

Figure 1. SCC-TC01 and SCC-TC02 Thermocouple Input Modules (thermocouple plug not included)

SCC-TC Series Thermocouple Inputs

Model	Ch	Description	Part Number
SCC-TC01	1	Thermocouple, spade connector	777459-03
SCC-TC02	1	Thermocouple input	777459-04

Table 1. SCC-TC Series Modules

The SCC-TC01 and SCC-TC02 are single-channel modules for conditioning a variety of thermocouple types, including J, K, T, B, E, N, R, and S, and millivolt inputs with a range of ± 100 mV. The SCC-TC modules include a 2 Hz lowpass filter, instrumentation amplifier with a gain of 100, and buffered outputs for maximum scanning rates by the E Series DAQ device. The input circuitry of the SCC-TC modules also includes high-impedance bias resistors for open-thermocouple detection as well as handling both floating and ground-referenced thermocouples. The SCC-TC modules include an onboard thermistor for cold-junction compensation (See Figure 2).

When an SCC-TC is installed in the SC-2345, the thermocouple signal and the cold-junction signal are routed to two input channels of the E Series DAQ device, channels X and X+8, respectively, where X is any channel 0 through 7. For example, if an SCC-TC module is installed in socket J1 of the SC-2345, the thermocouple signal is measured on channel 0 while the cold-junction sensor output is measured on channel 8.

Two versions of the SCC-TC are available. The SCC-TC01 includes a two-prong uncompensated thermocouple jack that

accepts any miniature or subminiature two-prong male thermocouple plug. The SCC-TC02 includes a removable screw terminal plug that includes an additional connection for grounding thermocouple shields.

Figure 2. Block Diagram of SCC-TC01 and SCC-TC02

Figure 3. SCC-RTD01

SCC-RTD01 RTD Input

Model	Ch	Description	Part Number
SCC-RTD01	2	2, 3, or 4-wire Pt RTD	777459-18

Table 2. SCC-RTD01 RTD Input Module

The SCC-RTD01 is a dual-channel module that accepts 2, 3, or 4-wire Platinum RTDs. Each channel of the SCC-RTD01 has an amplifier with a gain of 25 and a 30 Hz lowpass filter. In addition, each module has a 1 mA excitation source for powering the RTDs.

When the SCC-RTD01 is inserted into the SC-2345, the two output voltages are routed to two input channels of the E Series DAQ device, channels X and X+8, where X is any channel 0 through 7.

EXPRESS CODES

For information or to buy products online, visit ni.com/catalog and enter:

SCC

BUY ONLINE

For example, if installed into the J1 socket of the SC-2345, the output voltages are routed to input channels 0 and 8 of the E Series DAQ device (See Figure 4).

Figure 4. Block Diagram of the SCC-RTD01

Figure 5. SCC-SG Strain-Gauge Input Modules

SCC-SG Series Strain-Gauge Inputs

Model	Ch	Description	Part Number
SCC-SG01	2	120 Ω , quarter-bridge strain gauges	777459-13
SCC-SG02	2	350 Ω , quarter-bridge strain gauges	777459-14
SCC-SG03	2	Half-bridge strain gauges	777459-15
SCC-SG04	2	Full-bridge strain gauges	777459-16
SCC-SG11	2	Shunt calibration	777459-17

Table 3. SCC-SG Series Modules

The SCC-SG Series consists of dual-channel strain gauge modules for conditioning quarter, half, and full-bridge strain gauges. Each module is designed for a specific type of strain gauge configuration. Each channel of an SCC-SG module includes an instrumentation amplifier, a 1.6 kHz lowpass filter, and a potentiometer for bridge offset nulling. Each module also includes a single 2.5 V excitation source.

The SCC-SG11 is a dual-channel shunt calibration module for use with the SCC-SG Series modules. Each channel includes two terminals for wiring the 301 k Ω , 1%, 1/4 Ω resistor across any two points of your bridge. You enable shunt calibration for both channels of a module by writing a logic high to the digital line controlling the SCC-SG11. You disable shunt calibration by writing a logic low to the same digital line.

