

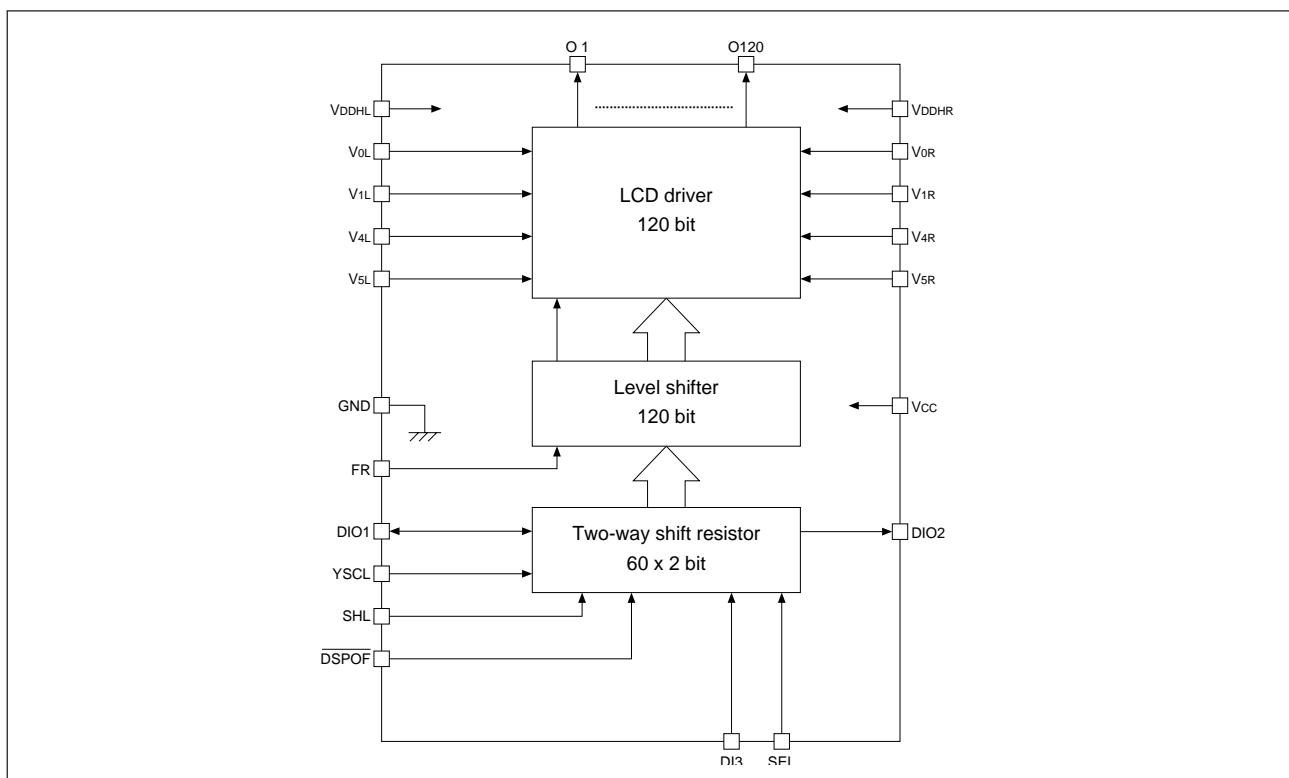
SED1753 Series

High Duty LCD Driver

- 120 Output Common Driver
- Slim TCP
- Common Output On-resistance $0.3\text{k}\Omega$ (Typ.)

■ DESCRIPTION

SED1753 is a low output resistance-common (low) driver of 120 outputs suitable to drive dot matrix LCD panels of extremely large capacities for use in a pair with SED1752 or SED1758.


Thanks to its wide LCD drive voltage range and high density picture quality and owing to its slim shape contributing to thin profile LCD panel designs, SED1753 has a very wide application range.

Since two-way selection of the output sequence is available and as the SED1753 carries top-in-the-industry level 60×2 sets of high withstand voltage and low output impedance LCD outputs, highest driver efficiency can be expected with 1/240, 1/300 or 1/480 duty panels.

■ FEATURES

- 120 LCD drive output pins (60×2 layout)
- Common output-on resistance of $0.3\text{k}\Omega$ (Typ.)
- High duty drive upto 1/480 is available (reference value)
- Pin selection in the output shift direction is feasible.
- Non-bias display off function
- Slim shape
- Off-set bias adjustment of the LCD power against VDDH or GND level is available.
- A wide LCD drive voltage variations: 8V to 42V
- Logic power supply of 2.7V to 5.5V
- Shipped status: TCP
- Meanwhile, this IC is not of a radiation resistant structure.

