SIEMENS

|Cs for Communications

High Speed HDLC-Frame Relay
SAB 82532 with SAB 82258 and SAB 80C166

Application Note 08.93

SAB 82532
Revision History: Original Version 08.93

Previous Releases:

Page Subjects (changes since last revision)

Data Classification

Maximum Ratings

Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible
damage to the integrated circuit.

Characteristics

The listed characteristics are ensured over the operating range of the integrated circuit. Typical
characteristics specify mean values expected over the production spread. If not otherwise specified,
typical characteristics apply at T, = 25 °C and the given supply voltage.

Operating Range
In the operating range the functions given in the circuit description are fulfilled.

For detailed technical information about “Processing Guidelines” and “Quality Assurance” for
ICs, see our “Product Ovewrview”

Edition 08.93
This edition was realized using the software system FrameMaker- .

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation,
BalanstraRe 73, 81541 Miinchen.
© Siemens AG 1993. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components,
not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Ger-
many or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the
types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.
Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest
sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of
transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have
to invoice you for any costs incurred.

SIEMENS SAB 82532

Table of Contents Page
1 General Information 4
2 INtrodUCHIONo 6
3 Hardware of the High Speed HDLC Frame Relay 7
3.1 ESCC2 with SAB8OCLE6ttt i 8
3.2 ADMA With SAB 80CL66ttt e 9
3.3 ESCC2 with ADMA . ..o 12
4 Device Driver Modules 14
4.1 OV W . oot 14
4.2 ESCC2-Device Driver Module Entries 22
421 Message Entry Point 22
4.2.2 Interrupt Entry Point 24
4.3 Receiverand Transmitter i e 25
4.3.1 RECEIVEI . . o 26
4.3.2 TransSmitter 27
4.4 Data Structure of the ESCC2-Device Driver Module 32
4.5 ADMA-Device Driver Module 35
4.6 Software Workaround for Single-Cycle Mode 37
5 The Application Module HSHFR 40
5.1 Structure of the ApplicationModule 40
5.2 Detailed Description of the Application Module 40
6 Performance of the System 41
6.1 Time for Data Handling i 41
6.2 BitRateand Frame Rate i, 45
6.3 Time for Application 47
6.4 Performance Improvements 48
7 Device Driver System 49
7.1 OVIVIBW . . 49
7.2 General Module Architecture 51
7.3 Integration of Modules 52
7.4 The Example HSHFR 52
7.5 Application Program Interface i 54
8 APPENAIX . 56
8.1 APPENdiX A . . 56
8.2 Appendix B 71
8.3 Appendix C 71

Semiconductor Group 3 08.93

SIEMENS General Information

1 General Information

SAB 82532 with SAB 82258 and SAB 80C166
High Speed HDLC-Frame Relay

This application note describes a simple application example for an high-speed HDLC-frame relay
using the Enhanced Serial Communication Controller ESCC2 (SAB 82532), the Advanced
DMA-Controller ADMA (SAB 82258) and the 16-Bit Microcontroller SAB 80C166. Transfer rates up
to 10 Mbit/s are supported. This application note is based on a real world and fully tested
communication subsystem. It demonstrates the advantages of using the ESCC2 in combination
with the SAB 82258 and the SAB 80C166 for high speed communication purposes.

Contents

e Chapter 1
General Overview

e Chapter 2
How to integrate the ESCC2 with ADMA into an 80C166 microprocessor system. All hardware
aspects concerning the ESCC2, ADMA and 80C166 are explained.

e Chapter 3
Detailed description of how the ESCC2 can be programmed to handle HDLC-communication for
higher data rates supported by the DMA-controller ADMA. The basic architecture of an object
oriented Device Driver Module for the ESCC2 is explained. Furthermore an idea of the
cooperation between the ADMA-device driver module and the ESCC2-device driver module is
given. The initialization and the programming of the ADMA is described.

HDLC HDLC
Terminal Terminal
PammmmnN
‘ High Speed HDLC Frame Relay ‘
| SAB 80C166 I | ADMA I | ESCC2 I ‘ > =
o pe—=2\
LT g0
10 Mbit/s PC Add-On-Card 10 Mbit/s [TB04301

Functional Block Diagram

Semiconductor Group 4

SIEMENS

e Chapter 4
A very simple application program module for the HDLC-frame relay on top of the ESCC2-device
driver software and the underlying run-time software is described.

e Chapter 5
The performance of the system thus realized is analyzed and presented. Especially the aspects
of frame length, frame rate and the operational overhead are discussed.

e Chapter 6
Description of the different software levels and their realization. A brief introduction to the basic
operating software and the corresponding Application Program Interface (API) for the
C-language is provided. A minimum set of only 13 interface functions and macros is necessary
to integrate the device driver and relay software.

e Appendix A
Detailed schematics for the hardware.

e Appendix B
Corresponding PAL-equations (1 PAL).

e Appendix C
Source code listings of all relevant software modules.

e Appendix D
A make file is included, which allows to implement the software by using the software
development tools from Tasking.

Remarks

It is recommended to have a basic understanding of the ESCC2-interrupt interface as well as of the
ESCC2 DMA-interface described in the ESCC2 Technical Manual. For details concerning the
ADMA or SAB 80C166 please refer to the corresponding User’'s Manual.

For this application note the 80C166-compiler and assembler from Boston Systems Office/Tasking
have been used. The software is completely written in C, with the exception of file
DDSHSERV.SRC, an assembler file containing the processor specific interrupt interface (setting
interrupt frames and vectors).

This application note has been realized with a PC add-on board to shorten the software
development cycles. It supports a fast download of device driver software on to the communication
subsystem directly from the PC. The application example itself has been designed as a stand-alone
solution to reduce the requirements on an individual environment. This shall give you a first
impresssion of how easy it is to combine the ESCC2 with the ADMA and the 80C166 for
communication subsystems in general. Therefore the complexity of the software environment has
been reduced to a minimum.

Semiconductor Group 5

SIEMENS SAB 82532

2 Introduction

This application note describes a design example for a High Speed HDLC Frame Relay using the
SAB 82532 (Enhanced Serial Communication Controller — 2 Channels, ESCC?2), the SAB 82258
(Advanced DMA-Controller, ADMA) and the microcontroller SAB 80C166. It is recommended that
before reading this application note, the user has a basic understanding of the interrupt and DMA-
interface of the SAB 82532, described in the “ESCC2 Technical Manual”.

In this description of the high speed HDLC-frame relay two basic subjects are discussed.

The first one is how the SAB 82532 with the DMA-controller ADMA can be integrated into
a hardware environment based on a 16-bit microcontroller from Siemens, the SAB 80C166. The
SAB 82532 as a peripheral device can be connected to the external bus of the SAB 80C166 without
using additional glue logic in the form of external hardware. The integration of the DMA-controller
SAB 82258, however, requires hardware components in the form of a bus controller, transceivers
and so forth since the coprocessor ADMA is able to operate as a bus master.

The second subject is the software of the high speed HDLC-frame relay. The special device drivers
for the ESCC2 and the ADMA have the advantage of utilizing the devices’ features concerning
DMA-transfer and interrupt treatment to enhance performance. The tasks of data transfer and
interrupt servicing are shared effectively between the DMA-controller and the microcontroller.

Due to their 16-bit system interface and all other inherent powerful features, the ESCC2 with the
ADMA and the 80C166 build a strong combination well suited for high speed communication in
general.

This application example has been written in C using the C-Compiler and Assembler 80C166 from
Boston Systems Office/Tasking.

High Speed
HDLC Frame Relay

(=
Download of /
i 7
=
— 24

1TS04302

Figure 1
Application HDLC-Frame Relay

Semiconductor Group 6

SIEMENS SAB 82532

3 Hardware of the High Speed HDLC Frame Relay

The hardware of the high speed HDLC-frame relay is realized as a plug-in PC-board. Beside the
microcontroller SAB 80C166 and the DMA-controller ADMA important elements of the hardware are
listed in the following: a 64 K EPROM containing the firmware, a 256 K RAM, a bus controller,
address latches and a PAL for address decoding.

Figure 2 shows the functional block diagram of the hardware. A detailed schematic can be found in
Appendix A.

The SAB 80C166 provides a total addressable memory space of 256 Kbytes. This address space
is arranged in four segments of 64 Kbytes each, and each segment is again subdivided in
four pages of 16 Kbytes each. Figure 3 gives an overview of the memory organization of the
HDLC-frame relay. The equations to decode the corresponding chip select signals are listed in
Appendix B.

SAB 82258 SAB 82532 %
SAB 80C166 256 K SRAM 64 K EPROM (ADMA) (ESCC2) %
PC Interface 4 K DPRAM Address Decoder

RS 422 Line Driver

| ITB04304

Figure 2
Functional Block Diagram

Semiconductor Group 7

SIEMENS SAB 82532

L
--—- | orrrr
| IFFFFy
T OFFFF B
OF7FF SRAM |
SAB 82258 i 0F800 |
OF400, | (AOMA) " |
TH| sap a7 i] sRau
0F000 o DPRAM - |
" | ey |
X ooy e
SRAM |
08000
y a0
bR 20000
EPROMISRAM ¢ 10000
v /SRAM
[TD04303

Figure 3
Memory Organization

3.1 ESCC2 with SAB 80C166

Microprocessor Interface

Practically no external components are required to adapt the ESCC2 to the SAB 80C166. The
ESCC2 is directly connected to the data bus and address bus of the SAB 80C166 system. The
RD-, WR- and BHE signals are also connected directly.

The CS for the SAB 82532 is generated in a PAL. WIDTH is connected to + 5 V, which configures
the ESCC2 into 16-bit bus mode.

Interrupts

Since no interrupt acknowledge cycle is supported by SAB 80C166 pin INTA is deactivated by
connecting INTA to + 5 V. Because the application includes only one ESCC2, IEO and IE1 are not
used; they are tied to GND. The INT-pin is connected to P2.1 (CC110); it has to be considered that
the interrupt is (positive) edge triggered. To avoid loosing an interrupt it is recommended to mask
interrupts for a short time before leaving the interrupt function. In this way a new edge can be forced,
because the SAB 82532 stores pending interrupts and reactivates the interrupt line when the
interrupt mask is withdrawn.

Semiconductor Group 8

SIEMENS SAB 82532

Reset
Since RES is an active high input signal, the RSTOUT-signal of the SAB 80C166 has to be inverted.

Serial Interface

The input signals RxDn, CDn, RxCLKn (n = A, B) are pulled up to + 5 V by a resistor of 10 kQ.
Modem control functions are not supported in this application, therefore RTSn and CTSn are
connected to each other.

The physical layer is realized with an RS-422 compatible line driver interface, consisting of the
driver circuit AM26LS30 and the receiver circuit AM26LS32. These circuits are connected to the
TxDn and RxDn signals of the ESCC2.

Timing Characteristics

The timing of the microcontroller can be adapted to that of the ESCC2 by changing via software the
default values of the SAB 80C166 (refer to SAB 80C166 Technical Manual).

Starting with the address setup time tg,(A), which is specified as 0 ns for the microcontroller and
> 5 ns for the SAB 82532, a read/write delay has to be introduced. The programmed read/write
delay causes a delay by a quarter of a machine cycle (25 ns at fosc = 40 MHz). This delay does not
by itself extend the memory cycle time, because through this programmed delay the RD-WR-pulse
width is shortened from 65 ns to 40 ns. The SAB 82532 specification however requires a RD-pulse
width of > 60 ns; therefore one wait state has to be programmed. One memory cycle time wait state
requires half a machine cycle (50 ns at fogc = 40 MHZz).

The address hold time t,(A) of the SAB 82532 has to be equal to or longer than 10 ns (SAB 80C166:
0 ns). The hold time has to be lengthened with an additional memory tristate time wait state.

The timing can be modified by programming the bus configuration register or by modifying the
start-up code of the system. An advantage is that the timing can be modified individually in one
selected address space. In section 2.2 an example is given for programming the bus configuration
register matching the timing specification of the ESCC2 and the ADMA.

3.2 ADMA with SAB 80C166

In this application the ADMA operates as a coprocessor on the same bus as the microcontroller.
This operating mode is called local mode. Figure 4 shows the architecture of the system. The bus
management is controlled by a HOLD/HLDA-handshake.

Microprocessor Interface

The ADMA has an adaptive bus interface; so the bus is configured in the non multiplex '286 mode
of the SAB 80C166. When ADMA is bus master, it generates a write/read request by activating the
bus status lines SO or S1: therefore a bus controller has to be added which generates the
corresponding commands WR and RD from SO and S1.