When an SCC-SG module is installed in the SC-2345, the strain-gauge signals are routed to two input channels of the E Series DAO device, channels X and X+8 respectively, where X is any channel 0 through 7.

Figure 6. Block Diagram of the SCC-SG01/SCC-SG02

Figure 7. Block Diagram of the SCC-SG03

Figure 8. Block Diagram of the SCC-SG04

Digital Input Socket (J9)

Single-Stage Analog Input Socket (J1)

SC-2345 with Configurable Connectors

Single-Stage Analog Input Socket (J1)

Digital Input Socket (J9)

Figure 9. Using the SCC-SG11 Shunt Calibration Module with the SCC-SG02

Figure 10. SCC-ICP01 Accelerometer Input Module

SCC-ICP01 Accelerometer Input

Model	Ch	Description	Part Number
SCC-ICP01	1	Accelerometer Input	777459-19

Table 4. SCC-ICP01 Accelerometer Input Module

The SCC-ICP01 is a single-channel module that accepts ICP compatible sensors such as accelerometers and microphones. The SCC-ICP01 has an amplifier with a gain of two, a 0.8 Hz highpass filter and a 19 kHz 3-pole Bessel lowpass filter. The maximum input range is ±5 V. In addition, this module has a 4 mA current source to power an ICP compatible accelerometer or microphone.

When the SCC-ICP01 is inserted into the SC-2345, the single output voltage is routed to one input channel of the E Series DAQ device, channel X, where X is any channel 0 through 7. For example, if installed into the J1 socket of the SC-2345, the output voltage is routed to input channel 0 of the E Series DAO device (See Figure 11).

Figure 11. SCC-ICP01 Accelerometer Input Module

ICP®, is a registered trademark of PCB Piezotronics, Inc., Depew, New York. ICP is used in the designation of SCC-ICP01 to indicate that the product is compatible with ICP technology. NI and the SCC-ICP01 are not affiliated with, licensed or approved by, or otherwise connected with PCB Piezotronics Inc.

Figure 12. SCC-Al Series Isolated Analog Input Modules

SCC-Al Series Isolated Analog Inputs

Model	Ch	Input Range	Bandwidth	Part Number
SCC-AI01	2	±42 V	10 kHz	777459-20
SCC-AI02	2	±20 V	10 kHz	777459-21
SCC-AI03	2	±10 V	10 kHz	777459-22
SCC-AI04	2	±5 V	10 kHz	777459-23
SCC-AI05	2	±1 V	10 kHz	777459-24
SCC-AI06	2	±100 mV	10 kHz	777459-25
SCC-AI07	2	±50 mV	10 kHz	777459-26
SCC-AI13	2	±10 V	4 Hz	777459-27
SCC-AI14	2	±5 V	4 Hz	777459-28

Table 5. SCC-Al Isolated Analog Input Modules

The SCC-Al Series modules are dual-channel isolated analog input modules for reading input voltages from ±50 mV to ±42 V. Each channel of an SCC-Al module includes an instrumentation amplifier, a lowpass filter, and a potentiometer for calibration. These modules are installation rated for Category II, and provide safety working isolation of 300 V per module.

When an SCC-Al module is installed in the SC-2345, the input signals are routed to two input channels of the E Series DAQ device, channels X and X+8 respectively, where X is any channel 0 through 7.

Figure 13. Block Diagram of SCC-AI Series

Figure 14. SCC-A10 Voltage Attenuator Module

SCC-A10 Voltage Attenuator

Model	Ch	Description	Part Number
SCC-A10	2	Attenuator input	777459-06

Table 6. SCC-A10 Module

The SCC-A10 is a dual-channel module that accepts input voltage sources up to 100 V. Each channel of the SCC-A10 includes a 10:1 attenuation circuit and differential instrumentation amplifier with lowimpedance outputs for maximum scanning rates by the DAQ device. The attenuation circuit includes high-impedance bias resistors, so you can connect floating or ground-referenced inputs to the SCC-A10 without adding external bias resistors. The SCC-A10 also provides overvoltage protection (up to 250 $\mathrm{V}_{\mathrm{rms}}\mathrm{)}$ for your DAQ system.