■ BLOCK DIAGRAM

SED1753 Series

■ PIN DESCRIPTIONS

Pin name	I/O	Function	Num. of pin																		
O1 – O120	O	Common (Low) outputs for LCD drive. They vary at the trailing edge of YSCL.	120																		
DIO1 DIO2	I/O	Scanning pulse of the 60×2 bit two-way shift resistor. They can be set to input or output by SHL signals. The output varies at the trailing edge of YSCL.	2																		
DI3	I	D13 is a scanning pulse input pin for the 60×2 configuration. When SEL = L, it connects to D13 = GND.	1																		
SEL	I	Selective input of the two-way shift register operating mode. H... 60×2 (D13 input) L.... 120	1																		
YSCL	I	Shift clock input of serial data. Scanning data are shifted at the trailing edge.	1																		
SHL	I	I/O control inputs for selection of the shift direction and I/O control inputs for the DIO terminals.	1																		
		<table border="1"> <thead> <tr> <th>SHL</th><th colspan="3">O Output shift direction</th><th>DIO1</th><th>DIO2</th></tr> </thead> <tbody> <tr> <td>H</td><td>1</td><td>→</td><td>60 61</td><td>→</td><td>120</td></tr> <tr> <td>L</td><td>120</td><td>→</td><td>61 60</td><td>→</td><td>1</td></tr> </tbody> </table>	SHL	O Output shift direction			DIO1	DIO2	H	1	→	60 61	→	120	L	120	→	61 60	→	1	
SHL	O Output shift direction			DIO1	DIO2																
H	1	→	60 61	→	120																
L	120	→	61 60	→	1																
DSPOF	I	Blanking control inputs of LCD indications. By "L" input, all the common outputs become V5 level.	1																		
FR	I	For inputs of AC LCD-drive-outputs.	1																		
GND, VCC	Power supply	Logic power supply. GND: 0V and Vcc: 2.7V to 5.5V	2																		
V0L, V1L, V4L V5L, VDDHL V0R, V1R, V4R V5R, VDDHR	Power supply	LCD drive power supply. GND : 0 V, VDDH : 8V to 42 V VDDH \geq V0 \geq V1 : 8/9 VDDH *1 1/9 VDDH \geq V4 \geq V5 \geq GND	10																		

*1 Always connect the pairs of VDDH and V0 to V5 to respective LCD power supply.

Total: 140

The voltage range given above for the LCD drive circuit power supply is a recommended range.

■ BLOCK FUNCTION

● Shift register

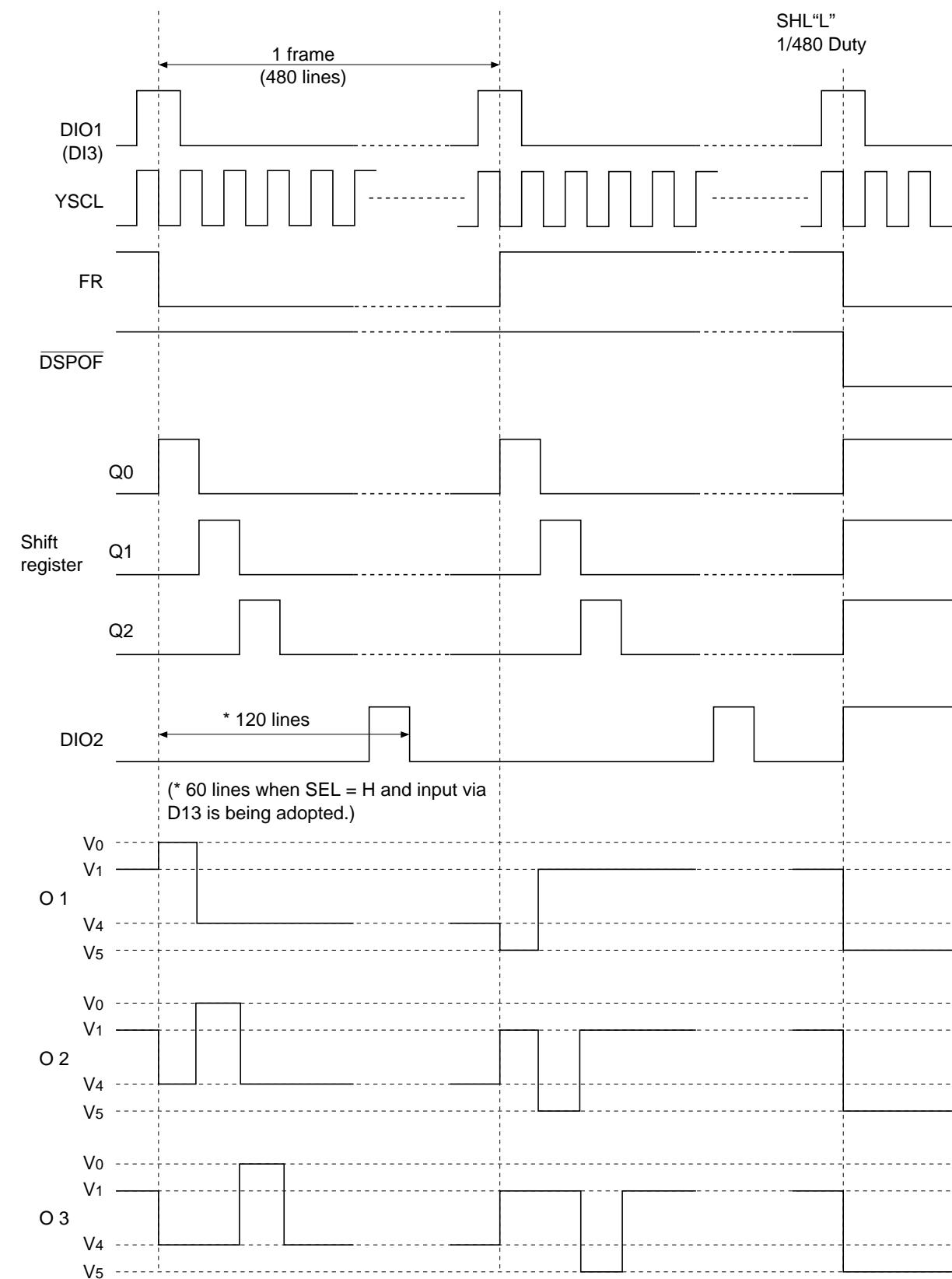
This is a two-way shift register for transference of common data.

