

Product Description

Sirenza Microdevices' SGL-0163 is a high performance SiGe HBT MMIC low noise amplifier featuring 1 micron emitters with $F_{\scriptscriptstyle \rm T}$ up to 50 GHz. It is designed for operation at voltages as low as 2.5V. The SGL-0163 has been characterized at Vd = 3V for low power and 4V for medium power applications. This device has an internal temperature compensation circuit and can be operated directly from a 3-4V supply. Only 2 DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation.

800 900 1000 1100 1200 1300 Frequency (MHz)

NF

SGL-0163

0.8 - 1.3 GHz, Cascadable SiGe HBT MMIC Low Noise Amplifier

Product Features

- Low Noise Figure
- High Input /Output Intercept
- Internal Temp. Compensation Circuit
- Internally Matched to 50 Ω
- Low Power Consumption
- Single Voltage Supply
- Small Package: SOT-363

Applications

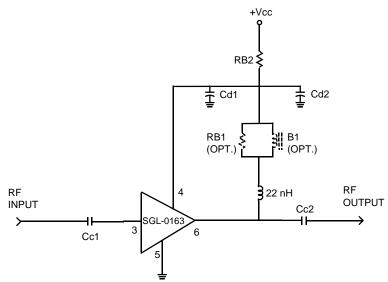
- Receivers
- Cellular, Fixed Wireless, Land Mobile
- GPS

Symbol	Parameters: Test Conditions: Application Ckt $Z_0 = 50$ Ohms, $T = 25^{\circ}$ C		Units	Min. (I _D =11 mA)	Typ. (I _D =11 mA)	Max. (I _D =11 mA)	Typ. (I _D =23 mA)	Notes
P _{1dB}	Output Power at 1dB Compression	f = 800 MHz f = 900 MHz f = 1000 MHz	dBm		3.9 4.1 4.6		9.9 10.1 10.5	App. Ckt See Sht. 2,3
IIP ₃	Input Third Order Intercept Point Tone spacing = 1 MHz	f = 800 MHz f = 900 MHz f = 1000 MHz	dBm		7.2 8.6 10.1		12.1 13.4 14.8	App. Ckt See Sht. 2,3
S ₂₁	Small Signal Gain	f = 800 MHz f = 900 MHz f = 1000 MHz	dB		15.7 14.9 14.1		16.6 15.8 15.0	App. Ckt See Sht. 2,3
NF	Noise Figure, Z _s = 50 Ohms	f = 800 MHz f = 900 MHz f = 1000 MHz	dB		1.1 1.2 1.2		1.6 1.7 1.7	App. Ckt See Sht. 2,3
S ₁₁	Input Return Loss	f = 800 MHz f = 900 MHz f = 1000 MHz	dB		10.8 12.2 13.5		14.3 15.7 17.4	App. Ckt See Sht. 2,3
S ₂₂	Output Return Loss	f = 800 MHz f = 900 MHz f = 1000 MHz	dB		15.2 15.6 16.1		17.1 17.6 18.1	App. Ckt See Sht. 2,3
S ₁₂	Reverse Isolation	f = 800 MHz f = 900 MHz f = 1000 MHz	dB		21.8 20.9 20.0		21.9 20.9 20.0	App. Ckt See Sht. 2,3
V _D	Device Voltage		Volts		3.0		4.0	
R _{TH} ,j-I	Thermal Resistance (junction to lead)		°C/W		255			

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2001 Sirenza Microdevices, Inc.. All worldwide rights reserved.

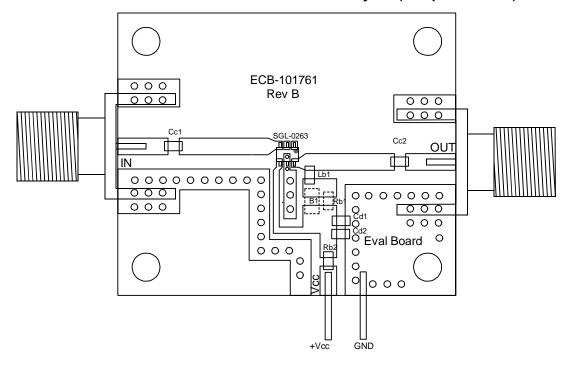
Phone: (800) SMI-MMIC

Absolute Maximum Ratings


Operation of this device above any one of these parameters may cause permanent damage.