When an SCC-A10 module is installed in the SC-2345, the attenuated input signals are routed to two input channels of the E Series DAO device, channels X and X+8 respectively, where X is any channel 0 through 7.

Figure 15. Block Diagram of SCC-A10

Figure 16. SCC-CI20 Current Input Module

SCC-CI20 Current Input

Model	Ch	Description	Part Number
SCC-CI20	2	0-20 mA current input	777459-05

Table 7. SCC-CI20 Current Input Module

The SCC-Cl20 (Figure 16) is a dual-channel module that accepts two 0 to 20 mA or 4 to 20 mA current loop inputs. Each independent channel of the SCC-CI20 includes a precision 249 Ω current conversion resistor that converts a 0 to 20 mA signal into a 0 to 5 V signal. Each channel includes a differential instrumentation amplifier with low-impedance outputs for maximum scanning rates by the E Series DAQ device, and bias resistors for handling both floating and ground-referenced current sources. The SCC-CI20 also includes two spare 249 Ω replacement resistors.

When the SCC-CI20 is installed in the SC-2345, the two output voltages are routed to two input channels of the E Series DAQ device, channels X and X+8, where X is any channel 0 through 7. For example, if installed into the J1 socket of the SC-2345, the output voltages are routed to input channels 0 and 8 of the E Series DAO device.

Figure 17. Block Diagram of SCC-CI20

Figure 18. SCC-LP01 Lowpass Filter Module

SCC-LP Series Lowpass Filters

Model	Ch	Description	Part Number
SCC-LP01	2	Lowpass filter (25 Hz)	777459-07
SCC-LP02	2	Lowpass filter (50 Hz)	777459-08
SCC-LP03	2	Lowpass filter (150 Hz)	777459-09
SCC-LP04	2	Lowpass filter (1 KHz)	777459-10

Table 8. SCC-LP Series Lowpass Filter Modules

The SCC-LP Series (Figure 18) consists of dual-channel, lowpass filter modules that accept two ± 10 V signals. Each channel has a fourth-order Butterworth filter. The cut-off frequency is specific to the module and applies to both channels of the module.

When the SCC-LP Series module is inserted into the SC-2345, the two output voltages are routed to two input channels of the E Series DAQ device, channels X and X+8, where X is any channel 0 through 7. For example, if installed into the J1 socket of the SC-2345, the output voltages are routed to input channels 0 and 8 of the E Series DAQ device (See Figure 19).

Figure 19. Block Diagram of SCC-LP Series

Figure 20. SCC-FV01

SCC-FV01 Frequency-to-Voltage Input

Model	Ch	Description	Part Number
SCC-FV01	2	Frequency-to-Voltage (0 to 100Hz)	777459-32

Table 9. SCC-FV01 Frequency-to-Voltage Input Module

The SCC-FV01 (Figure 20) is a dual-channel frequency-to-voltage conversion module that accepts ± 10 V signals up to 100 Hz. The output scales linearly with the input frequency, and goes to 0 V with a DC input signal. Each channel triggers on the incoming signal using a threshold of 0 V and has a hysteresis of 200 mV. For isolated solutions, consider using the SCC-Al03 cascaded with the SCC-FV01.

When the SCC-FV01 module is inserted into the SC-2345, the two outputs are routed to two input channels of the E Series DAO device, channels X and X+8, where X is any channel 0 through 7. For example, if installed into the J1 socket of the SC-2345, the outputs are routed to channels 0 and 8 of the E Series DAO device. (See Figure 21).

