Date: April, 2001

Technical Specification

for

3.3V / 1.25Gbps Optical Transceiver Module

SCM7104-XC

	SCM7104-GC	
Short Haul Intermediate Reach Single 5.0 V 1.3 Transmitter	622.08Mbps Long Haul Long Reach Single 3.3 V 1.55 µm Receiver (other other other other other Transceiver (
Sumitomo Electric reserves the inotice.	SUMITOMO ELE	
		symbols to prevent possible injury to operator or other finitions are as shown below. Be sure to be familiar with
▲ Warning Wrong operation without f	following this instruction may lead to	human death or serious injury.
▲ Caution Wrong operation without f	ollowing this instruction may lead to	human injury or property damage.
Example of picture symbols indicates prohib	ition of actions. Action details are e	xplained nearby.
indicates compu	ulsory actions or instructions. Action	details are explained near by.
(SCM7104-XC,SCM7104-GC)	-1/ 10-	

Date: April, 2001

General

SCM7104-XC is a series of compact and high speed performance digital optical transceiver module ideally designed for versatile high speed network applications. 1310nm high speed InGaAsP FP-LD and InGaAs PIN-PD are provided as a light source and a detector, respectively. Transceiver module has PC board mountable package with electrical and optical interfaces. SCM7104-XC is specifically designed to be used in Gigabit Ethernet applications.

•Data Rate 100 ~ 1.250Mbps, NRZ

•Duty Cycle 50%

Power Supply Voltage Single +3.3VElectrical Interface LVPECL

•Fiber Coupled Power -11.5dBm ~ -3dBm for MMF(*)

-9.5dBm ~ -3dBm for SMF

*Transmitter shall be coupled through a single mode fiber offset-launch

mode-conditioning patch cord.

•Sensitivity -20dBm ~ -3dBm •Connector Interface SC Duplex Connector

•Compliant with Specifications for IEEE 802.3z Gigabit Ethernet

The features of SCM7104-XC are listed below.

•Features Single 3.3V Operation

Low Power Consumption

Applicable for both SMF (2~10,000m) and MMF (2~550m)

Low Profile (9.4mm Max) Plastic Molded Package

Multi-sourced 1x9 Footprint

Transmitter..... Uncooled Laser with Automatic Power Control IC

Class 1 Laser Product

(IEC 825 and FDA 21 CFR 1040.10 & 1040.11)

Receiver...... Wide Dynamic Range

Signal Detect Function

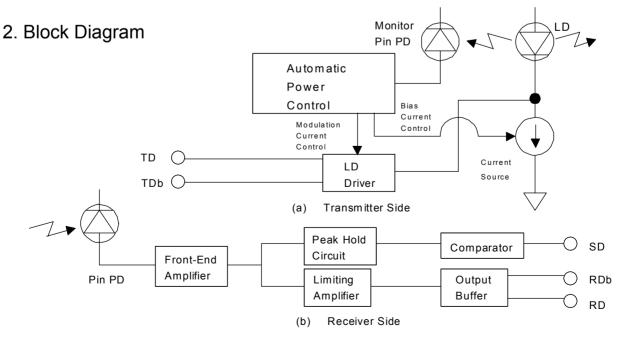
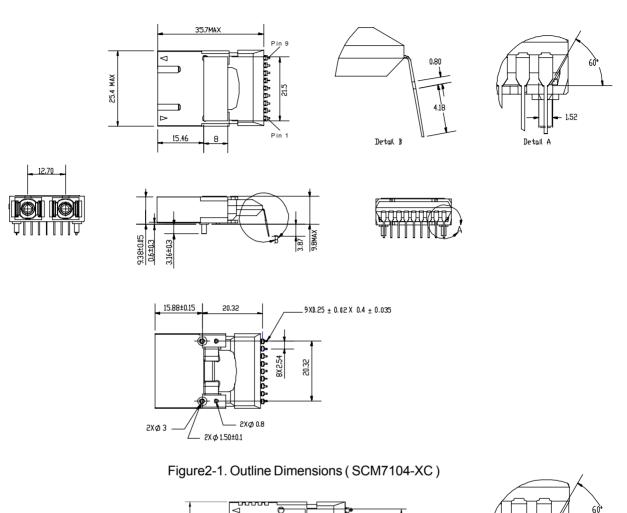
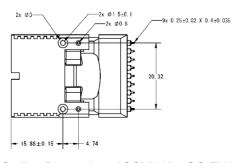



Figure 1 Block Diagram

Date: April, 2001

3. Package Dimension


All dimensions are in mm.

