SIEMENS

ICs for Communications
HDLC / ASYNC Converter
Based on SAB 82532 and SAB 80C166

Application Note 08.93

SAB 82532
Revision History: Original Version 08.93

Previous Releases:

Page Subjects (changes since last revision)

Data Classification

Maximum Ratings

Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible
damage to the integrated circuit.

Characteristics

The listed characteristics are ensured over the operating range of the integrated circuit. Typical
characteristics specify mean values expected over the production spread. If not otherwise specified,
typical characteristics apply at T, = 25 °C and the given supply voltage.

Operating Range
In the operating range the functions given in the circuit description are fulfilled.

For detailed technical information about “Processing Guidelines” and “Quality Assurance” for
ICs, see our “Product Ovewrview”

Edition 08.93
This edition was realized using the software system FrameMaker- .

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation,
BalanstraRe 73, 81541 Miinchen.
© Siemens AG 1993. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components,
not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Ger-
many or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the
types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.
Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest
sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of
transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have
to invoice you for any costs incurred.

SIEMENS General Information

Table of Contents Page

General Information 4
1 INtrodUCHION. o 6
2 Hardware of the HDLC/ASYNC Converter. 7
3 Device Driver System. 10
3.1 OVEIVIEBW . . . e e e e e e e, 10
3.2 General Module Architecture 12
3.3 Integration of Modules 13
3.4 The Example “HDLC-ASYNC Converter” 13
3.5 Application Program Interface i i 16
4 The ESCC2-Device Driver Module. 18
4.1 OVEIVIEW . . et e e 18
4.2 Basic Data Structure of the ESCC2-Device Driver Module 19
4.3 ESCC2-Device Driver Module Entries 22
4.3.1 The Message Entry Point i 22
4.3.2 The Interrupt Entry Point 24
4.4 General Architecture of the ESCC2-Device Driver Module 25
441 Initialization and Control Routines 25
4.4.2 Receiver and Transmitter e 26
5 The Application Module HACVT. e 47
5.1 Structure of the ApplicationModule 47
5.2 Detailed Description of the Application Module a7

Semiconductor Group 3

SIEMENS General Information

SAB 82532 with SAB 80C166
HDLC/ASYNC Converter

Summary

This application note describes a simple application example for an HDLC/ASYNC Converter using
the ESCC2 (SAB 82532) and the 16-Bit-Microcontroller SAB 80C166. Transfer rates up to 1 Mbit/
s are supported. This application note is based on a real world and fully tested communication
subsystem. It demonstrates the advantages of using the ESCC2 in combination with the
SAB 80C166 for general communication purposes.

Contents

e Chapter 1
General Overview

e Chapter 2
How to integrate the ESCC2 into an 80C166 Microprocessor System. All hardware aspects
concerning the ESCC2 and 80C166 are explained.

e Chapter 3
Description of the different software levels and their realization. A brief introduction to the basic
operating software and the corresponding Application Program Interface (API) for the C-
language is provided.
A minimum set of only 13 interface functions and macros is necessary to integrate the device
driver and conversion software.

HDLC ASYNC
Terminal HDLC / ASYNC Terminal
Converter

| 80C166 I ESCC2

I

RS-422 PC Add-On-Card
1 Mbit/s

ITB04359

Functional Block Diagram

e Chapter 4
Detailed description of how the ESCC2 can be programmed to handle HDLC- and ASYNC-
communication for higher data rates. The basic architecture of an object oriented Device Driver
Module for the ESCC2 is explained. Further, it is explained how user requests for frame
transmission and device interrupts can be handled concurrently in the most effective way.

Semiconductor Group 4

SIEMENS General Information

The way how to serve multiple requests and frame lengths greater than 32 bytes is described in
form of finite state machines and corresponding flow diagrams.

e Chapter5
A very simple application program module for the frame conversion on top of the ESCC2-device
driver software and the underlying run-time software is described.

e Appendix A
Detailed schematics for the hardware.

e Appendix B
Corresponding PAL-equations (1 PAL).

e Appendix C
Source code listings of all relevant software modules.

e Appendix D
A make file is included, which allows to build the software using the software development tools
from Tasking.

Remarks

It is recommended to have a basic understanding of the ESCC2-interrupt interface and the 2 x 32
byte FIFO-structure described in the ESCC2 Technical Manual. For details concerning the
SAB 80C166 please refer to the corresponding User’s Manual.

For this application note the 80C166-compiler and assembler from Boston Systems Office/Tasking
have been used. The software is completely written in C, with the exception of file
DDSHSERV.SRC, an assembler file containing the processor specific interrupt interface (setting
interrupt frames and vectors).

This application note has been realized with a PC-add-on board to shorten the software
development cycles. It supports a fast download of device driver software onto the communication
subsystem directly from the PC. The application example itself has been designed as a stand-alone
solution to reduce the requirements on an individual environment. This shall give you a first
impresssion of how easy it is to combine the ESCC2 with the 80C166 for communication
subsystems in general. Therefore the complexity of the software environment has been reduced to
a minimum.

The data transfer rate of 1 Mbit/s has been chosen for illustration purpose only. A higher data
transfer rate is possible.

Semiconductor Group 5

SIEMENS SAB 82532

1 Introduction

This application note describes a design example for an HDLC/ASYNC converter using the SAB
82532 (Enhanced Serial Communication Controller — 2 Channels, ESCC2) and the microcontroller
SAB 80C166. It is recommended that before reading this application note, the user has a basic
understanding of the interrupt interface and FIFO-structure of the SAB 82532, described in the
“ESCC2 Technical Manual”.

In this description of the HDLC/ASYNC converter two basic subjects are discussed. The first one is
how the SAB 82532 can be integrated into a hardware environment based on a 16-bit
microcontroller from Siemens, the SAB 80C166. One approach is to treat the SAB 82532 as a
peripheral device connected to the external bus of the SAB 80C166. In this case practically no glue
logic in the form of external hardware is required.

The second subject is the software of the HDLC/ASYNC converter. The special device driver for the
ESCC2 has the advantage of utilizing the SAB 82532 features concerning different transfer modes
(HDLC, ASYNC), interrupt treatment and FIFO-structure to enhance performance.

Due to their 16-bit system interface and all other inherent powerful features, the ESCC2 and the
80C166 build a strong combination well suited for high speed communication and protocol
conversion in general.

This application example has been written in C using the C-Compiler and Assembler 80C166 from
Boston Systems Office/Tasking.

Program HDLC/ASYNC
Development Converter
of SAB 80C166 /
World of
A— HDLC
Download of
SAB 80C166

Program

TS04360

Figure 1
Application HDLC/ASYNC Converter

Semiconductor Group 6

SIEMENS SAB 82532

2 Hardware of the HDLC/ASYNC Converter

The hardware of the HDLC/ASYNC converter is realized as a plug-in PC-board. Beside the
microcontroller SAB 80C166 the following components are used: a 64 K EPROM containing the
firmware, a 256 K RAM and a PAL for address decoding.

Figure 2 shows the functional block diagram of the hardware. A detailed schematic can be found in
Appendix A.

The Memory Organization

The SAB 80C166 provides a total addressable memory space of 256 Kbytes. This address space
is arranged in four segments of 64 Kbytes each, and each segment is again subdivided in
four pages of 16 Kbytes each. Figure 3 gives an overview of the memory organization of the
HDLC/ASYNC converter. The equations to decode the corresponding chip select signals are listed
in Appendix B.

SAB 80C166 256 K SRAM | | 64 K EPROM SAB 82532

AV|[av

PC Interface 4 K DPRAM Address Decoder

RS 422
Line Driver

ITB04361

Figure 2
Functional Block Diagram

Semiconductor Group 7

SIEMENS SAB 82532

T T T 3FFFR,
T 2FFFR
1 1FFFF,,
TOFFFFH | ||
LT E— SRAM | ||
urther L
OF400,, Peripherals iOFSOOH | | |
OF3FF
"I sas 2532 N | a SRAM
0F000, DPRAM | | |
y 0E000, | | |
4 ODFFF,] b
SRAM . | | |
y 08000, |] 30000,
} orrrFy, ~—' 20000,
EPROM / SRAM |- 10000,
y 00000, SRl
ITD04362

Figure 3
Memory Organization

Microprocessor Interface

Practically no external components are required to adapt the SAB 82532 to the SAB 80C166. The
SAB 82532 is directly connected to the data bus and address bus of the SAB 80C166 system. The
RD-, WR- and BHE-signals are also connected directly.

The CS for the SAB 82532 is generated in a PAL. WIDTH is connected to + 5 V, which configures
the ESCC2 into 16-bit bus mode.

Interrupt

Since no interrupt acknowledge cycle is supported by SAB 80C166 pin INTA is deactivated by
connecting INTA to + 5 V. Because of the single device application IEO and IE1 are not used; they
are tied to GND. The INT pin is connected to P2.1 (CC1I0); it has to be considered that the interrupt
is (positive) edge triggered. To avoid loosing an interrupt it is recommended masking interrupts for
a short time before leaving the interrupt function. In this way a new edge can be forced, because the
SAB 82532 safeguards the interrupts even while being masked.

Semiconductor Group 8

SIEMENS SAB 82532

A 4
Port 2 INT
80C166 WR ol WR ESCC2
RD »RD_
BHE »| BHE
»| CS_ESCC2
D0..D15 A0..A17 A0..A6 D0..D15
Decoder
< System Bus A10..A17 A0..A6 D0..D15 >
System
Memory
ITS04363

Figure 4
Architecture of System

DMA Interface
DACKA and DACKB are tied to + 5 V, since no DMA-transfer is supported.

Reset

It should be considered that RES is an active high input signal, so that the RSTOUT-signal of the
SAB 80C166 has to be inverted.

Semiconductor Group 9

SIEMENS SAB 82532

Serial Interface

The input signals RxDn, CTSn, CDn, RXCLKn (n = A, B) are pulled up to + 5 V by a resistor of
10 kQ. Modem control functions are not supported in this application, therefore RTSn and CTSn are
connected directly.

The physical line is realized with a RS-422 compatible line driver interface, consisting of the driver
circuit AM26LS30 and the receiver circuit AM26LS32. These circuits are connected to the TxDn and
RxDn signals of the SAB 82532.

The Timing Characteristics

The timing of the microcontroller can be adapted to that of the ESCC2 by changing by software the
default values of the SAB 80C166 (refer to SAB 80C166 Technical Manual).

Starting with the address setup time (g, (A), which is specified as 0 ns for the microcontroller and
> 5 ns for the SAB 82532, a read/write delay has to be introduced. With the delay programmed, the
falling edge of the ALE-signal leads the falling edges of the RD or WR by a quarter of a machine
cycle (25 ns at fogc = 40 MHz). This delay does not extend the memory cycle time, and thus it does
not slow down the controller in general.