The shift register is of a 60×2 bit configuration and selection between 60×2 bits or 120 bits is available changing the SEL status.

When 60×2 bit configuration is selected, the input to the later stage 60 bit shift register should be via D13.

● Level Shifter

This is a voltage level interface circuit to shift the voltage level of signals from the logic level to the LCD drive level.

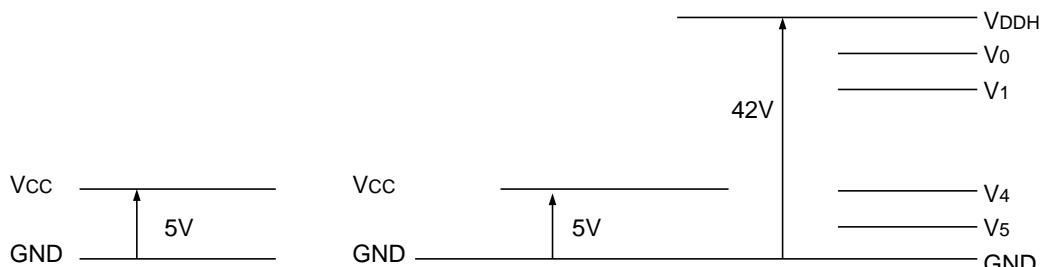

● LCD Driver

It outputs LCD drive voltage.

Given below are the relations among display blanking signals, shift register content, AC signal FR and common output voltage.

DSPOF	Shift Register Content	FR	ON Output Voltage	
H	H	H	V ₅	(Selecting Level)
		L	V ₀	
	L	H	V ₁	(Nonselecting Level)
		L	V ₄	
L	–	–	V ₅	–

● Timing Chart


SED1753 Series

■ ABSOLUTE MAXIMUM RATINGS

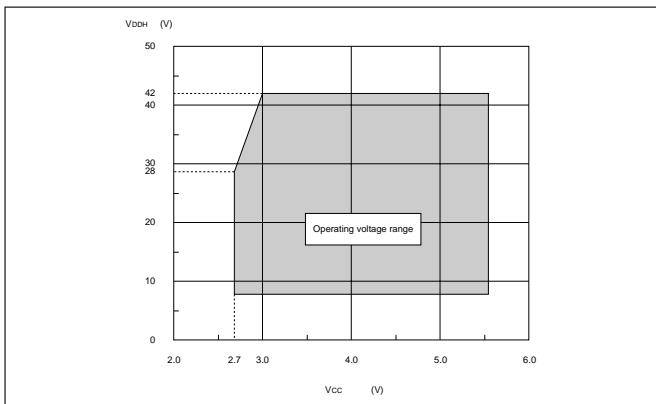
Rating item	Symbol	Rating Value	Unit
Supply voltage (1)	Vcc	-0.3 to +7.0	V
Supply voltage (2)	VDDH	-0.3 to +45.0	V
Supply voltage (3)	V0, V1, V4, V5	GND -0.3 to VDDH +0.3	V
Input voltage	VI	GND -0.3 to Vcc +0.3	V
Output voltage	VO	GND -0.3 to Vcc +0.3	V
DIO output current	Io	20	mA
Operating temperature range	Topr	-40 to +85	°C
Chip storage temperature range	Tstg 1	-65 to +150	°C
TCP storage temperature range	Tstg 2	-55 to +125	°C

(Note 1) All the above voltage indications are based on GND = 0V.

(Note 2) V0, V1, V4 and V5 voltages must always be in the order of $VDDH \geq V0 \geq V1 \geq V4 \geq V5 \geq GND$

(Note 3) If the logic power is made floated or becomes $Vcc = 2.6V$ or less while LCD drive power is being applied, the LSI may be permanently damaged and avoid these situations. Pay particular attention when determining the power supply sequence for turning on and off of the system power.

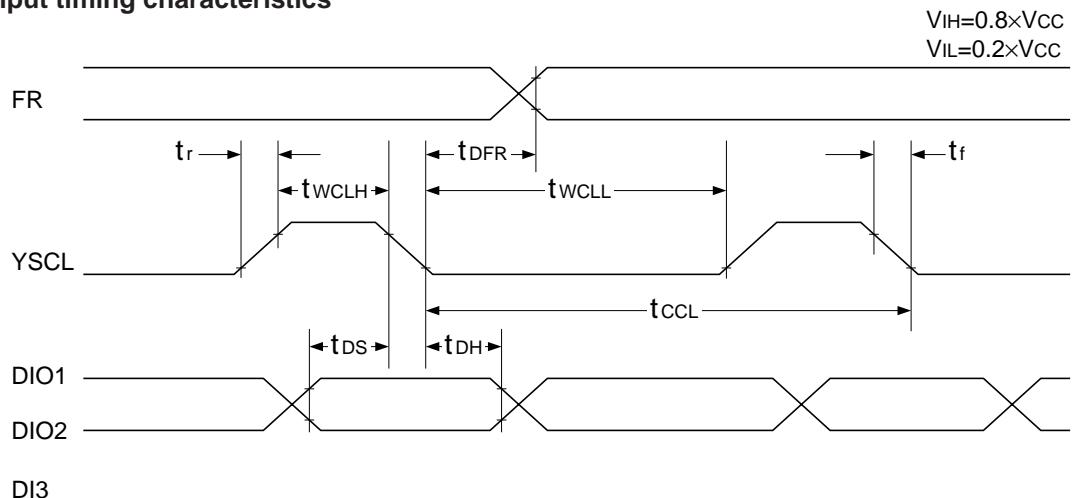
■ ELECTRICAL CHARACTERISTICS


● DC Characteristics

(Unless otherwise designated: GND = V5 = 0V, Vcc = 5.0V ±10%, Ta = -40 to 85°C)

