CHARGE PUMP REGULATOR WITH SELECTABLE 5.0V/4.5V OUTPUT

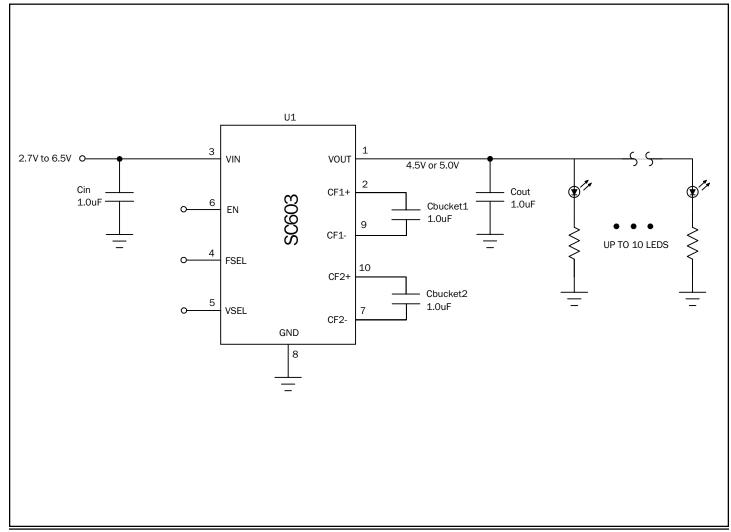
POWER MANAGEMENT

Description

The SC603 is a versatile charge pump designed for use in battery operated power supply applications. The wide input range is matched for Li-lon battery applications. Only two tiny ceramic bucket capacitors are required, and the inductorless implementation provides a reduced-EMI solution. Patented low noise mode switching circuitry and constant output current allow the use of extremely small input and output capacitors.

The SC603 charge pump regulator can be used for applications that require up to 200mA of output current with a 4.5V output. The 5.0V output version provides up to 160mA of output current.

Compared to a switch mode regulator, the SC603 offers a solution with less cost, area, noise and complexity.


<u>Features</u>

- ◆ Small size MLP Micro 10 lead 3x3mm package
- ◆ Selectable 5.0V or 4.5V output voltage
- ◆ 200mA available with 4.5V output
- ◆ 160mA available with 5.0V output
- ◆ Short circuit protection
- Soft Start function
- ♦ Shutdown current <2µA</p>
- Selectable fixed frequencies of 262kHz and 650kHz
- Low ripple
- ◆ Regulated to +/-5%
- Ease of use

Applications

- ♦ Cellular phones
- LED photo flash for cellular phones
- LED backlighting
- PDA power supplies
- Portable electronics
- Electronic books
- Wireless web appliances

Typical Application Circuit

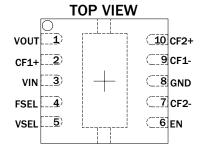
Absolute Maximum Ratings

Parameter	Symbol	Maximum	Units
Supply Voltage	V _{IN}	-0.3 to +7.0	V
Output Voltage	V _{out}	-0.3 to +7.0	V
V _{OUT} Short Circuit Duration	SC	Indefinite	
Thermal Resistance, Junction To Ambient (JESD51 Standard Method)	$\theta_{_{ m JA}}$	31	°C/W
Operating Ambient	T _A	-40 to +85	°C
Junction Temperature Range	T _{JC}	-40 to +150	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C
Lead Temperature	T _{LEAD}	300	°C

Electrical Characteristics

Unless specified: T_A = -40 °C to 85 °C, Cin=Cbucket = 1.0 μ F (ESR = 0.1 Ω), Cout=1.0 μ F (ESR = 0.1 Ω), Vin= 2.85V to 5.5V

