Product Description

The SC-TOSA is a high-performance optical subassembly with an integrated Emcore TO-46 850nm VCSEL (Vertical Cavity Surface-Emitting Laser). This device is tailored to meet the needs of high-speed data communications and telecommunications applications. The product is designed for easy integration into a wide variety of Gigabit Ethernet, Fibre Channel, and ATM transceiver modules and systems. The SC-TOSA converts electrical current into optical power and then couples that power via an SC receptacle into a multimode optical fiber. The optical subassembly includes a TO-46 can with Common Anode, Common Cathode and Common Anode, Isolated pin configurations.

Product Specifications

Absolute Maximum Ratings

Parameter	Rating	Important Notice
Operating Case Temperature	0°C to 85°C	Stresses beyond those listed under "Absolute Maximum Ratings"
Storage Temperature	-40°C to 85°C	may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any
Lead Solder Temperature	260°C for 10 seconds	other conditions beyond those indicated for extended periods of
Laser Reverse Voltage	5V	time may effect device reliability.
Laser Forward Current (continuous)	10mA	
Laser Forward Current (instantaneous)	15 mA	
Photodiode Forward Current	2mA	

Electro-Optical Characteristics

(T= 25°C unless otherwise stated)

Characteristic	Symbol	Min.	Тур.	Max.	Units
Peak Emission Wavelength	λ_{p}	830	850	860	nm
RMS Spectral Width	Δλ			0.85	nm
p Temp Coefficient	$\Delta\lambda{ m p}$		0.06		nm/°C
Optical Rise and Fall Time (20%-80%, @1.25Gb/s)	t _R , t _F		110	150	ps
Threshold Current , (Po = 20 uW)	I _{TH}		1.5	2.5	mA
I _{TH} Change Over Temperature (0°C to 85°C)	ΔI_TH	-1.0		1.0	mA
Laser Forward Voltage (I _F = 5mA)	V_{F}	1.6	1.8	2.2	V
Laser Reverse Voltage (I _R =1μA)	V_{RBLD}	5			V
Differential Series Resistance (4 - 8mA)	δR_s	25	35	50	Ω

Photodiode Characteristics

(T= 25°C unless otherwise stated)

1: 20 0 0 000000000000000000000000000000					
Characteristic	Symbol	Min.	Тур.	Max.	Units
Monitor Current (Poc=0.40 mW)	I _{PD}	0.10		0.580	mA
Dark Current (Po =0 mW, V _R =3V\)	l _D			20	nA
Reverse Voltage (Po = 0 mW, I_R =10 μ A)	V_{RBLD}	10			V
Capacitance (V _R =0V, @ 1MHz)	С			100	pF
(V _R =3V, @ 1MHz)				55	pF

Optical Functional Characteristics (T= 25°C unless otherwise stated)

Characteristic	Symbol	Min.	Туре	Max.	Units
Coupling Efficiency (50/125μm fiber, @ P _{FC} = .4mW) ¹	$\epsilon_{ ext{fiber}}$	60			%
Rattle Sensitivity ²	R _{at}			1	dB
Fiber Coupled Slope Efficiency (I _F = 4 - 8mA, 50μm fiber)	η	0.030	0.11	0.15	mW/mA
Fiber Coupled Slope Efficiency over 0-85°C (I _F = 4 – 8mA)	ηt	0.021		0.175	mW/mA
Coupled Power Ratio (P _{oc} =400 μW) ³	CPR	9			dB

Notes:

- 1. Coupling Efficiency is the ratio of the power coupled into a 50/125µm multi-mode fiber to the total power emitted from the open-bore OSA barrel.
- Rattle Sensitivity is the change in the coupled optical power when the connector is subjected to a radial force of 25 cN in 4 quadrants, R_{at=} 10log (Pmax/Pmin).
- Coupled Power Ratio, CPR, provides an indication of the mode volume excited in the multi-mode fiber. It is the difference in the optical power coupled into a multi-mode fiber (50/125μm or 62.5/125μm) and the power coupled into a single mode fiber. CPR will be measured according to TIA/EIA 526-14A. CPR(dB) = P_{fC,MMF}(dB) P_{fC,SMF}(dB).

Diagram

All dimensions are nominal

8585-3400: COMMON ANODE, ISOLATED

1-VCSEL CATHODE 2-PHOTODIODE ANODE 3-VCSEL ANODE/PHOTODIODE CATHODE

8585-3440: COMMON ANODE

1-VCSEL CATHODE 2-VCSEL ANODE/PHOTODIODE CATHODE 3-PHOTODIODE ANODE

8585-3420: COMMON CATHODE

1-VCSEL ANODE 2-VCSEL CATHODE/PHOTODIODE ANODE/CASE 3-PHOTODIODE CATHODE

EMCORE Optical Devices 10420 Research Rd. SE Albuquerque, New Mexico 87123 USA Tel: (505)323-3400, Fax: (505)323-3402 E-mail: EODinfo@emcore.com EMCORE Corporation 145 Belmont Drive Somerset, NJ 08873 USA Tel: (732)271-9090, Fax: (732)271-9686 Web: www.emcore.com E-mail: info@emcore.com

