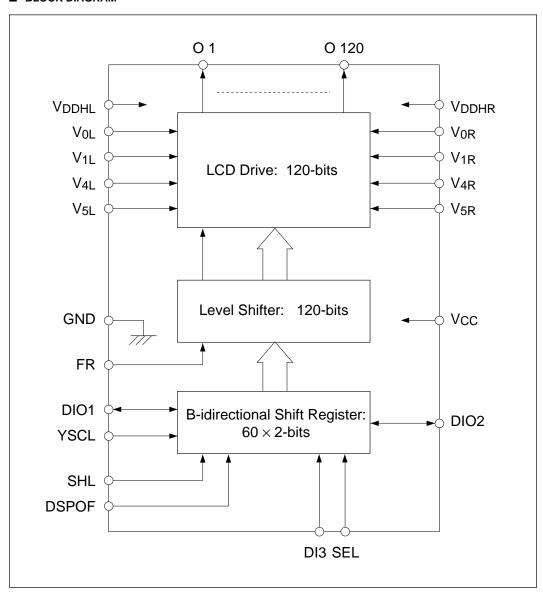
SED1753

CMOS LCD COMMON DRIVER

■ DESCRIPTION

The SED1753 is an LCD common (row) driver designed for extremely high-capacity dot matrix liquid crystal panels. It incorporates 120 high-voltage, low-impedance common drivers in a 2×60 format, enabling high driver effectiveness with displays of 1/240, 1/300 and 1/480 duty cycles. It is designed for use in conjunction with the SED1752 and SED1758 segment (column) drivers.


The SED1753 features a wide range of liquid crystal drive voltages, an LCD display of high quality and slim configuration to minimize the LCD panel. It offers a wide range of applications.

■ FEATURES

- 120 (60 × 2) LCD common drive outputs
- 0.3K Ω (typ.) low output impedance
- High-duty drive available 1/480
- Pin-selectable output shift direction
- Zero-bias display disable function
- Slim configuration

- Adjustable LCD drive voltage
- Liquid crystal drive in wide range of voltage: 8 to 42V
- 2.7 to 5.5V supply
- Package: D0B Au bump die T0A TAB package

■ BLOCK DIAGRAM

■ FUNCTIONS

Shift Register

This is a bi-directional shift register for transmitting common data. The shift register has a 60×2 bit structure, and a 60×2 bit or 120-bit structure can be selected depending on the state of SEL.

When a 60×2 bit structure is selected, the lower-stage 60-bit shift register input becomes DI3.

Level Shifter

This is a voltage level interface circuit for converting the signal voltage level from a logic-system level to an LCD drive-system level.


LCD Driver

These output the LCD driver voltages.

The relationship between the display blanking signal DSPOF, the contents of the shift register, the alternating signal FR, and the common output voltage is as shown below:

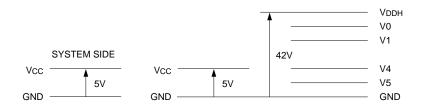
DSPOF	Contents of Shift Register	FR	ON Output Voltage			
	1.1	Н	V ₅	(Selected level)		
Н	Н	L				
		Н	V ₁	(Non-selected		
	L			level)		
		L	V ₄			
L	_	_	V ₅	_		

■ TIMING CHART

■ EXPLANATION OF TERMINALS

Terminal Name	I/O	Function	No. of Terminals
O 1 to O 120	0	LCD drive common (row) output. Changes on the falling edge of YSCL	120
DIO1 DIO2	I/O	Set to input or to output by the scanning pulse SHL Input of the 60 x 2 bit bi-directional shift register. The output changes on the falling edge of YSCL	2
DI3	I	DI3 is a scan pulse input when a 60 x 2 structure is used. When SEL = L, DI3 is connected to ground.	1
SEL	I	Bi-directional shift register operating mode select input. H: 60 x 2 (DI3 input); L: 120	1
YSCL	I	Serial data shift clock input. The scan data is shifted with the falling edge.	1
SHL	I	Shift direction select and DIO terminal input/output control output	
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		L 120 → 61 60 → 1 Output Input	
DSPOF	I	LCD display blanking control input. When "L", all common outputs are set to the V5 level.	1
FR	I	LCD drive output alternating signal input.	1
GND, Vcc	Power supply	Power supply for logic: GND: 0V Vcc + 2.7 to 5.5V	2
Vol, VIL, V4L, V5L, VDDH, VOR, V1R, V4R, V5R, VDDHR,	Power supply	Power supply LCD drive GND: 0V, V _{DDH} : 8V to 42V V _{DDH} \geq V0 \geq 8/9V _{DDH} 1/9V _{DDH} \leq V4 \geq V5 \geq GND *1	10
	1	Total	140 pins

