

Product Description

Stanford Microdevices' SGA-6425 is a high performance cascadeable 50-ohm amplifier housed in an low-cost surface-mountable SOT23-5 plastic package. Designed for operation at voltages as low as 5.0V, this RFIC uses the latest Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) process featuring 1 micron emitters with F_T up to 50 GHz.

This circuit uses a darlington pair topology with resistive feedback for broadband performance as well as stability over its entire temperature range. Internally matched to 50 ohm impedance, the SGA-6425 requires only DC blocking and bypass capacitors for external components.

SGA-6425

DC-2500 MHz Silicon Germanium HBT Cascadeable Gain Block

Product Features

- DC-2500 MHz Operation
- Single Voltage Supply
- High Output Intercept: +34.1 dBm typ. at 850 MHz
- High Output Power: 20.7 dBm typ. at 850 MHz
- High Gain: 19.2 dB typ. at 850 MHz
- Internally Matched to 50 Ohms Input & Output

Applications

- Oscillator Amplifiers
- Final PA for Low Power Applications
- IF/ RF Buffer Amplifier
- Drivers for CATV Amplifiers

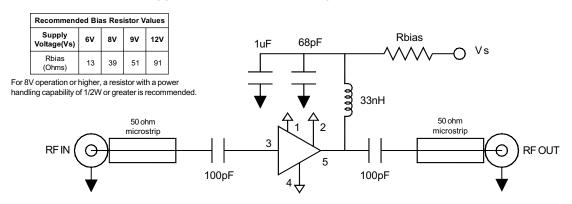
Symbol	Parameters: Test Conditions: Z0 = 50 Ohms, Id = 75 mA, T = 25°C		Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	f = 850 MHz f = 1950 MHz	dBm dBm		20.7 18.8	
S ₂₁	Small Signal Gain	f = DC - 1000 MHz f = 1000 - 2000 MHz f = 2000 - 2500 MHz	dB dB dB	18.1	20.1 17.2 15.2	
S ₁₂	Reverse Isolation	f = DC - 1000 MHz f = 1000 - 2000 MHz f = 2000 - 2500 MHz	dB dB dB		23.8 22.2 20.1	
S ₁₁	Input VSWR	f = DC - 2500 MHz	-		1.2:1	
S ₂₂	Output VSWR	f = DC - 2500 MHz	-		1.2:1	
	Third Order Intercept Point Power out per tone = 0 dBm	f = 850 MHz f = 1950 MHz	dBm dBm		34.1 32.4	
NF	Noise Figure	f = DC - 1000 MHz f = 1000 - 2500 MHz	dB dB		3.3 3.5	
T _D	Group Delay	f = 1000 MHz	pS		85	
V _D	Device Voltage		V	4.6	5.0	5.4

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.

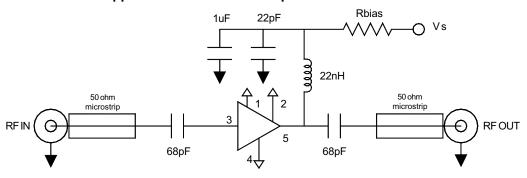
Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patient rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

Copyright 1999 Stanford Microdevices. Inc., All worldwide rights reserved.

Phone: (800) SMI-MMIC

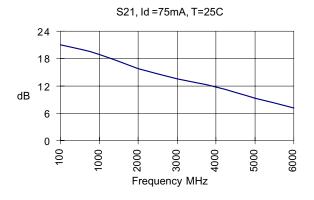


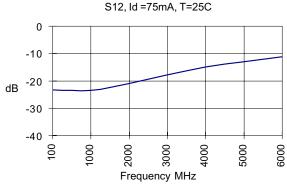
	Specification			Test	
Parameter	Min	Тур.	Max.	Unit	Condition
Device Bias					T= 25C
Operating Voltage		5.0		V	
Operating Current		75.0		mA	
500 MHz					T= 25C
Gain		20.3		dB	
Noise Figure		3.3		dB	
Output IP3		33.7		dBm	
Output P1dB		20.4		dBm	
Input Return Loss		26.5		dB	
Isolation		23.9		dB	
850 MHz					T= 25C
Gain		19.2		dB	
Noise Figure		3.3		dB	
Output IP3		34.1		dBm	
Output P1dB		20.7		dBm	
Input Return Loss		27.5		dB	
Isolation		23.7		dB	
1950 MHz					T= 25C
Gain		16.2		dB	
Noise Figure		3.3		dB	
Output IP3		32.4		dBm	
Output P1dB		18.8		dBm	
Input Return Loss		23.3		dB	
Isolation		21.5		dB	
2400 MHz					T= 25C
Gain		15.0		dB	
Noise Figure		3.6		dB	
Output IP3		30.6		dBm	
Output P1dB		17.5		dBm	
Input Return Loss		18.8		dB	
Isolation		20.2		dB	



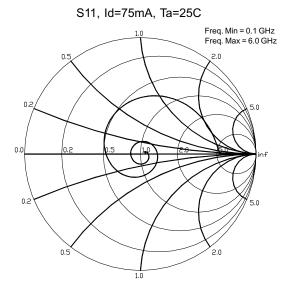
Pin #	Function	Description	Device Schematic
1	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.	
2	GND	Same as Pin 1	
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
4	GND	Same as Pin 1	\
5	RF OUT/Vcc	RF output and bias pin. Bias should be supplied to this pin through an external series resistor and RF choke inductor. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see application schematic). The supply side of the bias network should be well bypassed.	