Since the ADMA uses the pipelined addressing mode the addresses of the following bus cycle are
valid although the current bus cycle is not finished yet. For that reason external address latches
have to buffer the addresses during the whole bus cycle. The address latches are controlled by the
bus controller, too.

Semiconductor Group 9

SIEMENS SAB 82532

Assuming that the SAB 80C166 is bus master the internal registers of the ADMA have to be
accessible. Hence the bidirectional, lower eight address lines of the ADMA are driven by
transceivers.

The transceivers are activated if the SAB 80C166 is bus master; the latches are activated if the
ADMA is bus master. In this way a conflict on the address bus is avoided.

Port 2 INT
< :%2 DREQO |« DRTA
> DREQ1 [« DRRA
DACKO | —
DAGKL _’ DACKA
SAB A A
- DREQ?2 |« DRTB
80C166 Logic ADMA DREQ3 |« DRRB ESCC2
»WR DACK2 ([&] | s5mia
»RD DACK3 [»] | | PACKS
»|BHE CS_ADMA [« —»|Cs_Escc2
D0.D15 A0..A17 WR RD BHE A0..A17 D0..D15 SO S1 A0..A6 BHE WR RD DO0..D15
A A A
A Bus-
Trans. Latches Controller Decoder
Y Vv VY y |\L iL S —————
System Bus A10.A17 A0.A6 BHE WR RD D0..D15
System
Memory

ITS04270

Figure 4
Architecture of System

To avoid a conflict on the control lines the signals WR and RD generated by the bus controller are
also driven by transceivers. These transceivers are activated if the ADMA is bus master.

Semiconductor Group 10

SIEMENS SAB 82532

Reset

When activating the reset input, the ADMA is forced into its initial state. While the reset input
is active, line A23 must be forced to the appropriate level to select the desired bus interface mode
(286 mode).

Bus Arbitration

To arbitrate access to the bus between the SAB 82258 and the microcontroller, the signals HOLD
and HLDA serve for communication. Normally the ADMA competes for the bus via HOLD, the
microcontroller grants access to the bus via HLDA. The HLDA-signal can also be deactivated in
order to force the ADMA off the bus for a certain reason (kick off). The bus arbitration is controlled
by a HOLD/HLDA-handshake.

In order to support multi-master systems and communication with external DMA-functions, a bus
arbitration feature is implemented in the SAB 80C166. The signals HOLD and HLDA are
implemented as second alternate functions at pins P2.15 (HOLD) and P2.14 (HLDA). The control bit
HLDEN of the Processor Status Word register (PSW) has to be programmed to ‘1’ to enable the bus
arbitration function of these pins.

Slave Interface

The slave interface is used to access the ADMA’s internal registers. Although nearly all of the
communication between CPU and ADMA is done via memory based data blocks, some direct
accesses to the ADMA-registers are necessary.

For example during the initialization phase the General Mode Register must be written, or to start
a channel the Command Pointer Register and the General Command Register must be loaded.

The slave interface is enabled by the CS-input and consists of the following lines:

e RD,WR - control lines (input)
e AO-A7 - register address (inputs)
e DO-D15 - data lines (inputs/outputs)

Since the microcontroller and the DMA-controller have different clocks asynchronous access by
using the control lines RD and WR is used.

Timing Characteristics

Similar to the ESCC2 the timing of the microcontroller can be adapted to that of the ADMA by
changing via software the default values of the SAB 80C166 (refer to chapter 2.1).

To guarantee the asynchronous access setup time a fast PAL and a fast address transceiver have
to be used. Moreover a read write delay has to be programmed.

Additionally the RD-impulse width has to be lengthened by five wait states in order to match the
timing specification of the ADMA.

The modifications described here and them concerning the ESCC2 can be programmed in the bus
configuration register using the _bfld (bit field) instruction:

_bfld (BUSCON1, OXOOFF, 0X00CA);

Semiconductor Group 11

SIEMENS SAB 82532

The _bfld instruction assigns the constant O0xOOCA to the bit field indicated by the constant mask
Ox00FF of the bitaddressable operand BUSCONL. This statement configures the bus interface with
one read/write delay, five wait states and one memory tristate time wait state. For more information
e.g. address range selection refer to listings of the DDSH-module in Appendix C (Ddshlnit ()).

3.3 ESCC2 with ADMA

DMA-Interface
The DMA-interface consists of three lines:

e DREQ (— DMA-request)
e DACK (— DMA-acknowledge)
e EOD (— End of DMA)

The first two lines work as request and acknowledge lines to control synchronized DMA-transfers as
known from conventional DMA-controllers.

The EOD-signals are not used in the application at hand.

Transfer Modes
Each channel controls data transfer in two basic operating modes:

e single-cycle mode
e two-cycle mode

In single-cycle mode, bytes or words are transferred directly from the data source to the data
destination in a single bus cycle per transfer. Using SAB 82C258-A 12 with 25 MHz this mode
enables a total data rate of up to 12.5 Mbytes per second, and that as single channel data rate or
as a cumulative data rate of multiple channels. Thus the advantage in single-cycle mode lies in
speed.

In two-cycle mode, source data is always stored in the ADMA before being sent of the destination.
Although half as fast as single-cycle transfer, it has several compensating advantages. Since the
data actually enters the controller, there is a possibility to act on the data.

As a very useful feature for single-cycle transfers, the ESCC2 supports the optional inversion of the
functions of read/write control lines. If programmed via register CCR2 (RWX bit is set) RD and WR
are exchanged internally in Intel bus interface mode while DACK is active (see figure 5).

Semiconductor Group 12

SIEMENS SAB 82532

DMA- ESCC2
Controller
Intern:
RD RD |WR
@
WR WR |RD
@
RD
WR RAM

| TS04271

Figure 5
RD-/WR-Exchange

The application at hand operates in two-cycle mode. Using single-cycle mode the following problem
arises:

According to the ESCC2-specification the DRR is reset with the falling edge of RD during the last
read access to RFIFO. The RD-signal is generated by the bus controller from S1 activated by the
DMA-controller. The ADMA however checks the DREQ-signal in view of the next DMA-cycle before
the bus controller has generated the RD-signal from the corresponding S1. That means that the
trailing edge of DREQ is received later, a continuous request is assumed and subsequent transfers
will be executed. There is no hardware workaround to solve this problem. In chapter 4 a software
workaround is described.

Timing Characteristics

To guarantee correct operation for SAB 82C258-A 12 with 25 MHz a fast PAL and a fast control line
(RD and WR) transceiver have to be used.

Semiconductor Group 13

SIEMENS SAB 82532

4 Device Driver Modules

41 Overview
To run the application the following tasks have to be executed:

e the device driver system has to be initialized

e the devices have to be initialized

e messages have to be transferred from the application module to the ESCC2-device driver
module and vice versa

the channel programs of the ADMA have to be prepared; the ADMA-channels have to be started
the channel programs have to be fetched from RAM

interrupts have to be served

data have to be transferred from RAM to the ESCC2 and vice versa

These tasks are executed either by the SAB 80C166 or by the DMA-controller ADMA. Figures 6
to 9 give an overview of the specific tasks in sequence. The upper corner at the right side of each
element contains the device that executes the corresponding task. Figure 6 shows the sequence of
initialization; after that data can be received or transmitted. The procedure of transmission is
controlled by transmit requests of the application as well as by DMA-requests and XPR-interrupts
of the ESCC2 (figures 7/8). The procedure of receiving is controlled by DMA-requests and RME-
interrupts of the ESCC2 (figure 9). In the following an example is given to design appropriate
software.

Semiconductor Group 14

SIEMENS

SAB 82532

[Executed by 80C166

Initialize the Device Driver System
(see chapter 6)

Executed by 80C166

Initialize ESCC2 Device
Initialize ADMA Device

Executed by 80C166

Prepare and start ADMA channels that
serve the receive directions of the ESCC2

Executed by ADMA

Prefetch channel program code from RAM

prepared by 80C166 before

Executed by 80C166

Set appropriate addresses to the receive
directions of the ESCC2

ITD04272

Figure 6

Sequence of Initialization Actions

Semiconductor Group

15

SIEMENS SAB 82532

Executed by 80C166

Send transmit message from Application
Module to ESCC2 Device Driver Module

Executed by 80C166

Append message to transmit message
queue of the ESCC2 Device Driver Module

Transmit message queue empty?

v Yes

Executed by 80C166

Write appropriate frame length and
DMA mode bit to XBC register of ESCC2

Executed by 80C166

Prepare and start the ADMA channel
that serves the transmitter of the
corresponding ESCC2 channel

Executed by ADMA

Prefetch program code from RAM
prepared by 80C166 before

Executed by 80C166

Set transmit command XTF to
command register of the ESCC2

Executed by ADMA

Transfer data (DMA) when requested
by ESCC2

(see XPR interrupt) ITD04273

Figure 7
Sequence of Transmitter Actions after Transmit Request by Application

Semiconductor Group 16

SIEMENS

SAB 82532

After XPR interrupt
transmit message queue empty ?

No

A\ 4

Yes

(For more information
see chapter 3.3)

Executed by 80C166

Get next list element of transmit message
queue in ESCC2 Device Driver Module

Executed by 80C166

Write appropriate frame length and
DMA mode bit to XBC register of ESCC2

Executed by 80C166

Prepare and start the ADMA channel
that serves the transmitter of the
corresponding ESCC2 channel

Executed by ADMA

Prefetch channel program code from RAM
prepared by 80C166 before

Executed by 80C166

Set transmit command XTF to
command register of the ESCC2

Executed by ADMA

Transfer data (DMA) when requested
by ESCC2

y ITD04274

Figure 8
Sequence of Transmitter Actions after XPR-Interrupt

Semiconductor Group 17

SIEMENS

SAB 82532

A\ 4

Executed by ADMA
Transfer data (DMA) when requested
by ESCC2
‘, ,,,,,,,,,,,,,,,
\ 4
Executed by 80C166

After RME interrupt read RBC register and

RSTA

Executed by 80C166

Prepare and start again the ADMA channel
for further requests by the receiver of the
corresponding ESCC2 channel

\ 4

Executed by ADMA

Prefetch channel program code from RAM

prepared by 80C166 before

Set RMC command to

Executed by 80C166

command register of the ESCC2

Executed by 80C166

Send message (frame) from ESCC2 Device
Driver Module to Application Module

[TD04275

RME

~ Interrupt

Figure 9

Sequence of Receiver Actions

Semiconductor Group

18

SIEMENS SAB 82532

The device driver modules ESCC2 and ADMA, integrated into the device driver system’s
environment, represent the connection to the Siemens devices (Enhanced Serial Communication
Controller, ESCC2 and Advanced DMA-Controller, ADMA). Therefore, referring to the
programming of the devices by the user, these modules have to be understood as the interface
modules between the application level and the devices themselves. The functional position of the
device driver modules in the system is shown in figure 10.

The ESCC2-device driver is able to send and to receive messages via the device driver system and
to serve interrupts generated by the ESCC2-device itself. The ADMA-device driver module provides
nine service routines to control the ADMA-device and the data transfer. Figure 11 shows the
correspondence between the serial channels of the ESCC2 and the DMA-channels of the ADMA,;
in addition the service routines provided by the ADMA-module are listed.

Supported by the device driver system the application program module HSHFR is able to direct
individual tasks to the ESCC2-device driver module. The ESCC2-device driver module receives
these messages and passes them to the ESCC2 and — via service routines of the ADMA-device
driver module — to the ADMA, matching the device’s programming specification.

The initialization and the control of the devices are performed by the CPU. The data are transferred
by the ADMA, when a DMA-transfer request occurs.

Semiconductor Group 19

SIEMENS

SAB 82532

Device
Driver
Module
ADMA

Control

Application
Program

Module
HSHFR

C/l-Messages

Device Driver System
X

Service Routines

v

Device
Driver

Module
ESCC2

Control

C/l-Messages

&

Interrupts

Data «—>
[—>
Serial Data
ITB04305
Figure 10
Device Driver Modules
Semiconductor Group 20

SIEMENS

SAB 82532

ESCC2

Serial
Channel A

Serial
Channel B

Rc
TX

Rc
TX

A\ A 4

A

\ A 4

ADMA

DMA-Channel 0
DMA-Channel 2

DMA-Channel 1
DMA-Channel 3

| TS04276

Figure 11

Correspondence between Serial Channels of ESCC2 and DMA-Channels of ADMA

Service Routines

InitAdmaDevice

InitAdmaChanRc [ESCC2_CH_A] = InitAdmaChanO
InitAdmaChanRc [ESCC2_CH_B] = InitAdmaChanl
InitAdmaChanTx [ESCC2_CH_A] = InitAdmaChan2
InitAdmaChanTx [ESCC2_CH_B] = InitAdmaChan3

StartAdmaChanRc [ESCC2_CH_A] = StartAdmaChan0
StartAdmaChanRc [ESCC2_CH_B] = StartAdmaChanl
StartAdmaChanTx [ESCC2_CH_A] = StartAdmaChan2
StartAdmaChanTx [ESCC2_CH_B] = StartAdmaChan3

Before that the CPU has to

e generate a channel specific “command block” somewhere in memory,
¢ inform the ADMA where that block is and

e (give a “start channel” command.