*1. V_{DDH} and V_0 to V_5 pairs must be connected to their respective LC power supplies. The LC drive circuit power supply voltage ranges are specification recommended values.

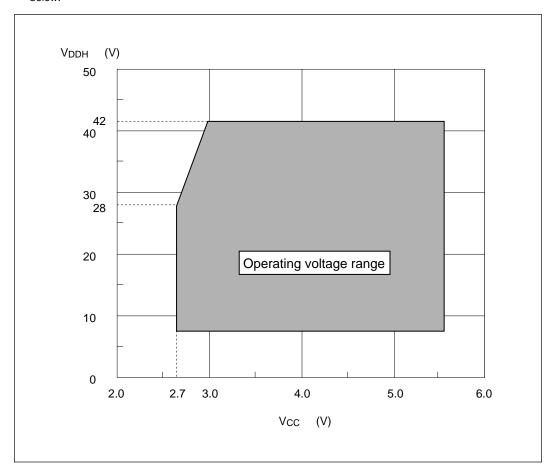

■ ELECTRICAL CHARACTERISTICS

Absolute Maximum Rating

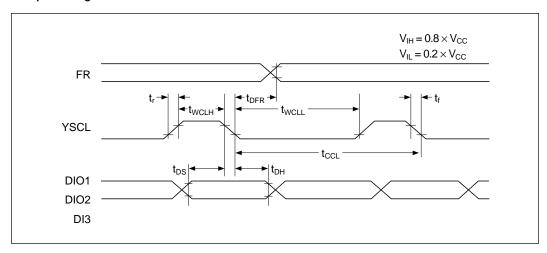
Parameters	Symbol	Rating	Units
Power supply voltage (1)	Vcc	-0.3 to +7.0	V
Power supply voltage (2)	V _{DDH}	-0.3 to +45.0	V
Power supply voltage (3)	V_0, V_1, V_4, V_5	GND - 0.3 to V _{DDH} +0.3	V
Input voltage	Vı	GND - 0.3 to Vcc +0.3	V
Output voltage	Vo	GND - 0.3 to Vcc +0.3	V
DIO output current	l 01	20	mA
Operating temperature	Topr	-40 to +85	°C
Chip storage temperature	Tstg ¹	-65 to +150	°C
TCP product storage temperature	Tstg ²	-55 to +125	°C

Note 1. All the above voltages are based on GND = 0V.

Note 2. V_0 , V_1 , V_4 and V_5 voltages must always fulfill the following relationship: $V_{DDH} \ge V_0 \ge V_1 \ge V_4 \ge V_5 \ge GND$


Note 3. Permanent damage to the LSI may result if the logic power supply is floating or falls below Vcc = 2.6V when the LCD drive power supply is supplied. Special caution is required during the System Power OFF and System Power ON sequencing.

• DC Characteristics Unless otherwise designated, GND = $V_5 = 0V$, $V_{CC} = 5.0V \pm 10\%$, $T_a = -40$ to $85^{\circ}C$