Because of the read/write delay discussed above the RD-WR-pulse width is shortened from 65 ns
to 40 ns. The SAB 82532 specification however requires a RD-pulse width of > 60 ns; therefore one
wait state has to be programmed. One memory cycle time wait state requires half a machine cycle
(50 ns at fosc =40 MHZ)

The address hold time t4(A) of the SAB 82532 has to be equal or longer than 10 ns (SAB 80C166:
0 ns). With an additional memory tristate time wait state the hold time has to be lengthened.

The timing can be modified by programming the bus configuration register or by modifying the
start-up code of the system. An advantage is that the timing can be modified individually in a
selected address space.

3 Device Driver System

This chapter gives an overview about the system software used to implement the application
specific software modules. This Device Driver System (DSS) provides a simple fundamental
platform for the integration of Device Driver Modules (DDMs) and Application Program Modules
(APMs).

Because of its reduced complexity and its high degree of portability it is possible to concentrate on
the main issues related to writing device driver code for the Enhanced Serial Communication
Controller (ESCC2) from Siemens.

3.1 Overview

The basic concept of the device driver system relies on the transfer of messages between DDMs
and APMs. A DDM contains the low level device driver functions, including the interrupt service
routines, which must fulfill individual real-time constraints. As opposed to the DDM an APM
combines the more intelligent time consuming data (message) processing functions. The general
concept is shown in figure 5.

Semiconductor Group 10

SIEMENS SAB 82532

PC SAB 80C166 Coprocessor
APMI---|APMI |DDMI---|DDMI
APM J ¢~ | APM I
T T Device Driver System
————— DDSH
‘ ‘ |L DDSU 1| X
i 1

| [TS04311

DDSU := Device Driver System User Interface

DDSH := Device Driver System Hardware Adaption

APM = Application Program Module

DDM := Device Driver Module

CIMAPI := Cl/l-Message Application Program Interface
Figure 5

Device Driver System Concept

The device driver system maintains a unique data structure, the Command/Indication Message
(C/I-Message) to transfer information between the different APMs and DDMs. The standard format
is depicted in figure 6.

Semiconductor Group 11

SIEMENS SAB 82532

Message
Descriptor

Data
Buffer

%

ITD04310

Figure 6
C/I-Message Format

The device driver system itself provides all services necessary to build a high performance
communication system. The main tasks are summarized below:

Initial Hardware Initialization
Initial Software Initialization
Main Program Control
Message Routing

Message Buffer Management
Timer Management

System Control

User Interface

3.2 General Module Architecture

A module to be integrated into the device driver system’s environment must fulfill only a minimum
set of requirements. Figure 7 illustrates the basic architecture of a device driver module.

First of all a module, a Device Driver Module (DDM) or an Application Program Module (APM), must
have one general function to be used as message entry point. In addition to that, a DDM has to
assign and initialize its interrupt entry point and the corresponding modes. When the whole system

Semiconductor Group 12

SIEMENS SAB 82532

is started, the device driver system sends an initial C/I-message (INIT_MODULE) to every module.
This gives every module the opportunity to establish its own context, initialize its data structures and
if necessary the related devices. Following this initialization an integrated module can receive
C/l-messages, which are decoded inside the module. Additional service functions, described in
section 3.5, are needed inside a module (e.g.: to request and send C/lI-messages, en-/disable
interrupts, ...).

API Functions Device Driver System

DdskSetMsgEntry ¢
DdskSendMsg

DdshlIntCtrl
DdshIntSetMode Service

DdskRejectMsg Msg Entry Point
DdshGetDevAddr Function
MoveWords A

DdsmMsgBufAlloc
: Data | |
Structure
ENTERNOINT

DdsmMsgBufFree
LEAVENOINT Device
Driver

DdshSetHwIntVect
INTRET Module INT Entry Point

Hardware
SIEMENS Communication ICs
(ESCC2)

ITS04312

Figure 7
General Module Architecture

3.3 Integration of Modules

To integrate individual modules into the device driver system’s environment one of the modules
must have the unique function DdslIntegrate. This generic function is called during the system
start-up phase. Its purpose is to assign the message entry points for the application program and
device driver modules by means of the service function DdskSetMsgEntry.

3.4 The Example “HDLC-ASYNC Converter”

The application example described in this document has been implemented on a PC-coprocessor
board using the new 16-bit microcontroller 80C166 from Siemens.

Semiconductor Group 13

SIEMENS SAB 82532

A functional block diagram of the complete example is shown in figure 8.

T

HACVT

HIRNAARAI

ESCC2 +80C166

Device Driver System (DDS)
X

ITB04364

Figure 8
Structure of Converter Software

To concentrate on the device driver software and the application of the ESCC2 in a communication
system, a minimum interface to the device driver system and the hardware specific adaptions (see
section 3.5 and Appendix C) are described in more detail.

Because the PC-user interface is highly specialized and used only for the downloading of the run-
time software onto the PC-board it is not described here. No timer functions are required in this
application, so they are omitted as well.

The following figure 9 shows the information flow inside the whole communication subsystem,
especially how the different software layers (modules) are involved. The conversion from HDLC
to ASYNC is illustrated, assuming an incoming HDLC-frame length greater than 32 bytes. The
ESCC2-device driver module handles the receive interrupts (see chapter 4, RPF and RME), and
translates the complete received HDLC-frame into a corresponding C/I-message. All C/lI-messages
are inserted into a single message queue, maintained by the device driver system’s kernel.
The kernel routes all messages to the appropriate destination module. The C/I-message
RC_HDLC_FRAME_OK for instance, related to an incoming HDLC-frame via ESCC2-channel A,
is routed to the HACVT-module. The HACVT-module reacts by converting the HDLC to an
ASYNC-frame and sending a SEND_FRAME message to the ESCC2-device driver module.

Semiconductor Group 14

SIEMENS

SAB 82532

HACVT APM

SEND_FRAME (ChB)

A 4

RC_HDLC_FRAME_OK (ChA)

=11 C/I-Messages | DDS
A \
RC_HDLC_FRAME_OK (ChA) | SEND_FRAME (ChB)
_ A 4
\ ESSCC2 DDM
Interrupts
; Register
Access

> I 4 T
—_— \ A -
ESCC2 T - T
IChAlChBI
[Flere]) paa|F| [Tc] N Daa]

Figure 9
Information Flow HDLC to ASYNC

One element of the C/I-message, the parameter entity (see figure 8), determines the ESCC2-
channel to be used for transmission and the source for a received frame, be it an HDLC-frame via
channel A (entity = 0) or an ASYNC-frame via channel B (entity = 1). In this way the HACVT-module
converts an incoming HDLC-frame (entity = 0) to an outgoing ASYNC-frame (entity = 1), by
modifying the C/I-message descriptor appropriately.

ciMsg —» Dest = ESCC2_MODULE;
ciMsg - Src = HACVT_MODULE;
ciMsg - Entity = CHANNEL_B;
ciMsg - ID = SEND_FRAME;

The data buffer of the converted C/l-message remains the same (DPtr; for more details refer to

chapter 5).

Semiconductor Group

15

SIEMENS SAB 82532

The SEND_FRAME message will force the ESCC2-module to transmit the data buffer content
either as an HDLC-frame or an ASYNC-frame depending on the parameter entity. It is again the
responsibility of the ESCC2-module to translate the send command into appropriate interactions
with the ESCC2-device and to serve the corresponding transmit interrupts (see chapter 4; XPR).

This approach of using a separate Device Driver Module (DDM) for real-time functions and a
corresponding Application Program Module (APM) as a specific message processor is a very
powerful concept, because the probability of loosing interrupt events is reduced to a minimum.

3.5 Application Program Interface

The following description briefly explains the main purpose of the device driver system’s service
functions and how they are called in C. No distinction between functions realized in C and in
assembly code is made on this level. The corresponding function prototypes, macro definitions,
typedefs and defines are included either in the header file DDSG.H or DDSH.H.

All hardware specific functions and macros belonging to the individual processor system
(e.g.: processor type, memory layout, ...) are combined in one system module DDSH, which is
available in source code (see Appendix C). To transfer the device driver source code to another
processor system the main work consists in modifying the functions and macros in the DDSH-
module so that they fit into the new system.

Moreover you will find definitions concerning the C/I-messages in the MSG.H file, like module and
message IDs and related parameters (see also Appendix C).

DdskSetMsgEntry (int destld, (*msgEntryFctPtr)

Writes the pointer to the module entry function msgEntryFctPtr in the device driver system’s
message routing table in dependance on the module destination identifier destld.

DdskSendMsg (CIM_MSG_DESCR_PTR ciMsg);

Puts a C/I-message ciMsg into the device driver system’s central message queue. A module which
wants to send a message to another module calls this function with a pointer to the previously
prepared message buffer. This message buffer can be requested from the buffer management by
means of the function DdsmMsgBufAlloc (see below). As a minimum the C/I-message must contain
the destination ID of the addressed module, its own source ID and the message ID itself. In addition
to that, the data buffer must be filled with the appropriate information, if any. The C/I-message
format and the corresponding structure CIM_MSG_DESCR_PTR are specified in the source file
DDSG.H (see Appendix C).

DdskRejectMsg (CIM_MSG_DESCR_PTR ciMsg, int reason);

In case a just received C/lI-message ciMsg contains wrong information, it may be rejected by means
of this function. The value reason may be used to signal why this message has been rejected.

ciMsg = DdsmMsgBufAlloc (int size);
CIM_MSG_DESCR_PTR ciMsg;

Returns a pointer ciMsg to the next available C/I-message buffer with a data buffer assigned to it,
depending on the parameter size. When there is no message buffer available, a NULL pointer will
be returned instead.

Semiconductor Group 16

SIEMENS SAB 82532

DdsmMsgBufFree (CIM_MSG_DESCR_PTR ciMsg);
Releases a previously allocated C/I-message buffer referenced by the pointer ciMsg.
DdshSetHWIntVect (HW_INT_TYPE intx, INT_FCT_PTR intFct);

Installs an interrupt frame function, which calls the specified interrupt function intFct. The interrupt
frame is initialized in the system module DDSH, which is dependant of the processor type
(e.g.: 80C166).

DdshIntCtrl (HW_INT_TYPE intx, BOOL enable);
Enables or disables an individual interrupt source. Only device no. 1 is supported in this application.
DdshintSetMode (HW_INT_TYPE intx, INT_MODE_TYPE mode);

Sets interrupt mode. In this application only device no. 1 and mode 1 is supported. Mode 1 means
for the 80C166 that the interrupt is triggered on positive external transitions on pin CC1IO.

devAddr = DdshGetDevAddr (DEVICE_TYPE dev);
WORD32 devAddr;

Returns the base address devAddr of the specified device dev. Only device no. 1 is supported in this
application.