Parameter	Symbol	Conditions	MIN	TYP	MAX	Units
Input Supply Voltage	V _{IN}		2.5		6.5	V
Quiescent Current	I _Q	Freq. = 262 kHz, $I_{OUT} = OmA$, $V_{IN} = 3.7$ V		1.0	1.4	mA
		Freq. =650kHz, $I_{OUT} = OmA$, $V_{IN} = 3.7V$		2.1	2.8	mA
		Enable = 0			2	μΑ
Output Voltage	V _{OUT}	Static Load Regulation with VSEL = 1	4.75	5.0	5.25	V
		Static Load Regulation with VSEL = 0	4.275	4.5	4.725	V
Output Current	I _{OUT}	VSEL = 1, 3.2V < V _{IN} < 5.5V			150	mA
		VSEL = 1, $3.2V < V_{IN} < 5.5V$ $T_A = -40^{\circ}C \text{ to } 70^{\circ}C$			160	mA
		VSEL = 0, 3.2V < V _{IN} < 5.5V			190	mA
		VSEL = 0, $3.2V < V_{IN} < 5.5V$ $T_A = -40^{\circ}C \text{ to } 70^{\circ}C$			200	mA
		VSEL=1, 2.85V < V _{IN} < 5.5V			60	mA
		VSEL=0, 2.85V < V _{IN} < 5.5V			120	mA
Pump Frequency	f _{PUMP}	Enable = 1, FSEL= 0	-15%	262	+15%	kHz
		Enable = 1, FSEL = 1	-20%	650	+20%	kHz
Frequency Mode Transition Time	T _{LOCK}	Transition time from one frequency mode to any other frequency mode guaranteed by design		1		Period
Short Circuit Current	I _{sc}	V _{OUT} =OV, I _{OUT} = I _{IN}			600	mA
Input High Threshold	V _{IH}	All input pins (Enable, VSEL, FSEL)	1.3			V


Unless specified: $T_A = -40 \,^{\circ}\text{C}$ to $85 \,^{\circ}\text{C}$, Cin=Cbucket = $1.0 \,\mu\text{F}$ (ESR = $0.1 \,\Omega$), Cout= $1.0 \,^{\circ}\text{F}$ (ESR = $0.1 \,^{\circ}$), Vin= $2.85 \,^{\circ}\text{V}$ to $5.5 \,^{\circ}\text{V}$

Parameter	Symbol	Conditions	MIN	TYP	MAX	Units
Input Low Threshold	V _{IL}	All input pins (Enable, VSEL, FSEL)			0.4	V
Input High Current	I _{IH}	All input pins (Enable, VSEL, FSEL)			10	μΑ
Input Low Current	I	All input pins (Enable, VSEL, FSEL)			10	μΑ
Power Efficiency from Battery to Regulated Charge Pump Output	η	$V_{IN} = 3.3V, V_{OUT} = 5.0V, I_{OUT} = 60mA$ Freq.=262kHz		75.0		%
		$V_{IN} = 3.3V, V_{OUT} = 5.0V, I_{OUT} = 60mA$ Freq.=650kHz		74.5		%
Output Ripple Voltage	V _{PP}	freq = 262kHz, I _{OUT} = 60mA ^{(1), (2)}		25	45	mV

Note:

- (1) Peak to peak output ripple voltage with $C_{out} = C_{BUCKET} = 1$ uF and X5R dielectric
- (2) Guaranteed by design
- (3) This device is ESD sensitive. Use of standard ESD handling precautions is required.

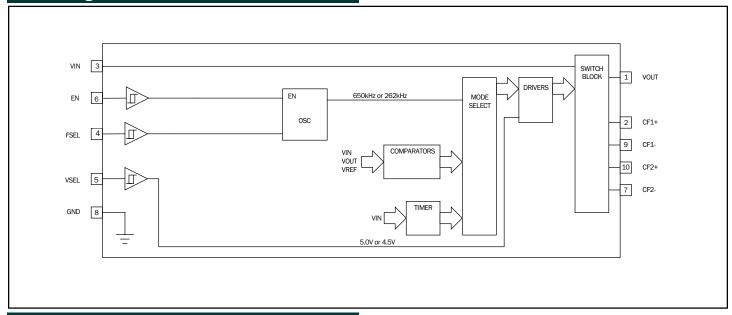
Pin Configuration

Ordering Information

DEVICE (1) (2)	PACKAGE
SC603IMLTR	MLP-10 3x3mm
SC603EVB	Evaluation Board

Note:

- (1) Only available in tape and reel.
- (2) A reel of MLP-10 contains 3000 devices.