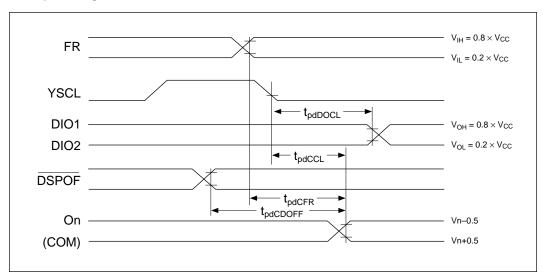

5 .					Applicable			l	
Parameter	Symbol		Condition		Pin	Min	Тур	Max	Unit
Electrical voltage (1)	Vcc	_			Vcc	2.7	5.0	5.5	V
Recommended working voltage	V _{DDH}	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$		VDDHL, VDDHL	14.0	_	40.0	V	
Possible operating voltage	V _{DDH}	Function		V ₀ L, V _O R	8.0	_	42.0	V	
Power supply voltage (2)	V ₁	Recomme	Recommended value		V ₁ L, V ₁ R	8/9 V _{DDH}	_	V _{DDH}	V
Power supply voltage (3)	V ₄	Recomme	nde	d value	V ₄ L, V ₄ R	GND	_	1/9 V _{DDH}	V
High level input voltage	ViH	Vcc= 2.7~	5.5\	/	DIO1,DIO2, FR	0.8 Vcc	_	_	V
Low level input voltage	VIL				YSCL, SHL, DI3 DSPOF, SEL		_	0.2 Vcc	V
High level output voltage	Vон	Vcc =	Іон =	= -0.3mA	EIO1, EIO2,	Vcc-0.4		_	V
Low level output voltage	Vol	2.7~5.5V	lol =	= 0.3mA		I	_	GND+0.4	V
Input leakage current	lu	GND ≤ V _{IN}	GND ≤ V _{IN} ≤ V _{CC}		YSCL, SHL, DI3 DSPOF, FR, SEL		_	2.0	μΑ
I/O leak current	ILI/O	GND ≤ V _{IN} ≤ V _{CC}		EIO1, EIO2	_	_	5.0	μΑ	
Static current	I _{GND}	V _{DDH} = 14.0 ~ 42.0V V _{IH} = V _{CC} , V _{IL} = GND		GND	_	_	25	μΑ	
Output resistance	Rсом	$\Delta V_{ON} = 0.5$		V _{DDH} = +36.0V, 1/24	01~	_	0.29	0.48	ΚΩ
		Ta = 25°C		$V_{DDH} = +26.0V,$ $1/20$	O120	_	0.3	0.5	
Resistance chip-internal BIOS	ΔRсом	VDDH = +36	V _{DDH} = +36.0V, 1/24			_	_	50	Ω
Average operating current consumption (1)	Icc	VIL = GND fLP = 70Hz Input data	Vcc = +5.0V, ViH = Vcc ViL = GND, frscL = 33.6KHz fLP = 70Hz, Input data: 1/480 Ta = 25°C No load		Vcc	_	TBD	TBD	μА
			ondi	tons are the		_	TBD	TBD	
Average operating current consumption (2)	Іодн	$V_{DDH} = V_0 = 30.0 V V_1 = 28.0 V$ $V_4 = 2.0 V, V_5 = 0.0 V,$ $V_{CC} = 5.0 V$ Other conditions are the same as with the item lcc.		VDDHL, VDDHR	_	TBD	TBD	μА	
Input terminal capacity	CI	Ta = 25°C	Freq. = 1 MHz YSCL, SHL, DS Ta = 25°C DI3, SEL		SPOF, FR,	_	_	8	pF
I/O terminal capacity	Ci/o	Chips alor	ne	DIO1, DIO2		_		15	pF

● Range of Operating Voltages: Vcc - VDDH

It is necessary to set the voltage for V_{DDH} within the $V_{\text{CC}} - V_{\text{DDH}}$ operating voltage range shown in the diagram below.

AC CharacteristicsInput Timing Characteristics

Vcc = +5.0V \pm 10%, T_a = -40 to 85°C


Parameter	Symbol	mbol Conditions		Max.	Units
YSCL cycle	tccl	_	400	_	ns
YSCL high level pulse duration	twclh	_	60	_	ns
YSCL low level pulse duration	twcll	_	330	_	ns
Data setup time	tos	_	50	_	ns
Data hold time	tон	_	40	_	ns
Input signal rise time	tr	_	_	50	ns
Input signal fall time	t _f	_	_	50	ns

Vcc = 2.7 to 4.5V, T_a = -40 to 85°C

Parameter	Symbol	Conditions	Min.	Max.	Units
YSCL cycle	tccl	_	800	_	ns
YSCL high level pulse duration	twclh	_	80	_	ns
YSCL low level pulse duration	twcll	_	660	_	ns
Data setup time	tos	_	90	_	ns
Data hold time	tон	_	70	_	ns
Input signal rise time	tr	_	_	50	ns
Input signal fall time	t f	_	_	50	ns