Notes:

1. Surface of the receptacle and latch levers are metalized.

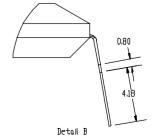


Figure 2-2. Outline Dimensions (SCM 7104-GC-ZN)

Date: April, 2001

All dimensions are in mm.

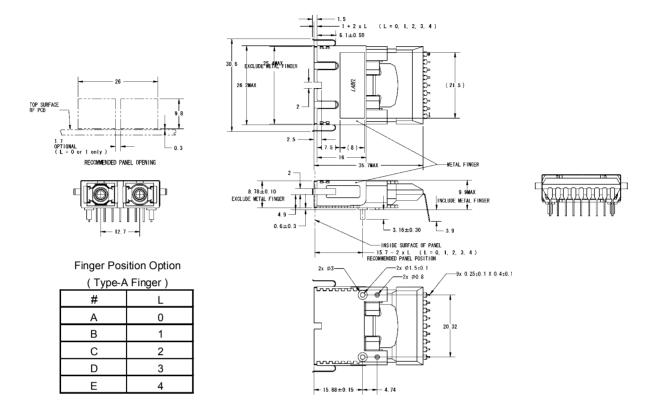


Figure 2-3. Outline Dimensions (SCM 7104-GC-#N)

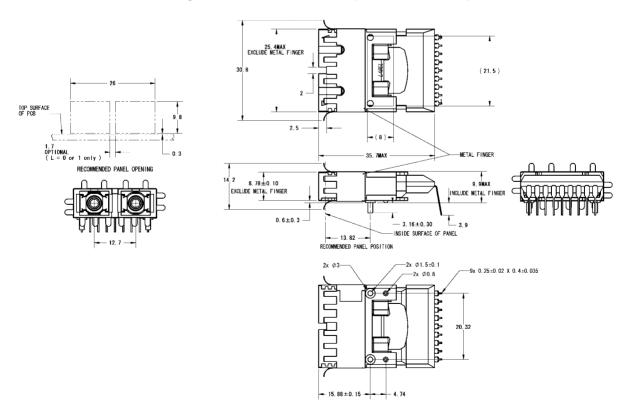


Figure2-4. Outline Dimensions (SCM7104-GC-GN)

Date: April, 2001

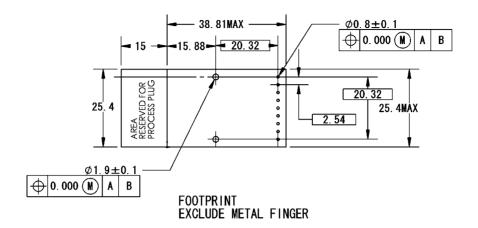


Figure 2-5. Recommended Footprint

∆Caution

0

Do not disassemble this product. Otherwise, failure, electrical shock, overheating or fire may occur.

Handle the lead pins carefully. Use assisting tools or prospective aids as required. A lead pin may injure skin or human body

4. Pin Assignments

No.	Symbol	Function
1	Veerx	Power Supply (-) for Receiver : Connected to GND
2	RD	Received Differential Data (Positive)
3	RDb	Received Differential Data (Negative)
4	SD	Signal Detect
5	Vccrx	Power Supply (+) for Receiver : Connected to +3.3V
6	Vcctx	Power Supply (+) for Transmitter : Connected to +3.3V
7	TDb	Transmitting Differential Data (Negative)
8	TD	Transmitting Differential Data (Positive)
9	Veetx	Power Supply (-) for Transmitter : Connected to GND

Date: April, 2001

5. Absolute Maximum Ratings

Parameter	Symbol	min.	Max	Unit	Note
Storage Case Temperature	Ts	-40	85	°C	1
Operating Ambient Temperature	Та	0	70	°C	1
Supply Voltage	Vcc-Vee	0	4.0	V	2
Input Voltage	Vi	Vee	Vcc+0.5	V	3
Output Current (RD, RDb, SD)	lo		30	mA	
Lead Soldering (Temperature)			260	°C	4
(Time)			10	sec.	