Figure 21. Block Diagram of the SCC-FV01

Figure 22. SCC-DI01 Optically Isolated Digital Input Module

31 Vas DIO CO Solution 24V Max

Figure 24. SCC-DO01 Optically Isolated Digital Output Module

SCC-DI01 Optically Isolated

Model	CH	Description	Part Number
SCC-DI01	1	Isolated Digital Input	777459-11

Table 10. SCC-DI01 Module

Digital Input

The SCC-DI01 (Figure 22) is a single-channel optically isolated digital input module for sensing digital signals of up to 24 VDC, including TTL. This digital input module can sense both AC and DC signals and has a status LED for visual verification for the state of the module.

The SCC-DI01 is supported by connectors J9 through J16. When inserting an SCC-DI01, the digital signal is automatically routed to a DIO line of the E Series DAQ device. For example, socket J9 connects to digital line 0 of the data acquisition device. Because you can configure the E series DAQ devices for input or output on a line-by-line basis, you can have between one and eight SCC-DI01 modules per carrier.

Figure 23. Block Diagram of SCC-DI01

SCC-D001 Optically Isolated

Model	Ch	Description	Part Number
SCC-D001	1	Isolated Digital Output	777459-12

Table 11. SCC-DO01 Module

Digital Output

The SCC-DO01 (Figure 24) is a single-channel optically isolated digital output module for switching external devices. The SCC-DO01 optical isolation circuitry handles up to 24 VDC and includes a status LED for visual verification of the module output status. The SCC-DO01 includes an external switch for power-up state configuration.

The SCC-DO01 plugs into a connector between J9 and J16. When inserting an SCC-DO01, the digital signal is controlled by a DIO line of the E Series DAQ device. For example, socket J9 connects to digital line 0 of the data acquisition device. Because you can configure the E series DAQ devices for input or output on a line-by-line basis, you can have from one to eight SCC-DO01 modules per carrier.

Figure 25. Block Diagram of SCC- DO01

Figure 26. SCC-FT01 Feed-Through Module

SCC-FT01 Feedthrough

Model	Ch	Description	Part Number
SCC-FT01	1	Feedthrough	777459-01

Table 12. SCC-FT01 Module

The SCC-FT01 (Figure 26) is a feedthrough module that offers direct connection to analog input or output channels of the E Series DAO device. The SCC-FT01 includes breadboard area for development of custom signal conditioning circuitry for analog input, analog output, digital I/O, and GPCTR channels of the E Series DAO device.

If you install the SCC-FT01 into an analog input socket (J1 through J8) or analog output socket (J17 or J18) then you have direct connection to the corresponding channels of the E Series DAQ device. You can add custom conditioning to the SCC-FT01 for these analog inputs or outputs. You can also install the SCC-FT01 in a DIO or GPCTR socket of the SC-2345. You can add circuitry to connect to and condition the corresponding channels. When installed in any socket, the SCC-FT01 module has access to 5 VDC and ±15 V power, as well as a number of E Series signals.

If using the breadboard area for custom conditioning, you can cascade the SCC-FT01 with other SCC modules for dual-stage conditioning.

Specifications SCC-TC Series **Input Characteristics** thermocouples, ±100 mV Input signal gain.....100 Maximum input working voltage ±12 V of chassis ground Overvoltage protection to DAQ device...... ±42 Vpk ±0.08% of reading, maximum Gain error... Input impedance Normal powered on..... 10 MΩ Open thermocouple detection current 250 nA maximum 2 Hz, dual-pole RC filter Bandwidth System noise...... $5 \, \mu V_{rms'}$ referred to input Offset temperature coefficient $\pm 0.6~\mu V/^{\circ} C$ maximum Gain temperature coefficient...... ±0.0005%/°C Cold-Junction Sensor 1.91V (at 0 °C) to 0.58 V (at 55 °C) Accuracy (15 to 35 °C) 0.4 °C maximum SCC-RTD01 Input range ±400 mVDC (fixed gain of 25 on each channel) Maximum working voltage (signal + common mode)..... .. Each input should remain within ±12 V of ground Overvoltage protection..... ±42 Vpk/60 VDC (powered on or off) Input impedance..... ... 1 MΩ in parallel with 4.7 nF (powered on or off) Filter type Lowpass 3-pole Sallen and Key filter z-3 dB cutoff frequency 30 Hz System noise.... 4.5 mV_{rms} (referred to input) Transfer Characteristics Gain Gain-error temperature coefficient..... ±10 ppm/°C Offset-error temperature coefficient ±1.6 mV/°C Recommended warm-up time 5 minutes Amplifier Characteristics CMRR 110 dB at 60 Hz Output range ±10 V Excitation Number of channels..... Maximum voltage level without losing regulation...... 24 V Environment Operating temperature...... 0 to 50 °C SCC-SG Series **Input Characteristics** Input signal range ±100 mV Output signal range ±10 V Overvoltage protection ±42 Vpk/60 VDC Input Impedance..... 10 M Ω powered on 10 k Ω powered off or overload Gain error ±0.8% of reading maximum