MLP10: 3X3 10 LEAD

Pin Descriptions

Pin	Pin Name	Pin Function
1	VOUT	Output voltage regulated to 5.0V or 4.5V
2	CF1+	Positive terminal of bucket capacitor 1
3	VIN	Input voltage ranging from 2.5V to 6.5V
4	FSEL	Logic input for selecting the operational frequency. FSEL= 0, freq = 262kHz; FSEL= 1, freq = 650kHz
5	VSEL	Logic input for selecting the output voltage. VSEL = 1, VOUT = 5V; VSEL = 0, VOUT = 4.5V
6	EN	Active high enable. Bias current is less than 2uA when set low.
7	CF2-	Negative terminal of bucket capacitor 2
8	GND	Ground
9	CF1-	Negative terminal of bucket capacitor 1
10	CF2+	Positive terminal of bucket capacitor 2

Block Diagram

Applications Information

The SC603 uses a voltage doubler circuit which is implemented with two switched or 'bucket' capactors. Most charge pump doublers use only one bucket capacitor. Two bucket capacitors switching on alternate phases greatly reduce the output ripple voltage.

The output is prevented from exceeding 6.0V. This feature allows the use of 6.3V ceramic capacitors.

Comparison with Other Regulation Methods

In many instances, a charge pump regulator is the best choice for portable power applications. These regulators offer many advantages over switch mode regulators. A smaller bill of materials, less layout area, lower component height, less noise, no EMF, and less overall circuit cost are typical reasons to use this type of regulation. The efficiency of a charge pump regulator often approaches and in some cases exceeds the efficiency of a switch mode regulator.

Inductors are often the largest and most expensive discrete component in a design. There are no inductors used in the SC603, so the inductor's cost and layout area are eliminated. The noise and EMF associated with the inductor are also eliminated.

The SC603's fixed frequency harmonics are an advantage in portable communications equipment, such as cellular telephones. The SC603 has distinct frequencies of operation, so the harmonics are predictable. The harmonics are not fixed in a switch mode regulator. Switch mode regulators have harmonics which vary due to the pulse width modulation used to regulate the output. Varying harmonics can be a problem because it may be more difficult to ensure acceptable noise performance over the entire operating range.

Many switch mode regulators have increased voltage ripple on the output during pulse skipping mode due to the fact that there are large periods of time when no current is supplied to the output. The SC603 supplies current to the output continuously, so the voltage ripple is less than a switch mode regulator, even with greatly reduced output capacitance.

Frequency Selection

The FSEL input is for frequency selection. A logic High level at this input will set the clock frequency to 650kHz, while a logic Low sets the clock to 262kHz. Input from a uP or other device may be used to change the charge pump frequency at any time. The optimal frequency will depend upon the capacitor values, the load current, and the exceptable amount of output ripple.

Ripple Performance

Examples of the output ripple, charge pump frequency and capacitor size are listed in Table 2 Ripple Performance.

Table 2 - Ripple Performance

V _{out}	Freq. [kHz]	lout [mA]	Ouput Ripple [mVp-p]	C _{out} [uF]	C _{BUCKET} [uF]
5.0V	262	100	25	1	1
	650	100	15	1	1
	262	150	50	1	1
	650	150	25	1	1
4.5V	262	100	25	1	1
	650	100	15	1	1
	262	200	60	1	1
	650	200	30	1	1