Note 1. No condensation allowed. 2. Vcc > Vee, Vee = GND for Vcc = +3.3V 3. TD, TDb 4. Measured on lead pin at 2mm (0.079in.) off the package bottom

⚠ Warning

0

Use the product with the rated voltage described in the specification. If the voltage exceeds the maximum rating, overheating or fire may occur.

Do not store the product in the area where temperature exceeds the maximum rating, where there is too much moisture or dampness, where there is acid gas or corrosive gas, or other extreme conditions. Otherwise, failure, overheating or fire may occur.

6. Electrical Interface

(Ta=0 to 70C, $V_{ccTX} = V_{ccRX} = 3.14$ to 3.47V, $V_{eeTX} = V_{eeRX} = GND$, unless otherwise specified)

6.1 Transmitter Side

Paramet	er	Symbol	min.	Тур.	Max.	Unit	Note
Supply Voltage		Vcc _{tx}	3.14	3.30	3.47	V	
Supply Current		Icc _{tx}		70	140	mA	
Input Voltage	High	Vih	Vcc _{tx} -1.17		Vcc _{tx} -0.73	V	1
	Low	Vil	Vcc _{tx} -1.95		Vcc _{tx} -1.45		
Input Current	High	lih	-10		150	μΑ	1
	Low	lil	-10		10		
Signal Input Rise / Fall T	ime				240	psec.	2

Note 1. Veetx = +3.3V, Ta=25°C 2. 20 ~ 80%

6.2 Receiver Side

Parameter		Symnol	Min.	Тур.	Max.	Unit	Note
Supply Voltage		V_{ccRX}	3.14	3.30	3.47	V	
Supply Current		I _{ccRX}		95	125	mA	1
Output Voltage	(High)	V_{OH}	V _{ccRX} - 1.10		V _{ccRX} - 0.86	V	2,3
(RD, RDb, SD)	(Low)	V _{OL}	V _{ccRX} - 1.86		V _{ccRX} - 1.62		
Rise/Fall Time		T_{rout}		230		psec	6
of Output Signal		T_{fout}					

Note 1. Output current are not included.

Note 2. Output load resistor (R = 50 Ω) is connected to VccRX - 2.0V

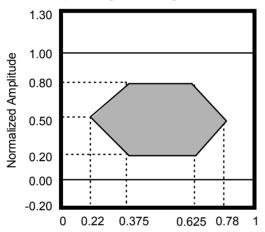
Note 3. VccRX = +3.3 V, Ta = 25°C, Note 4. IOH = 0.4 mA, VCC - VEE = 3.3V

Note 4. 20 ~ 80 %

Date: April, 2001

7. Optical Interface

(Ta=0 to 70°C, $V_{ccTX} = V_{ccRX} = 3.14$ to 3.47V, $V_{eeTX} = V_{eeRX} = GND$, unless otherwise specified)


7.1 Transmitter Side

Parameter	Symbol	min.	Тур.	Max.	Unit	Note
Output Power to SMF/ MMF	Po	-9.5 / -11.5		-3.0 / -3.0	dBm	1, 2
Extinction Ratio	Er	9.0			dB	1
Center Wavelength	λc	1270		1355	nm	
Spectral Width (RMS)	Δλ			2.8	nm	
Relative Intensity Noise	RIN			-120	dB/Hz	
Rise/Fall Time (20~80%)	tr/tf			0.26	ns	3

Note 1. Measured with 1,250Mbps PRBS 2^23-1 NRZ, 50% duty cycle data,NRZ

Note 2. With MMF links, Transmitter shall be coupled through a singlemode fiber offset-launch mode-conditioning patch cord.

