

P-Channel 1.25-W, 1.8-V (G-S) MOSFET

Characteristics

- P-channel Vertical DMOS
- Macro-Model (Subcircuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to -4.5 volt gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain

feedback capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measured electrical data and are not intended as an exact physical description of a device.

Model Subcircuit

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Siliconix 4/17/01 Document: 70937

P-Channel Device (T_J=25°C Unless Otherwise Noted)

Parameter	Symbol	Test Conditions	Тур	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.79	V
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \le -5V, V_{GS} = -4.5V$	55.7	A
		$V_{\rm DS} \le -5 { m V}, V_{\rm GS} = -2.5 { m V}$	15.1	
Drain-Source On-Resistance ^b	r _{DS(on)}	$V_{GS} = -4.5V, I_D = -3.5A$	0.042	
		$V_{GS} = -2.5V, I_D = -3.0A$	0.065	Ω
		$V_{GS} = -1.8V, I_D = -2.0A$	0.103	
Forward Transconductance ^b	${f g}_{ m fs}$	$V_{DS} = -5V, I_D = -3.5A$	9.2	S
Diode Forward Voltage ^b	$ m V_{SD}$	$I_S = -1.6A, V_{GS} = 0V$	0.80	V
Dynamic ^a				
Total Gate Charge	Q_{g}		8.7	
Gate-Source Charge	Q_{gs}	$V_{DS} = -6V, V_{GS} = -4.5V,$	1.9	nC
		$I_D = -3.5A$		
Gate-Drain Charge	Q_{gd}		1.5	
Input Capacitance	C_{iss}		1228	
Output Capacitance	C_{oss}	$V_{DS} = -6V, V_{GS} = 0V,$	250	pF
		f = 1 MHz		
Reverse Transfer Capacitance	C_{rss}		116	
Switching ^c				
Turn-On Time	$t_{d(on)}$		25	
	$t_{\rm r}$	$V_{DD} = -6V, R_L = 6\Omega,$	12	
Turn-Off Time	$t_{d(off)}$	$I_D \cong -1A$, $V_{GEN} = -4.5V$,	61	ns
	, ,	$R_G = 6\Omega$		
	$t_{ m f}$		9.8	

Notes:

- a) For design aid only, not subject to production testing
- b) Pulse test: pulse width ≤ 300 μs, duty cycle ≤ 2%
 c) Switching time is essentially independent of operating temperature

Siliconix 4/17/01

Document: 70937

SPICE Device Model Si2315DS

4/17/01 Document: 70937