An important difference between interrupt mode and DMA-mode is that using DMA-mode the
device driver module ESCC2 hasn't to distinguish between short frames (shorter than or equal to 32
bytes) and long frames (longer than 32 bytes). Assuming normal operation only one interrupt occurs
for one frame and transfer direction: RME-interrupt for receive direction and XPR-interrupt for
transmit direction. So the ESCC2-device driver module can be made very compact since the data
transfer itself is performed by the DMA-controller ADMA.

The source code of the driver modules is found in Appendix C. The modules ESCC2.H and
ADMA.H contain predefined values, data structures and function types, whereas all C-functions

concerning ESCC2 and ADMA are to be found in ESCC2.C and ADMA.C.

Semiconductor Group

SIEMENS SAB 82532

4.2 ESCC2-Device Driver Module Entries

The ESCC2-device driver module is accessible by both the device driver system and the ESCC2-
device itself. The kind of access, however, is quite different.

The device driver system sends messages to the ESCC2-device driver module via the message
entry point. On the other hand the ESCC2-device accesses to the driver module by entering an
interrupt entry point. The two kinds of entry points are discussed below.

4.2.1 Message Entry Point

To send messages to each other the modules of the device driver system use the module
identification for defining the source or destination of a message in its corresponding header.

All messages which are dedicated to the ESCC2-device driver module reach the defined message
entry point when the function Escc2MsgEntry (CI_MAILBOX far* message) is called by the device
driver kernel.

To send a message to the device driver module is the same as setting the module a task. At the
moment four different types of tasks are supported by the ESCC2-message entry point. These
tasks are distinguished by a task or message identification, called as ID.

In the application at hand the following message IDs are supported:

ID Action/Function
MODULE_INIT (= 0) Escc2Init()
INIT_DATA_LINK (= 1) InitDataLink()
ASSIGN_ADDRESS (= 2) AssignAddress()
SEND_FRAME (= 3) SendFrame()

The functions of the message entry point Escc2MsgEntry (CIM MSG_DESCR_PTR cmd) are
shown in figure 12.

An important job of the message entry point is to decide quickly which action has to be executed
regarding the ID of the current task. So, for the sake of speed, a switch statement was implemented.

Semiconductor Group 22

SIEMENS SAB 82532

4)

Escc2MsgEntry

ID = MODULE_INIT)
= Escc2Init

v

. ID = INIT_DATA_LINK » InitDataLink

ID = ASSIGN_ADDRESS

AssignAddress

v

ID = SEND_FRAME

\ » SendFrame /

ITD04277

Figure 12
Message Entry Point

In the following the actions are described in detail:

Escc2lnit (CIM_MSG_DESCR_PTR command) initializes the ESCC2-device as well as the local
data structures. The base device address is set by executing DdshGetDeviceAddr (DEVICEL).

An important task is the initialization of the interrupt. As the basic address is known (see chapter
4.4), the registers can be accessed. At first all interrupts should be masked out by writing FFH into
the Interrupt Mask Register 0,1 (IMRO, IMR1).

Further pin INT must be programmed as active high, so 03H has to be written to the Interrupt Port
Configuration Register (IPC).

DdshSetHWIntVect (DEVICEL_INT, Escc2Interrupt) installs the interrupt entry. DdshintSetMode
(DEVICEL_INT, MODEL1) sets the interrupts into edge trigger mode. DdshintCtrl (DEVICEL1_INT,
INT_ON) enables the interrupt. For more information about the DDSH-interface see chapter 3.5).

InitDataLink (CIM_MSG_DESCR_PTR command) contains the general initialization of all ESCC2-
mode specific functions and data for one of the two data links. The data link (channel A or B) is
specified by the element Entity of the structure that is accessible by pointer command.

Parameter 1 of the CIM_MSG_DESCR structure accessible by the pointer command, selects the
receive mode (HDLC-auto mode/transparent mode). The clock mode is represented by parameter
2. By writing 60H into the Mode Register (MODE) for example the HDLC-non-auto mode and a
16-bit address field are selected. Furthermore the channel configurations are fixed by programming
the channel configuration registers.

During the execution of InitDataLink() the interrupt masks are set to enable the RME-, RFO-, XDU-
and XPR-interrupts in HDLC-mode corresponding to the DMA-transfer mode. Then the HDLC-
receiver and transmitter are reset.

Moreover the corresponding DMA-channels of the ADMA are initialized. For receive direction a
message buffer (Dlc -~ dmaRcMessage) is allocated and the appropriate ADMA-channel program
is started.

Semiconductor Group 23

SIEMENS SAB 82532

AssignAddress (CIM_MSG_DESCR_PTR command) writes the low address value into the
Receive Address Byte Low Register 1 (RAL1) and the high address value into the Receive Address
Byte High Register 1 (RAH1). These values are used for 2-byte address field recognition
corresponding to the ESCC2-non-auto mode. Parameter 1 of the CIM_MSG_DESCR structure
contains the high address value, Parameter 2 contains the low address value. After the execution
of this function only frames with the programmed address are received, assuming that the ESCC2
doesn’t operate in transparent mode.

SendFrame (CIM_MSG_DESCR_PTR command) inserts the command into the transmit queue of
the current data link structure and executes the transmitter action corresponding to the current state
of the transmitter.

4.2.2 Interrupt Entry Point

The interrupt entry point is introduced during initialization of the ESCC2-module in function
Escc2init (...).

As mentioned in the Technical Manual, special events in the ESCC2 are indicated by means of a
single interrupt output with programmable characteristics (open drain, push-pull; IPC-register). The
interrupt requests the CPU to read status information from the ESCC2 and to execute appropriate
interrupt service routines. Since only one INT-request output is provided, the cause of an interrupt
must be determined by the CPU

— by evaluating the interrupt vector which is generated by the ESCC2 during an interrupt
acknowledge cycle, and/or
— by reading the ESCC2’s interrupt status registers (GIS, ISRO, ISR1, PIS).

Since the SAB 80C166 doesn’t support the interrupt acknowledge cycle interrupt polling mode is
used. As a result there is only one interrupt entry.

The interrupt function really can be seen as an entry to the core of the ESCC2-device driver module,
which mainly consists of a Transmitter and a Receiver (see figure 13).

After entering the interrupt function Escc2interrupt(), the General Interrupt Status Register as well
as the channel specific Interrupt Status Register are analyzed. Then the action corresponding to the
specific kind of interrupt is executed (e.g. TxAction][...][...](), ServeRme(), ...).

INTRET releases the interrupt logic of the SAB 80C166 to be able to accept further interrupts.

Semiconductor Group 24

SIEMENS SAB 82532

ESCC2 Device Driver Module

TX_FRAME

// -~ \\ // - \\
| Receiver) [Transmitter)
\ \ /
I_,/ T_—/T
RME RFO XPR XDU

Interrupts - Interrupt Entry

ESCC2 Device
TD04306

Figure 13
Interrupt Entry Point

A more detailed description of the receiver and the transmitter will follow in section 4.4.

To summarize, up to now the entry points of the ESCC2-module have been described. There are
two different kinds of entry points:

— the message entry point Escc2MsgEntry (...), which branches into functions corresponding to
message IDs,
— the interrupt entry point, that calls functions according to the interrupt indication.

4.3 Receiver and Transmitter

In DMA-mode the receiver and transmitter of the ESCC2-device driver module is easier to design
than in interrupt mode since it has not to be distinguished between short and long frames and the
data transfer itself is performed by the DMA-controller.

For the receiver no event driven finite state machine is necessary. The receiver routines are
reduced to ServeRme() and ServeRfo().

Since the transmitter organizes the send requests in a linked list a finite state machine is introduced
to guarantee a fast access to the next frame if there is one.

Semiconductor Group 25

SIEMENS SAB 82532

4.3.1 Receiver
In DMA-mode there are only two reasons to activate the receiver: RME-interrupt and RFO-interrupt.

If a RME-interrupt occurs, the function ServeRme() is executed. At first the length of the received
frame is read from the RBC-register. The pointer to the received data is buffered in DIc -~ message
and a new buffer DIc -~ dmaRcMessage has to be allocated for subsequent frames. Since the
frame length is unknown a priori a data buffer with the maximum length is allocated. With this buffer
the DMA-controller is started again; finally the RMC-command is set, to enable the generation of
further receiver DMA-requests.

After that the receive status byte at the end of the frame is analyzed,; it has to be decided if the
received frame is ok. If the frame is ok, a message is sent to the user, otherwise the function
ReportRcError() is executed, to give more detailed error information.

The RFO-interrupt is served by ServeRfo(). In this case an error message is generated and the
DMA-controller is started again with the same buffer.

Dlc -~ dmaRcMessage allocated before. Finally the HDLC-receiver of the ESCC2 is reset.

RM_INTERRUPT <

msg = dmaMsg
RcLength «—RBC register
dmaMsg = DdsmMsgBufAlloc()

StartAdmaChan(dmaMsg) |

CMDR_RMC >

Yes)
Received Frame

0.K.?

< DdskSendMsg(msg) ReportRcError0

ITD04278

Figure 14
ServeRme()

Semiconductor Group 26

SIEMENS SAB 82532

RFO_INTERRUPT <
< DdskSendMsg(error)

StartAdmaChan(dmaMsg) |

CMDR_RHR >

ITD04279

Figure 15
ServeRfo()

4.3.2 Transmitter

The transmitter is realized as a finite state machine. Three events affect the transmitter:
XPR-interrupt, XDU-interrupt and the event TX_FRAME.

At the end of the initialization of the data link (see InitDataLink (...)) the current state of the
transmitter is set to IDLE. After that the HDLC-transmitter of the ESCC2 is reset. In response to the
reset an XPR-interrupt is generated. That means that the transmitter is ready.

The event TX FRAME is derived from the application request SEND_FRAME (see
SendFrame (...)). Since it may happen that the transmitter gets a new task while it is still busy
with the previous one, at first the new task is queued in a linked list by executing the macro
APPEND_TO_LIST (...). Then the appropriate action corresponding to the current state of the
transmitter is executed.

Event State Table

The event state combinations are grouped in an event state table; only for clarity’s sake this table
is divided into two parts. The first part shows the event caused by the application: TX _FRAME.
Different states corresponds to different lines, the event is represented by the column. Each
element of the table includes the appropriate action and the subsequence transmitter state of a
certain event-state combination.

Semiconductor Group 27

SIEMENS

SAB 82532

TX_FRAME
SENDING NoAction (...)
SENDING
READY TxFrame (...)
SENDING
IDLE NoAction (...)
IDLE
XPR_INTERRUPT XDU_INTERRUPT
SENDING ServeNextFrame (...) ServeXdu (...)
READY (*1) IDLE
READY NoAction (...) NoAction (...)
READY IDLE
IDLE SetReady (...) NoAction (...)
READY IDLE

(*1) READY is only be taken on if the transmit queue is empty. Otherwise the next frame will be
transmitted and the state will be unchanged.

The actions are grouped in a field of function pointers, called TxAction [...] [...]. At first during the
initialization TxAction [...] [...] is set to NoAction for all elements of the array. Then, corresponding
to the table the appropriate action is entered, for example:

TxAction [IDLE] [XPR_INTERRUPT] = SetReady;

Semiconductor Group 28

SIEMENS SAB 82532

IDLE

<
XPR_INTERRUPT

(—> SetReady)

READY
P
XPR_INTERRUPT [no further frame] SEND_FRAME
(—» ServeNextFrame) (—> TxFrame)

«— <«
XPR_INTERRUPT| further frame | XDU_INTERRUPT

(— ServeNextFrame) (—> ServeXdu)

ITD04280

Figure 16
Transmitter — Finite State Machine

Finite State Machine

Since the transmitter is realized as a finite state machine — corresponding to the event state table
discussed before — the transmitter is always in a specific state at every instant of time. From each
state there are transitions to other states. Transitions occur when some event takes place. Every
event causes a certain action. Figure 16 shows the finite state machine.

SDL-Diagrams

At the end of this section the SDL-diagrams for the transmitter are presented. They provide a brief
overview of the transmitter’s actions.