Characteristic	Symbol	Condition		Pin	Min.	Typ.	Max.	Unit
Supply voltage (1)	Vcc	—		Vcc	2.7	5.0	5.5	V
Recommended working voltage	VDDH	Vcc = 2.7 to 5.5 V		VDDHL, VDDHR	14.0	—	40.0	V
Workable voltage	VDDH	Function only			8.0	—	42.0	V
Supply voltage (2)	V1	Recommended value		V1L, V1R	8/9•VDDH	—	VDDH	V
Supply voltage (3)	V4	Recommended value		V4L, V4R	GND	—	1/9•VDDH	V
High level input voltage	VIH	Vcc = 2.7 to 5.5V		DIO1,DIO2,FR YSCL, SHL,DI3, DSPOF, SEL	0.8Vcc	—	—	V
Low level input voltage	VIL				—	—	0.2•Vcc	V
High level output voltage	VOH	Vcc= 2.7 to 5.5V	I _{OH} = -0.3mA	DIO1,DIO2	Vcc-0.4	—	—	V
Low level output voltage	VOL		I _{OL} = 0.3mA		—	—	GND+0.4	V
Input leak current	I _{LI}	GND ≤ V _{IN} ≤ Vcc		YSCL, SHL, DI3 DSPOF, FR, SEL	—	—	2.0	μA
I/O leak current	I _{LI/O}	GND ≤ V _{IN} ≤ Vcc		DIO1,DIO2	—	—	5.0	μA
Rest current	I _{GND}	VDDH = 14.0 to 42.0V VIH = Vcc, VIL = GND		GND	—	—	25	μA
Output resistance	R _{COM}	△V _{ON} =0.5V Ta=25°C	VDDH=+36.0V, 1/24	O1-O120	—	0.29	0.48	KΩ
			VDDH=+26.0V, 1/20		—	0.3	0.5	
In-chip deviation of output resistance	△R _{COM}	VDDH=+36.0V, 1/24 bias			—	—	50	Ω
Mean working current consumption (1)	I _{CC}	Vcc = +5.0V, VIH = Vcc VIL = GND, f _{YSCL} = 33.6kHz f _{FR} = 70Hz, Input data: 1/480 Ta = 25°C No load Vcc = +3.0V Other conditions are the same as those when Vcc = 5V		Vcc	—	TBD	TBD	μA
Mean working current consumption (2)	I _{DDH}	VDDH=V0=30.0V, V1=28.0V V4=2.0V, V5=0.0V, Vcc=5.0V Other conditions are the same as those when I _{CC} column.		VDDHL VDDHR	—	TBD	TBD	
Input terminal capacity	C _I	Freq. = 1 MHz Ta = 25°C Independent chips	YSCL, SHL, DSPOF, FR, DI3, SEL	DIO1, DIO2	—	—	8	pF
I/O terminal capacity	C _{I/O}		DIO1, DIO2	—	—	15	pF	

● Operating voltage range Vcc - VDDH

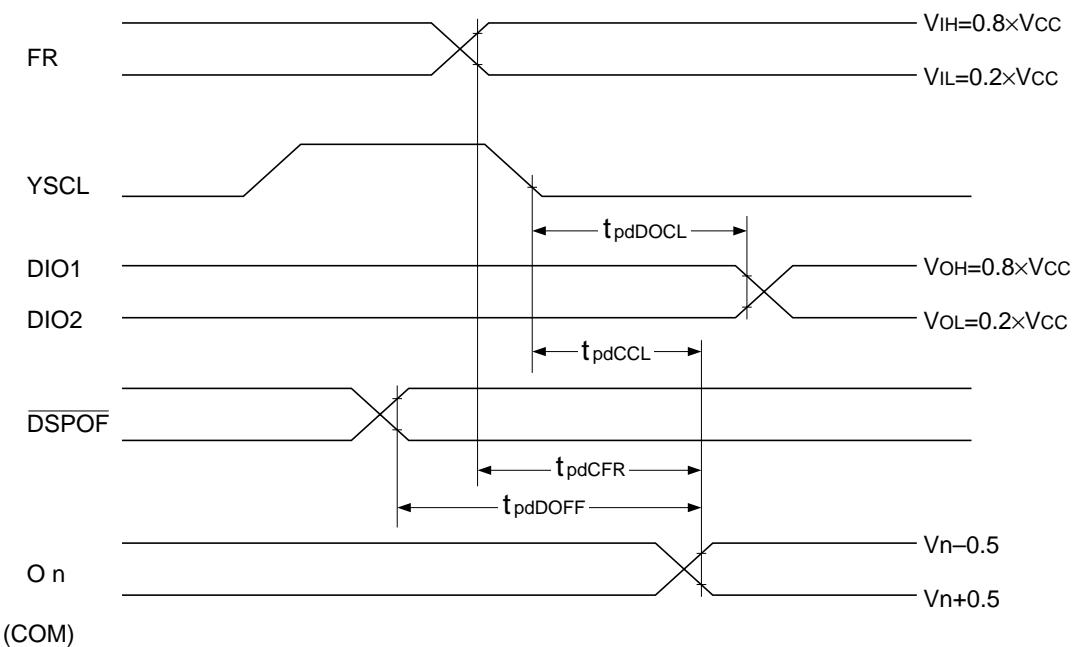

Set up the VDDH voltage within the Vcc - VDDH operating voltage range given below:

SED1753 Series

● AC Characteristics

○ Input timing characteristics

($V_{CC} = 5.0V \pm 10\%$, $T_a = -40$ to $+85^\circ C$)


Characteristic	Symbol	Condition	Min.	Max.	Unit
YSCL cycle	t_{CCL}	—	400	—	nS
YSCL "H" pulse duration	t_{WCLH}	—	60	—	nS
YSCL "L" pulse duration	t_{WCLL}	—	330	—	nS
Data setup time	t_{DS}	—	50	—	nS
Data hold time	t_{DH}	—	40	—	nS
Input signal rise time	t_r	—	—	50	nS
Input signal fall time	t_f	—	—	50	nS

($V_{CC} = 2.7V$ to $4.5V$, $T_a = -40$ to $+85^\circ C$)

Characteristic	Symbol	Condition	Min.	Max.	Unit
YSCL cycle	t_{CCL}	—	800	—	nS
YSCL "H" pulse duration	t_{WCLH}	—	80	—	nS
YSCL "L" pulse duration	t_{WCLL}	—	660	—	nS
Data setup time	t_{DS}	—	90	—	nS
Data hold time	t_{DH}	—	70	—	nS
Input signal rise time	t_r	—	—	50	nS
Input signal fall time	t_f	—	—	50	nS

*1 t_{DFR} : The changing point of FR signals and falling timing of LP signals should basically be set up within the range where the "On" output waveform does not become abnormal at "Ons".

○ Output timing characteristics

($V_{CC} = 5.0V \pm 10\%$, $V_{DDH} = 14.0$ to $42.0V$, $T_a = -40$ to $+85^{\circ}C$)

Characteristic	Symbol	Condition	Min.	Max.	Unit
(YSCL fall \rightarrow DIO) Delay time	t_{pdDOCL}	$CL = 15pF$	—	100	nS
(YSCL fall \rightarrow On output) Delay time	t_{pdCCL}	$CL = 100pF$	—	200	nS
(DSPOF \rightarrow On output) Delay time	$t_{pdCDOFF}$		—	300	nS
(FR \rightarrow On output) Delay time	t_{pdCFR}				

($V_{CC} = 2.7V$ to $4.5V$, $V_{DDH} = 14.0$ to $28.0V$, $T_a = -40$ to $+85^{\circ}C$)

Characteristic	Symbol	Condition	Min.	Max.	Unit
(YSCL fall \rightarrow DIO) Delay time	t_{pdDOCL}	$CL = 15pF$	—	200	nS
(YSCL fall \rightarrow On output) Delay time	t_{pdCCL}	$CL = 100pF$	—	400	nS
(DSPOF \rightarrow On output) Delay time	$t_{pdCDOFF}$		—	600	nS
(FR \rightarrow On output) Delay time	t_{pdCFR}				

SED1753 Series

■ LCD driving power

● Setting up of the respective voltage levels

To set up respective voltage levels for LCD drive, it is best to use the voltage follower by the operation amplifier dividing potentials between VDDH and GND by resistors.

In preparation for use of the operation amplifier, it is suggested to separate the maximum potential levels V0 and VDDH and minimum potential levels V5 and GND for LCD drive to separate pins.

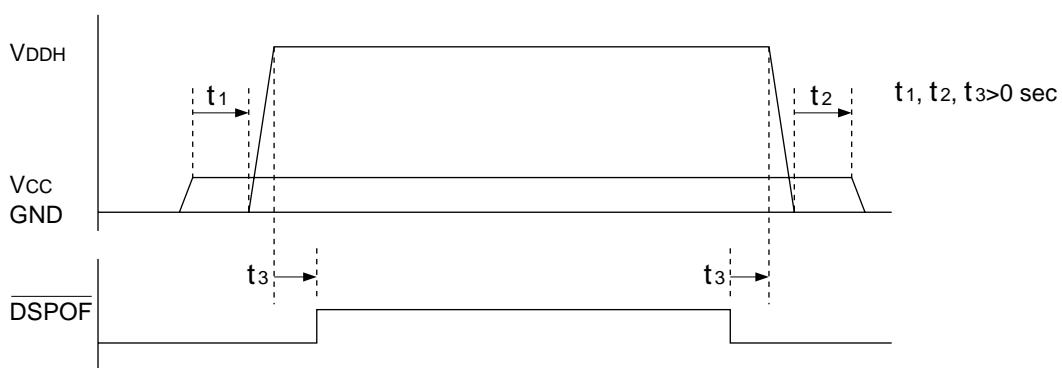
Normally, connect V0 and VDDH, V5 and GND to drive V1 and V4 by the voltage follower. When driving V0 by the voltage follower, maintain the potential difference between VDDH and V0 within the range of 0V to 2.5V, since the efficiency of the LCD driving output driver deteriorates if the potential of the V0 rises higher than the potential of the VDDH to expand the potential difference.

