

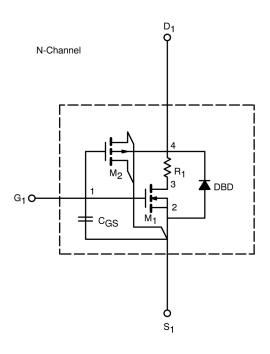
SPICE Device Model Si4559EY

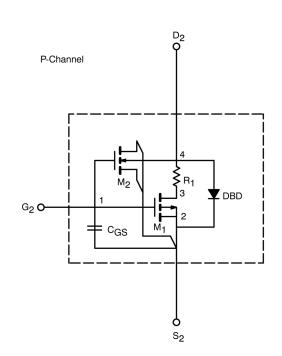
Vishay Siliconix

Dual Enhancement-Mode MOSFETS (N- and P-Channel)

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Applicable over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The model subcircuit schematic is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

 Document Number: 71454
 www.vishay.com

 02-May-01
 1

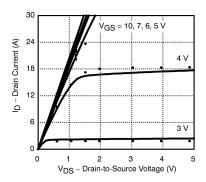
SPICE Device Model Si4559EY

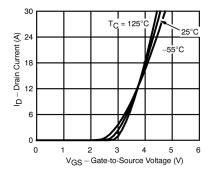
Vishay Siliconix

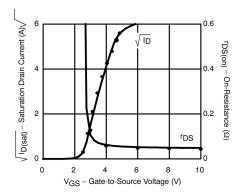
Parameter	Symbol	Test Conditions		Typical	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V, V_{GS}, I_D = 250 \mu A$	N-Ch	1.75	V
		$V_{DS} = V, V_{GS}, I_{D} = -250 \mu A$	P-Ch	2	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	N-Ch	100	А
		$V_{DS} \le -5 \text{ V}, V_{GS} = -10 \text{ V}$	P-Ch	39	
Drain-Source On-State Resistance ^a	^r DS(on)	V _{GS} = 10 V, I _D = 4.5 A	N-Ch	0.148	Ω
		$V_{GS} = -10 \text{ V}, I_D = -3.1 \text{ A}$	P-Ch	0.12	
		V_{GS} = 4.5 V, I_{D} = 3.9 A	N-Ch	0.058	
		$V_{GS} = -4.5 \text{ V}, I_D = -2.8 \text{ A}$	P-Ch	0.13	
Forward Transconductance ^a	G fs	V _{DS} = 15 V, I _D = 4.5 A	N-Ch	13	S
		$V_{DS} = -15 \text{ V}, I_D = -3.1 \text{ A}$	P-Ch	7.4	
Diode Forward Voltage ^a	V_{SD}	I _S = 2 A, V _{GS} = 0 V	N-Ch	0.81	V
		$I_{S} = -2 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	P-Ch	-0.80	
Dynamic ^b					
Total Gate Charge ^b	Qg		N-Ch	16	nC
		N-Channel	P-Ch	16	
Gate-Source Charge ^b	Q_gs	V_{DS} = 30 V, V_{GS} = 10 V, I_{D} = 4.5 A	N-Ch	4	
		P-Channel V_{DS} = -10 V, V_{GS} = -30 V, I_D = -3.1 A	P-Ch	4	
Gate-Drain Charge ^b	Q_{gd}		N-Ch	3	
			P-Ch	1.6	
Turn-On Delay Time ^b	t _{d(on)}	N-Channel	N-Ch	29	18 9 10 ns 35 10 7 27
			P-Ch	18	
Rise Time ^b	t _r	V_{DD} =30 V, R_{I} = 30 Ω	N-Ch	9	
		$I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 6 \Omega$	P-Ch	10	
Turn-Off Delay Time ^b	$t_{\sf d(off)}$	P-Channel	N-Ch	35	
		$V_{DD} = -30 \text{ V}, R_L = 30 \Omega$ $I_D \cong -1 \text{ A}, V_{GEN} = -10 \text{ V}, R_G = 6 \Omega$	P-Ch	-	
Fall Time ^b	t _f		N-Ch		
			P-Ch		
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = 2 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$	N-Ch	35	
			P-Ch	52	

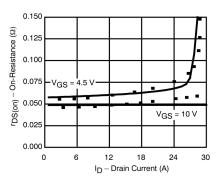
www.vishay.com Document Number: 71454 02-May-01

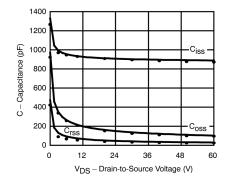
Notes a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$

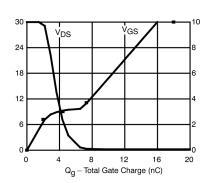


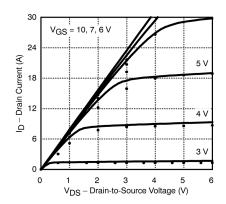


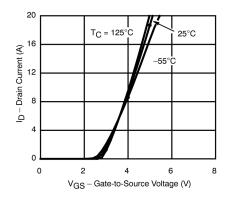

Vishay Siliconix

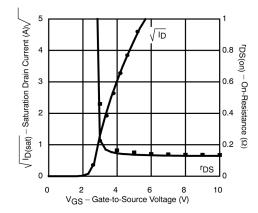

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

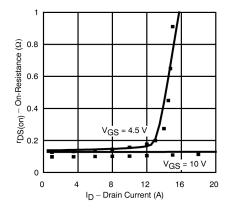

N-Channel MOSFET

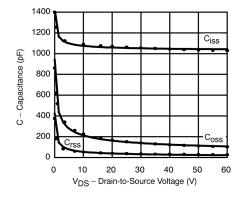


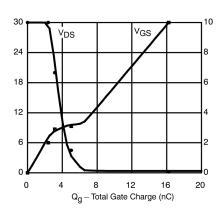

Note: Dots and squares represent measured data.


SPICE Device Model Si4559EY


Vishay Siliconix


VISHAY


P-Channel MOSFET



Note: Dots and squares represent measured data.

www.vishay.com Document Number: 71454 **4** 02-May-01