Semiconductor Group 29

SIEMENS

SAB 82532

l READY l
% SEND_FRAME

/

Length-1,DMA_MODE —XBC

| StartAdmaChan(msg) |

CMDR_XTF >
l SENDING l

[TD04281

l SENDING l

XDU_INTERRUPT

<

<ErrMsg(ID_TX_DATA_UNDERRUN)

CMDR _

XRES

D

l SENDING l

ITD04283

Figure 17

Transmitter Service Functions: TxFrame (), ServeXdu ()

Semiconductor Group 30

SIEMENS SAB 82532

.
IDLE }
.
XPR_INTERRUPT<
{ READY }

ITD04282

Figure 18
Transmitter Service Function: SetReady ()

Semiconductor Group 31

SIEMENS SAB 82532

| SENDING I
XPR_INTERRUPT <

NextFrame = Head —» Next
FRAME_RELEASE(head)
Head = NextFrame

Length-1,DMA_MODE — XBC

| StartAdmaChan(head) |

CMDR_XTF >
| SENDING |

ITD04284

| READY I

Figure 19
Transmitter Service Function: ServeNextFrame ()

4.4 Data Structure of the ESCC2-Device Driver Module

Since the ESCC2-device has two symmetrical channels operating independently, two data links can
be supported. These data links are controlled by a number of parameters grouped in two structures
of the type DATA_LINK_CTRL (see ESCC2.H), one for each channel. These are the fundamental
data structures the ESCC2-device driver module is based on.

Semiconductor Group 32

SIEMENS SAB 82532

Detailed description of the elements:

ESCC2_REG_MAP* Escc2: The first problem when programming the ESCC2 is the access to its
registers. For the sake of clarity the registers are grouped in structures of registers, depending on
the mode (HDLC, ASYNC or BISYNC) and depending on the kind of access (READ or WRITE). The
offset of a single register in this structure corresponds to the register address (AO ... AB).

typedef struct

{
WORD16 fifo [16]; /* RFIFO */
WORDS star; /* Status Register */
WORDS8 rsta; /* Receive Status Reg. */
WORDS mode; /* Mode Register */
WORDS8 timr; /* Timer Register */
WORDS8 xadl; *Transmit Address */
WORDS8 gis; /* Global Int. Status */
WORDS8 ipc; /* Interrupt Port Conf. */
WORDS8 isrO; /* Interrupt Status 0 */
WORDS8 isrl; /* Interrupt Status 1 *
WORDS8 pvr; /* Port Value Register */
WORDS8 pis; /* Port Interrupt Status */
WORDS8 pcr; /* Port Conf. Reg. *
WORDS8 not_used 9;

}

HDLC_MODE_READ;

Since the registers in the different modes and for different kinds of access share the same address
region, these structures are combined in a union type definition, called ESCC2_REG_MAP.

typedef union

{
HDLC_MODE_READ Hdlc_Rd;
HDLC_MODE_WRITE Hdlc_Wr;
ASYNC_MODE_READ Async_Rd;
ASYNC_MODE_WRITE Async_Wr;
BISYNC_MODE_READ Bisync_Rd;
BISYNC_MODE_WRITE Bisync_Wr;

}

ESCC2_REG_MAP;

Semiconductor Group 33

SIEMENS SAB 82532

In the application on hand only the register set for HDLC-mode is used. Now that the relative
locations (= offsets) of the single registers are known for different modes and kinds of access, the
base address of this total register map can be defined. Seeing that the ESCC2 is a data
communication device with two symmetrical serial channels using different memory regions each
control structure has its own base address. These addresses are initialized during the Escc2Init (...)
routine. One gets the base address of the device in memory by executing DdshGetDeviceAddress
(device). Assuming that the ESCC2 corresponds to DEVICEL the following statements are
executed in Escc2lInit (...):

ESCC2_REG_MAP* base;

base = DdshGetDeviceAddress (DEVICEL);
DataLinkCtrl [ESCC2_CH_A].ESCC2 = base;

base = (ESCC2_REG_Map far*)

(((WORD32) base) + 0x40);
DataLinkCtrl [ESCC2_CH_B].ESCC2 = base;

int ChID: The channel identification ChID conforms to the index of the actual data link control
structure (DataLinkCtrl [index].ChID = index).

Dlc & DataLinkCtrl [command - Entity];
DIlc - Chid = command - Entity;
Dlc - Source command - Src;

WORDS8 Source: Since there may be different sources requesting a data link performed by the
ESCC2 the data link control structure contains an element called Source. Keeping in mind the
actual Source, the ESCC2-module is able to send the messages to the proper destination (e.g.
protocol modules, LAPD or other application modules, HSHFR).

Dlc — ChID;
Dlc - Source;
ESCC2_MODULE;

Dlc -~ message - Entity
Dlc -~ message — Dest
Dlc -~ message — Src

DdskSendMsg (Dlc — message);

Semiconductor Group 34

SIEMENS SAB 82532

CIM_MSG_DESCR_PTR dmaRcMessage: Before an ESCC2-channel receives a frame, a
message buffer has to be allocated for the DMA-controller; dmaRcMessage is the pointer to the
channel’s current receive message buffer.

DdsmMsgBufAlloc (maxSize);

Dlc -~ dmaRcMessage
if ('Dlc - dmaRcMessage)

{

Dlc -~ ESCC2 - Hdlc_Wr.cmdr
return;

}

CMDR_RHR,;

CIM_MSG_DESCR_PTR message: Assuming that an ESCC2-channel has received the end of a
frame, the pointer dmaRcMessage of the message buffer allocated before is buffered in message
for subsequent handling. At the same time a further buffer (dmaRcMessage) is allocated for the
DMA-controller to receive subsequent frames.

CIM_MSG_DESCR_PTR head: Both channels use linked lists to store frames for transmission.
These linked lists are first-in first-out queues, frames are added at the tail and taken away from the
head. So head points to the item which will be taken away as the next one. Tail points to the item
which was added as the last one. Tailis controlled by sending frames to the ESCC2-channel; head
is controlled by the XPR-interrupt service routine.

CIM_MSG_DESCR_PTR tail: See CIM_MSG_DESCR_PTR head.

int TxState: The serial interface of the ESCC2 consists of two full duplex channels. So both
channels are able to transmit data at the same time. Normally a transmit procedure consists of a
transmit request (generated by the application), a DMA-transfer and finally an XPR-interrupt
generated by the ESCC2-device; in this case various states are be taken on. The current states are
stored in TxState.

45 ADMA-Device Driver Module

As described in section 4.1 the ADMA-device driver module provides nine service routines to
control the ADMA-device and the data transfer:
¢ InitAdmabDevice (...)

e InitAdmaChanoO (...)

e I[nitAdmaChanl (...)

e InitAdmaChan2 (...)

e InitAdmaChan3 (...)

e StartAdmaChano (...)

e StartAdmaChanl (...)

e StartAdmaChan2 (...)

e StartAdmaChan3(...)

Semiconductor Group 35

SIEMENS SAB 82532

Since the DMA-channels 0 and 1 or DMA-channels 2 and 3 provide the same services (ADMA 0/1
<—> receiver of ESCC2-channel A/B; ADMA 2/3 <—> transmitter of ESCC2-channel A/B; the
description can be reduced to five functions which are described in more detail in the following:

InitAdmaDevice (CIM_MSG_DESCR_PTR command) initializes the ADMA-device as well as the
local data. The base device address is set by executing DdshGetDeviceAddr (DEVICE2). The
addresses of the channel specific registers are evaluated using the base device address and
appropriate offsets. Similar to the ESCC2-module the registers are grouped in data structures:
ADMA_GEN_REGS (ADMA-General Registers) and ADMA_CHAN_REGS (ADMA-Channel
Registers).

By programming the General Mode Register of the ADMA the operating mode is selected. In the
application on hand local mode is selected; furthermore the physical bus width is set to 16 bit, all
interrupts are masked and rotating priorities are programmed. No limit is programmed for
continuous bus cycle; the General Delay Register is set to 0. So no limit is set to the extent the
ADMA can load the bus.

InitAdmaChan0 (CIM_MSG_DESCR_PTR command) initializes the channel program for ADMA-
channel 0 consisting of two command blocks.

There are two basic types of channel commands:

— type 1 channel commands for data transfers and
— type 2 channel commands for command chaining control.

A complete channel program consists of at least two channel command blocks, one with a type 1
command and one with a type 2 command. So the data structure chanOProgram (ADMA channel 0
Program) contains the two elements cB1ST1 (command block 1 of short type 1) and cB2T2
(command block 2 of type 2) (see figure 20).

cB1ST1 specifies the actual data transfer operation and contains parameters such as source
pointer, destination pointer, byte count, etc... cB2T2 specifies the control operations of the channel,
as for example channel stop operations.

ADMA-channel 0 serves the DMA-requests of the receiver of ESCC2-channel A. Initializing the
corresponding channel program the following settings are defined:

— the data transfer is source synchronized,

— data is transferred in words,

— the destination pointer has to be incremented,

— the source/destination pointer resides in the memory space,

— RFIFO of channel A is source,

— there is a maximum length of frame buffer.

cB2T2 completes the channel program with a conditional stop, if byte count is reached.

Semiconductor Group 36

SIEMENS SAB 82532

On-Chip Command Pointer

in Memory

Type 1 Command

Source Pointer

Dest. Pointer
Byte Count

Channel
Program

Channel Status

Type 2 Command

Parameter
ITD04285

Figure 20
Simplest Channel Program

At the end of the routine InitAdmaChanO (...) the address of channel program is buffered.

InitAdmaChanl (CIM_MSG_DESCR_PTR command) is very similar to InitAdmaChano (...), with
the following differences:

— the data transfer is destination synchronized,

— the source pointer has to be incremented,

— XFIFO of channel A is destination.

StartAdmaChan0 (CIM_MSG_DESCR_PTR command) enters the destination pointer to the
corresponding parameter of cB1ST1in chanOProgram and sets the address of the channel program
to the corresponding Command Pointer Register. Then the channel program is started by
programming the General Command Register appropriately.

StartAdmaChanl (CIM_MSG_DESCR_PTR command) enters the source pointer to the
corresponding parameter of cB1ST1in chanlProgram and sets the address of the channel program
to the corresponding Command Pointer Register. Then the channel program is started by
programming the General Command Register appropriately.

The service routines InitAdmaChan0/1/2/3 (...) are executed once during the initialization of the
data link; the short routines StartAdmaChan0/1/2/3 (...), however, are executed every time a frame
has been received or has to be transmitted.

4.6 Software Workaround for Single-Cycle Mode

As mentioned in section 2.2 a problem arises when ADMA and ESCC2 operate in single cycle
mode. Since the trailing edge of the DRRn (Receiver DMA-Request) is received late, a continuous
request is assumed and the ADMA executes an unwanted transfer.

This failure occurs every time when the RFIFO is read by the DMA-controller; so for frames shorter
or equal to 32 bytes a further byte/word is transferred at the end of the frame. For frames longer than
32 bytes additionally every 32 bytes one spurious byte/word is transferred (see figure 21).

Semiconductor Group 37

SIEMENS SAB 82532

Since the trailing edge of DRRn cannot be used to terminate the DMA-transfer in time the software
workaround starts from the idea to control the DMA-transfer by byte counter. The DMA-controller
provides a feature called data chaining, which allows to transfer data to predefined locations until
the byte counter reaches O (see figure 22).

Spurious Data (byte/word)

Short Frames \\

32 Bytes 32 Bytes 32 Bytes
Long Frames

ITD04286

Figure 21
Spurious Transfers

In the application at hand the predefined locations can be organized continguously in memory and
the byte counter should correspond to the FIFO-length of 32 bytes. After transferring 32 bytes the
ADMA stops data transfer due to byte count end and reads the following data chain list element from
memory containing the next data pointer and byte counter. During this time the ESCC2 resets the
DRRn-signal and no spurious data transfer will occur. Using this method the additional transfer
every 32 bytes of one byte/word can be avoided. At the end of a frame with n bytes (n mod 32 is not
equal to 0), however, one additional transfer is unavoidable. Regarding this failure the data buffer
must be greater than the maximum receive length; finally the real length of the frame received can
be evaluated from the RBC-register during the ServeRme() routine.

Semiconductor Group 38

SIEMENS

SAB 82532

in Memory

Channel
Program

Command Pointer

Type 1 Command

Chain List Pointer
Not Used
Not Used
Channel Status

v

Byte Count = FIFO_SIZE

Data Pointer

Byte Count = FIFO_SIZE

Data Pointer

Byte Count = FIFO_SIZE

Type 2 Command Data Pointer
Parameter Byte Count = FIFO_SIZE
///> 32 Bytes 0 (end of list)
Dlc » dmaRcMessage
ITD04287
32 Bytes
32 Bytes
Overhead
Figure 22
Data Chaining
Semiconductor Group 39

SIEMENS SAB 82532

5 The Application Module HSHFR

The application module HSHFR contains an high speed HDLC-frame relay. The function of this
application is very simple: Frames received on ESCC2-channel A are transmitted via ESCC2-
channel B and vice versa.