MoveWords (W16PTR srcPtr, W16PTR destPtr, WORD byteCni);

Optimized procedure for a fast transfer of a memory block with the specified length byteCnt from
source address srcPtrto the destination address destPtr.

ENTERNOINT (WORD cpuState);

Is a special macro defined in DDSH. Disables temporarily all interrupts. The current CPU-state is
stored in cpuState. This allows nesting of interrupts in conjunction with macro LEAVENOINT.

LEAVENOINT (WORD cpuState);

Is a special macro defined in DDSH. Restores the old CPU-state by means of the variable cpuState.
It puts a previously interrupted program state back the way it was before ENTERNOINT was called.
This allows nesting of interrupts in conjunction with macro ENTERNOINT.

INTRET

Is a special macro defined in DDSH. It releases the interrupt logic of the corresponding interrupt line.
This is necessary to allow the interrupt controller to accept interrupts. Should be called whenever an
interrupt routine is left.

Semiconductor Group 17

SIEMENS SAB 82532

4 The ESCC2-Device Driver Module

4.1 Overview

The device driver module ESCC2, integrated into the device driver system’s environment,
represents the connection to the Siemens data communication device ESCC2 (Enhanced Serial
Communication Controller, ESCCZ2). Therefore, referring to the programming of the device by the
user, this module has to be understood as the interface module between the applications level
and the device itself. The functional description of the ESCC2 device driver module is shown in
figure 10.

Application
Program

Module
HACVT

C/I-Messages

Device Driver System
X

C/I-Messages

Device
Driver

Module
ESCC2

Control

< » Serial
«—» Data

1ITS04366

Figure 10
The ESCC2-Device Driver Module

Supported by the device driver system the application program module HACVT is able to direct
individual tasks to the ESCC2-device. The ESCC2-device driver module receives these messages
and passes them to the ESCC2, matching the device’s programming specification. Commands and/
or data may be written to the ESCC2. Status and control information is read from the appropriate
ESCC2-registers.

In addition, the device driver module serves the interrupts generated by the ESCC2-device itself. In
this case a message to the application module can be sent.

Semiconductor Group 18

SIEMENS SAB 82532

The source code of the driver module is found in Appendix C. The module ESCC2.H contains the
defined values, data structures and function types, whereas all C-functions concerning ESCC2 are
to be found in ESCC2.C.

4.2 Basic Data Structure of the ESCC2-Device Driver Module

Since the ESCC2-device has two symmetrical channels operating independently, two data links can
be supported. These data links are controlled by a number of parameters contained in two
structures of the type DATA LINK_CTRL (see ESCC2.H), one for each channel. These are the
fundamental data structures the ESCC2-device driver module is based on.

Detailed description of the elements:

ESCC2_REG_MAP_ptr Escc2: The first problem when programming the ESCC2 is the access to
its registers. For the sake of clarity the registers are gathered in structures of registers, depending
on the mode (HDLC, ASYNC or BISYNC) and depending on the kind of access (READ or WRITE).
The offset of a single register in this structure corresponds to the register address (AO... AB).

typedef struct

{
WORD fifo [16]; /* RFIFO */
BYTE star; [* Status Register */
BYTE rsta; [* Receive Status Reg. */
BYTE mode; /* Mode Register */
BYTE timr; /* Timer Register */
BYTE xadl; [* Transmit Address */
BYTE gis; [* Global Int. Status */
BYTE ipc; /* Interrupt Port Conf. */
BYTE isrO; /* Interrupt Status 0 */
BYTE isrl; [* Interrupt Status 1 */
BYTE pvr; /* Port Value Register */
BYTE pis; /* Port Interrupt Status */
BYTE pcr; /* Port Conf. Reg. */
BYTE not _used 9;

}

HDLC_MODE_READ;

Since the registers in the different modes and for different kinds of access share the same address
region, these structures are combined in a union type definition, called ESCC2_REG_MAP.

Semiconductor Group 19

SIEMENS SAB 82532

typedef union

{
HDLC_MODE_READ Hdlc_Rd;
HDLC_MODE_WRITE Hdlc_Wr;
ASYNC_MODE_READ Async_Rd;
ASYNC_MODE_WRITE Async_Wr;
BISYNC_MODE_READ Bisync_Rd;
BISYNC_MODE_WRITE Bisync_Wr;

}

ESCC2_REG_MAP;

Now, that the relative location (= offsets) of the single registers are known for different modes and
kinds of access, the base address of this total register map can be defined. Seeing that the ESCC2
is a data communication device with two symmetrical serial channels using different memory
regions each control structure has its own base address. These addresses are defined during the
Esccz2lnit () routine. One gets the base address of the device in memory by executing
DdshGetDeviceAddress (device).

ESCC2_REG_MAP_ptr base;

base = DdshGetDeviceAddress (DEVICEL);

DataLinkCtrl [ESCC2_CH_A].ESCC2 = base;

base = (HSCX_REG_MAP far*)
((DWORD) base) + 0x40);

DataLinkCtrl [ESCC2_CH_B].ESCC2 = base;

int ChID: The channel identification ChID conforms to the index of the actual data link control
structure (DataLinkCtrl[index].ChID = index). Like the Source the ChID is assigned during the
initialization of the corresponding ESCC2-channel:

Dlc = & DataLinkCtrl[command - Entity];
Dlc — ChID = command - Entity;
Dlc - Source =command - Src;

int Mode: Each channel operates in its own transfer mode: HDLC, ASYNC etc.. Mode contains this
transfer mode.

W16PTR FIFOfe: This pointer to the Tx/Rx-FIFO of the corresponding channel allows a fast access
during the execution of an interrupt routine.

WI16PTR IsrReg: This pointer to the interrupt status register of the corresponding channel allows a
fast access during the execution of an interrupt routine.

Semiconductor Group 20

SIEMENS SAB 82532

W16PTR ImrReg: This pointer to the interrupt mask register of the corresponding channel allows a
fast access during the execution of an interrupt routine.

W16PTR CmdReg: This pointer to the command register of the corresponding channel allows a
fast access to the command register during the execution of an interrupt routine.

WORD16 IntMask: This element contains the channel and/or mode specific interrupt mask.

WORDS8 TxShort: This element contains the channel and/or mode specific transmit command for
short frames; because of this element it is possible to design transmitter service routines
independent on mode (HDLC, ASYNC...).

WORDS8 TxLong: This element contains the channel and/or mode specific transmit command for
long frames; because of this element it is possible to design transmitter service routines
independent on mode (HDLC, ASYNC...).

void (*Servelnterrupt) (void): This function pointer to the channel and/or mode specific interrupt
service routine allows designing the treatment of the interrupt function independent on mode
(HDLC, ASYNC...).

WORDS8 Source: Since there may be different sources requesting a data link performed by the
ESCC2 the data link control structure contains an element called Source. Keeping in mind the
actual Source, the ESCC2-module is able to send the messages to the proper destination (e.g.
protocol modules, LAPD or other application modules, HACVT).

Dlc -~ message - Entity
Dlc - message - Dest
Dlc -~ message — Src

Dlc - ChID;
Dlc - Source;
ESCC2_MODULE;

DdskSendMsg (Dlc —» message);

CIM_MSG_DESCR_PTR Msg: Assuming that an ESCC2-channel receives a frame, a message
buffer has to be allocated for this channel;, Msg is the pointer to the channel's current receive
message buffer.

Dlc -~ Msg = DdsmMsgBufAlloc (maxSize);
if (IDlc - Msg)

{

Dlc - ESCC2 - Hdlc_Wr.cmdr = CMDR_RHR;
return;

}

Semiconductor Group 21

SIEMENS SAB 82532

CIM_MSG _DESCR_PTR head: Both channels use linked lists to store frames for transmission.
These linked lists are first-in first-out queues, frames are added at the tail end and taken away from
the head end. So head points to the item, which will be taken away as the next one. Tail points to
the item which was added as the last one. The tail is controlled by sending frames to the ESCC2-
channel; head is controlled by the channel specific transmitter interrupts.

CIM_MSG_DESCR_PTR tail: See CIM_MSG_DESCR_PTR head.

int RcState: The serial interface of the ESCC2 consists of two full duplex channels. So both
channels are able to receive and transmit data at the same time. Normally a receiver or a transmit
procedure consists of more than one interrupt routine; in this case various states are accepted. The
current states are stored in RcState and TxState.

int TxState: See int RcState.

WS8PTR RcCurr: The frames received (transmitted) by the ESCC2-channel may be longer than one
FIFO-length. Then the FIFO has to be read (written) more than once and the receiver (transmitter)
has to keep in mind the current position of the data stream in the allocated buffer. W8PTR RcCurr
(WBPTR TxCurr) points to the current position of the data stream.

WB8PTR TxCurr: See W8PTR RcCurr.

int TxCnt: When long frames (size > FIFO_SIZE) are transmitted, the number of remaining bytes
after writing FIFO_SIZE bytes to the FIFO is stored in TxCnt.

The items described above are necessary to write/read the registers and to control the receiver and
the transmitter of a channel. For the sake of security and clarity they are collected in a channel
specific data link control structure.

4.3 ESCC2-Device Driver Module Entries

As mentioned before the ESCC2-device driver module is accessible by both, the device driver
system and the ESCC2-device itself. The kind of access, however, is quite different.

The device driver system sends messages to the ESCC2-device driver module via the message
entry point. On the other hand the ESCC2-device accesses to the driver module by entering an
interrupt entry point. The two kinds of entry points are discussed below.

4.3.1 The Message Entry Point

Starting the device driver system all modules will be initialized. In particular, the ESCC2-device
driver module is initialized by executing Escc2lnit (CIM_MSG _DESCR_PTR cmd). To send
messages to each other the modules of the device driver system use the module identification for
defining the Source or Destination of a message in its corresponding header.

All messages, which are dedicated to the ESCC2-device driver module, reach the defined message
entry point when Escc2MsgEntry (CI_MAILBOX far* message) is called by the device driver kernel.

To send a message to the device driver module is the same as setting the module a task. At the
moment seven different types of tasks are supported by the ESCC2-message entry point. These
tasks are distinguished by a task or message identification, named as ID, see figure 11.

