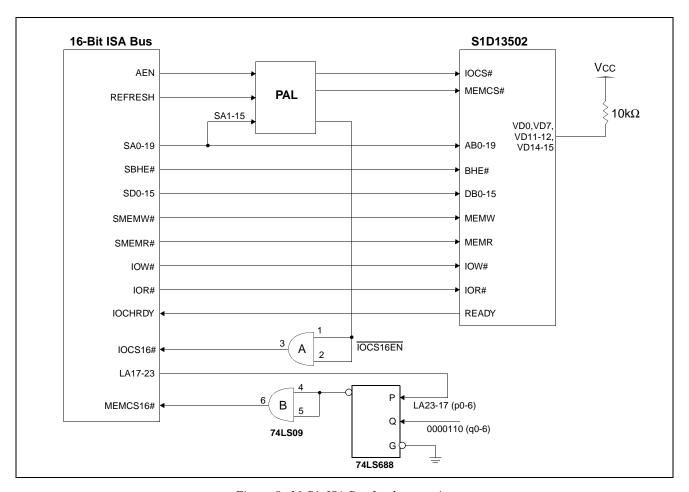


Figure 8: 16-Bit ISA Bus Implementation

1.2 PAL Equations

The PAL is programmed with the following equations:

1. As stated above, the default I/O address is from 0310h to 0311h. The S1D13502 provides internal decoding of address bits A0 to A9, therefore minimal external circuitry is necessary to provide signals IOCS# and IOCS16#

IOCS# is required by the S1D13502 to indicate a valid IO cycle. In an ISA bus environment, valid IO decoding must include addresses A15-A0. Given this example, addresses A10-15 must all be '0' and AEN must also be '0'. IOCS# = !(!AEN & !A15 & !A14 & !A13 & !A12 & !A10)

2. As the S1D13502 is capable of 16-bit IO access, the IOCS16# bus signal must be driven externally to indicate such a cycle. As stated in the ISA specification, the IOCS16# is a straight address decode without qualification.

IOCS16EN# = !(!IOCS# & A9 & A8 & !A7 & !A6 & !A5 & A4 & !A3 & !A2 & !A1)

With 128Kbytes of display memory and A17 to A19 decoded internally to S1D13502;
MEMCS# = !REFRESH

1.3 Additional Discrete Logic Description

- 1. As shown in Figure 1, the 74LS688 is configured as a memory decoder with valid addresses between 0Cxxxxh and 0Dxxxxh.
- The 74LS09 is used simply to provide the Open-Collector outputs necessary for the IOCS16# and MEMCS16# signals.

1.4 S1D13502 Default Setup

1.4.1 Configuration Options

VD15 - VD13 = 110 memory decoding for locations \$C and \$D segments
VD12 - VD4 = 110001000 I/O decoding for locations 1100010000b - 1100010001b
VD3 = 0 no byte swap of high and low bytes
VD2 = 0 ISA Bus interface, i.e. non- MC68K interface

5. VD1 = 0 indexing I/O

6. VD0 = 1 16-bit bus interface

Where 1 = pull-up with a 10K resistor; 0 = no pull-up resistor

Note

The states of these data pins are internally latched during RESET.

1.4.2 Register Setting

AUX[1] bit 1 = 0 for 16-bit memory interface (must be 16-bit with a 16-bit bus).

3 8-BIT ISA BUS INTERFACE

For the purpose of the example shown below, the following conditions are set by default:

1. Indexing I/O with partial decoding, i.e. address lines A10 to A15 are not decoded for I/O cycles

Note

Partial decoding is quite safe on most ISA Bus systems as I/O addresses above 03FFh are rarely used.

- 2. I/O addresses are xxxxxx1100000000b and xxxxxx1100000001b
- 3. 64Kbytes of display memory occupying \$A segment

Note

The 74LS00 is simply used to detect the \$B segment and invalidate the MEMCS# input.

Note

This memory configuration will conflict with a VGA card installed on the same bus, therefore either a serial terminal or monochrome display adapter is recommended as the primary console.

This section provides the necessary settings to complete the interface between the S1D13502 and the 8-bit ISA Bus. Since I/O addresses are partially decoded, there is no need to use a PAL for decoding.

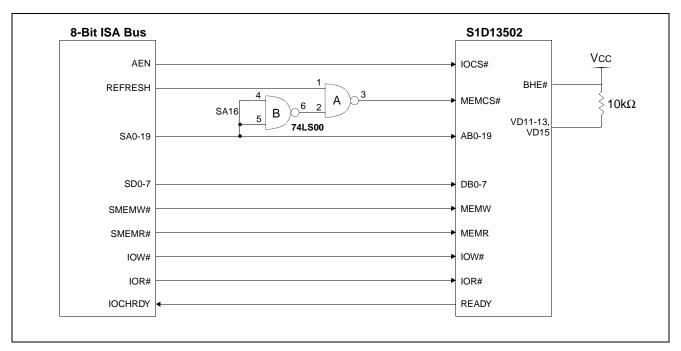


Figure 9: 8-Bit ISA Bus Implementation

1.5 S1D13502 Default Setup

1.5.1 Configuration Options

1. VD15 - VD13 = 101 memory decoding for locations \$A segment

2. VD12 - VD4 = 110000000 I/O decoding for locations 1100000000b - 1100000001b

3. VD3 = 0 No byte swap of high and low bytes

4. VD2 = 0 ISA Bus interface, i.e. non- MC68K interface

5. VD1 = 0 Indexing I/O

6. VD0 = 0 8-bit bus interface

Where 1 = pull-up with a 10K resistor; 0 = no pull-up resistor

Note

The states of these data pins are internally latched during RESET.

1.5.2 Register Setting

AUX[1] bit 1 = 0 for 16-bit memory interface or

AUX[1] bit 1 = 1 for 8-bit memory interface.

THIS PAGE LEFT BLANK