S	p	e	Ci	fi	ca	tic	ns	(Co	ontir	านe	d	

strain guages

SCC-SG11 Shunt Calibration Module

Resistor temperature coefficient...... ±100 ppm/°C

SCC-ICP01

Analog Input

-3 dB cutoff frequency 0.8 Hz

Maximum working voltage

(signal + common mode)..... Each input should remain within ±12 V of ground Overvoltage protection...... ±40 VAC + DC (powered on or off) (powered on or off)

130 mV_{rms} (referred to input)

±1 dB, 5 Hz-10 kHz

Transfer Characteristics

Gain Gain-error temperature coefficient..... ±10 ppm/°C Offset error ±3 mV RTI Offset-error temperature coefficient ±1.6 mV/°C Recommended warm-up time 5 minutes

Amplifier Characteristics

Excitation Number of channels 1 Constant-current source 4 mA Maximum voltage level without losing regulation 24 V ±127 ppm/°C Operating temperature 0 to 50 °C

Relative humidity...... 5 to 90% noncondensing SCC-Al Series Isolated Analog Input Modules

Safety Isolation 100 M Ω (all others)

Working common mode voltage 300 V, Category II Differential maximum voltage 250 VDC/AC

Module	Input Range	Output Range	Gain	Bandwidth
SCC-AI01	±42 V	±8.4 V	0.2	10 kHz
SCC-AI02	±20 V	±10 V	0.5	10 kHz
SCC-AI03	±10 V	±10 V	1	10 kHz
SCC-AI04	±5 V	±10 V	2	10 kHz
SCC-AI05	±1 V	±10 V	10	10 kHz
SCC-AI06	±100 mV	±10 V	100	10 kHz
SCC-AI07	±50 mV	±10 V	200	10 kHz
SCC-AI13	±10 V	±10 V	1	10 kHz
SCC-AI14	±5 V	±10 V	2	10 kHz

Input Characteristics

Input range ±100 V Output range ±10 V Offset error ±6.5 mV maximum Normal powered on or off...... 1 $M\Omega$

Bandwidth 1 MHz

SCC-CI20

Input Characteristics

Input range 0 to 20 mA
 Output range
 0 to 5 V

 Gain error
 ±0.1% of reading maximum
 Offset error ±0.6 mV maximum

SCC-LP Series

Amplifier Characteristics

Input signal range ±10 V Output signal range ±5 V Gain 0.5 Overvoltage protection ±40 V on 10 K Ω powered off or overload Offset error (RTI)...... 350 μV typical, 1.5 mV maximum Filter characteristics

Cutoff frequency..... SCC-LP01 = 25 Hz SCC-LP02 = 50 Hz SCC-LP03 = 150 Hz SCC-LP04 = 1KHz Passband ripple Fc = cutoff frequency

	Typical	Maximum
DC to 1/3Fc	0 ± 0.04 dB max	0 ± 0.1 dB max
DC to 1/2Fc	0 ± 0.06 dB max	0 ± 0.2 dB max
DC to 2/3Fc	-0.2 ± 0.25 dB max	-0.2 ± 0.4 dB max
DC to Fc	-3 ± 0.3 dB max	-3 ± 0.5 dB max