The following message IDs are supported:

Semiconductor Group 22

SIEMENS

SAB 82532

ID Action/Function
MODULE_INIT (= 0) Escc2lnit()
INIT_DATA_LINK (= 1) InitDataLink()
ASSIGN_ADDRESS (= 2) AssignAddress()
CTRL_LOOP (= 3) CtrlLoop()
CTRL_BAUD_RATE (= 4) CtrIBaudRate()
CTRL_LINE_CODE (= 5) CtriLineCode()
SEND_FRAME (= 6) SendFrame()

An important job of the message entry point is to decide quickly which action has to be executed
referring to the ID of the current task. So, for the sake of speed, a switch statement was

implemented.
/ ID = MODULE_INIT R . \
Escc2MsgEntry » Escc2lnit
ID = INIT_DATA_LINK > InitDataLink
ID = ASSIGN_ADDRESS > AssignAddress
ID=CTRL_DL_LOOP » CtrlLoop
ID = CTRL_BAUD_RATE > CirlBaudRate
ID = CTRL_LINE_CODE > CtriLineCode
\ ID = SEND_FRAME > SendFrame
ITD04367
Figure 11

Message Entry Point

The functional description of the message entry point Escc2MsgEntry (CIM_MSG_DESCR_PTR

cmd) is shown in figure 11.

The actions InitDataLink(), AssignAddress(), CtrlLoop(), CtriIBaudRate() and CtriLineCode() are
discussed in section 4.4.1. SendFrame() is explained in chapter 4.4.2.

Semiconductor Group

23

SIEMENS SAB 82532

4.3.2 The Interrupt Entry Point

Similar to the message entry point, the interrupt entry point is introduced during the initialization of
the ESCC2-module.

As mentioned in the Technical Manual, special events in the ESCC2 are indicated by means of a
single interrupt output with programmable characteristics (open drain, push-pull; IPC-register)
which requests the CPU to read status information from the ESCC2, or, if interrupt mode is selected,
to transfer data from/to ESCC2. Since only one INT-request output is provided, the cause of an
interrupt must be determined by the CPU

— by evaluating the interrupt vector which is generated by the ESCC2 during an interrupt
acknowledge cycle, and/or
— by reading the ESCC2’s interrupt status registers (GIS, ISRO, ISR1, PIS).

In the device driver module the function of the interrupt output stage (pin INT) must be programmed
as active high (push-pull output). Since the SAB 80C166 doesn’t support the interrupt acknowledge
cycle interrupt polling mode is used.

The channels Channel A and Channel B operate independently, so the base address and other
control/status variables of a channel are collected in the DATA_LINK_CONTROL-structure, which
is described in section 4.2.

As the basic address is known, the registers can be accessed. At first all interrupts should be
masked out by writing FFH into the Interrupt Mask Register 0, 1 (IMRO, IMR1).

Further, as mentioned above, pin INT must be programmed as active high, so 031 has to be written
to the Interrupt Port Configuration Register (IPC).

DdshSetHWIntVect (DEVICE_INT, Escc2interrupt) installs the interrupt entry. DdshintSetMode
(DEVICEL_INT, MODEL1) sets the interrupt mode: edge trigger mode. DdshintCtrl (DEVICEL_INT,
INT_ON) enables the interrupt (for more information about the DDSH-interface see chapter 3.5).

The interrupt function really can be seen as an entry to the core of the ESCC2-device driver module,
which mainly consists of a transmitter and a receiver. A more detailed description of these two parts
will follow in section 4.4.2. Obviously the interrupt entry point makes it possible, for the receiver or
transmitter to be are ordered directly to read data from the receive FIFO or write data to the transmit
FIFO.

After entering the interrupt function Escc2interrupt(), the General Interrupt Status Register
is analyzed and the channel and/or mode specific interrupt service routine is executed:
ServeHdicinterrupt() or ServeAsyncinterrupt(). During the execution of these functions the Interrupt
Status Register is read. After that, the action corresponding to the specific kind of interrupt is
executed (e.g. HdlcTxAction [...] [...] ().

The arrays of function pointers ... Action[...][...] () are described in section 4.4.2. INTRET releases
the interrupt logic of the SAB 80C166 to be able to accept further interrupts.

To summarize, up to now the entry points of the ESCC2-module have been described. There are
two different kinds of entry points:

— the message entry point Escc2MsgEntry (...), which branches into functions corresponding to
message IDs,
— the interrupt entry point, that calls functions according to the interrupt indication.

Semiconductor Group 24

SIEMENS SAB 82532

4.4 General Architecture of the ESCC2-Device Driver Module

Now, that the entry points have been described, the structure of the ESCC2-module can be
explained. Besides the entry points the ESCC2-device driver module can be divided into two parts:

e |[nitialization and Control Routines
e Receiver and Transmitter

4.4.1 Initialization and Control Routines

By manipulating the parameters of the actual command the user or an application module (HACVT
in this application) is able to control the initialization routines via the message entry point. Since
there are two channels, one can select the corresponding channel by modifying the structure
element Entity.

Six initialization and control routines are supported:

Escc2lnit (CIM_MSG_DESCR_PTR cmqd) initializes the ESCC2-device driver module. The base
device address is set by executing DdshGetDeviceAddr (DEVICEL). For the sake of speed during
the access to the general interrupt status register after an interrupt has occured the address of this
registers is stored in GisPtr. Furthermore all arrays and some DATA LINK_ CTRL-structure
elements are initialized in Escc2Init(). An important task finally is the initialization of the interrupt
entry (see section 4.3.2).

InitDataLink (CIM_MSG_DESCR_PTR cmd) contains the general initialization of all ESCC2-mode
specific functions and data. Per default the access to the register which are common to all modes
(HDLC, ASYNC, ...), is done via the Hdlc_Wr or Hdlc_Rd union element of the corresponding
DATA_LINK_CTRL-structure (Interrupt Mask Register, Interrupt Status Register, Command
Register, ...).

Parameter 1 of the CIM_MSG_DESCR-structure accessible by the pointer Command, selects the
transfer mode (HDLC, ASYNC, ...). Parameter 2 has a different meaning in HDLC-mode (p2 =
transparent, auto-mode ...) and ASYNC-mode (p2 = termination character). The clock mode is
represented by parameter 3. By writing 60y into the Mode Register (MODE) for example the HDLC
non-auto-mode and a 16-bit address field are selected. Furthermore the channel configurations are
fixed by programming the channel configuration registers. During the execution of InitDataLink() the
interrupt masks are set to enable the RME-, RFO-, RPF-, XDU- and XPR-interrupts in HDLC-mode
or the TCD-, RFO-, RPF- and XPR-interrupts in ASYNC-mode. Finally the InitDataLink-function
resets the receiver and transmitter.

AssignAddress (CIM_MSG_DESCR_PTR cmd) writes the low address value into the Receive
Address Byte Low Register 1 (RAL1) and the high address value into the Receive Address Byte
High Register 1 (RAH1). These values can be used for LAPD 2-byte address field recognition
corresponding to the ESCC2 non-auto-mode. Parameter 1 of the CIM_MSG_DESCR-structure
contains the high address value, parameter 2 contains the low address value. This function is used
only in HDLC-mode.

CtriIBaudRate (CIM_MSG_DESCR_PTR cmd) controls the baud rate of the channel in clock mode
set during InitDataLink() by programming the Baud Rate Generator Register (BGR) and the
Channel Configuration Register 2 (CCR2). Parameter 1 of the CIM_MSG_DESCR-structure
contains the baud rate division factor.

Semiconductor Group 25

SIEMENS SAB 82532

CtrlLineCode (CIM_MSG_DESCR_PTR cmd) determines the line code used for data transmission
by writing corresponding values into the Channel Configuration Register 0 (CCRO). Four line codes
are defined: NRZ, FMO, FM1 and Manchester. Parameter 1 of the CIM_MSG_DESCR-structure
determines which line code is selected.

CtrlLoop (CIM_MSG_DESCR_PTR cmd) switches test loops in transmission path on and off by
manipulating the least significant bit in the Mode Register (MODE). To switch the loop on or off
depends on the value of parameter 1 of the CIM_MSG_DESCR-structure.

4.4.2 Receiver and Transmitter

As mentioned in section 4.2.2 the receiver and the transmitter are the core of the ESCC2-driver
module. Indeed they are the most important parts of the device driver module, because they are
responsible for a high speed data communication. Therefore, they have to guarantee a quick
service of the interrupts generated by the ESCC2.

During the development of the receiver and the transmitter a further point has to be considered: the
FIFO-size of 32 bytes for both the receiver and the transmitter. Because of the FIFO-size, for
example, two cases have to be distinguished:

1) toreceive/transmit a frame with a length less than or equal FIFO-size,
2) to receive/transmit a frame with a length greater than FIFO-size.

In the first case, a RME-interrupt (Receive Message End) is received in HDLC-mode; the
transmitter on the other hand has to write XTF (transmit pool full) and XME (transmit message end)
to the command register after writing data to the transmit FIFO. In ASYNC-mode a TCD-interrupt
(Termination Character Detected) is received; the transmitter has to write XF (transmit Frame) to
the command register.

In the second case, however, a RPF-interrupt (Receive Pool Full) is received. The receiver is
informed through this interrupt that the FIFO accessible to the processor does not contain the end
of the frame, the receiver is in a state which can be described as receiving. The transmitter, in the
second case, has to write XTF (transmit pool full) to the command register, after writing the first part
of the frame to the transmit FIFO. The transmitter has to keep in mind, that the transmission of the
current frame is not finished yet; the transmitter is in a state which can be described as sending.

This short introduction shows that various events may occur on the one hand in the ESCC2-device,
as indicated by interrupts (RPF, RME, TCD, XPR, ...), and on the other hand on application side,
requesting to send a short or long frame. Further it should be noticed that the receiver and the
transmitter stay in certain states, waiting for the next event. Finally, if the event occurs, the receiver
or transmitter executes some action corresponding to the actual state and actual event.

Event State Table — General Aspect

The method of working described above can be represented by an event state table, shown in
figure 12 .

Semiconductor Group 26

SIEMENS SAB 82532

L T]
()
Event State Table

Events

Eventy —» %
y =

T States ——>»

State x ITD04368
Element Containing
Action and Next State

Figure 12
State Event Table

Each element of this table represents a certain action to be executed and a next state to be taken
on — corresponding to the actual state and actual event. The execution of these actions and state
transitions is controlled by the finite state machine. This technique allows immediate execution of
actions by avoiding the use of switch statements. The actions become very short and easier to read.
The following chapter gives an idea of the concept of a finite state machine.

As mentioned before the two channels of the ESCC2 operate independently. To minimize line of
code the channels share the same action code. This is a further advantage of the finite state
machine, since the channel only has to retain its current state. At the occurence of an event related
to this channel, the channel’'s state and the event cause the corresponding action. The code of this
action is independent from the actual channel. The description of the channel’s state is an important
part of the control structure DataLinkCtrl [channel], introduced above.