Bias Conditions should also satisfy the following expression: I_DV_D (max) < $(T_J - T_{OP})/R_{TH}$, j-l

Parameter	Value	Unit	
Supply Current	45	mA	
Operating Temperature	-40 to +85	°C	
Maximum Input Power	10	dBm	
Storage Temperature Range	-40 to +150	ŝ	
Operating Junction Temperature	+150	%	
ESD voltage (Human Body Model)	400	٧	


Pin #	Function	Description	Device Schematic
1	N/C	No Connection.	
2	N/C	No Connection.	
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	Bias ckt
4	Vcc	Supply connection. This pin should be bypassed with a suitable capacitor(s).	RF In with temp. comp. RF Out / Vcc
5	GND	Connected to ground. For best performance use via holes as close to ground leads as possible.	
6	RF OUT VCC	RF output and DC supply. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	↓

Application Schematic (See Sheet 3 for layout)

SGL-0163 0.8-1.3 GHz Evaluation Board Layout (component side)

Refer to layout above and Schematic on Sheet 2 for Tables below

Application Circuit Parts List

Ref. Designator	Description	Value	Manufact. Part No.	
Lb	Inductor	33 nH	TOKO LL1608-FS27NJ	
B1 ²	B1 ² Ferrite Bead 1		FAIR-RITE 2508051527y0	
Cc1,Cc2,Cd1	Capacitor,SM,0603	0.1 uF	SAMSUNG CL10B103KBNC T/R	
Cd2	Capacitor,SM,0603	22 pF	ROHM MCH185AA220DJK	
Rb1 ²	Resistor, SM, 0603	47 Ohms	PHILLIPS 9C06031A47R0 JL HFT	
Rb2	Resistor, SM, 0603	0 Ohms	PHILLIPS 9C06031A0R00 JL HFT	
N/A 1	Circuit Board	N/A	Stanford Microdevices ECB101761 Rev B	

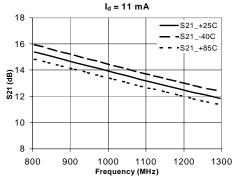
I/O Microstrip Parameters

I/O Microstrip Parameters	Value	Units
Width	.059	Inches
Dielectric Thickness	.029	Inches
Conductor Thickness	.001	Inches
Dielectric Constant	4.1	None

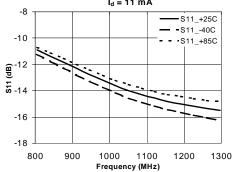
Notes:

- (1) Circuit board dielectric material is GETEK, ML200C
- (2) B1 and Rb1 recommended for improved K-factor but are optional *

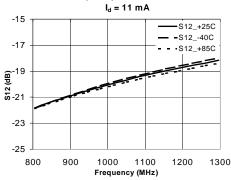
522 Almanor Ave., Sunnyvale, CA 94085


Phone: (800) SMI-MMIC

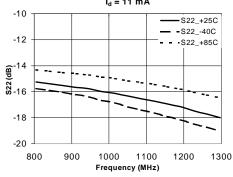
http://www.sirenza.com

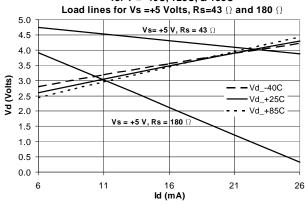

SGL-0263 1.5-2.4 GHz Evaluation Board Scalar S-Parameters at Id=11mA

S21 vs. Frequency for T = -40C, +25C, +85C

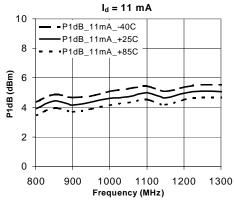


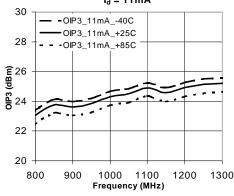
 $I_d = 11 \text{ mA}$


S11 vs. Frequency for T = -40C,+25C,+85C

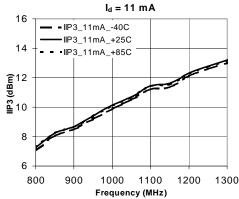

S12 vs. Frequency for T = -40C,+25C,+85C

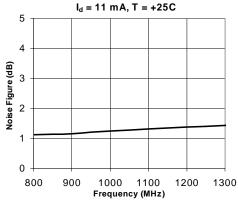
S22 vs. Frequency for T = -40C,+25C,+85C $I_d = 11 \text{ mA}$