5.1 Structure of the Application Module

Depending on the specific application, all modules used are integrated by executing DdsIntegrate()
(Refer to chapter 3.2). DdsIntegrate() sets the message entry points of the modules which are
necessary to run the application. The message entry points are set by executing
DdskSetMsgEntryPoint (INT16 module, MSG_FCT_PTRmsg_entry).

The application at hand sets the message entry points to the ESCC2-device driver module and to
the application module HSHFR itself. After the Device Driver System (DDS) has executed
DdslIntegrate() all modules are initialized by the DDS (Escc2Init(), Hshfrint()).

5.2 Detailed Description of the Application Module

In addition to the function Ddsintegrate() and the message entry point HshfrMsgEntry
(CIM_MSG_DESCR_PTR command) the application module contains two routines, which initialize
the module or perform the relay switch of the frames: Hshfrinit (...) and HshfrRcFrameOk (...).

Hshfrinit (CIM_MSG_DESCR_PTR command) sends messages to the ESCC2-device driver
module to initialize the data links (ID = INIT_DATA_LINK) and to assign the appropriate address
(ID = ASSIGN_ADDRESS). The channel identification (Entity), receive mode (P1) and clock mode
(P2) are passed as elements of the message. After the initialization the application module receives
messages from the ESCC2-device driver whenever a frame has been received.

One message ID is supported:
RC_HDLC_FRAME_ESCC2_OK.

If a HDLC-frame has been received the function HshfrRcFrameOk (CIM_MSG_DESCR_PTR cmd)
is executed.

HshfrRcFrameOk (...): All HDLC-frames received on one channel (e.g. ESCC2-channel A) are
sent transparently in HDLC-mode on the other channel (e.g. ESCC2-channel B) or vice versa.

Semiconductor Group 40

SIEMENS SAB 82532

6 Performance of the System

Discussing the performance of the system a very important question is how much time ;. remains
to run an application compared to the time t,,, Which is necessary to organize and execute a data
transfer. These times are summarized in the total bus time t,:

tbus = tdata + tapplic (1)

6.1 Time for Data Handling

Assuming that the application is performed only by the microcontroller SAB 80C166 and the data
handling is executed by the microcontroller as well as by the DMA-controller ADMA one gets the
following equations for ty,, and t,p.:

tyaa (1) = L2004 + L2202 (n)

setup transfer

+ t‘166 (d) + t‘166 (2)

DDM DDS

tapplic = t 108 (3)

applic

n = frame length in number of bytes;

d = direction rx/tx;

ADMA .
setup

Setup time of ADMA after being started by the microcontroller.

20" (n): Time to transfer data including bus arbitration; this time depends on the frame
length.

t>2e (d): Time to organize the data transfer (list linking, buffer allocation, interrupt
handling, programming the devices, ...) in the device driver module; this time
depends on the direction (transmit/receive).

(e Time to route a received frame from the device driver module to the
application module or the frame which has to be transmitted from the
application module to the device driver module.

Semiconductor Group 41

SIEMENS SAB 82532

The following times have been measured:

ADMA 166
f ext f ext
25 MHz 40 MHz
ADMA 2
tSetup 33 x o 2.64 ps
ext
£ AoMA 10.5 x f ADZMA 840 ns
ext
g ADvA 4 f 2 320 ns
ADMA
ext
166 (tx 300 us
tDDM () 6 x 103 x 2 H
o
166 (rx 2 268 us
Coom () 5.36 x 102 x o H
ext
‘166
tI;DS 7 x 102 x 2 35 us
f ‘1616

t2oMA - Arbitration time from DMA-request to first transfer cycle (without code prefetch:
setup time).

toa™ : Time to transfer one byte/word (8/16-bit access) in two cycle mode.

Especially the time used by the SAB 80C166 depends on the microcontroller itself, the specific
application and the way how the software is realized. For the sake of simplifying the discussion

t ‘166

oom 1S taken as the maximum of the time used for receive or transmit direction:

t‘166 — MAX (t ‘166 (rX), t‘166 (tX))

DDM DDM DDM

= t;gi/l (tx)

The transfer time t2°* (n) is calculated as:

transfer

tADMA

n
transfer (n) = 3_2 X Ttransfer + trest (5)

Semiconductor Group 42

SIEMENS SAB 82532

where Tianger = tAPMA +(32)16 x 122" s the time to transfer a 32-byte pool of data using

(8-bit) 16-bit access; n/32 is the quotient (number of 32-byte pools to be transferred) and n
mod 32 is the remainder.

If n mod 32 =0 t,., =0, if not up to 31 bytes have to be transferred at the end of a frame.

The time for the transfer of up to 31 bytes t.. is calculated by summarizing the time for bus

arbitration t,,, after DMA-request and the number of data transfer cycle times t, using
| II'\ tyanstr (32)

(8-bit) 16-bit access:

o ;OKYIX’X’A‘A X

'166
DDM

ADMA
setup

~ L ITD04307

Figure 23
Transfer Time as a Part of the Time Used for Data Handling n = 32 Bytes
n mod 32
trest = tarb + W x tCyc (4)

The figures 23-25 represent how the time t;,., (100 %) is divided up depending on the frame length.
They show that the time to transfer frames of length equal to or shorter than 32 bytes is negligible
compared to the time for organizing the data handling in the device driver module. Independent of
the frame length, the setup time of the ADMA t 7' is negligible. One gets the following equation
for tdata (n):

n ‘166 ‘166
tdata (n) = 3_2 Ttransfer + DDM + tDDS

_ ‘166 ‘166
Torg - tDDM + tDDS

Semiconductor Group 43

SIEMENS SAB 82532

n = 480 Bytes
T 20
/"’ :’f’:”‘

/7 10%6%% t ADMA 480
/’ ::’:‘ transfer (480)

/ 5558

KK

LIRS

00’::

R8s
ptete ¢ ADNA
“\/ setup

p 166
DM p 166
\\ DDS
\
\\
N
!
\~~~

~ ITD04308

Figure 24
Transfer Time as a Part of the Time Used for Data Handling n = 480 Bytes

n = 4096 Bytes

ADVA (4096)

t transfer (

ADMA
setup

'166
DDS

—

L~ '166
DDM ITD04309

Figure 25
Transfer Time as a Part of the Time Used for Data Handling n = 4096 Bytes

To Is the time to organize the data transfer in the device driver module and to route the frames from
the DDM to the APM and vice versa. As mentioned above this time depends on the microcontroller,
the specific application and the way how the software is realized.

Semiconductor Group 44

SIEMENS SAB 82532

6.2 Bit Rate and Frame Rate

The correspondence between bit rate and frame rate on the one hand and bus load on the other
hand is present in figures 26/27. Figure 26 shows the maximum bit rate the ADMA is able to cope,
when DMA-transfers are requested back-to-back without delay:

[ADMA _ 32 bytes

bit,max T
transfer

Using 25-MHz clock and 16-bit access the rate is 42.7 Mbit/s. Dividing up this performance on four
DMA-channels the ADMA is able to transfer data for two bidirectional ESCC2-channel, each
operating at a bit rate of 10 Mbit/s. This transfer rate has been tested successfully in the system
implemented.

Framem Frame (m+1)

Bitk Bitk+32

[TD04288

- n/32 *Ttransfer —»‘*Torgﬁ

Figure 26
Maximum Bit Rate

Frame m Frame (m+1)
FIFO

T

[TD04289

A

32 *Tyanster *+ Torg

Y

Trmc

Figure 27
Maximum Frame Rate

The frame rate can be calculated as:

; 1
frame —
n
3—2 x Ttransfer + TOrg

Semiconductor Group 45

SIEMENS SAB 82532

Regarding figure 27 the following condition has to be considered when calculating the maximum
frame rate. For bit rate less than the maximum bit rate the CPU is able to perform organizational
processing between the data transfers. To avoid loosing data or even a complete frame in this case
because of a receive data overflow or a receive frame overflow the next frame should not arrive till
the microcontroller has set the RMC-command after an RME-interrupt event. Let us call the time
from RME-interrupt to the RMC-command Tgyc, this time is a part of T,,, and consists of reading the
RBC-register of the ESCC2, allocating a data buffer for the next frame, preparing and starting the
ADMA-channel program and setting the RMC-command to the ESCC2. If we assumed back-to-
back frames with shared flags (worst case) then since the flow of data is constant the same time
Truc has to exist between end of DMA-transfer of every pool of 32 byte and the beginning of the
following pool.

So the frame rate is given by the following equation (n > 32):

1

312 x (TRMC + Ttransfer)

I’frame, max <

The corresponding bit rate for continuous frame transfer and maximum frame rate is (ADMA:
25 MHz, 16-bit access; 80C166: 40 MHz; Tgyc = 190 us):

32 x 8 hit Mbi
_ sS2x8hbit .4 bit
TRMC + Ttransfer S

it <

Obviously the bottleneck for continuous frame transmission is the time Tgyc. Again it has to be
considered that the time Ty depends on the microcontroller, the specific application and the way
of software realization. To guarantee continuous frame transmission with 10 Mbit/s Tgy,c Wwould have
to be equal or shorter than 19.6 ps.

The main part of the time Tgyc is used for converting addresses from 80C166 mode into ADMA-
mode. This has to be done every time a pointer is written to the ADMA’s-registers or channel
program.

To reduce the time for address converting it is recommended to introduce predefined linked list,
which contain pointers in 80C166 mode as well as in ADMA-mode. In this case Tgyc can be reduced
by nearly 65 %. This method reduces the time for organizational processing and allows a higher
frame rate.

Semiconductor Group 46

SIEMENS SAB 82532

6.3 Time for Application

Up to now the performance is analyzed without considering the time for the execution of
applications.

Going back to equation (1) for t,,,,c one gets the relative part of the total bus time in the following
manner:

tapplic = tbus - tdata

Given a frame rate of r;,,. the time to organize and execute the data transfer over the parallel bus
is 312 X Tyanster + Torg- THiS leaves a bus capacity for running the application equal t,,,;. per frame:
1 n

applic = ~—\ 355
r frame 32

t x T transfer + T org)

In the figure 28 the time for application is depicted for several frame lengths and frame rates.

Example: t,,,ic = 100 ps (free bus capacity per frame) remains to run an application for one frame
(e.g. LAN-frame) with a length of 480 bytes (n/32 = 15) and a frame rate of nearly 2000 frames/s.

Semiconductor Group 47

SIEMENS SAB 82532

6.4 Performance Improvements

In chapter 5.2 it has been shown that the ADMA (normal mode, 16-bit access, two cycle mode) is
able to cope the maximum bit rate of the ESCC2 (2 bidirectional channels, 10 Mbit/s). The
bottleneck is the bus load used by the microcontroller for data handling. To reduce the time used by
the CPU another microprocessor can be used or the software has to be realized appropriately
(linked list to avoid pointer conversions).

To improve the data transfer and therefore to reduce the bus load caused by the ADMA one can
operate in single-cycle mode. This transfer mode is described in chapter 2. Corresponding to the
software work around described in chapter 3 one can achieve an performance improvement of
nearly 30 % regarding only the data transfer.

1200 TD04290
Us/Frame
1000
g 80
=
(@)
4
m
(5]
£
S 600
400
200
NN
N _ing \ N
3y ~128 2 NN 2N
0.0 0.5 1.0 15 2.0 25 3.0
Number of Frames (*1000))s —»

Figure 28
Free Bus Capacity per Frame

Semiconductor Group 48

SIEMENS SAB 82532

7 Device Driver System

This chapter gives an overview about the system software used to implement the application
specific software modules. This Device Driver System (DDS) provides a simple fundamental
platform for the integration of Device Driver Modules (DDMs) and application Program Modules
(APMSs).

Because of its reduced complexity and its high degree of portability it is possible to concentrate on
the main issues related to writing device driver code for the Enhanced Serial Communication
Controller (ESCC2) from Siemens.

7.1 Overview

The basic concept of the device driver system relies on the transfer of messages between DDMs
and APMs. A DDM contains the low level device driver functions, including the interrupt service
routines, which must fulfill individual real-time constraints. As opposed to the DDM an APM
combines the more intelligent time consuming data (message) processing functions. The general
concept is shown in figure 29.