A more detailed description of the actions themselves can be given by SDL (specification and
description language) diagrams. They are useful for describing source code, since they allow a
quick overview of the algorithm.

Semiconductor Group 27

SIEMENS SAB 82532

Finite State Machines and SDL-Diagrams

A key concept used in many driver and protocol models is the finite state machine, illustrated in
figure 13.

<+«—
Event (e.g.Interrupt A)
(-> Action X) State i
/ 2
/ _ +«—
L by Event (e.g.Interrupt B)
Transitons < — — (-> Action y)
Yy
Event (e.g.Task K)
(-> Action z)
State k

ITD04369

Figure 13
Finite State Machine

With this technique, each driver machine (i.e. transmitter or receiver) is always in a specific state at
every instant of time. From each state, there are zero or more possible transitions to other states.
Transitions occur when some event takes place. Given a complete description of the driver
machines, it is possible to draw a directed graph showing all the states as nodes and all the
transitions as directed lines or arcs. One patrticular state, for example, is designated as the initial
state (e.g., called IDLE). This state corresponds to the description of the system when it starts
running. From the initial state some, perhaps all, of the other states can be reached by a sequence
of transitions.

Receiver — Event State Table

The receiver is suitable to make oneself familiar with the concept of event driven programming.
Assuming HDLC-mode there are three interrupts controlling the receiver: RPF-interrupt, RME-
interrupt and RFO-interrupt. The RPF-interrupt means that 32 (= FIFO-size) bytes were received,
but the message end has not yet been received.

The RME-interrupt, however, means that 32 bytes or less than 32 bytes were received and the
message end has been received, too. The RFO-interrupt says that a Receive Frame Overflow has
occured. Depending on the current state these events cause different actions. In the following table

Semiconductor Group 28

SIEMENS SAB 82532

the event and state combination for the receiver are shown (different states correspond to different
columns, different events to different lines).

Event State

IDLE RECEIVING
RFO ServeRfo RpfServeRfo
INTERRUPT IDLE IDLE
RME ServeRme RpfServeRme
INTERRUPT IDLE IDLE
RPF ServeRpf RpfServeRpf
INTERRUPT RECEIVING RECEIVING

The actions of the receiver are described in a locally defined two-dimensional array, called
HdlcRcAction [...] [...] (...).

In ASYNC-mode instead of an RME-interrupt a TCD-interrupt occurs; so the ServeRme () function
can be replaced by ServeTCD (). This function is the only difference to the treatment of HDLC-
mode.

During the initialization at first HdlcRcAction/AsyncRcAction [...] [...] is set to NoAction for all
elements of the arrays. Then, corresponding to the event state table the action is entered only for
the event-state-combination, which may occur.

HdIcRcAction [IDLE] [RME_INTERRUPT] = ServeRme;

AsyncRcAction [IDLE] [TCD_INTERRUPT] = Serve Tcd;

The assigned control structure contains elements like the actual state of the receiver RcState and
the pointer to the current position RcCurrto which the next bytes (of a frame longer than 32 bytes)
have to be written.

Receiver — Finite State Machine

Interpreting the event state table of the receiver, the finite state machine can be constructed without
problems. Figure 14 shows the graph, which describes the receiver in the ESCC2-module as a
finite state machine.

Semiconductor Group 29

SIEMENS

SAB 82532

RME INTERRUPT
(-> ServeRme)

RFO INTERRUPT
IDLE (> ServeRfo

‘:
RPF_INTERRUPT RFO_INTERRUPT
(-> ServeRpf) (-> ServeRfo)
<:
RME_INTERRUPT
v (-> RpfServeRme)
< ~ o
RPF_INTERRUPT
-> RpfServeR
(> RpfServeRp) RECEIVING
ITD04370
HDLC-Mode
‘X ‘:
TCD_INTERRUPT RFO_INTERRUPT
(-> ServeTcd) IDLE (-> ServeRfo)
P I S~
RPF_INTERRUPT RFO_INTERRUPT
(-> ServeRpf) (-> ServeRfo)
‘:
TCD_INTERRUPT
v (-> RpfServeTcd)
RPF_INTERRUPT
-> RpfServeR
(> RefServeRp) RECEIVING
ITD04371
ASYNC Mode

Figure 14
Receiver Finite State Machine

Semiconductor Group 30

SIEMENS SAB 82532

Receiver — SDL-Diagrams
All SDL-diagrams start with the current state, followed by the actual event.

Getting an RPF-interrupt during the state IDLE means that the receiver has to allocate a data buffer
greater than 32 (= FIFO-size) bytes. Then the first 32 bytes of the frame, read from the RFIFO can
be written to the buffer. After that the RFIFO is reset by writing RMC to the command register. The
pointer to data buffer RcCurr has to be increased by FIFO-size. Finally the state is changed.

If the actual state is RECEIVING when a RPF-interrupt occurs, the same algorithm (as for state:
IDLE, event: RPF_INTERRUPT) is executed except for allocating the data buffer.

If an RME-(TCD-) interrupt occurs, at first the length of the received frame is read from the RBC-
register. The action ServeRme (ServeTcd) has to allocate a data buffer with less or equal then 32
bytes. From now the action RpfServeRme (RpfServeTcd) and ServeRme (ServeTcd) are similar.

The receive status byte is read from the RFIFO as the first byte after the end of the received frame.
Then analyzing the receive status byte it has to be decided if the received frame is ok. If the frame
is ok, a message is sent to the user, otherwise the function ReportRcError() is executed, to give
more detailed error information.

In ASYNC-mode there is no receive status byte available if the RFDF-bit in the RFC-register is set

to O.
| IDLE I

RPF_INTERRUPT <

‘ DdsmMsgBufAlloc(maxSize) ‘

MoveWords(FIFO_SIZE)

CMDR_RMC >

RcPtr+ = FIFO_SIZE

| RECEIVING I

ITD04372

Figure 15
Action: ServeRpf

Semiconductor Group 31

SIEMENS SAB 82532

| RECEIVING I

RPF_INTERRUPT <

‘ MoveWords(FIFO_SIZE) ‘

CMDR_RMC >

RcPtr+ = FIFO_SIZE

| RECEIVING I

ITD04373

Figure 16
Action: RpfServeRpf

Semiconductor Group 32

SIEMENS SAB 82532

l RECEIVING I

RME_INTERRUPT <

RcLength<—RBCregister

MoveWords(rest)

ReStatus<—RFIFO

CMDR_RMC >

ReceiveFrame
0.K.?

ReportReError ()

< DdskSendMsg0

| IDLE I

[TD04374

Figure 17
Action: RpfServeRme

Semiconductor Group 33

SIEMENS

SAB 82532

(=)

RME_INTERRUPT <

RcLength<-RBCregister

DdsmMsgBufAlloc(FIFO_SIZE)

MoveWords(RcLength)

RcStatus<-RFIFO

CMDR_RMC >

ReceiveFrame
0.K.?

< DdskSe

ndMsg0

ReportRcError

(=)

ITD04375

Figure 18
Action: ServeRme

Semiconductor Group

34

SIEMENS SAB 82532

| RECEIVING I

TCD_INTERRUPT <

RcLength<-RBCregister

‘ MoveWords(rest) ‘

CMDR_RMC >
< DdskSendMsg0
| IDLE I

ITD04376

Figure 19
Action: RpfServeTcd

Semiconductor Group 35

SIEMENS SAB 82532

| IDLE I

TCD_INTERRUPT <

RcLength<-RBCregister

DdsmMsgBufAllocO

MoveWords(RcLength)

CMDR_RMC >
< DdskSendMsg0

| IDLE I

ITD04377

Figure 20
Action: ServeTcd

Semiconductor Group 36

SIEMENS

SAB 82532

| IDLE I

RFO_INTERRUPT <

‘ DdsmMsgBufAlloc(8) ‘

CMDR_RRES >
< DdskSendMsg0
| IDLE I

ITD04378

Figure 21
Action: ServeRfo

Semiconductor Group

37

SIEMENS SAB 82532

[RECEIVING)
RFO_INTERRUPT
CMDR_RRES >
< DdskSendMsg0

[IDLE]

ITD04379

Figure 22
Action: RpfServeRfo

Transmitter — Event State Table

While the events for the receiver are generated by interrupts only, the events for the transmitter are
caused by both the application and the ESCC2-device. A key position on application side has the
function SendFrame (...). Corresponding to the length of the frame (shorter or longer than
FIFO-size), two different events are generated: SEND_SHORT_FRAME, SEND_LONG_FRAME.

After transmit FIFO reset the ESCC2-channel gets an XPR-interrupt. This event brings the
transmitter from the state IDLE into the state READY. The transmitter is able to start transmission.

It may happen that the transmitter gets a task while it is still busy with a previous one. Consecutive
tasks are queued in a linked list.

Because of that, the control structure of the channel contains the following two elements:

CIM_MSG_DESCR_PTR head:
CIM_MSG_DESCR_PTR tail;

For clarity’s sake the event table is divided into two parts. The first part shows the events caused by
the user. Different states corresponds to different lines, the events are represented by the columns.

Semiconductor Group 38

SIEMENS

SAB 82532

State Event
SEND_SHORT_FRAME SEND_LONG_FRAME
SENDING NoAction NoAction
SENDING SENDING
SENDING_END NoAction NoAction
SENDING_END SENDING_END
READY TxShortFrame StartTxLongFrame
SENDING_END SENDING
IDLE NoAction NoAction
IDLE IDLE

The device generates two interrupts dedicated to the transmitter: XDU-, XPR-interrupt.

State Event
XPR-INTERRUPT XPR-INTERRUPT
SENDING ContTxLongFrame ServeXdu
SENDING_END Y IDLE
SENDING_END ServeNextFrame ServeXdu
READY 2 IDLE
READY NoAction NoAction
READY IDLE
IDLE SetReady NoAction
READY IDLE

1 SENDING_END is only be taken on, if no bytes remain. Otherwise the state will be unchanged.

2 READY is only be taken on, if the task queue is empty. Otherwise the next task (long or short
frame) will be executed and the state will be SENDING or SENDING_END.

In ASYNC-mode no XDU-interrupt occurs. This is the only difference to the treatment of HDLC-

mode.

During the initialization at first HdlcTxAction/AsyncTxAction [...] [...]() is set to NoAction for all
elements of the arrays. Then, corresponding to the event state table the Action is entered only for
the event-state-combination which can occur.

HdlcTxAction[IDLE][XPR_INTERRUPT]=SetReady;

AsyncTxAction[IDLE][XPR_INTERRUPT]|=SetReady;

Semiconductor Group

39

SIEMENS SAB 82532

Transmitter — Finite State Machine

The following graphs show the transmitter of the ESCC2-driver module as a finite state machine, for
both HDLC-mode and ASYNC-mode.