Device Voltage (Vd) vs. Device Current (Id) for T = -40C, +25C, & +85C

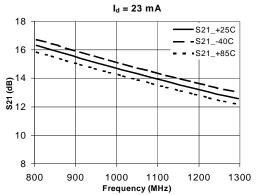


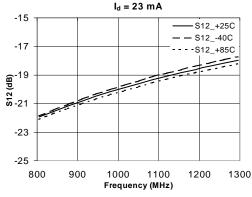
SGL-0263 1.5-2.4 GHz Evaluation Board RF Performance at Id=11mA


P1dB vs. Frequency, T= -40C,+25C,+85C

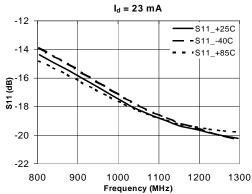

OIP3 vs. Frequency, T = -40C,+25C,+85C I_d = 11mA

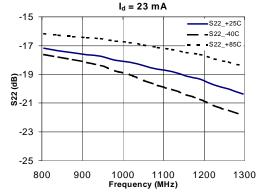
IIP3 vs. Frequency, T = -40C,+25C,+85C


Noise Figure vs. Frequency

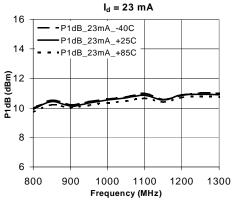


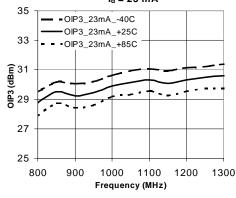
SGL-0263 1.5-2.4 GHz Evaluation Board Scalar S-Parameters at Id=23mA


S21 vs. Frequency for T = -40C,+25C,+85C

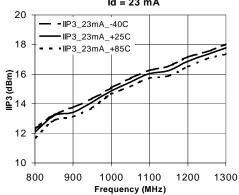

S12 vs. Frequency for T = -40C, +25C, +85C

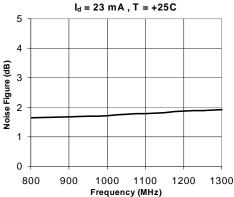
S11 vs. Frequency for T = -40C,+25C,+85C

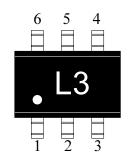

S22 vs. Frequency for T = -40C,+25C,+85C



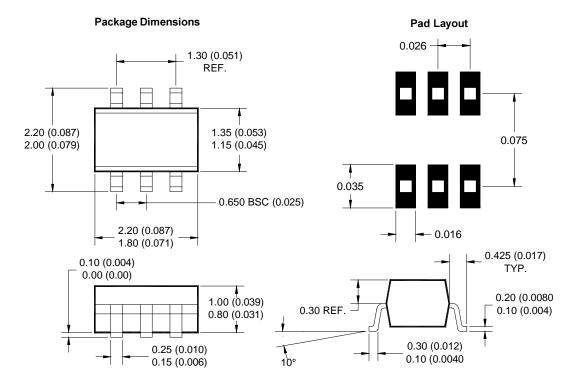
SGL-0263 1.5-2.4 GHz Evaluation Board RF Performance at Id=23mA


P1dB vs. Frequency, T = -40C,+25C,+85C


OIP3 vs. Frequency, T = -40C,+25C,+85C $I_d = 23 \text{ mA}$


IIP3 vs. Frequency, T = -40C,+25C,+85C Id = 23 mA

Noise Figure vs. Frequency



Pi	Pin Designation			
1	N/C			
2	2 N/C			
3	RF in			
4	Vcc			
5	GND			
6	RF out / Vcc			

Note: Pin 1 is on lower left when you can read package marking

DIMENSIONS ARE IN INCHES [MM]

Caution: ESD sensitive

Appropriate precautions in handling, packaging and testing devices must be observed.