Efficiency

Efficiency for the SC603 is defined as,

$$\eta = \frac{V_O \cdot I_O}{V_{IN} \cdot (2 \cdot I_O + I_O)}$$

 $\begin{array}{ll} \mbox{where} & \mbox{$V_{_{0}}$ = output voltage} \\ \mbox{$I_{_{0}}$ = output current} \\ \mbox{$V_{_{IN}}$ = input voltage} \end{array}$

 I_0 = quiescent current [from Electrical Characteristics on page 2]

Calculating Power Dissipation

The power dissipated by the SC603 is calculated as,

$$P_D = P_{IN} - P_{OUT}$$

$$P_D = V_{IN} \cdot (2 \cdot I_O + I_Q) - V_O \cdot I_O$$

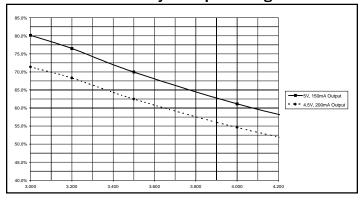
Short Circuit and Over Temperature Protection

The output is current limited to 600mA to protect against short circuit conditions. Over temperature protection is also provided.

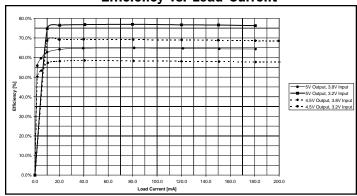
Design and Layout Considerations

The layout should be patterned after the evaluation board gerber plots shown on page 7. The center pad "thermal slug" is not internally connected to ground, but is connected to ground in the layout through a via centered on the pad and connecting to the ground plane. Pin 8 is then routed directly to the center pad. A good ground plane connection is important to make effective use of the low thermal resistance of the MLP package.

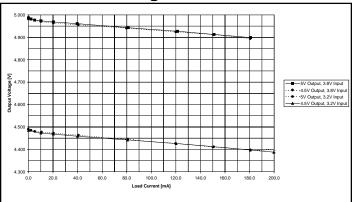
Applications Information Cont.

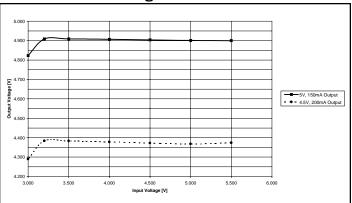

Suggested Capacitors

The following is a short list of some of the manufacturers and types of multilayer ceramic capacitors that are suggested for the SC603.

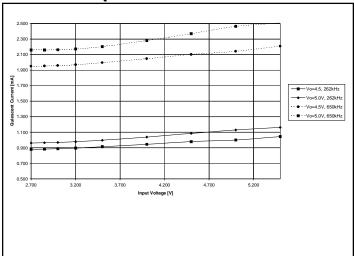

Manufacturer	Part Number	Capacitance[uF]	Dielectric Type	EIA Package Size	Voltage Rating
AVX	0805ZC225K	2.2	X7R	0805	10V
AVX	0805ZC105K	1.0	X7R	0805	10V
Panasonic	ECJ2YB0J225K	2.2	X5R	0805	6.3V
Panasonic	ECJ1VB0J105K	1.0	X5R	0402	6.3V
TDK	C1608X5R1A105	1.0	X5R	0603	10V
TDK	C1202Y5V1A106Z	1.0	X5R	0805	10V