+«—
XDU_INTERRUPT

(-> ServeXdu)

4:
XPR_INTERRUPT

(-> SetReady)

~

<
XPR_INTERRUPT][no further frame]
(-> ServeNextFrame)

SEND_LONG_FRAME
SEND_SHORT_FRAME (-> StartTxLongFrame)

(-> TxShortFrame)

Phy
XDU_INTERRUPT
(-> ServeXDU)
Py
XPR_INTERRUPT[TxCnt<=32]
(-> ContTxLongFrame)

d

SENDING_END)

SENDING

)

4:
XPR_INTERRUPT][further frame, TxCnT>32]
(-> ServeNextFrame)

4: 4X
XPR_INTERRUPT[further frame, TxCnT<=32] XPR_INTERRUPT[TXCnt>32]
(-> ServeNextFrame) (-> ContTxLongFrame)
P~ ITD04380
XDU_INTERRUPT

(-> ServeXDU)

Figure 23
Transmitter Finite State Machine HDLC-Mode

Semiconductor Group 40

SIEMENS

SAB 82532

IDLE

4:
XPR_INTERRUPT
(-> SetReady)

+—
XPR_INTERRUPT[no further frame]

SEND_LONG_FRAME
(-> ServeNextFrame)

SEND_SHORT_FRAME (-> StartTxLongFrame)

(-> TxShortFrame)

XPR_INTERRUPT[TXCnt<=32]
(-> ContTxLongFrame)

SENDING_END)

SENDING

XPR_INTERRUPT(further frame,TxCnT>32]
(-> ServeNextFrame)

<X
XPR_INTERRUPT[further frame, TxCnT<=32] XPR_INTERRUPT[TXCnt>32]
(-> ServeNextFrame) (-> ContTxLongFrame)

ITD04381

Figure 24
Transmitter Finite State Machine ASYNC-Mode

Semiconductor Group 41

SIEMENS SAB 82532

Transmitter — SDL-Diagrams

At the end of this chapter the SDL-diagrams for the transmitter are presented. They provide a brief
overview of the transmitter’s actions.

.
IDLE }
.
XPR_INTERRUPT<
[READY }

ITD04282

Figure 25
Action: SetReady

(=)

> SEND_SHORT_FRAME

| MoveWords(FrameSize) |

Cmd: *(Dlc->TxShort) >

l SENDING_END l

ITD04383

Figure 26
Action: TxShortFrame

Semiconductor Group 42

SIEMENS SAB 82532

SENDING_END,
SENDING

XDU_INTERRUPT <

<ErrMsg(ID_TX_DATA_UNDERRUN)

CMDR_XRES >
l SENDING_END l

[TD04382

Figure 27
Action: ServeXdu

Semiconductor Group 43

SIEMENS

SAB 82532

l READY l

> SEND_LONG_FRAME

TxCurr = FramePtr
TxCnt = FrameSize

‘ MoveWords(FIFO_SIZE) ‘

TxCurr+ = FIFO_SIZE
TxCnt- = FIFO_SIZE

Cmd: *(Dlc->TxLong) >

l SENDING_END l

ITD04384

Figure 28
StartTxLongFrame

Semiconductor Group

44

SIEMENS

SAB 82532

[SENDING]

XPR_INTERRUPT <

MoveWords(TxCnt) ‘

Cmd: *(Dlc->TxShort) >

[SENDING_END]

MoveWords(FIFO_SIZE) ‘

TxCurr+ = FIFO_SIZE
TxCnt- = FIFO_SIZE

Cmd: *(Dlc->TxLong) >

[SENDING]

ITD04385

Figure 29
Action: ContTxLongFrame

Semiconductor Group

SIEMENS SAB 82532

l SENDING_END I

XPR_INTERRUPT <

ActualFrame = NextFrame
Release(LastFrame)

Yes
ActualFrame

MoveWords(TxCnt) ‘ Ixxg,ﬁ‘{fpf;ﬁfgg’zi

‘ MoveWords(FIFO_SIZE) ‘

TxCurr+ = FIFO_SIZE
TxCnt- = FIFO_SIZE

Cmd: *(Dlc->TxShort) > Cmd: *(Dlc->TxLong) >

l READY I l SENDING_REST l l SENDING l

ITD04386

Figure 30
Action: ServeNextFrame

Semiconductor Group 46

SIEMENS SAB 82532

5 The Application Module HACVT

HACVT (HDLC- to ASYNC-ConVerTer) converts HDLC-frames received to ASYNC-frames and
vice versa. Since the ESCC2 is able to transfer frames in HDLC-mode as well as in ASYNC-mode
and the ESCC2-device driver supports these transfer modes the application module HACVT can be
designed very easily.

5.1 Structure of the Application Module

Depending on the specific application, all modules used are integrated by executing DdsIntegrate()
(Refer to chapter 3.2). Ddsintegrate() sets the message entry points of the modules which
are necessary to run the application. The message entry points are set by executing
DdskSetMsgEntryPoint (INT16 module, MSG_FCT_PTR_msg_entry).

The application on hand sets the message entry points to the ESCC2-device driver module and to
the application module HACVT itself. After the Device Driver System (DDS) has executed
Ddslintegrate() all modules are initialized by the DDS (Escc2Init(), HaCvtlnit()).

5.2 Detailed Description of the Application Module

In addition to the function Ddsintegrate() and the message entry point HaCvtMsgEntry
(CIM_MSG_DESCR_PTR command) the application module contains three routines, which
initialize the module or perform the conversion of the transfer mode: TransCvtlnit (...), HdIcToAsync
(...) and AsyncToHdlc (...).

HaCvtlnit (CIM_MSG_DESCR_PTR command) sends message to the ESCC2-device driver
module to initialize the data links (ID = INIT_DATA_LINK). The channel identification (entity),
transfer mode (P1), receive mode or termination character (P2) and clock mode (P3) are passed as
parameters of the message. After the initialization the application module receives messages from
the ESCC2-device driver whenever a frame has been received.

There are two kinds of message IDs which are supported: RC_HDLC_FRAME_ESCC2_OK and
RC_ASYNC_FRAME_ESCC2_OK.

If a HDLC-frame has been received the function HdlcToAsync (CIM_MSG_DESCR_PTR cmd) is
executed; if an ASYNC-frame has been received AsyncToHdlc (CIM_MSG_DESCR_PTR cmd) is
executed.

HdlcToAsync (...): All HDLC-frames received on one channel (e.g. ESCC2-channel A) are sent
transparently in ASYNC-mode on the other channel (e.g. ESCC2-channel B). The HDLC-frames
are completed with the termination character, to guarantee correct transfer in ASYNC-mode. The
address byte are not stripped from the HDLC-frame.

AsyncToHdlc (...): All ASYNC-frames received on one channel (e.g. ESCC2-channel B) are sent
transparently in HDLC-mode on the other channel (e.g. ESCC2-channel A). From the ASYNC-
frame received the termination character (e.g. AAH) is stripped.

Semiconductor Group 47

SIEMENS

SAB 82532

Appendix A
" %Tcm Voo Voo 45V HOW
o —_—
7 f HMEMR _
NS i AMEMW
rLrr———=—/"—/—"=—"—"F"——"——"—7" 77—/ —— |
llo I 1 | _HD(.7)
U4A I
T RO GND o1 1 |1OCHCK !
2] <] 1 | RESETDRV g, |07 HD7 ||
T 5V B3 3|06 HD6]|
74 HCT 04 : lESZ I Y Ad Bi : Bi :
c - 185 A5 |
u2D T DRQ2 _ |gg Py LE HD3 1,
74 HCT 126 I SPAVR e 7|02 HD2 |,
1 1 GND I DWS _ |gg gDl HD1 J 1
[> [I H2V g 9|00 HDo J1I
G : GND B10 A 10} ID_CH_RDY | HIORDY
l I MEMW B11 A 11 [AEN | HAEN
I MEMR B12 A12 |ADDRI9 H A19
GND ~ GND ' low B13 A13|ADDRI8 H A8 I
: R |gn A14|ADDRLT H AL |}
| DACK3 |gie A15|ADDRI6 HAL6 | |
I RS |ps A16|ADDRIS HAIL5 | |
U3A I DACKL g1 A17|ADDRI4 HAL4] 1
1 : DRQL |ps A1 |ADDRI3 HAL f I
)| 3 I DACKO |51 A19[ADDRI2 HA12]|
I CK oo 420 |ADDRIL HAILLY |
I IRQ7 ADDR1I0 H A0 1
B2t A2p fREPRID R AL
74 HCT32 : RS g 2o |ADDR9 H A9 ||
| IRQ5 823 A 23| ADDR8 H_AS :
GND I RQ4 g5y A2 [ADDR7 HAT
I IRQ3 B2 A 25 [ADDRE H A6 | I
: DACK2 _ |poe Ao5|ADDRS HAS |
, TC [P 4 57|ADDRA H A4 :
5V I AE oo A28 |ADDR3 HA3 ||
I 5V 829 A29|ADDR2 HA2 ||
I 0sC _ |ga A30|ADDRL HAL]I
R, : GND B3l 231 [ADDRO H AD :
10kQ , |
[
ULB ! 1 IBM Con | _HA(@..19)
== T
2 14 UlA | GND Vg SW1 |
6 5 3 & 1 PY | o o]
2 : PC Ed CPU Reset |
74 HC08 | PCEdge Comnector _______________ 1 GND
74 HC08 SHRST
RST
1
3 2 _ IRQ3EN
74 HCT126 U2A HINTR
6 5 _ IRQSEN
74 HCT126 U2B
4 TS04324

Figure 31
PC-Host Bus

Semiconductor Group

48

SIEMENS

SAB 82532

[PC Bus PC Bus Interface
[HAQ.19 H_A (0..19)
| H_A (0..19) = > HA0.19) PC_A(0..19) e a)
H_D (0..7) |agm——= »|H D(..7) PC_D (0...7) |mmeee—i—
| HVMEMR »| HMEMR PCROpb————
| HMEMW » | IMEMW PC_WR
| Hiow »| Hiow PC_CE
| IBM HAEN p| HAEN Transceivers, HINTR |¢———
| Connector HIORDY < DPBSY | atches.. DPBSY [——
I RST p| RST RST b«
SWRST |« SWRST
| HINTR |« HINTR
| IRQ3EN |« IRQ3EN
[IRQSEN |« IRQ5EN
|
!_ PC Interface Unit
DACK (A,B) b
DR (AB))
ADDR (0...17)
DATA (0...15)
RSTOUT
DPINT
RBUSY
RST
ALE
EPROM
SR_
SR E
DP_{
PE
P_CS_1
P_CS0
RD
WR
NMI
P2. (0...15)
P3.33
P3. (0...15)
P5. (0..9
(0..9) 0
I Coprocessor [
— |
: »| RBUSY ADDR (0...17) | €—> |
—»| DPINT DATA (0...15) | 4—> |
[»| i P2. (0...15) | €—P>
[P RST P3. (0...15) | 4—P> |
| P5. (0..9) | ¢—>- [
| ALE > |
| RD > |
RSTOUT >
| SAB80C166 'cproy | |
I SR O > |
| SR E > [
| DP_O > |
| DP_E | g |
P CS 1 > |
| P_CS_0 g I
| ,
Coprocessor Unit
L __ processortnt - _ _ _ | ITS04388
Figure 32
Main Block Diagram
Semiconductor Group 49