PC SAB 80C166 Coprocessor
APMI---|APM| |DDM|---|DDM|
APM g <<+ | APM
T T Device Driver System
————— DDSH
| | T X | DDSH |
G] s
1 1 I . I ITS04311
| - %]
\ Cll-Messages ‘
DDSU := Device Driver System User Interface
DDSH := Device Driver System Hardware Adaption
APM = Application Program Module
DDM := Device Driver Module
CIMAPI := C/I-Message Application Program Interface
Figure 29

Device Driver System Concept

Semiconductor Group 49

SIEMENS SAB 82532

The device driver system maintains a unique data structure, the Command/Indication-message
(C/lI-message) to transfer information between the different APMs and DDMs. The standard format
is depicted in figure 30.

The device driver system itself provides all services necessary to build a high performance
communication system. The main tasks are summarized below:

¢ Initial Hardware Initialization
e Initial Software Initialization
e Main Program Control
e Message Routing
e Message Buffer Management
e Timer Management
e System Control
e User Interface
Next
SigByte
Type
Message Dest
Descriptor Src
Entity
ID
DSize
DPtr
y
Data
Buffer
N
ITD04310
Figure 30

C/I-Message Format

Semiconductor Group 50

SIEMENS SAB 82532

7.2 General Module Architecture

A module to be integrated into the device driver system’s environment must fulfill only a minimum
set of requirements. The figure below illustrates the basic architecture of a device driver module.

First of all a module, a Device Driver Module (DDM) or an Application Program Module (APM), must
have one general function to be used as message entry point. In addition to that, a DDM has to
assign and initialize its interrupt entry point and the corresponding modes. When the whole system
is started, the device driver system sends an initial C/I-message (INIT_MODULE) to every module.
This allows every module to establish its own context, initialize its data structures and if necessary
the related devices. Following this initialization an integrated module can receive C/I-messages,
which are decoded inside the module. Additional service functions, described in section 6.5, are
needed inside a module (e.g.: to request and send C/I-messages, en-/disable interrupts, ...).

API Functions Device Driver System

DdskSetMsgEntry ¢
DdskSendMsg

DdshIntCtrl
DdshintSetMode P Service

DdskRejectMsg Msg Entry Point
DdshGetDevAddr Function
MoveWords A

DdsmMsgBufAlloc
DdsmMsgBufFree
— Data ||
Structure
ENTERNOINT .
Device —‘
LEAVENOINT Driver

DdshSetHwIntVect
INTRET Module INT Entry Point

Hardware
SIEMENS Communication ICs
(ESCC2)

ITS04312

Figure 31
General Module Architecture

Semiconductor Group 51

SIEMENS SAB 82532

7.3 Integration of Modules

To integrate individual modules into the device driver system’s environment one of the modules
must have the unique function DdsIntegrate. This generic function is called during the system
start-up phase. Its purpose is to assign the message entry points for the application program and
device driver modules by means of the service function DdskSetMsgEntry.

7.4 The Example HSHFR

The application example described in this document has been implemented on a PC-coprocessor
bord using the new 16-bit microcontroller 80C166 from Siemens.

A functional block diagram of the complete example is shown in figure 32.

ESCC2, ADMA + SAB 80C166

HSHFR ADMA Device ESCC2 Device B

Device Driver System (DDS)
X

_l—l ITB04313

Figure 32
Structure of Relay Software

To concentrate on the device driver software and the application of the ESCC2 with ADMA in a
communication system, only a minimum interface to the device driver system and the hardware
specific adaptions (see section 6.5 and Appendix C) are described in more detail.

Because the PC-user interface is highly specialized and used only for the downloading of the
run-time software onto the PC-board it is not described here. No timer functions are required in this
application, so they are omitted as well.

The following figure 33 shows the information flow inside the whole communication subsystem,
especially how the different software layers (modules) are involved. The routing from channel A to
channel B is illustrated, assuming an incoming HDLC-frame. The ESCC2-device driver module
handles the RME-interrupt (see chapter 3), and translates the complete received HDLC-frame into
a corresponding C/lI-message. All C/I-messages are inserted into a single message queue,
maintained by the device driver system’s kernel. The kernel routes all messages to the appropriate

Semiconductor Group 52

SIEMENS SAB 82532

destination module. The C/I-message RC_HDLC_FRAME_OK for instance, related to an incoming
HDLC-frame via ESCC2-channel A, is routed to the HSHFR-module. The HSHFR-module reacts by
routing the frame received on channel A to channel B and sending a SEND_FRAME message to the
ESCC2-device driver module. One element of the C/l-message, the parameter entity (see
figure 32), determines the ESCC2-channel to be used for transmission and the source for a
received frame.

The data buffer of the routed C/l-message remains the same (DPtr; for more details refer to
chapter 4).

HSHFR APM

A

SEND_FRAME (ChB) RC_HDLC_FRAME_OK (ChA)

C/l-Messages

RC_HDLC_FRAME_OK (ChA) SEND_FRAME (ChB)

y

\ ESCC2, ADMA DDM

\ 4

—
.

A

<

ESCC2, ADMA T // asddddasifliashiddan

EAER

A

n

[F{cre] " pbaa |F| [F[cre|] " paa [F]
1 1

ITD04314

Figure 33
Information Flow from Channel A to Channel B

Semiconductor Group 53

SIEMENS SAB 82532

7.5 Application Program Interface

The following description briefly explains the main purpose of the device driver system’s service
functions and how they are called in C. No distinction between functions realized in C and in
assembly code is made on this level. The corresponding function prototypes, macro definitions,
typedefs and defines are included either in the header file DDSG.H or DDSH.H.

All hardware specific functions and macros belonging to the individual processor system (e.g.:
processor type, memory layout, ...) are combined in one system module DDSH, which is available
in source code (see Appendix C). To transfer the device driver source code to a another processor
system the main work consists in modifying the functions and macros in the DDSH-module so that
they fit into the new system.

Moreover you will find definitions concerning the C/I-messages in the MSG.H file, like module and
message IDs and related parameters (see also Appendix C).

DdskSetMsgEntry (int destld, (*msgEntryFctPtr) ());

Writes the pointer to the module entry function msgEntryFctPtr in the device driver system’s
message routing table in dependance of the module destination identifier destld.

DdskSendMsg (CIM_MSG_DESCR_PTR ciMsg);

Puts a C/I-message ciMsg into the device driver system’s central message queue. A module which
wants to send a message to another module calls this function with a pointer to the previously
prepared message buffer. This message buffer can be requested from the buffer management by
means of the function DdsmMsgBufAlloc (see below). As a minimum the C/lI-message must contain
the destination ID of the addressed module, its own source ID and the message ID itself. In addition
to that, the data buffer must be filled with the appropriate information, if any. The C/I-message
format and the corresponding structure CIM_MSG_DESCR_PTR are specified in the source file
DDSG.H (see Appendix C).

DdskRejectMsg (CIM_MSG_DESCR_PTR ciMsg, int reason);

In case a C/lI-message ciMsg just received contains wrong information, it may be rejected by means
of this function. The value reason may be used to signal why this message has been rejected.

ciMsg = DdsmMsgBufAlloc (int size); CIM_MSG_DESCR_PTR ciMsg;

Returns a pointer ciMsg to the next available C/I-message buffer with a data buffer assigned to it,
depending on the parameter size. When there is no message buffer available, a NULL pointer will
be returned instead.

DdsmMsgBufFree (CIM_MSG_DESCR_PTR ciMsg);
Releases a previously allocated C/I-message buffer referenced by the pointer ciMsg.
DdshSetHWintVect (HW_INT_TYPE intx, INT_FCT_PTR intFct);

Installs an interrupt frame function, which calls the specified interrupt function intFct. The interrupt
frame is initialized in the system module DDSH, which is dependant on the processor type (e.g.:
80C166).

DdshIntCtrl (HW_INT_TYPE intx, BOOL enable);

Enables or disables an individual interrupt source.

Semiconductor Group 54

SIEMENS SAB 82532

DdshintSetMode (HW_INT_TYPE intx, INT_MODE_TYPE mode);

Sets interrupt mode. In this application only device 1 and mode 1 is supported. Mode 1 means for
the 80C166 that the interrupt is triggered on positive external transitions on pin CC1I0.

devAddr = DdshGetDevAddr (DEVICE_TYPE dev); WORD32 devAddr;

Returns the base address devAddr of the specfied device dev. Only device 1 is supported in this
application.

MoveWords (W16PTR srcPtr, W16PTR destPtr, WORD byteCnt);

Optimized procedure for a fast transfer of a memory block with the specified length byteCnt from
source address srcPirto the destination address destPitr.

ENTERNOINT (WORD cpusState);

Is a special macro defined in DDSH. Disables temporarily all interrupts. The current CPU-state is
stored in cpuState. This allows nesting of interrupts in conjunction with macro LEAVENOINT.

LEAVENOINT (WORD cpusState);

Is a special macro defined in DDSH. Restores the old CPU-state by means of the variable cpuState.
It puts a previously interrupted program state back the way it was before ENTERNOINT was called.
This allows nesting of interrupts in conjunction with macro ENTERNOINT.

INTRET

Is a special macro defined in DDSH. It releases the interrupt logic of the corresponding interrupt line.
This is necessary to allow the interrupt controller to accept interrupts. Should be called whenever an
interrupt routine is left.

Semiconductor Group 55

SIEMENS

SAB 82532

8 Appendix
8.1 Appendix A
. ﬁéTCm Yoo Ve 45V HOW
o — >
| D G HVENR
9 [> 8 HVEMW
rTr——f"TFT~——FT"TTT T 7/) s —m —m 1
fo I i I HD(.7)
U4A I GND IOCHCK
R B1 Al OERER
GND GND 2] 4 1 1| RESETDRV | g Ao |07 HD7 :
ko ! 15V B3 A3[D6 HD6 11
74 HCT 04 : IRQ2 B4 A4 |D5 HD5 :
q | Vo e A |D4 HD4 ||
U2D TiF | DRz fgg AgfR3 HD3 4,
74 HCT126 I SPA/ P A7|D2 HD2 ||
1 1 GND I ows _ |ge gDl HD1 ||
[> [I 2V a0 A9[D0 HDO J 1
5 : GND 810 2 10 | ID_CH_RDY | HIORDY
l I MEMW B11 A 11 |AEN \ HAEN
I MEMR ADDR19 HA19 |
GND GND I B12 A12
Iow B13 413 |ADDR18 H A18Y) I
: R gl A14|ADDRLT HAL7 |]
| DACK3 g A 15 [ADDR16 HAL6 | |
I DRQ3 |ge A16|ADDRIS HAILS | |
U3A I DACKL g1 A17|ADDR14 HAL4 | 1
1o : DRI g A1 |ADDR13 HA13 | !
o1 7 | DACKO 510 A 1g[ADDRI2 HAL2 | |
I CK g Ao [ADDRIL HALLY |
74 HCT32 : :EQ; Y A2L 2832? : 2;0 !
' IR85 B o A2 ooRs HA8 | !
! B23 A23 I
GND I R4 |go a4 |ADDR7 HAT ||
I IRQ3 B0 45 |ADDRE HAG |1
: DACK2 o A o6|ADDRS HAS5 ||
| gy 477 |ADDR4 H A4 :
w5y I ALE 828 A og|ADDR3 HA3 ||
I 45V 82 A2g[ADDR2 HA2 |
I
! 0sC g3 A30ADDRL HAL I
R, | GND 831 431 |ADDRO H A0 :
10kQ | |
q
ULB " ! 1 IBM Con | HA(Q.19
gl . , GND Vg sw1 |
5 3 & ? 3 I 0 O }
2 : PC Edge G t CPU Reset |
or I
74 HC 08 L Edge et 4 GND
74 HC08 SWRST
h RST
1
3 2 _ IRQ3EN
74 HCT126 U2A HINTR
6 5 _ IRQSEN
74 HCT126 U2B
4 ITS04324
PC-Host Bus

