S13MD01

8-pin DIP Type SSR for Low Power Control

■ Features

- 1. Compact 8-pin dual-in-line package
- 2. RMS ON-state current (I_T: 0.3Arms)
- 3. Repetitive peak OFF-state voltage is high.
- 4. Isolation voltage between input and output (Viso: 4000Vrms)
- 5. Recognized by UL (No. E94758)
- 6. Approved by CAS (No. LR63705)

■ Application

- 1. Oil fan heaters
- 2. Microwave ovens
- 3. Refrigerators

■ Outline Dimensions

(Unit: mm)

^{* (}Note) Terminals ①, ③ and ④ are common ones of cathode.

To radiate the heat, solder all of the lead pins on the pattern of PWB.

■ Absolute Maximum Ratings

(T_{α})	25°C)
uа	= 25 C)

Parameter		Symbol	Rating	Unit
Input	Forward current	I_F	50	mA
	Reverse voltage	V_R	6	V
Output	RMS ON-state current	RMS ON-state current I _T		Arms
	*1 Peak one cycle surge current	I _{surge}	3	A
	Repetitive peak OFF-state voltage	V_{DRM}	400	V
*2 Isolation voltage		Viso	4 000	V _{rms}
Operating temperature		T_{opr}	- 25 to +80	°C
Storage temperature		T _{stg}	- 40 to +125	°C
*3 Soldering temperature		T _{sol}	260	°C

^{*1 50}Hz sine wave

^{*2 40} to 60% RH, AC for 1 minute, f=60Hz

^{*3} For 10 seconds

■ Electro-optical Characteristics

(Ta=25°C)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage	$V_{\rm F}$	$I_F = 20 \text{mA}$	-	1.2	1.4	V
	Reverse current	I_R	$V_R = 3V$	-	-	10	μΑ
Output -	Repetitive peak OFF-state current	I_{DRM}	V _{DRM} = Rated	-	-	100	μΑ
	ON-state voltage	V _T	$I_T = 0.3A$	-	-	3.0	V
	Holding current	I_{H}	$V_D = 6V$	-	-	25	mA
	Critical rate of rise of OFF-state voltage	dv/dt	$V_{DRM} = (1/\sqrt{2}) \cdot Rated$	100	-	-	V/µs
Transfer	Minimum trigger current	I_{FT}	$V_D = 6V, R_L = 100 \Omega$	-	-	10	mA
	Insulation resistance	R _{ISO}	DC500V, 40 to 60% RH	5 x 10 10	1 x 10 11	-	Ω
characteristics	Turn-on time	ton	$\begin{aligned} V_D &= 6V, R_L = 100\Omega \\ I_F &= 20mA \end{aligned}$	-	-	100	μs

Fig. 1 RMS ON-state Current vs. Ambient Temperature

Fig. 2 Forward Current vs. Ambient Temperature

Fig. 3 Forward Current vs. Forward Voltage

Fig. 5 ON-State Voltage vs. Ambient Temperature (S13MD01)

Fig. 7 ON-State Current vs. ON-State Voltage (S13MD01)

Fig. 4 Minimum Trigger Current vs.

Ambient Temperature (S13MD01)

Fig. 6 Relative Holding Current vs.

Ambient Temperature (S13MD01)

Fig. 8 Turn-on Time vs. Forward Current (\$13MD01)

■ Basic Operation Circuit

Notes (1) If large amount of surge is loaded onto V_{CC} or the driver circuit, add a diode D_1 between terminals 2 and 3 to prevent reverse bias from being applied to the infrared LED.

- (2) Be sure to install a surge absorption circuit. An appropriate circuit must be chosen according to the load (for CR, choose its constant). This must be carefully done especially for an inductive load.
- (3) For phase control, adjust such that the load current immediately after the input signal is applied will be more than 30mA.

■ Precautions for Use

- (1) All pins must be soldered since they are also used as heat sinks (heat radiation fins). In designing, consider the heat radiation from the mounted SSR.
- (2) For higher radiation efficiency that allows wider thermal margin, secure a wider round pattern for Pin No. 8 when designing mounting pattern. The rounded part of Pin No. 5 (gate) must be as small as possible. Pulling the gate pattern around increases the change of being affected by external noise.
- As for other general cautions, refer to the chapter "Precautions for Use" (Page 78 to 93).