Note: *1. The timing for the FR signal transition point (toFR: FR) and the LP signal falling edge is, essentially, 0 ns; set these in a range where the ON output wave form is not distorted.

o Output Timing Characteristics

 V_{CC} = 5.0V \pm 10%, V_{DDH} = 14.0 to 42.0V, ta = –40 to +85°C

Parameter	Symbol	Conditions	Min.	Max.	Units
Delay time from YSCL falling edge to DIO	tpdDOCL	C∟ = 15 pf	_	100	ns
Delay time from YSCL falling edge to ON output	t pdCCL			200	20
Delay time from DSPOF to ON output	t _{pdCDOFF}	C∟ = 100 pf	_	200	ns
Delay time from FR to ON output	t _{pdCFR}		_	300	ns

 $V_{CC} = 2.7V$ to 4.5V, $V_{DDH} = 14.0$ to 28.0V, ta = -40 to +85°C

Parameter	Symbol	Conditions	Min.	Max.	Units
Delay time from YSCL falling edge to DIO	tpdDOCL	C∟ = 15 pf	_	200	ns
Delay time from YSCL falling edge to ON output	t pdCCL			400	ne
Delay time from DSPOF to ON output	tpdCDOFF	C _L = 100 pf		400	ns
Delay time from FR to ON output	tpdCFR		_	600	ns

 $\textbf{Notes:} \quad {}^{\star}\textbf{1}. \quad \text{The input signal t_r, t_f is fixed to 20ns.}$

*2. High speed operation of the shift clocks (XSCL) should be made only under a condition of t_i or $t_i \le \{t_C - (t_{DCL} + t_{SUE})\}/2$.

■ THE LIQUID CRYSTAL DRIVE POWER SUPPLY

Forming the Various Voltage Levels

The most appropriate method for obtaining the various voltage levels for driving the LCD is to use resistive voltage dividers for the voltage levels between V_{DDH} and GND, and to drive the voltage levels using voltage followers employing op amps.

Considering the use of the op amp, V_{DDH} and V_0 , the lowest voltage level for driving the LCD, and GND and V_5 , the lowest voltage for driving the LCD, are separated from each other and given separate pins.

Normally, V_0 and V_{DDH} are connected, as are V_5 and GND, and V_1 and V_4 are driven using voltage followers. When V_0 is driven using a voltage follower, the ability of the LSI to drive the LCD outputs diminishes when the level of V_0 is higher than that of V_{DDH} and the difference in the voltage levels is great; thus the voltage difference between V_{DDH} and V_0 should be kept in the range of 0V to 2.5V.

When there is a serial resistance between the GND and V_{DDH} power supply lines, the voltage between GND and V_{DDH} is reduced at the LSI power terminals because of the I_{DDH} when the signals change, which may lead to permanent damage to the LSI if the relationships between the LCD voltage levels does not follow the formula: $V_{DDH} \ge V_0 \ge V_1 \ge V_4 \ge V_5 \ge GND$.

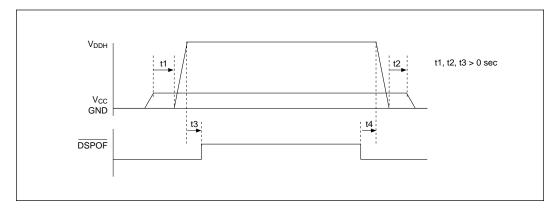
When a guard resistance is used, it is necessary to stabilize the voltage with a capacitor.