Typical Characteristics

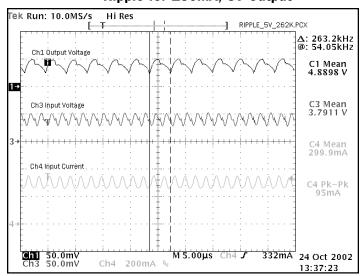

Efficiency vs. Input Voltage

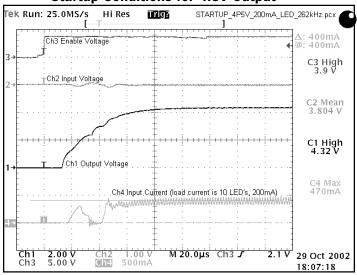

Efficiency vs. Load Current

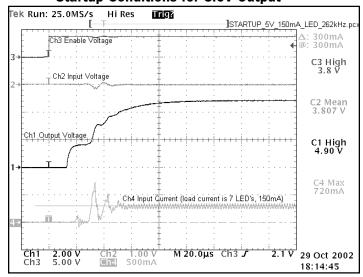
Load Regulation

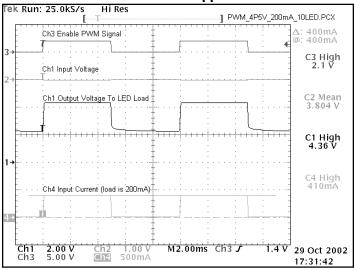


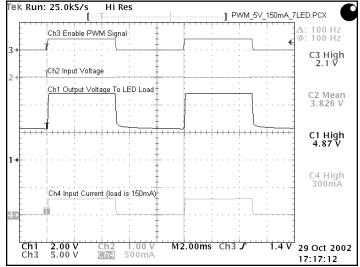
Line Regulation



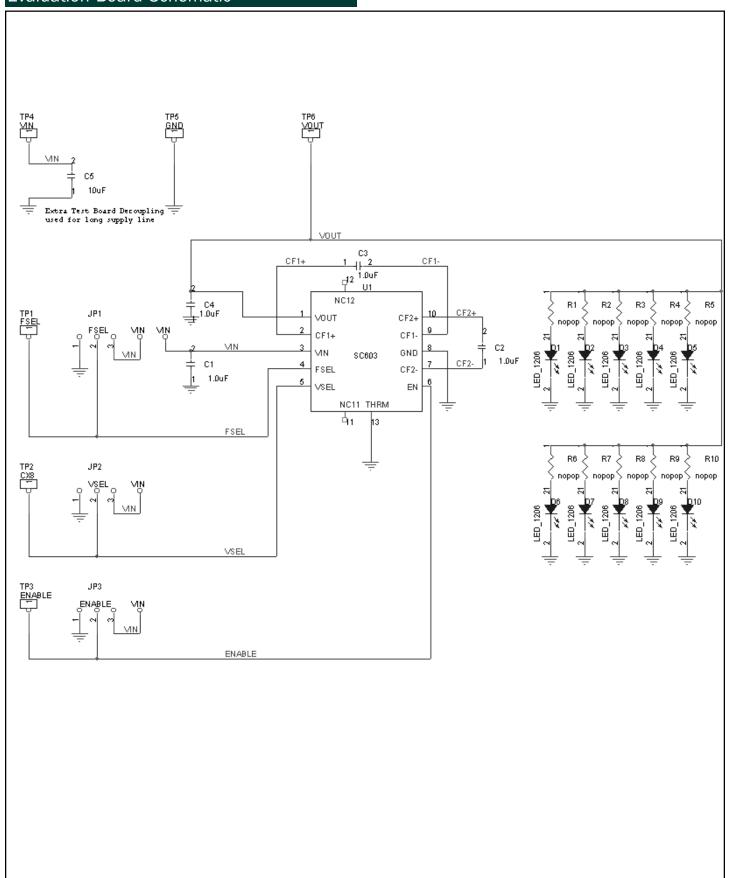

Quiescent Current


Ripple for 150mA, 5V Output

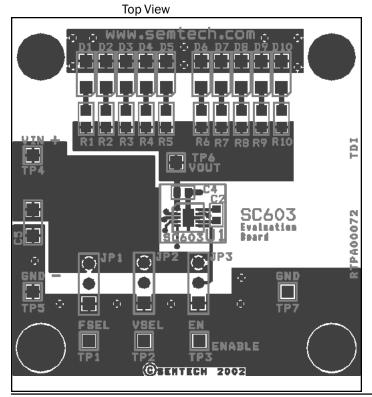

Startup Conditions for 4.5V Output


Startup Conditions for 5.0V Output

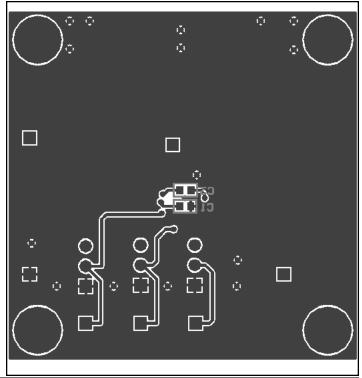
100Hz PWM for 4.5V Application



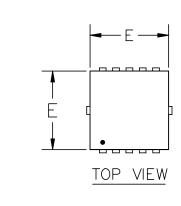
Evaluation Board Schematic

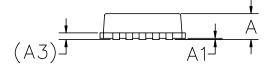

Evaluation Board Bill of Materials

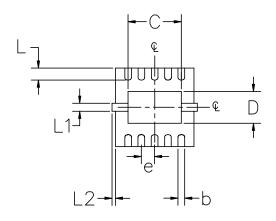
<u>Reference</u>	<u> Value</u>	Comment
U1	SC603	MLP - Micro 10 lead 3x3mm.
C1, C2, C3, C4	1.0uF	Ceramic, low ESR type, voltage of 6.3V rating is acceptable for all capacitors.
