Date: March, 1999

155.52Mb/s

(SDT8262-T_-Q)

Technical Specification for Optical Transmitter Module

SDT8262-T_-Q_

622.08Mb/s other _____

Short Haul Intermediate Reach Single 5.0 V 1.3 µm Transmitter	Long Haul Long Reach Single 3.3 V 1.55 Receiver (2R / 3R)	other other other other Transceiver (
SUMITOMO Electric reserves the rinafter without prior notice.	SUMITOMO ELECT		
#Safety Precaution Symbols This spersons or damage to properties for appropriate use with these symbols before reading this specification.		ymbols to prevent possible injury to operator or other definitions are as shown below. Be sure to be familian	
▲ Warning Wrong operation without fo	ollowing this instruction may lead t	to human death or serious injury.	
▲ Caution Wrong operation without for	ollowing this instruction may lead to	o human injury or property damage.	
Example of picture symbols indicates prohibit	ion of actions. Action details are e	explained nearby.	
indicates compul	sory actions or instructions. Actior	n details are explained near by.	

- 1 / 6 -

Date: March, 1999

1. General

SDT8262-T_-Q_ is a compact and high speed performance digital optical transmitter module ideally designed for versatile high speed network applications, including SDH STM-4 L-4.2, L-4.3 and SONET OC-12 LR-2, LR-3. This module also meets GR-253-CORE requirement and ITU-T G. 957 / G. 958 recommendation.

* Data Rate 622.08 Mbps, NRZ

* Duty Cycle 50%

* Power Supply Voltage Single +5.0V (or -5.0V)

* Electrical Interface PECL (or ECL)

* Laser Diode 1550nm DFB-LD

* Fiber Coupled Power -3 ~ +2dBm

* Pin Configuration 20 pin Dual in Line

* Connector Interface SC / FC Optical Connector

The features of SDT8262-T_-Q_ are listed below.

* Features Low Power Consumption

Plastic Molded Package Multi-sourced Footprint

Uncooled Laser with Automatic Power Control IC

Optical Output Shut-down (Disable)

Laser Bias Current Monitor / Rear Facet Monitor

Class 1 Laser Product (IEC 825-1 and FDA 21 CFR 1040.10 and 1040.11)

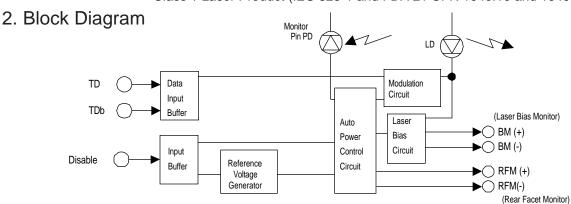
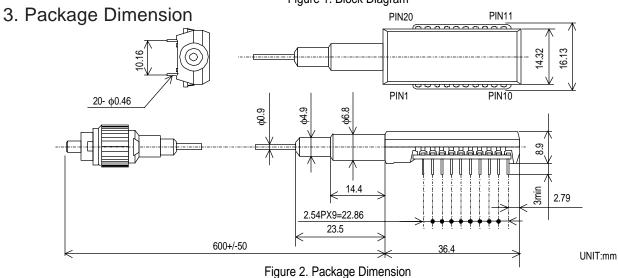



Figure 1. Block Diagram

∆Caution

On not disassemble this product. Otherwise, failure, electrical shock overheating or fire may occur.

Handle the lead pin carefully. Use assisting tools or prospective aids as required. A lead pin may injure skin or human body

Date: March, 1999

4. Pin Assignment

Function	Symbol	No.	No.	Symbol	Function
Non Connection*	NC	1	20	NC	Non Connection*
LD Bias Current Monitor (Refer to Fig. 3)	BM (+)	2	19	RFM (+)	Rear Facet Current Monitor (Refer to Fig.3)
Non Connection*	NC	3	18	Vcc	Power Supply (+)**
LD Bias Current Monitor (Refer to Fig. 3)	BM (-)	4	17	RFM (-)	Rear Facet Current Monitor (Refer to Fig.3)
Power Supply (-)**	Vee	5	16	TD	Differential Data Input (Positive)
Power Supply (+)**	Vcc	6	15	TDb	Differential Data Input (Negative)
LD Disable Input (Refer to Section 9)	Disable	7	14	Vee	Power Supply (-)**
Power Supply (+)**	Vcc	8	13	NC	Non Connection*
Power Supply (+)**	Vcc	9	12	Vcc	Power Supply (+)**
Non Connection.	NC	10	11	NC	Non Connection*

^{*}NC pins are not connected to the internal circuit, and should be left open for additional functions in the future.

5. Absolute Maximum Ratings

Parameter	Symbol	min.	Max	Unit	Note
Storage Case Temperature	Ts	-40	85	°C	1
Operating Case Temperature	Tc	0	70	°C	1, 2
		-40	85	°C	1, 3
Supply Voltage	Vcc-Vee	0.0	7.0	V	4
Input Voltage	Vi	Vee	Vcc+0.5	V	5
Lead Soldering (Temperature)			260	°C	6
(Time)			10	sec.	