Semiconductor Group

56

SIEMENS

SAB 82532

| PC Bus PC Bus Interface
[HAQ.19) H_A (0..19)
| H_A(0..19) o> HAC19) PC_A(0..19) [a)
H.D(0..7) |—= »|H D(0.7) PC_D (0...7) | —————
| HMEMR »| AVEMR PCRD f———
| HMEMW »| AHVEMW PC_WR
| Hiow »| Hiow PC_CE
| IBM HAEN »|HAEN Transceivers, HINTR [¢———
| Connector H'OF;[S“T(< - %SY Latches ... DP% —
> -
| SWRST |« SWRST
| HINTR |« HINTR
| IRQ3EN |« IRQ3EN
| IRQSEN |« IRQ5EN
[
| PC Interface Unit
—_— e — e — — — e — — — — — — — —— — — — —_— —_— — — — — — — — — —
DACK (AB) b)
DR (A,B)
ADDR (0...17)
DATA (0...15)
RSTOUT
DPINT
RBUSY
RST
ALE
EPROM
SR_
SR E
DP_O
DP E
P CS 1
P CS 0
RD
WR
NMI
P2. (0...15)
P3.33
P3. (0...15)
P5. (0..9
(0..9) 0
rY-\T"TyT " — — — — — — 7 __'_______l
I Coprocessor |
[»| RBUSY ADDR (0...17) | €=~
[
| —»| oPiNT DATA (0..15) | 4—>> |
| 2 D P2. (0...15) [4—>>
| »| rsT P3. (0...15) [4—> |
| P5. (0..9) |¢—> |
ALE > |
: RD > |
RSTOUT »-
| SAB 80C166 ' Eprom > [
| SR_O > |
| RE > |
| DP_ | [
P E »- |
| PCSil—> |
[P CS0 > |
| C ;
oprocessor Unit
L __" p __________________l ITS04318

Main Block Diagram

Semiconductor Group

57

SIEMENS

SAB 82532

Dual Port RAM | ADMA
a) % PC_A(0..19) ADDR (0..17) [« i P ADDR (0..17)
———»{ PC D(0..7) DATA (0..15) 4= P DATA (0...15)
——» PC_RD RD RD
—_P|FCWR R [g
—P{ PC_CE DP_O [« 712 Ho
e ma PRES] P21 L o ey ShB
——pRST RBUSY |- %4— INTADMA 82258
RST |- ———» BHE
| “‘ DACK (A,B)
»{ DR (AB)
| PCs1
|] RSTOUT
I
b) DACK (AB)
DR (AB)
ADDR (0...17)
DATA (0...15)
RSTOUT
DPINT
RBUSY
RST
ALE
EPROM
SR O
SRE
DP_O
DP_E
PCs1
PCSO
RD
WR
NMI
P2.(0...15)
P3.(0...15)
P5. 0..9)
c)
Memory ESCC2
» ADDR (0...17) ${ ADDR (0...17) P CS_0|€—
<€—{ DATA (0..15) < DATA (0..15)
»| RD <»{ P2.(0..15) DACK (A,B) |«
WR < P3.(0..15) DR (A,B) —p>
»{ EPROM <1 5. (0..9)
SR_O RSTOUT
Pl sRE P ALE
RAM and EPROM O saB 53
ITS05574

Main Block Diagram (cont’d)

Semiconductor Group

58

SIEMENS SAB 82532
 HINTR
4— a)
__ DPBSY
b us)
Hao 2 o o] 18_PCDO)
HAL 3 | 5 [7_PCDL 0
s sl
Hae 6 |0 e TG
nas 71> Bl eeos PC D0
ae 81 12 pcoe Pc ot
nar_o | ¥ ecor Pc D2
0 A8 B8 PC D3
—19¢ PC D4
DIR PC D5
PC D6
HD(0..7) 74HCT245 DBUSEN e D7
—
HA (0..19) T
—_—
HAO 2 18 PCA0
NALUSE VI 1
ol A
mas s | MG ecas
mar | M Yo
(TSECY AN TS PC DO
HA6 15 22 2v2 5 PCA6 PC D1
HA7T 17 243 2v3 3 PCA7 PC D2
o .
Pg e pe s
PC D5
GND 74HCT244 PC D6
7 PCD7
HAS 2 18 PCA8
W
]
man s | Y pcan
waz 1| M YARec A
SEREEE FAEAN AT
mae 1522 22 pcan
Has 17|22 283 pcas uss
a2 4?1‘6
Pg 16 AEN 5
26
GND T4HCT244 74HCT32
us
HAEN 2 i v fRE AN —
L
HVEWR TN Py v ﬁ MEMR> -
%@AW < g W sy %h/iw PC_A3
» o~
g YA ;ﬁ g‘i 9 _PCAIL6 S RPL PC_Ad
HALT 13|00 oy |Z_PCALT . 8xlka Eg_ﬁg
:ﬁig 1? 288213 g ggﬁg PC A7
— | ™ PC_AB
16 SW2 ¥
Pg pos — PC_A9
U
GND T4HCT244 LY —
i -
-—
=
==
-
J— GND SWDIP-8
_ SWRST
|
RST R
RST__ o
TS04325

PC-Bus Interface-Logic

Semiconductor Group

59

SIEMENS

SAB 82532

P HINTR
a) < —
P DPBSY
 PCD(0.7)
b) < >
PCA(0..19)
c) L
u12
D1 Q1
D2 2
9 74HC08
74HC08
74HCTO0
1 BZ 85 15 IRQ3EN TRQ3EN
7 16 IRQ5EN TRQSEN o
— 7 Q7 >
18 19
— Ips o
11 UL4A
— 1 ENDPRAM 1 v
—cr &3 o=
2 m 8
74HCT273 PC AL9 |
74HCTO0 T4HCT2 PCRD
>
PCWR
L
utt -
U9 XALL 2l pQ 19 PCCE,
2 19 XALZ M,
_4 RO P-Q B M P2
—l ™ XA 8,
—p XAs 1 o
— e XAS 13| o0
— e XA 5| o
—es XA 17| o)
—es PCAIL 3])
=3 p7 PCAL2 5 o1
—] PCAIB 7| o
—a PC AL 9 Q3
—l@ PC A5 12 84
— U10A PC AT 1] o
_12 4 2 PCA AT 16
] 8‘; sq0 Al Al P | &
56 o —qv 8 = Ll
i3] Q7 —qv . G
19 —dv ¢
G 74HC688
74HCT139
74HC688
RST
e) >
ITS05572

PC-Bus Interface-Logic (cont'd)

Semiconductor Group

60

SIEMENS

SAB 82532

RST

__PC_D(0..7)

~ PC_A(0...19)

Yvy

Pullupl
Pullup2

PC_CE

PC_AO
U15A

A Y0

B Y1

PC_WR

\4

C Y3

74MC139

PC_DO

PC_DI

PC D2

PC_RD

vYvY

PC_D3

DPBSY

PC_D4

PC_D5

A

MINTR

u4B

PC_D6

PC_D7

PC_AL

PC_A2

PC A3

PC_A4

A

4 4<:] 3

74MCTO4

PC_A5

PC_AG

PC_AT

PC_AB

PC_A9

PC_ALD

PC_AIL

PC_DO

PC_DL

PC_D2

PC D3

PC_D4

PC_D5

PC DB

PC_D7

PC_AL

PC_A2

PC A3

PC_Ad

PC A5

PC_AB

PC_A7

PC_A8

PC_A9

PC_AL0

PC_ALL

ITS04315

Dual Port RAM

Semiconductor Group

61

SIEMENS

SAB 82532

c)

RST,
Rp2
Bx1KO _ DATA(0..15)
6|7(8]9 . ADDR(0..17)
o
u16 _
Y = e < DPE
—g RIWL RIWR ig
—2 1 BUSYL BUSYR
g [
17 gELL ggg 27__DATAD
JEC] oy D1 |[22_DATAL
JEC] oy DoR |22_DATA2
I oy D3R | 0_DATAS
A oy DaR | EL_DATA%
2| pe DsR | 2_DATAS
] oy DeR | Z2_DATAS
2] Py o7 |Z4_DATAT
i oy A0R | 5_ADDRL
B vy A1R | #4_ADDR2
] oy 1R | 2_ADDRS
0 oy naR | 22_ADDRA
T Iy suR | 2L_ADDRS
71 oy 75 | Z0_ADDRG
JEE] oy e | Z2_ADDRY
V] oy 7R | 2B_ADDRE
S vy naR | Z7_ADDRY
6] 2o | Z5_ADDR10
S0 ALoR |47 ADDRIL
ITD71321
u17 P DPO
i P] h _
—g RIWL RIWR ig < R
— 1 BUSYL BUSYR RBUSY _
_4 INTL iNTR 48 —»>
6| ~= 4 P RD
— 08 OER <
U oy DoR | 2/_DATAS
18 28 DATA9 o
b1 DIR
JEC] oy DoR |22_DATALO DPINT
I oy D3R | 0_DATALL
af o DaR | BL_DATAL2
2] DsR | 2_DATALS
JEE] oty DeR | 22_DATALL
2o o7R | 4_DATALS
A vy A0R |A5ADDRL
8l AR |44 _ADDR2
9 Aor |43 _ADDR3
L2 A5R | A0_ADDRE
Bl A6R |32_ADDRT
LI Py A7R | 38_ADDR8
Ll v agR |B7_ADDRY
_16] o1 AoR | 38_ADDRIO
S0 ALoR [4LADDRIL
ITD71321 ITS05567

Dual Port RAM (cont'd)

Semiconductor Group

62

SIEMENS

SAB 82532

 ADDR(0.17)
_ DATA(0..15) _
P3.(0.15)
P2.(0.15) 3
P5.(0..9) U19 b)
< 10
e P00 A | 5 DATAD_ i
RST 2| sew ' 84 DATAL
= » = rRsTiv P01/ ADL ISR
DPINT - RsToUT P02/ AD2 |-B—3A 2
m 9 NMI P03/AD3 m
Vee o—@ EBCO P0.4/AD4 |- 2L DATAG
Pullup? L 32 EBC1 P05/ AD5 ggg%
[0] e PO.6 1 ADS I-o5—BaTaT
GND |—¢ P50 33| e PO.7 1 ADT 103 DATAS
P5I1 3 P5.0 / ANO P0.8 / AD8 m
- % P5.1/AN1 P0.9/AD9 m
P5.2] P52/ A2 P0.10/AD10 | 22 DATALO,
ﬁgi o psarane P0.11/A011%
S P54/ ANA PO12/AD12 |-l 22
ggg 201 P55/ ANS P0.13/ADL3 | 38 DATATS
P00 P56IANS PO.14/AD14 |- 0- DA
e P5TIANT P0.15/AD15 |30 LA
TS| Po8IANS PLO/AD |22 28K —
P20 | pag 7] P5OIANS PLL/AL|0—A30R—
P29 2 P20rccoio PL2J A2 | Lok —
w P2.2/CC2I10 P1.4/ A4 W
ﬂ P2.4 | CC4l10 P1.6/A6 W
ﬂ P2.6/CC610 P1.8/A8 26 ADDRY ADDR (11...17)
L2l P27/ccTio PLOJ A9 [21200
% P2.8/CC8I0 PL10/AL0 [SLASSR D —
P29 56 fpy9/ccai0 p1.11/A11}28 ADDRIL
ST po10/ccl0l0 P112/A12 |22 ADDRLZ
gg P211/CCILI0 PL13/AI3 %
2 Pat2rcciz0 pLiajai L A90RE
SH P213/cCiz0 PLIS AL (52 ADORE
o P21rccao paosaies | 5—3888— | ipprg
e Pesiceisio pavia 5 L8 &)
71Vss RD 65 P30 f
o vss P3O/ TOIN |28
22 {vss P3.1/T6OUT 022
1 ves P32/ CAPIN | 21582
2 vss P33/ T3OUT o>
Vs P34/ TAEUD [0 —>2
GND} Vs P35/ TAIN |52
> XTALL P36/ TaIN |25
1 — e P37/ T2N |HE—25T
Vee 5 Vee P3.8/TXD1 BT
PMI Ve P39/RXDL -3
Voe v P310/TXD0 228
0SX| 40MHz VCC P3.11/ RXDO . _
78 277 PaL P3.12/BHE
GND o Vee P112/BHE 205373 9
Vec © Vee PLISIWR -3y P3.14 | READY
PL14/READY [-—32 ' h)
L P1.15/ CLKOUT '
GND
80C166 ITS04317
CPU-Block SAB 80C166
Semiconductor Group 63

SIEMENS

SAB 82532

RSTOUT RSTOUT
a) »
b) "
ALE
c) »
uac
READY | :|5
T4HCT04
|— _________ 1
ADDR (11..17) | u18 |
| ADDRIL 1 b2 | RrsTouT
] ———m—»
aoori2z_ 2| . | Pecs1
] D———M—m——— >
: ADDRI3 3 . I EPROM
| ADDR14 : " bl SRO
| ADDRI15 5 s b2 SRE
ADDR16 6 17 PO
ADDRO e L ospt— =2
8) =2 | mooRi7 7 16 PE
RD — 17 op—~F——»
f) | aDRO 8 s M PCSO
| RSTOUT 9] o |
| BHE L | RD
| RD 1
11 |
| 13
— 112 |
| 14
— 113 |
3
| —J
I I
208 |
| Chip Select Decoder |
| e | . J
P3.14 READY TS05569
CPU-Block SAB 80C166 (cont'd)
Semiconductor Group 64