C5	10uF	This extra capacitor supports usage of long power leads from a benchtop supply.
R1 through R10	-	Add limiting resistors to meet the requirements of the application on 0805 pads.
D1 through D10	-	Add white or blue LEDs to meet the requirements of the application on 1206 pads.


Marking Information

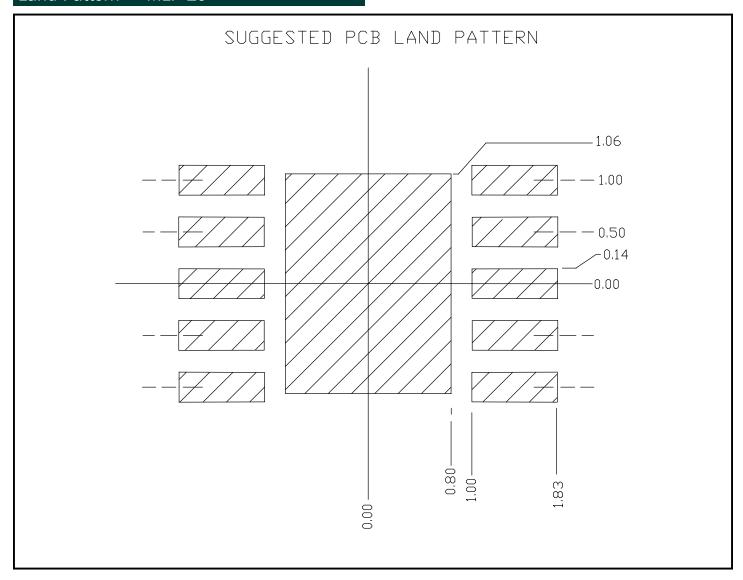
Evaluation Board Gerber Plots




Bottom View



Outline Drawing - MLP-10


DIMENSIONS							
DIMN	INC	HES	M	NOTE			
ייואוים	MIN	MAX	MIN	MAX			
Α	.032	.039	0.80	1.00	_		
A1	0	.002	0	0.05	_		
A3	.006	.010	0.15	0.25	REF		
b	.008	.011	0.18	0.28	_		
С	.076	.083	1.92	2.12	_		
D	.044	.052	1.11	1.31	_		
E	.11	8	3.00		NOM		
е	.020	BSC	0.50	BSC	_		
L	.008	.018	0.20	0.45	_		
L1	.007	.012	0.17	0.30	_		
L2	_	.005	_	0.125			

BOTTOM VIEW

1 CONTROLLING DIMENSIONS: MILLIMETERS.

Land Pattern - MLP-10

Contact Information

Semtech Corporation
Power Management Products Division
200 Flynn Road, Camarillo, CA 93012
Phone: (805)498-2111 FAX (805)498-3804