DO 10 1 C	0 ± 0.0 dB iiidx		,
System noise			
THD @ Fc		< -90)dB
Wide band noise (DC to 1MHz, RTI)	100	μV_{rms}
Narrow band nois	e (DC to 33KHz, RTI)	6 μV	rms
Stability			
Gain temperature	coefficient	10 p	pm/°C typic

20 ppm/°C maximum 3.4 µV/°C typical

27 μV/°C maximum

Specifications (Continued)

SCC-FV01 Frequency Input

Input Characteristics

Number of input channels	2 referenced single ended
Input range	100mVpk to 5Vpk
Input coupling	DC
Minimum input frequency	0Hz
Minimum input pulse	
width (5V pulse train)	1.5µs
Overvoltage protection	+/- 40VAC + DC (powered on or o
Input Impedance	
Signal > threshold	400K Ω
Signal < threshold	10M Ω

Zero Crossing

Hysteresis Transfer Characteristics

Rise/Fall Time	80ms (0 to +63%)
Step Response	220ms @ 90%
	360ms @ 99%
Output offset	5mV max
Output offset temperature coefficient	10ppm /°C
Gain error temperature coefficient	100ppm /°C

 Non-linearity
 +/- 0.05% full scale

 Output Ripple
 30mVp-p @ 10Hz

 Output Range
 0 to +10V

 Recommended warm up time
 5 minutes

SCC-DI01

Input Characteristics

Digital logic levels

Level	Min	Max
Input low voltage (DC or Peak AC)	_	±1 V
Input high voltage		
DC	±2 VDC	±30 VDC
1 kHz AC	4 V _{rms}	24 VAC

I	1	Ju	L	(.u	п	E	ľ	Ц
		С	١	,	in	_		ıŧ	

5 V Input	1.5 mA
24 V input	7.0 mA
Isolation	24 VDC from computer

SCC-D001

Output Characteristics

Number of channels 1
Compatibility TTL-compatible
Supply voltage range 5 to 24 VDC

Digital logic levels

Level	Min	Max
Output low voltage (I _{out} = 25 mA)	_	0.4 V
Output high voltage	22 VDC at V _{SS} = 24 V	_
(I _{out} = 25 mA)	3 VDC at V _{SS} = 5 V	_

SCC-PWR Series

Input	+5 VDC ±5% from an external source, or
	+5 VDC from E Series DAQ device
Output	+5 VDC, 100% efficiency
	±15 VDC, 62% efficiency
SCC-PWR02	·
Input	90 to 264 VAC, 1 A maximum

+5 VDC, 1 A ±15 VDC, ±0.3 A

SCC-PWR03

Output

Input	7 to 42 VDC
Output	+5 VDC, 75% efficiency
	. 1 E V/DC 4/0/ - 65-1

Physical

DILLIGUZIOUZ	
SCC Modules	8.9 by 2.9 by 1.9 cm
	(3.5 by 1.2 by 0.7 in.)
SC-2345 connector block	24.1 by 26.2 by 3.94 cm
	19.5 by 10.3 by 1.6 in 1

External AC adapter (for SCC-PWR02)...... 15.5 by 8.5 by 4.8 cm (6.1 by 3.3 by 1.9 in.)

Connectors

SC-2345 cable	68-pin male SCSI II
SCC input	Removable screw terminal or
	minithermocouple connector
SCC output	20-pin right-angle male connector

¹ Safe for use with the transients associated with local level mains supplies of up to 300 Volts Installation Category (Over-Voltage Category) II. 300 V CAT II local level mains supplies can see occasional transients of up to 1500V.

Certification and Compliance

European Compliance ←

EMC	EN 61326 Group I Class A, 10m
	Table 1 Immunity
Safety	EN 61010-1
North American Compliance	
EMC	FCC Part 15 Class A using CISPR

Australia & New Zealand Compliance

EMC AS/NZS 2064.1/2 (CISPR-11)