SIEMENS

SAB 82532

a)

Dual Port RAM

PC_A(0...1

ATETI
*—’
—>
o

—»

PC_A(0.
PC D (0.
PC_RD
PC WR
PC_CE
HINTR
DPBSY
RST

1
N .

9) ADDR (0...17)
) DATA (0...15)

ITD 71321 T

ADMA

ADDR (0...17)

DATA (0...15)

FVVY

RD

P2.15
pP2.14
p2.1

P22 ¢
P3.12

WR
HOLD
HOLDA
INT ESCC2
INT ADMA
BHE

DACK (A B)

DR (AB)

PCSi

alh

RSTOUT

82258

SAB

DACK (A.B)

DR (AB)

ADDR (0..17)

DATA (0...15)

NMI

P2.(0..15)

P3. (0...15)

P5. (0..9)

Memory

v

7 N

FIVYVVVY

ADDR (0...17)
DATA (0...15)

RAM and EPROM

ESCC2

AAAA

FYYYYYYY

ADDR (0..17)
DATA (0...15)
P2.(0..15)
P3. (0...15)
P5. (0..9)
RSTOUT
ALE

RD

P CS0
DACK (AB)
DR (AB)

SAB 82532

Y

ITS05574

Semiconductor Group

50

SIEMENS

SAB 82532

HINTR
4 — a)
_ DPBSY
- U5 s

Hao 2 [0 oy BRI)
HAL 3 |, 5 [17_PCDI 0
o |
Har 6 | el T
TS A B3 pcos PCDO
HAe 8 |% B0 12 pcos PCDL
CTEE W i PC D2
A e BS PCD3
— e PC D4
DIR PC D5
PC D6
HD (0..7) T4HCT245 DBUSEN D7
HA (0..19) %
HAO 2 18 PCAO
HA 219 vt
e e
ras s | I pcas
FTYIETE B DY
TSN AN ET S
T A TG —
I FAEE T —
e Eg gg
16
ol <o
GND 74HCT244 PC D6
u7 PCD7
HAS 2 18 PCA8
w1
I e
TSN BASE BT
raz 1|2 Yacan
ESEREEE FAEAN EE
ma 15|22 2205 pcan
ras 17 12° 2P Rcas UsB
e n A 4 _1| 5
16 :
AEN 5
Fg 2 |
GND 74HCT244 74HCT32
us
HAEN ~ 2 18 AEN ——)]
> a1 1yi RS AEN
HMEMR _y, ‘6‘ 1A2 1Y2£M¢ o 12
%W > 1 A I e PC A3
> M 1Y4 low> a
HAIE 11,y oy |2 PCAL W RpL PC_Ad
Gy P e B DL <
TSR AT R PC A7
LLEEEYE YV =
5% IS sw2 ¥
192 " PC A9
1 —]
—
GND 74HCT244 3 —
j -
=
-
=
| -
-
____ GND SWDIP-8
_ SWRST
I
RST__ ‘—e)
TS04325

Figure 33

PC-Bus Interface-Logic

Semiconductor Group 51

SIEMENS

SAB 82532

HINTR
a) < —
P DPBSY
N PCD(0..7)
b) < >
PCA(0..19)
c) »
12
3[os a2 EN 2K
5, M E EN 4K
1p3 Q3 6 XAL3 74HC08
Cl o) ulf X Al4
] o5 12 XA
1] e 06 [XAIS 74HC08
i e o7 |16 XAT7
1181 D8 Q8 |19 XAl
——p oK
—qCIR
74HCT273
U3 u14cg
&
Hoo alZ q° [o
D2 Q
7 6
1 Bl 74HCT00 74HCT00
D4 Q4
] o s |2
L] o Y IRQ3EN TRQ3EN
17 16 IRQ5EN TRQSEN »
D7 Q7 >
18 19
D8 Q8
11 UL4A
1 [ENDPRAM usC
— ~dcr 21 &3 o[=],
10
74HCT273 PC A9
T4HCTO0 74HCT2 PCRD
| g
PCWR
»
vl 7
0o xan oo b 19 PCCE=
2 19 XA2 Ay,
_4 PO P'Q >— M P2
—5] P1 X_Al4 8 P3
— e XA Tl o)
—rs XA6 B3|
. AT T5) 0
— P5 X A8 17 p7
17 PCALL 3| o
= L PC A2 5 Ql
—]® PCAI3 7 Q2
—o PC A4 9 83
—g| ¥ _PCALL 12,
— U10A PC Al6 14 %
_12] PC_A0
] 82 55 N P] ©
_Bf o —qv 8 = s KU
) —q v . G
e —dv
G 74HC688
74HCT139
74HC688
RST
e) >
[TS05572
Semiconductor Group 52

SIEMENS

SAB 82532

__ ADDR(0..17)
_ DATA(0..15)
 P3.(0..15)
 P2.(0..15) Z)
P5.(0.9) U19)
< > 10
RBUSY ALE 0)
— > P0.0/ ADO |83 DATAD
RST - 12| e 84_DATAL
> 13 RSTIN PO.L/ ADI s
DPINT ~| RSTOUT A
v NI P0.3/AD3 fom—P08
NMI e 9 87 DATA4
ec O EBCO P04/ AD4 for P02
Pullup2 L 2 esct P05/ ADS | 88 DATAS
GND |—e 5E033] Yoo PO.7/ ADT =03 —BATAS
: P5.0/ ANO P0.8/ AD8 |2 28
P51 34 94 DATA9
P5.1/AN1 P0.9/ADY [22A AT
P52 35 95 DATAL0
P5.2/ AN2 P0.10/AD10 222020,
P53 36 9 DATAIL
P5.3/ AN3 PO.11/AD1L |22 A%
P54 37 97 DATAL2
P5.4/ AN4 P0.12/AD12 | 2e 200,
P55 38 98_DATAI3
P55/ AN5 P0.13/AD13 | o228,
P56 41 99 DATAI4
P5.6/ AN6 PO.14/ AD14 [0 A
P57 42 100 DATALS
P5.7/AN7 P0.15/ AD15 [AR,
P58 43 15_ADDRO
P5.8/ ANS P10/ AD |
P59 441 p5g/ANg pr1/aL| 8 ADDRL
P20 "X P20 47| o ' 17 _ADDR2
P2.0/CCOIO P12/ A2 foitEne
P21 48 18_ADDR3
&2 2% 1py1/CClio P13/A3 oo
P22 49 19 ADDR4
22221 p79/CC210 P14/ A NS
P23 50 20 ADDR5
e3 1 pr3/CC3i0 PL5/AS Sl
P24 51 21_ADDRG
et 91 pp4/CCalo P16/ A6 o0
P25 52 22_ADDR?
555 —3| P25/CC50 PLT/ AT [Se— oo
E2 991 py6/CChl0 P18/A8 f2—==m— | ADDR (11..17)
P27 54 26_ADDRY
—=L_>21py7/cCT10 P1.9/A9
P28 55 27_ADDRI0
22991 py8/CC8I0 P1.10/AL0 5 LUURT
P29 56 28 ADDRIL
52— P29/ CC9I0 PLLL/ALL[Se—enes—
23| P210/CCLO0 PL12/AL2 [t —
29 P2LL/CCLUO PL13/AL3 [reri—
S| P212/CC120 PL14/ AL [temir—
61 P2.13/CC13I0 P1.15/A15 T ADDRI6
5 P2.14/ CC14I0 P4.0/A16 > ADDRLT ADDRO
5] P215/CCI50 PAL/ALT o €)
7] RO 165 P30 D
5] Vss P3.0/TOIN |2
w1’ P3.1/ T6OUT [o—2=
o]V P3.2/ CAPIN [-ee—522
7] Vss P33/ T30UT -2
o] Vs P3.4/ T3EUD [2o—522
6D Vs P35/ TIN |-or—523
| XTALL P36/ TIN [ooe
X1 —3{ XTAL2 P3.7/T2IN -
Vee v P38/ TXDL |- F38
3], 74 P39
Q PMI % Vee P3.9/RXD1 7 P3.10
v Voo P3.10/TXDO '
c«© 0SX | 40MHz 64|y | 76 P31
78].cc P3.11/RXD0 77 P312 P3.12/BHE
GND A s PL12/BHE [pa13 ' 9
Vee © Voo P113/WR '
P1.14/READY 81 P34 P3.14/READY
- P1.15/ CLKOUT -
GND
80C166 ITS04317
Figure 34
SAB 80C166 - CPU Block
Semiconductor Group 53

SIEMENS

SAB 82532

01
02
03
04
05
06
07
08

Chip Select Decoder

a) _RSTOUT
b)
ALE
c)
u4ac
READY 6 4 5
74HCTO4
ADDR (11..17) | U18
| ApDRIL 1
| ADDRI2 2|
ADDRI3 3|
| ADDRI4 4|
| ADDRIS 5|
| ADDRI6 6]
e) —ADDRO | ADDRL7 7
{) _RD — 17
) | ADDRO 8 8
| RSTOUT 9]
| BHE 10
T — 110
| RD 1
, 111
13
| — 12
14
| — 113
23
| —
| 208
P3.12 BHE
g) —— L
P3.14 READY