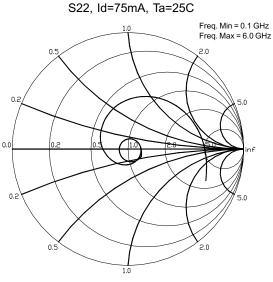
Application Schematic for Operation at 900 MHz

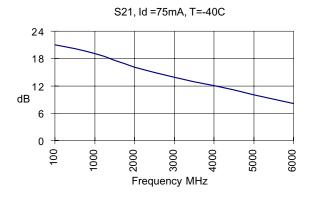


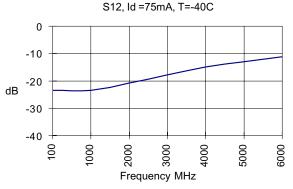

Application Schematic for Operation at 1900 MHz

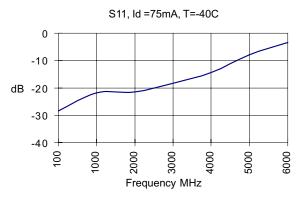


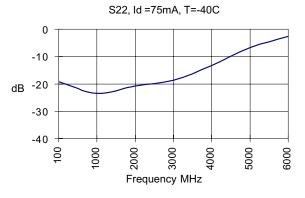


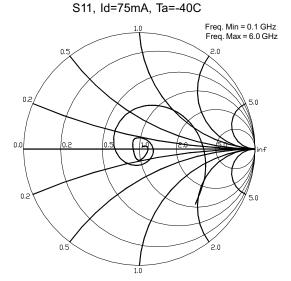


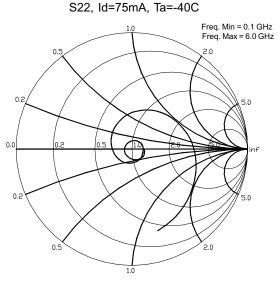


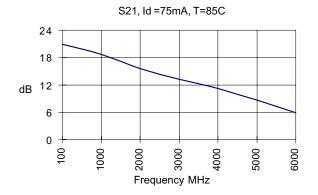


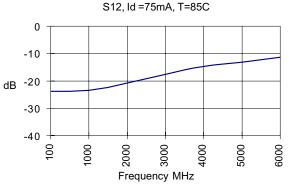


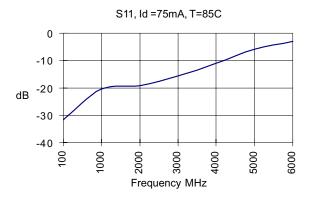


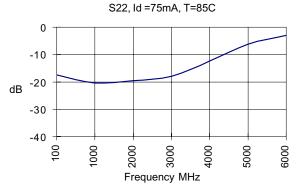


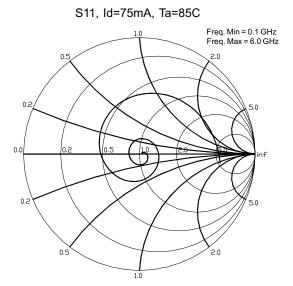


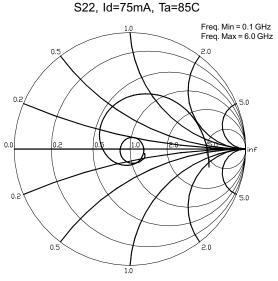












Devices/Reel

3000

SGA-6425 DC-1800 MHz 5.0V SiGe Amplifier

Part Number Ordering Information

Reel Size

Part Number

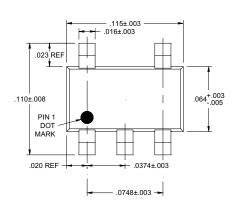
SGA-6425

Absolute Maximum Ratings

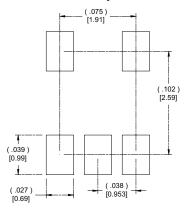
Parameter	Value	Unit
Supply Current	150	mA
Device Voltage	6.0	V
Operating Temperature	-40 to +85	С
Maximum Input Power	+16	dBm
Storage Temperature Range	-40 to +150	С
Operating Junction Temperature	+150	С

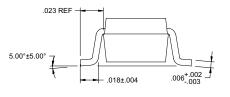
Caution:

Operation of this device above any one of these parameters may cause permanent damage. Appropriate precautions in handling, packaging and testing devices must be observed.


Thermal Resistance (Lead-Junction): 100° C/W

Package Marking


Pin Designation		
1	GND	
2	GND	
3	RF IN	
4	GND	
5	RF OUT/VCC	


Package Dimensions

.043±.008 .047±.010

Pad Layout