Power Supply Stabilization

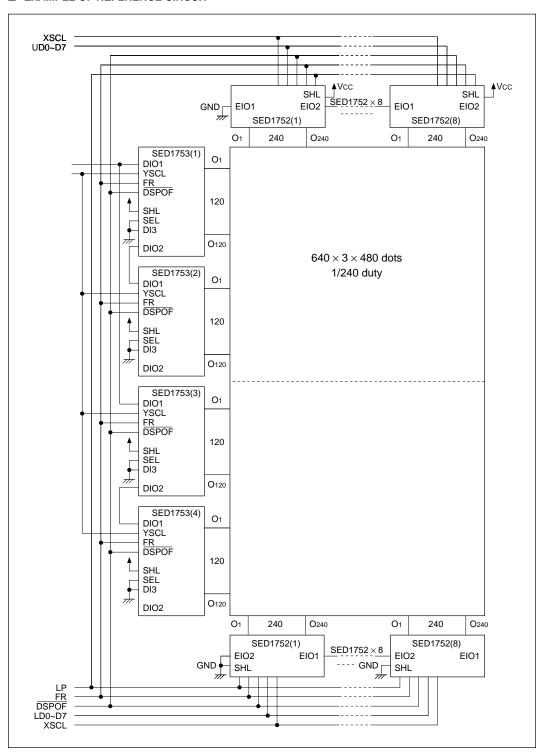
When necessary to prevent the effects of noise arising from the power supply signal line leads in packaging on the circuit board, a bypass capacitor between the power supplies $(GND - V_{CC}, GND - V_{DDH})$ may be required in order to stabilize the voltages.

Cautions Regarding Turning the Power Supply ON and OFF

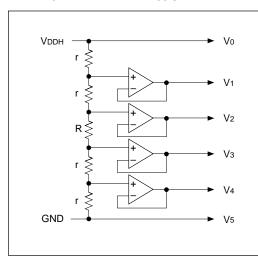
Because the voltage in the LCD drive system of this LSI is high, the LSI may be permanently damaged by an overcurrent situation when LCD drive signals are output before the LCD drive system applied voltage is stabilized, or when the LCD drive system high-voltage is applied while the logic system power supply is floating or when V_{CCS} is less than 2.6V. It is recommended that the display OFF function \overline{DSPOFF} be used until the LCD drive system voltage stabilized, and that the LCD drive output voltage level be at the V_5 level.


Please follow the following sequences when turning the power supplies ON and OFF:

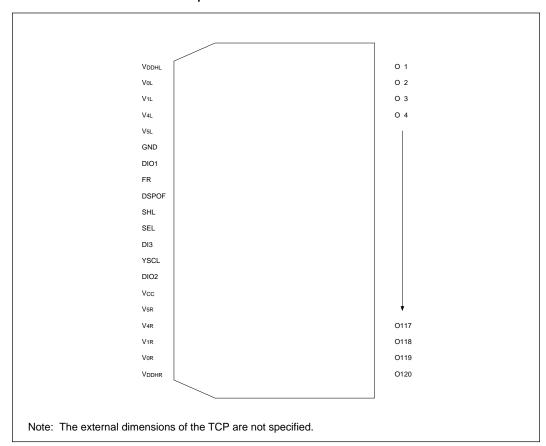
Power Supply ON:

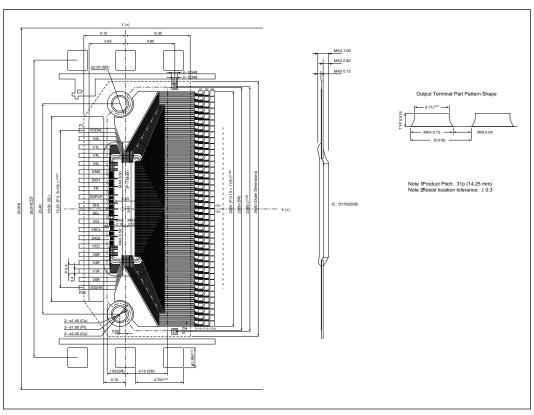

Logic system ON \rightarrow LCD drive system ON (or simultaneous)

Power Supply OFF:


LCD drive system OFF → Logic system OFF (or simultaneous)

■ EXAMPLE OF REFERENCE CIRCUIT


• Example of LCD Power Supply Circuits


- The LCD drive power supply (V₀ V₅) requires the addition of smoothing capacitors on the appropriate places in the LCD module.
- V_0 , V_1 , V_4 and V_5 are supplied to SED1753, and V_0 , V_2 , V_3 and V_5 are supplied to SED1752.
- The logic power supply Vcc is supplied to all ICs
- It is necessary to add bypass capacitors to the appropriate locations between GND – Vcc and GND – VDDH to eliminate noise, thereby stabilizing the power supply voltage. It is recommended that the power supplies for high-voltage application (GNDR, GNDL) use a different system than the lines for the power supplies for logic (GND).

TCP

○ An SED1753T** TCP Pinout Example

• External Dimension Diagram