Note 1. No condensation allowed. 2. SDT8262-T_-QN 3. SDT8262-T_-QW 4. Vcc>Vee, Vcc=+5.0V, Vee=GND 5. TD, TDb, Disable 6. Measured on lead pin at 2mm (0.079in.) off the package bottom

6. Electrical Interface

(Unless otherwise specified, Vcc-Vee = 4.75 to 5.25 V and all operating temperature shall apply.)

•	•						,
Para	meter	Symbol	min.	Тур.	Max.	Unit	Note
Supply Voltage		Vcc-Vee	4.75	5.00	5.25	V	
Supply Current		ldtx		90	200	mA	1, 2, 3
Input Voltage	High	Vih	Vcc-1.17		Vcc-0.73	V	4, 5
TD, TDb	Low	Vil	Vcc-1.95		Vcc-1.45		
Input Current	High	lih	-10		150	μΑ	4, 5
TD, TDb	Low	lil	-10		10		
Signal Input Rise / Fa	all Time				0.5	nsec.	6
Disable Input Voltage	е	Vdi	Vee+2.0		Vcc	V	7
Disable Input Curren	t	ldi	-10		200	μΑ	
LD Bias Monitor Volt	age	Vbm	0.01		0.50	V	5, 8
Rear Facet Monitor \	/oltage	Vrfm	0.01		0.20	V	5. 8

Note 1. Input bias current is not included. 2. 50% duty cycle data 3. 622.08Mbps 4. Vcc-Vee=5.0V 5. Tc=25°C 6. 20~80% 7. The transmitter is enabled as default state and requires an external voltage only to disable. (Refer to Section 9. Relation between Disable Input Voltage and Optical Output Power) 8. The Laser Bias and Rear Facet Monitor currents are calculated as ratios of the corresponding voltages to their current-sensing resistors, 10Ω and 200Ω , respectively (See Figure 3). Upon measuring or utilzing these values, please use a device whose impedance is high enough (>1M Ω) compared with those resistors.

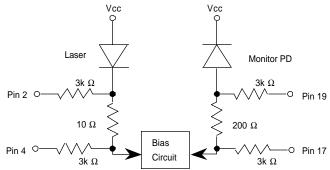


Figure 3 Monitor Circuit Schematic Diagram

▲ Caution

Do not store the product in the area where temperature exceeds the maximum rating, where there is too much moisture or dampness, where there is acid gas or corrosive gas, or other extreme conditions. Otherwise, failure, overheating or fire may occur.

Marning

Use the product with the rated voltage described in the specification. If the voltage exceeds the maximum rating, overheating or fire may occur.

^{**}When single +5V would be supplied, please connect Vcc to +5V and Vee to GND. Else when single -5V would be supplied, please connect Vcc to GND and Vee to -5V.

Date: March, 1999

7. Optical Interface

(Unless otherwise specified, Vcc-Vee = 4.75 to 5.25 V and all operating temperature shall apply.)

Parameter	Symbol	min.	Тур.	Max.	Unit	Note
Average Output Power	Po	-3.0		2.0	dBm	1
Extinction Ratio	Er	10.0			dB	1
Center Wavelength	λc	1480		1580	nm	
Spectral Width (@ -20dB)	$\Delta\lambda$			1.0	nm	
Side Mode Suppresion Ratio	Rs	30.0			dB	
Eye Mask for Optical Output						

Note 1. Measured at 622.08Mbps PRBS2^23-1, 50% duty cycle data

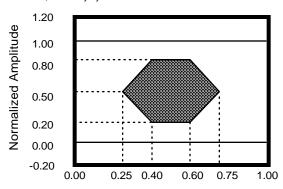


Figure 4. Optical Pulse Mask with Fourth Order Bessel-Thomson Filter Specified in ITU-T G.9t

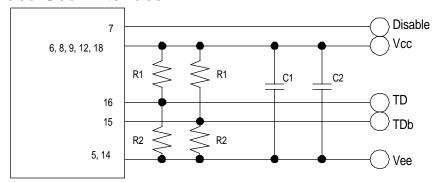
▲ Warning

 \mathcal{Q}

Do not look at the laser beam projection area (e.g. end of optical connector) with naked eyes or through optical equipment while the power is supplied to this product. Otherwise, your eyes may be injured.

8. Relation between Input Signal and Optical Output Signal

Relation between Input Signal and Optical Output Signal


Input	Signal	Optical Output Signal
TD	TDb	
High	Low	ON (High)
Low	High	OFF (Low)
High	High	Undefined
Low	Low	Undefined

Relation between Disable Input Voltage and Optical Output Power

Disable Input Voltage	Optical Output Power
"L" (Vee ~ Vee+0.4V)	Enabled
"H" (Vee+2.0 ~ Vcc)	Disabled (<-45dBm)

Note. Enabled for no Disable input (pin 7 opened)

9. Recommended User Interface

C1 = 0.022µF (Ceramic Chip Capacitor)

 $C2 = 1\mu F / 25V$ (Tantalum Electrolytic or Aluminum Electrolytic Capacitor)

R1 = 82 Ω (\geq 1/8 W), R2 = 130 Ω (\geq 1/8 W)

Note: 1. Termination resistors (R1, R2) should be located as close to the module as possible.