SIEMENS

SAB 82532

ADDR (0..17) Y
_DATA(0.15) _)
u2L
ADDRL w0l o |3 pamas
ADDR? o]% o [14oatag
ADDR3 5% oy |15 DATALO
ADDR4 1% g [T DATALL
ADDRS 5|5 0s |12 DATAL2
ADDR6 55 op [DATALS
ADDR? 21 i g |22 DATALS
ADDRS 3] oo [21_oamwis
ADDR9 3 —
ADDRIO 24|40
ADDRLL 21
ALO
AR 23|40
ADDRI3 2
ADDRIA 26 | AL
o |A3
2 |%
7%
L Y
PP
27128
U20
ADDRI [9 EERRTI/
ADDR? o] % o, |14 DATAL
ADDR3 8% oy |15 DAtz
ADDR4 il 0g | 7_DATAS
ADDRS 5]% s |18 DaTae
ADDRG 515 g |19 DATAS
ADDRY 1 poll TS
ADDRS 3|5 o7 |2 oarar
ADDRY 3
ADDRIO 24|40
ADDRLL 2L
ALO
AR 23|40
ADDRI3 3 oo
o ADDRIZ %6
EPROM 20 | A8
> 2 |CE
77| %E
Vee A
T Vo
_ 27128
RD
= > ¢)
il > ¢)
SRE
— > e)
WR

A\ 4

ITS04316

RAM and EPROM

Semiconductor Group

65

SIEMENS

SAB 82532

ADDR (0..17)
DATA (0..15)
U2
ADDRL 12 13 DATAB
A0 00
ADDR? 11 14 DATAY
AL 01
ADDR3 10 15 DATALD
A2 02
ADDR4 9 17 DATAIL
A 03
ADDRS o 18 DATAL
ADDR6 1 ol
ADDR? 6 % %0 oatAw
ADDRS 5 O 1o DaTALs
A7 o7
ADDR9 7
A8
ADDRLD 26
A
ADDRLL 23
ALO
ADDRL2 25
AlL
ADDRI3 4
woor 3|
ADDRI5] b
woors a1
ADDRI7 2|
Al
p7) 1
CE NC. F—
u| =)
OE NC F—
pr]
WE
628128
17
ADDRL 12 13 DATAO
A0 00
ADDR2 uf ot EEEST
ADDR3 10 15 DATA?
A2 02
ADDR4 9 17 DATA3
A3 03
ADDRS 8 18 DATM
A4 04
ADDRS 7 19 DATAS
A5 05
ADDR? 6 20 DATAG
A6 06
ADDRS 5|, 21 DATA7
o7
ADDR9 7
woR0 5]
wori 5|
ALD
ADDRL2 25
AlL
ADDRI3 4
AL
ADDRI4 28
AL3
ADDRI5 3
Al
ADDRIS 31
AL
ADDRLY 2
Al
2| = w b
RD ul = B KU
¢) OF NG —
__ 20| _—
SRO WE
d)
SRE
o) 628128
) WR ITS03568
RAM and EPROM (contd)
Semiconductor Group 66

SIEMENS

ADDR (0..17)

-
»
DATA (0...15) N
< P> a)
P2.(0..15)
< »- b)
P3.(0..15) o
|
||
Lo, H L c
16 MHz
T oF T or
GND GND
U2s
RSTOUT
> 22 RES XTALl%
— 1 XTAL2 [
— XA
U24 — ™ RXDA |-
P3.10 113 TRLIN TRi0UT |2 5| o /CR;;ﬁ 16
oo |] RN TROOUT [7% on |2
' T|RECIOUT RECIN [5% e 4
£ ¢, ——REC20UT REC2IN 50" 43
1 Do RXCLKA
—|— 1uF 3 Cl+ 59 18
oL =10 TXOB =
e GND =102 RXDB |
Gl po =10 RTSB -
2|\, =0 CTSB/ CX0B |-
6],._ o CDB [
=106 TXCLKB |
+ €y + Cq C; LT1081 5107 RXCLKB |-
T WF 5 uF 08 Pof-
50 D9 le
D10 P2 =
GND 49 65
m D11 P3 W
i o8 e e
4% 68
3 Pe|—
9 D15 P7 W
ALE DRTA
P3.1 [7] [2
R0 8.13 T WR/RIW DRRA |2
> RD/DS DACKA
P3.12 10 ol [EX
P CS0 | BHEVBLE o
> 21 DRRB |-
P —5 | DTACR DACKB
Ve Vee O WIDTH
5 , 2
5 fo\ P2l zg INT
Vee J_ i 2 INTA
o IEO
GND GND —g—o 2l
O —
7
——— GND ESCC2
GND i °
1
o)
DBY
DACK (A,B))
C
_DR(AB)
< d)
P5. (0..9)
< > €)
ALE
»
PCS1
— »
NI
< f)

1TS04326

ESCC2-Serial Port

Semiconductor Group

67

SAB 82532

SIEMENS

SAB 82532

a) P3.12 BHE
|-
—”
b) P2.15 P HOLD
VCC - HOI DA
P2.14 HOLDA
o >
1 P2.13 INT ESCC2
>
, P22 INTADMA
RPACKL <
[] R-PACKS ue P2
1f\
O
918 |7]6]5 |43 ZTDA 2 ENA AOUTOig 2 o)
RXDA o B 10
kel ENB BOUTp o)
RTSA o P2 T o sour B2 1 S
CTSAO0A_CIUMPER @] 2 8
MODE ——o0
CDA 4
TACLKA A B
RXCLKA L s ©
TX0B GND AMZ26LS30 O
RHDB v2r CONNECTOR DB9
RTSB o P2 — ;
CTsB/CiDB__JUMPER] 3 AN Oo— P3
CDB z AOUT AN 7 1f\
TXCLKB BOUT BN o— AR
11 6
RXCLKB mcour BN T
oot o pr— T°
O EN ON [—1—
EN DN o7 1 °
oN — —1—°
O
GND AM26L532 A BN
5
O
CONNECTOR DB9
GND
U2A U2A
DACKO 1 __ DACK 2 __
—— & |3 DACKA —— & |3 DACKB
DACK1 2 DACK 3 ———
74LS08 741508
c)
d)
e)
f) ITS05573
ESCC2-Serial Port (cont'd)
Semiconductor Group 68

SIEMENS

SAB 82532

INT ESCC2
a)
INT ADMA
al
[
DACK (A,B)
< b)
DT (AB) >)
d
u7)
3 _Al6 ADDR8 2 3 A8
[[))g 4 A7 aoory_ 5 | & o T
Q1 D1
02 7 ADDR10 6 7 A0
—— Q2 D2
e — ADDRIL 9 | 53 s AL
o I ADDRI2 12 | o) pa | B AL
Ds |14 ADDR13 15 14 AL3
—— Q5 D5
os I ADDR14 16 | ¢ os |7 AL
p 1_8 ADDRI5 19 | o7 o7 18 AL5
] o b
G] =
7415373 7415373
\ \ e)
ADDRO
ADDRL
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR?
ADDR (0...17))
__HOLD
|
U7A
o[& |L_How
q 2 HLDA
qPA 741532 741508
BHE o
i)
P
R 4
|} »
u7 u7
12 w1 1AL i % DTIR READYD;—
1 1vy2 1A2 6 F @ C% o
v m - A 03—
s ECAR ere <579 ore St
—7 2Y1 2A1T —4C IoOWC M/10 5
—le wmps — McE MB |
— m | ALE CEHL f=—
— s M s MRDC CMDLT [
16 po1g MWTC CEN/AEN |—
O_
% 82288
RSTOUT 745244
| -
Ll
~_DAT(0..15) ¢
| »)
1TS04323
ADMA
Semiconductor Group 69

SIEMENS

SAB 82532

u7
3 A0
Qo0 D0
7 AL
o IS VI
Q2 02523 y
@ Brym NS
Q4 D4 e
14 A5
Q5 D5 o — R
17 A6 7
Q6 D615 A7 ke W7
or i N 59 4
ocbr— o5 A3 DREQ3 [
g A2 DACK3 oee—
=5] A21 EOD3 :)5—
T4LS373 = A20 DREQ2 3
=1 A19 DACK2 p——ro|
54 67
\ = A18 EOD2
¢ u7 AL S8 17 oreot -8 1
) —ﬁig 5521 Al6 DACK1 o—gg
7 1A1 1Y1 m Al15 EOD1 :)7— v
lwe e ERTE R DREQO [+
3 1A3 1Y3 AL 48] A13 DACKO 365— 2
| e e T R EODO DH U7A
A1 2v1 = Y1 D15 = 741504
13 AL0_ 46 20
M2 2Y2 =1 A10 D14 =]
B 1oz 2y A9 4510 D13 |22
17 A8 44 24
— M v R D12 ||
d Y DL 55
——d e 20116 D10 [
A5 D9 |—=—
7415244 A3 L os L3
U7A A3 38 19
A3 D7
A2 37 21
2 1 A2 D6 =
— AL 36 3
Al D5 =
A 35 |- oo -2
741504 16 ER
® HOLD D3 =
17 30
® HLDA D2 =
U7A il e o1 |22
14 — 34 Y
1 D 2 — Mo D0 =
s1
—13(: §
741504
3q cs
o
o WR
Vee * READY
1 12
o
R7LJR7 GND —— RESET
ADMA286
T GND
X2
8
GND PHI |—
0SZI 20 MHz
f) ITS05571
ADMA (cont’d)
Semiconductor Group 70

SIEMENS SAB 82532

8.2 Appendix B

PAL-Description File
TITLE DECODER_PAL1

; This decoder-PAL generates the appropriate chip select signals for EPROM, static RAM,
; Dual port RAM and peripherals on the SAB 80C166 evalution board.

CHIP MEM_DEC1 PALCE20V8

STRING EPROM_ADDR_SELECT ‘(Al7 x A16 x A15)’
;00000H — O7FFFH

STRING DPRAM_ADDR_SELECT ‘(A17 x A16 x A15 x A14 x A13 x A12)’
;OEOOOH — OEFFFH

STRING PERI_ADDRO_SELECT ‘(A17 x A16 x A15 x A14 x A13 x A12 x A1l x A10)’
;OF000H — OF3FFH

STRING PERI_ADDR1_SELECT ‘(AI7 x AL6 x A15 x Al4 x A13 x A12 x AI1 x A10)’
;0F400H — OF7FFH

EQUATIONS
EPROM_CS = EPROM_ADDR_SELECT x RD x RSTOUT
PERI-CS_0 = PERI_ADDRO_SELECT
PERI-CS_1 = PER|_ADDR1_SELECT
DPRAM_CS_ODD = DPRAM_ADDR_SELECT x BHE
DPRAM_CS_EVEN = DPRAM_ADDR_SELECT x A0
SRAM_CS_ODD = (EPROM_ADDR_SELECT x (RSTOUT+RSTOUT x RD))
x PERI_ADDRO_SELECT
x PERI_ADDR1_SELECT
x DPRAM_ADDR_SELECT
x BHE
SRAM_CS_EVEN = (EPROM_ADDR_SELECT x (RSTOUT+RSTOUT x RD))

x PERI]_ADDRO_SELECT
x PER]_ADDR1_SELECT
x DPRAM_ADDR_SELECT
x AO

8.3 Appendix C

Source Code

Because of its volume, the source code is not attached to this description. On request, we’ll send
you the complete listing on floppy disk.

Semiconductor Group 71

	1 General Information
	2 Introduction
	3 Hardware of the High Speed HDLC Frame Relay
	3.1 ESCC2 with SAB 80C166
	3.2 ADMA with SAB 80C166
	3.3 ESCC2 with ADMA

	4 Device Driver Modules
	4.1 Overview
	4.2 ESCC2-Device Driver Module Entries
	4.2.1 Message Entry Point
	4.2.2 Interrupt Entry Point

	4.3 Receiver and Transmitter
	4.3.1 Receiver
	4.3.2 Transmitter

	4.4 Data Structure of the ESCC2-Device Driver Modu...
	4.5 ADMA-Device Driver Module
	4.6 Software Workaround for Single-Cycle Mode

	5 The Application Module HSHFR
	5.1 Structure of the Application Module
	5.2 Detailed Description of the Application Module...

	6 Performance of the System
	6.1 Time for Data Handling
	6.2 Bit Rate and Frame Rate
	6.3 Time for Application
	6.4 Performance Improvements

	7 Device Driver System
	7.1 Overview
	7.2 General Module Architecture
	7.3 Integration of Modules
	7.4 The Example HSHFR
	7.5 Application Program Interface

	8 Appendix
	8.1 Appendix A
	8.2 Appendix B
	8.3 Appendix C