When series resistance exists in the power lines to the GND and VDDH, GND and VDDH voltage drops occur at the power supply end of the LSI by the effect of I_{DDH} when the signal is being changed, thus making it impossible to maintain the prescribed order of the intermediate potentials of the LCD ($VDDH \geq V0 \geq V1 \geq V4 \geq V5 \geq GND$) leading to breakage of the LSI.

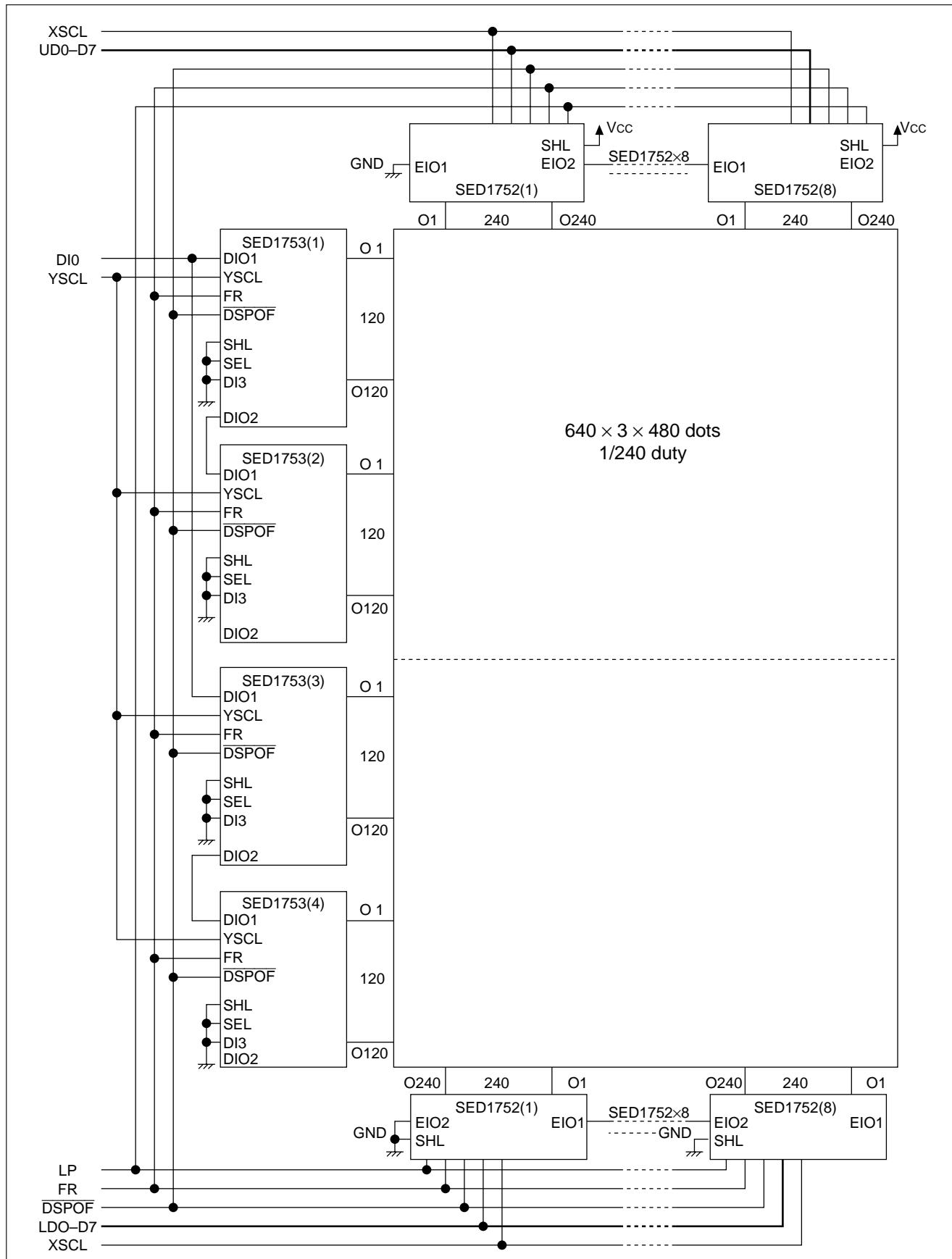
Therefore, when inserting protective resistors, it becomes necessary to stabilize the potential by use of appropriate capacitance.

● Regarding stabilization of the power supply

To prevent influence of noise occurring from passages of power lines and signal lines on the package substrate, it becomes necessary to insert bypass capacitors between power supplies (GND - Vcc, GND - VDDH) to stabilize the potential as occasion calls.

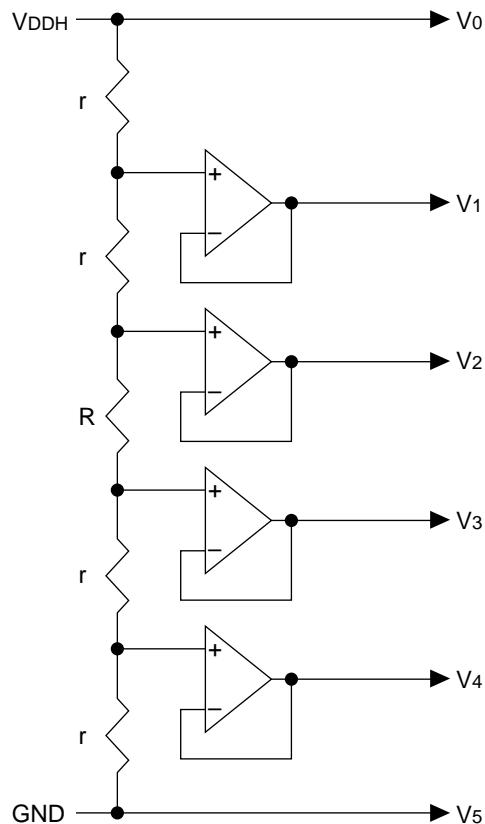

● Precautions when setting up power on-off sequences.