Note 3. 1.25Gbps 1010 Signal.Refer to Figure 3

Relation between Input Signal and Optical Output Signal

Input	Signal	Optical Output Siganl			
TD	TDb				
High	Low	ON (High)			
Low	High	OFF (Low)			
High	High	Undefined			
Low	Low	Undefined			

Figure 3. Optical Pulse Mask with Fourth Order Bessel Thompson Filter Specified in ITU-T G.957

⚠ Warning

Do not look at the laser beam projection area (e.g. end of optical connector) with naked eyes or through optical equipment while the power is supplied to this product. Otherwise, your eyes may be injured.

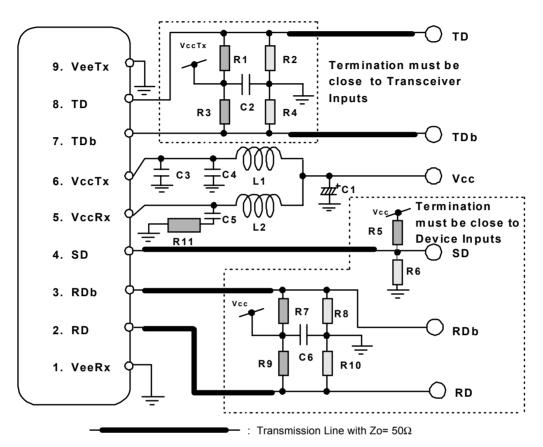
7.2 Receiver Side

Parameter	Symnol	Min.	Тур.	Max.	Unit	Note
Receiver Power	Pin	-20.0		-3.0	dBm	1
SD Assert Level	Pa	-30.0		-19.0	dBm	
SD Deassert Level	Pd	-30.0		-19.0	dBm	2
SD Hysteresis	Phys		3.0		dB	
SD Assert Time	Sa			100	μsec	2, 3
SD Deassert Time	Sd			350	μsec	

Note 1. BER = 1.0 X 10⁻¹², 1.25Gbps, PRBS 2⁷-1

Note 2. 1.25Gbps, PRBS 2⁷-1 Note 3. Refer to Figure 4

Optical High Received Signal Low High SD Output Voltage Sa Sd

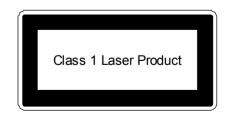

Relation between Optical Received Signal and Data Output

oighar and Bata Gatpat						
Optical Received Siganl	Data Output					
	RD	RDb				
High (ON)	High	Low				
Low (OFF)	Low	High				

Figure 4. SD Timing Chart (SCM7104-XC,SCM7104-GC)

Date: April, 2001

8. Recommended Interface Circuit



 $R1=R3=R5=R7=R9=130\Omega\ ,\ R2=R4=R6=R8=R10=82\Omega\ ,\ R11=10\Omega$ $C1=100\ \mu F,\ C3=2200\ pF,\ C2=C6=0.1\ \mu F,\ C4=C5=1\ \mu F$ $L1,\ L2:\ Ferrite\ Bead\ ZBF\ 253D-00\ (TDK)$

Figure 5. Recommended Interface Circuit

9.Laser Safety

This product uses a semiconductor laser system and is a laser class 1 product acc. FDA, complies with 21CFR 1040. 10 and 1040.11. Also this product is a laser class 1 product acc. IEC 60825-1.

∆ Caution

If this product is used under conditions not recommended in the specification or this product is used with unauthorized revision, classification for laser product safety standard is invalid. Classify the product again at your responsibility and take appropriate actions.