- 2. 50Ω impedance lines are recommended for TD and TDb.
- 3. Please refer to Figure 3 for Pin 2, 4, 17, 19.

Figure 5. Recommended User Interface

Date: March, 1999

10. Fiber Pigtail Specification

Parameter	min.	Тур.	Max.	Unit	Note
Mode Field Diameter		9.5		μm	
Cladding Diameter		125		μm	
Outer Diameter		0.9		mm	
Optical Fiber Tensile Break Strength			9.8	N	1
Bend Radius	30			mm	

Note 1. Strength between receiver body and optical fiber should be less then 9.8 N

11. Reliability Test

Heading	Test	Reference	Condition	Samplin	ng	SEI Result		
				LTPD	SS	C	SS	F/C
Mechanica	Mechanical	MIL-STD-883	Condition B					
Integrity	Shock	Method 2002	5 times/axis					
			500G, 1.0 ms	20%	11	0		
			1,500G, 0.5ms	20%	11	0	11	0
	Vibration	MIL-STD-883	Condition A	20%	11	0	11	0
		Method 2007	20 G					
			20-2,000 Hz					
			4 min/cycle; 4 cycles/axis					
	Thermal Shock	MIL-STD-883	ΔT=100°C	20%	11	0	11	0
		Method 1011						
	Solderability	MIL-STD-883	(steam aging not required)	20%	11	0	11	0
		Method 2003						
	Fiber Pull		1 Kg; 3 times;5sec.	20%	11	0		
			2 Kg; 3 times; 5sec.	20%	11	0		
Endurance	Accel. Aging	(R)-453	+85C; rated power					
	(High Temp.)	Section 5.18	>5,000hrs.		25		25	0
			>10,000hrs.		10			
	High Temp.		max. storage T (T=85°C)	20%	11	0		
	Storage		>2,000					
	Low Temp.		min. storage T (T=-40°C)	20%	11	0	11	0
	Storage		>2,000					
	Temperature	Section 5.20	- 40°C to +85°C					
	Cycling		400 times pass/fail	20%	11	0		
			500 times for info.		11			
			500 times pass/fail	20%	11	0	11	0
			1000 times for info.		11		11	0
	Damp Heat	MIL-STD-202 M103	40°C , 95%, 56days	20%	11	0	11	0
	(if using epoxy)	or IEC 68-2-3	or 85°C /85%RH 2,000hrs.	20%	11	0		
	Cyclic Moisture	Section 5.23		20%	11	0	11	0
	Resistance							
Special	Internal	MIL-STD-883	< 5,000 ppm	20%	11	0	11	0
Tests	Moisture	Method 1018	water vapor					
	Flammability	TR357:Sec. 4.4.2.5						ОК
	ESD Threshold	Section 5.22			6		6	0

12. Laser Safety

This product uses a semiconductor laser system and is a laser class 1 product acc. FDA, complies with 21CFR 1040. 10 and 1040.11. Also this product is a laser class 1 product acc. IEC 825-1.

Class 1 Laser Product

Date: March, 1999

13. Other Precaution

Under such a strong vibration environment as in automobile, the performance and reliability are not guaranteed.

The governmental approval is required to export this product to other countries. To dispose of these components, the appropriate procedure should be taken to prevent illegal exportation.

This module must be handled, used and disposed of according to your company's safe working practice.

▲ Warning

Be sure to carry out correct soldering for connection to peripheral circuits in order to prevent contact failure or short-circuit. Otherwise, a strong laser beam may cause eye injury, overheating or fire.

Do not put this product or components of this product into your mouth. This product contaions material harmful to health.

▲ Caution

Be sure to turn the power off when you touch this product connected to the printed circuit boards. Otherwise, electric shock may occur.

Dispose this product or equipment including this product properly as an industrial waste according to the regulations.

14. Ordering Information

Connector type	Operating Temperature Range				
	0 ~ 70°C	-40 ~ 85°C			
FC / PC	SDT8262-TD-QN	SDT8262-TD-QW			
SC	SDT8262-TC-QN	SDT8262-TC-QW			

15. For More Information

U.S.A.

Sumitomo Electric Lightwave Corp, 78 Alexander Drive, Research Triangle Park, NC 27709

Tel. (919)541-8100/Fax. (919)541-8376

E-mail: info@sumitomoelectric.com http://www.sumitomoelectric.com

Europe

Sumitomo Electric Europe Ltd., Unit 11, Magnolia House, Spring Villa Park, Spring Villa Road Edgware, Middlesex, HA8 7EB, United Kingdom

Edgware, Middlesex, FIAO 7 LD, Officed Kingdon

Tel.(0181)905-6167 Fax.(0181)905-6120

Japan

Sumitomo Electric Industries, Ltd. (International Business Division), 3-12, Moto-Akasaka 1-chome Minato-ku Tokyo 107-8468

Tel. (03)3423-5771 / Fax. (03)3423-5099

E-mail: product-info@yfocs.sei.co.jp

http://www.sei.co.jp/Electro-optic/eopd_home_e.html