Since the LCD driving voltage is high with this LSI, when logic power is floated or when high LCD drive voltage is applied with the Vccs remaining lower than 2.6V, or when LCD drive signals are output before the LCD drive voltage is stabilized, excess current flows through to possibly damage the LSI.


Therefore, it is suggested that the LCD drive output potentials be maintained at the V5 level until the LCD drive voltage gets stabilized, using the display-off (DSPOF) function

Maintain the following sequence when turning the power on and off.

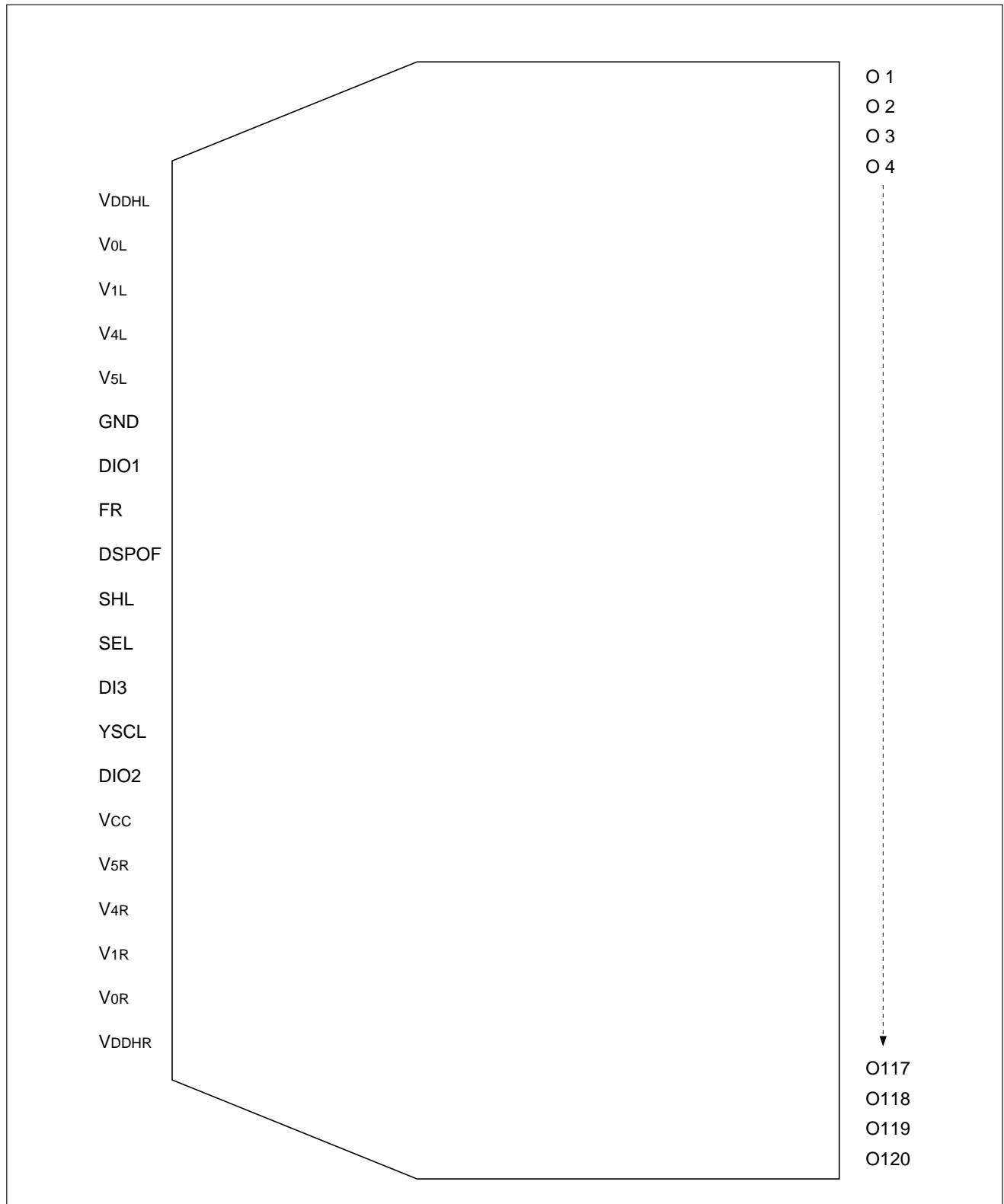
When turning the power on: Logic circuit "on" \rightarrow LCD drive circuit "on", or both circuits "on" simultaneously.
When turning the power off: LCD drive circuit "off" \rightarrow Logic circuit "off", or both circuits "off" simultaneously.