Date: April, 2001

10. Reliability

Heading	Test	Reference	Condition Sa		ng		SEI R	esult
				LTPD	SS	С	SS	F/C
Mechanical	Mechanical	MIL-STD-883	Condition B					
Integrity	Shock	Method 2002	5 times/axis					
			500G, 1.0 ms	20%	11	0		
			1,500G, 0.5ms	20%	11	0	11	0
	Vibration	MIL-STD-883	Condition A	20%	11	0	11	0
		Method 2007	20 G					
			20-2,000 Hz					
			4 min/cycle; 4 cycles/axis					
	Thermal Shock	MIL-STD-883	ΔT=100°C	20%	11	0	11	0
		Method 1011						
	Solderability	MIL-STD-883	(steam aging not required)	20%	11	0	11	0
		Method 2003						
	Fiber Pull		1 Kg; 3 times;5sec.	20%	11	0		
			2 Kg; 3 times; 5sec.	20%	11	0		
Endurance	Accel. Aging	(R)-453	+85C; rated power					
	(High Temp.)	Section 5.18	>5,000hrs.		25		25	0
			>10,000hrs.		10			
	High Temp.		max. storage T (T=85°C)	20%	11	0		
	Storage		>2,000					
	Low Temp.		min. storage T (T=-40°C)	20%	11	0	11	0
	Storage		>2,000					
	Temperature	Section 5.20	- 40°C to +85°C					
	Cycling		400 times pass/fail	20%	11	0		
			500 times for info.		11			
			500 times pass/fail	20%	11	0	11	0
			1000 times for info.		11		11	0
	Damp Heat	MIL-STD-202 M103	40°C , 95%, 56days	20%	11	0	11	0
	(if using epoxy)	or IEC 68-2-3	or 85°C /85%RH 2,000hrs.	20%	11	0		
	Cyclic Moisture	Section 5.23		20%	11	0	11	0
	Resistance							
Special	Internal	MIL-STD-883	< 5,000 ppm	20%	11	0	11	0
Tests	Moisture	Method 1018	water vapor					
	Flammability	TR357:Sec. 4.4.2.5						OK
	ESD Threshold	Section 5.22			6		6	0

Date: April, 2001

11. Other Precaution

Under such a strong vibration environment as in automobile, the permormance and reliability are not guaranteed.

The governmental approval is required to export this product to other countries. To dispose of these components, the appropriate procedure should be taken to prevent illegal exportation.

This module must be handled, used and diposed of according to your company's safe working practice.

⚠ Warning

Be sure to carry out correct soldering for connection to peripheral circuits in order to prevent contact failure or short-circuit. Otherwise, a strong laser beam may cause eye injury, overheating or fire.

Do not put this product or components of this product into your mouth. This product contaions material harmful to health.

Be sure to turn the power off when you touch this product connected to the printed circuit boards. Otherwise, electric shock may occur.

Dispose this product or equipment including this product properly as an industrial waste according to the regulations.

12. Ordering Information

Ordering Number	Connector type	Operating Temperature			
SCM7104-XC	SC Duplex Connector, Non-metallized.	Tc = 0 ~ 70°C			
SCM7104-GC-#N	SC Duplex Connector, Metallized. See chart below for detail.				

SCM7104-GC-# N

└ Operating Case Temperature Option

N:0°C~70°C

EMI Shield Finger Option

Z: Without Finger

A ~ E : With Type-A Finger

*Letter specifies finger position. Refer to Figure2-3 for detail. G: With Type-G Finger (Figure 2-4)

13. For More Information

U.S.A.

ExceLight Communications, 4021 Stirrup Creek Drive, Suite 200 Durham, NC 27703

Tel. +1-919-361-1600 / Fax. +1-919-361-1619

E-mail: info@excelight.com http://www.excelight.com

Europe

Sumitomo Electric Europe Ltd., 220, Centennial Park, Elstree, Herts, WD6 3SL, United Kingdom

Tel.+44-208-953-8681 Fax.+44-208-207-5950

E-mail: photonics@sumielectric.com

http://www.sumielectric.com

Japan

Sumitomo Electric Industries, Ltd. (International Business Division), 3-12, Moto-Akasaka 1-chome Minato-ku Tokyo 107-8468

Tel. +81-3-3423-5771 / Fax. +81-3-3423-5099

E-mail: product-info@ppd.sei.co.jp

http://www.sei.co.jp/Electro-optic/index_e.html

(SCM7104-XC,SCM7104-GC)