RSTOUT _
L
| -
>

-

|
2 | rstour
—— |
a | pesi O
[— L
2 | EROM
_ >
19 | SRO S
— Ll
18 | SRE
— >
7 | DR _
T — Ll
6 , DPE
| >
5 , PCSO
I L

|

|

|

|

|

|

|

|
ITS05569

Semiconductor Group

54

SIEMENS

SAB 82532

13
14
15
17
18
19
20
21

13
14
15
17
18
19
20
21

DATA8

DATA9
DATA10
DATAI11

DATA12

DATA13

DATA14

DATA15

DATAO

DATA1
DATA2
DATA3
DATA4

DATAS

DATAG
DATA7

ADDR(0..17)
_ DATA(0.15) _
21
ADDRL 10
ADDR2 9 :(1) DD01
ADDR3 5|5 o
ADDR4 e o
ADDRS 5|7 o
ADDR6 5|7 o
ADDR? 2 o
ADDRS 3| o
ADDR9 5
ADDRI0 24
ADDRIL 21| A
AL0
ADDRIZ 23
ADDRI3 7 AL
ADDRI4 % QE
20 | AL
2| CE
275
Ve F\),CM
PP
27128
U20
ADDRL 10
ADDR? 9 2‘1) %01
ADDR3 e o
ADDR4 il o
ADDR5 5
A D4
ADDR6 5] o
ADDR? 2 o
ADDRS Y A o
ADDR9 5|
ADDRI0 26 |4
ADDRIL 2
ALO
ADDRLZ 23
ADDRI3 2 ig
ADDR14 26| %
EPROM - 20 | AL
> 2 |CE
27| °E
Ve PCM
T v
. 27128
RD R
— >
SRO R
- »
SRE -
7 |
WR

A 4

ITS04316

Figure 35
RAM and EPROM

Semiconductor Group

55

SIEMENS

SAB 82532

ADDR (0..17)
a)
DATA (0..15)
U2
ADDR1 12 13 DATAS
A0 00
ADDR2 ul 14 DATA9
ADDR3 wf Ol DaTAI0
ADDR4 9 o T
A3 03
ADDR5 8 18 DATAL2
A 04
ADDR6 " 19 DATAL3
ADDR7 6| %5 [0 oataue
ADDRS 5 o PEES
AT o7
ADDRY 27
A8
ADDRI0 26
A9
ADDRIL 23
ADDRI2 25 MO
All
ADDR13 4
AL2
ADDRI4 28
AL3
ADDR15 3
ADDRI6 3L A
ADDR17 2|
Al6
2| - 1
CE NC F—
ul| = 30
OE NC F—
n| —
WE
628128
U2
ADDRI 12 13 DATA0
A0 00
ADDR2) o 14 DATAL
ADDR3 10 15 DATA2
A2 02
ADDR4 9 17 DATA3
A3 03
ADDR5 8 18 DATA4
Ad o4
ADDR6 " 19 DATA
ADDR7 6 5 [0 pamas
A6 06
ADDRS 5 21 DATAT
AT o7
ADDRY 27
A8
ADDRI0 26
ADDRIL 23 A
AL0
ADDRI2 25
All
ADDR13 4
AL2
ADDRI4 28
ADDR15 3|
ADDRI6 31 i
Al5
ADDR17 2
Al6
2 CE N.C L
RD ul = 130
¢) G NC F—
SRO WE
d)
SRE
e) 628128
f WR ITS05568
Semiconductor Group 56

SIEMENS

SAB 82532

ADDR (0..17)
 DATA(D..15) _ \
al »
P2.(0..15)
< >
:P3.(0...15) > 2
‘_| 1 °
b
Z
T o T or
GND GND
3
RSTOUT
> zg RES XTAL1%
N 2]
7% XTAL2
M XA — 8
v24 1~ RIDA f—
P310 \— RTSA |—
1101 TRUN TRiouT |2 6 ﬁj ﬂ&;ﬁ 16
e v B TR2OUT |=— NI on k2
: RECIOUT RECIN f-5 8 A
é G, —JREC20UT REC2N ol I CUA
WF e e RXCLKA f-o—
T 7] o 510 THOB |- —
o GND =10 RXDB [oo—
5 s RS—
2 =M CTsBloxBf—
6 Ve 50 D5 CDB 39—
=10 THCLKB [—
+Cy + Cs Cy LT1081) D7 RXCLKB Gl
T | Twgw {08 Pl
50 D9 le
D10 P f—
GND 49 65
I D11 P3 65
7 D12 P4 GB
A D13 P5 65
3 o[
9 D15 P7 3
ALE DRTA |-
. 2= 2
D P13 I WR/RIW DRRA S
g I -
PCSO B> 31
> 22 (] DRRB 35~
oL —] DTACR DACKB |—
v, V
cc 5 "o\ w1 % x?m
9 25—
Ve J_ 4 |
1o e
GND GND —1—0 IEL
o ——
7
——o GND ESCC2
GND sT°
18 0
DB
P5.(0.9)
ALE
—>
PCS1
— L
NI
< ¢)
ITS04389
Figure 36
ESCC2 - Serial Port
Semiconductor Group 57

SIEMENS

SAB 82532

Vee
o
1
b
RPACK1
[] R-PACKS e P2
1f\
O
9 (8|7]6|s 2 Slena ot o o)
TXDA 2 15 2
a) o = AOUT |- 1
X ENB BOUT o O
RTSA o P2 "|en sour X 8 5
CTSA/CxDA_“JUMPER] 4 _8]
MODE —O
CDA 4
TXCLKA 9 _OO
RXCLKA - 5
08 GND AM26LS30 S
RxDB u27 CONNECTOR DB9
RTSB o P2 —
CTSB/Cx0B_JUMPER 7] 3 AN P3
cDB 5 AOUT ﬂ 7 1f\
TCLKB —BouT BN or—— s ©
RCLKB —{cour BN [—1
—,] pour N pr— 1©
7 EN CIN 5 3 C
— 1 e N o s °
DIN |—— —1
9 O
GND AM26L532 — o0
5
O
CONNECTOR DB9
GND
b)
; TS04390

Semiconductor Group

58

SIEMENS

SAB 82532

RST - RST
> L
Pullupl
PC_D(0..7) Pullup2 Re2 DATA (0...15)
<+— - < >
PC_A0..19) ~_ ADDR(0..17)
L <«
PC_AD
U15A 16 -
2 —
B YlDe— 3 R/WL R/WR 49
oA AT Y2lo— BUSYL BUSYR
PC_CE > Je v3ls7__ 0D g T TR 32
OEL OER
74HC139 PC DO 17 DOL DOR 27 DATAO
PC_WR P oz 19 O OIR [t
— > BC b3 20| P& D2R 130 DATAS
PC_RD - D3L D3R
P PC D4 21 DAL D4R 31 DATA4
el o[z
PC D7 24 D6L D6R 34 DATA7
pcAal 7] ot DR [e —ADDRI
PCA2 8| AL Aok |44 ADDRZ
U4B AlL AR f———
— PCA3 9 AL AR | 43 ADDR3 |
__HINTR 4 4 3 PC A4 10 | o AR | 42__ADDR4
N
e e
T4HCT04 = A5L MASR f————
e L
PC AS 15| AT AR 57 ADDRY
P Ao 298 IS5 ADORID
PCAIL 5| A'p o | 47_ADDRIL
A10L AlOR p—————~
u17 DP O
1= —] 51 -
2| S CER TSy WR
H R RIWR [<
7 %YL BUﬂ 3 RBUSY
INTL INTR ==
6| GeC OER |48 < RD
PCDO 17| oo DOR | 27__DATA8 -
PCDL 18] oy D1R | 28__DATAS
PC D2 19 D2L D2R 29 DATA1L0 DP|NT‘
PC_D3 20 D3L D3R 30 DATA1l =
PC_ D4 21 DAL D4R 31 DATA12
PC D5 22 D5L D5R 32 DATA13
PC D6 23 D6L D6R 33 DATAl4
PC_D7 24 DL D7R 34 DATA15
PC A1 7 AL AOR 45 ADDR1
P AL AR o
pC Ad 10| A2 AR I ADDRA
pc s 1]t AR 41 ADDRS
pC A6 12| A4 AR 720 ADDRS
PC AT 13| "t AR 139 ADDRT
pC ag 14| A% AR I35 ADDRS
PC A9 15| AT AR 57 ADDRY
PC A0 T6 | A ABR 136 ADDRIO.
—pC ALl 5| % AR T ADDRLL
— AR— 1TS04395
Figure 37

Communication System: ESCC2, ADMA and SAB 80C166

Semiconductor Group

59

SIEMENS

SAB 82532

Appendix B

PAL-Description File

TITLE DECODER_PAL1

; This decoder-PAL generates the appropriate chip select signals for EPROM, static RAM,
; Dual Port RAM and peripherals on the SAB 80C166 Evaluation Board.

CHIP MEM_DEC1
STRING EPROM_ADDR_SELECT

STRING DPRAM_ADDR_SELECT
STRING PERI_ADDRO_SELECT

STRING PERI_ADDR1_SELECT

EQUATIONS

EPROM_CS
PERI_CS_0
PERI_CS 1
DPRAM_CS_ODD
DPRAM_CS_EVEN
SRAM_CS_ODD

SRAM_CS_EVEN

Semiconductor Group

PALCE20V8

‘(AL7 x Al6 x AL5)

;00000H—07FFFH

‘(AI7 x AL6 x Al5 x Al4 x A13 x AL2)
;OEOO0OH—OEFFFH

‘(A17 x A16 x A15 x A14 x A13 x A12 x A1l x A10)’
;OFO00H-0F3FFH

‘(A17 x A16 x A15 x A14 x A13 x A12 x A11 x A10)’
;O0F400H—0F7FFH

EPROM_ADDR_SELECT x RD x RSTOUT
PERI_ADDRO_SELECT

PERI_ADDR1_SELECT

DPRAM_ADDR_SELECT x BHE
DPRAM_ADDR_SELECT x AD
(EPROM_ADDR_SELECT x (RSTOUT + RSTOUT x RD))
x PERI_ADDRO_SELECT

x PERI_ADDR1_SELECT

x DPRAM_ADDR_SELECT

x BHE

(EPROM_ADDR_SELECT x (RSTOUT + RSTOUT x RD))
x PERI_ADDRO_SELECT

x PERI_ADDR1_SELECT

x DPRAM_ADDR_SELECT

x AO

60

SIEMENS SAB 82532

Appendix C

Source Code

Because of its volume, the source code is not attached to this description. On request, we’ll send
you the complete listing on floppy disk.

Semiconductor Group 61

	1 Introduction
	2 Hardware of the HDLC/ASYNC Converter
	3 Device Driver System
	3.1 Overview
	3.2 General Module Architecture
	3.3 Integration of Modules
	3.4 The Example “HDLC-ASYNC Converter”
	3.5 Application Program Interface

	4 The ESCC2-Device Driver Module
	4.1 Overview
	4.2 Basic Data Structure of the ESCC2-Device Drive...
	4.3 ESCC2-Device Driver Module Entries
	4.3.1 The Message Entry Point
	4.3.2 The Interrupt Entry Point

	4.4 General Architecture of the ESCC2-Device Drive...
	4.4.1 Initialization and Control Routines
	4.4.2 Receiver and Transmitter

	5 The Application Module HACVT
	5.1 Structure of the Application Module
	5.2 Detailed Description of the Application Module...