■ LCD PANEL CONNECTION EXAMPLE

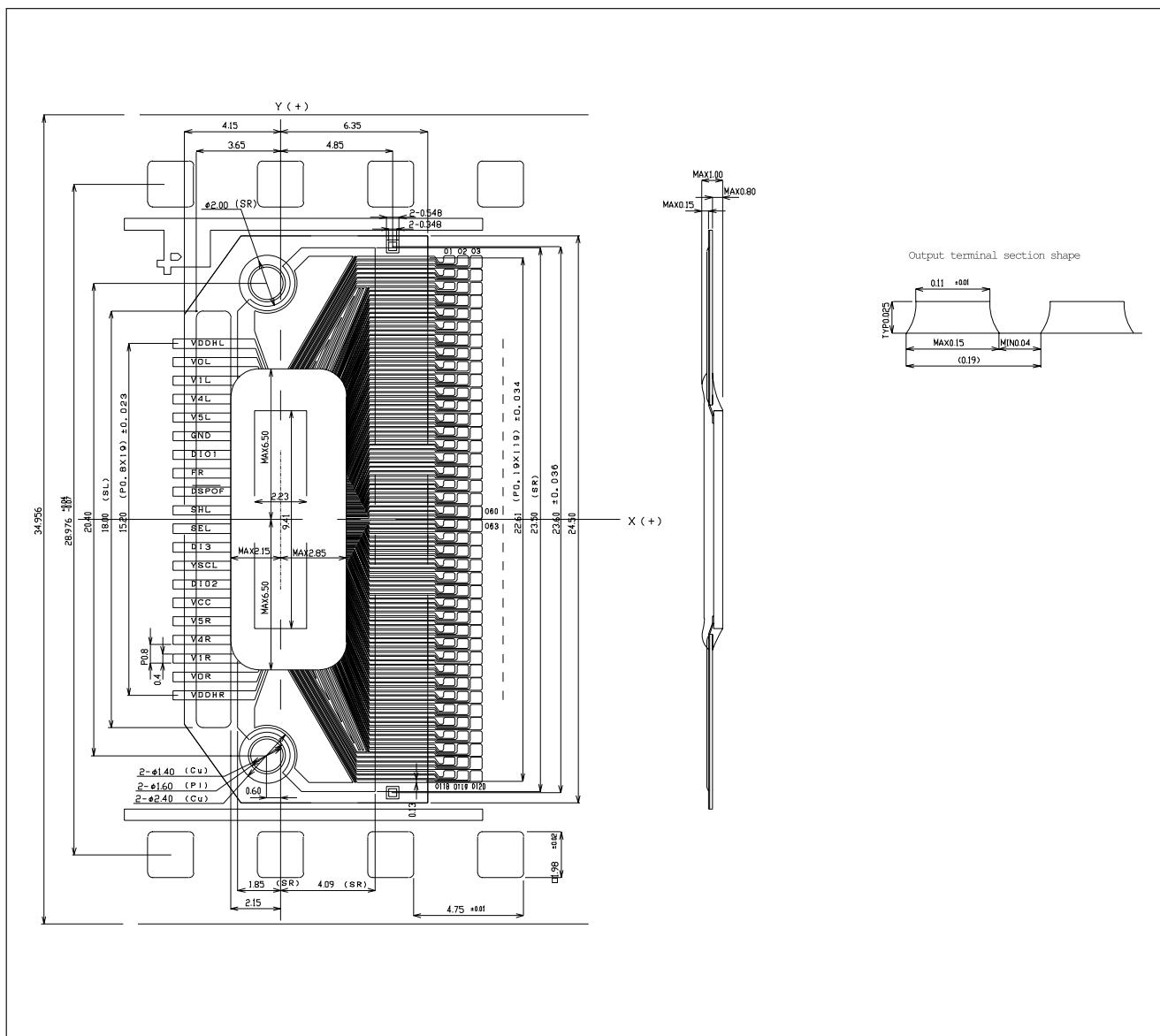
SED1753 Series

- An example of LCD drive power circuit



- It is necessary to provide smoothing capacitance to appropriate places on the LCD module for stabilization of LCD driving power supplies (V0 through V5).
- V0, V1, V4 and V5 supply power to the SED1753 and V0, V2, V3 and V5 supply power to the 7SED1752.
- Logic circuit voltage Vcc is supplied to each IC.
- As a noise prevention method, it is necessary to provide bypass capacitors at appropriate places between GND and Vcc and between GND and VDDH to stabilize the supply voltage. Also, it is suggested to separate the high withstand voltage power supply (GNDR and GNDL) and logic power supply (GND) to different circuits.

■ SED1753T TCP PIN LAYOUT


Remark) This layout drawing is not meant to specify the external shape and dimensions of the TCP.

For reference

SED1753 Series

■ TCP EXTERNAL DIMENSIONS

SED1753 Series

NOTICE:

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

IBM is registered trademark of International Business Machines Corporation, U.S.A.

© Seiko Epson Corporation 1994 All right reserved.

SEIKO EPSON CORPORATION DEVICE MARKETING DEPARTMENT

IC Marketing & Engineering Group
421-8 Hino, Hino-shi, Tokyo 191, JAPAN
Phone: 0425-87-5816 FAX: 0425-87-5624

International Marketing Department I (Europe, U.S.A.)
421-8 Hino, Hino-shi, Tokyo 191, JAPAN
Phone: 0425-87-5812 FAX: 0425-87-5564

International Marketing Department II (ASIA)
421-8 Hino, Hino-shi, Tokyo 191, JAPAN
Phone: 0425-87-5814 FAX: 0425-87-5110

First issue December, 1994 ©
Printed in Japan