

ICs for Communications
HDLC / ASYNC Converter

Based on SAB 82532 and SAB 80C166

Application Note 08.93

Semiconductor Group 2

Data Classification

Maximum Ratings

Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible
damage to the integrated circuit.

Characteristics

The listed characteristics are ensured over the operating range of the integrated circuit. Typical
characteristics specify mean values expected over the production spread. If not otherwise specified,
typical characteristics apply at TA = 25 °C and the given supply voltage.

Operating Range

In the operating range the functions given in the circuit description are fulfilled.

For detailed technical information about “Processing Guidelines” and “Quality Assurance” for
ICs, see our “Product Ovewrview” .

SAB 82532
Revision History: Original Version 08.93

Previous Releases:

Page Subjects (changes since last revision)

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation,
Balanstraße 73, 81541 München.

© Siemens AG 1993. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components,
not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Ger-
many or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the
types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest
sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of
transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have
to invoice you for any costs incurred.

Edition 08.93
This edition was realized using the software system FrameMaker.

General Information

Semiconductor Group 3

Table of Contents Page

General Information .4

1 Introduction. .6

2 Hardware of the HDLC/ASYNC Converter .7

3 Device Driver System. .10
3.1 Overview .10
3.2 General Module Architecture .12
3.3 Integration of Modules .13
3.4 The Example “HDLC-ASYNC Converter” .13
3.5 Application Program Interface .16

4 The ESCC2-Device Driver Module. .18
4.1 Overview .18
4.2 Basic Data Structure of the ESCC2-Device Driver Module19
4.3 ESCC2-Device Driver Module Entries .22
4.3.1 The Message Entry Point .22
4.3.2 The Interrupt Entry Point .24
4.4 General Architecture of the ESCC2-Device Driver Module25
4.4.1 Initialization and Control Routines .25
4.4.2 Receiver and Transmitter .26

5 The Application Module HACVT. .47
5.1 Structure of the Application Module .47
5.2 Detailed Description of the Application Module .47

General InformationGeneral Information
SAB 82532 with SAB 80C166

HDLC/ASYNC Converter

Summary

This application note describes a simple application example for an HDLC/ASYNC Converter using
the ESCC2 (SAB 82532) and the 16-Bit-Microcontroller SAB 80C166. Transfer rates up to 1 Mbit/
s are supported. This application note is based on a real world and fully tested communication
subsystem. It demonstrates the advantages of using the ESCC2 in combination with the
SAB 80C166 for general communication purposes.

Contents

● Chapter 1
General Overview

● Chapter 2
How to integrate the ESCC2 into an 80C166 Microprocessor System. All hardware aspects
concerning the ESCC2 and 80C166 are explained.

● Chapter 3
Description of the different software levels and their realization. A brief introduction to the basic
operating software and the corresponding Application Program Interface (API) for the C-
language is provided.
A minimum set of only 13 interface functions and macros is necessary to integrate the device
driver and conversion software.

Functional Block Diagram

● Chapter 4
Detailed description of how the ESCC2 can be programmed to handle HDLC- and ASYNC-
communication for higher data rates. The basic architecture of an object oriented Device Driver
Module for the ESCC2 is explained. Further, it is explained how user requests for frame
transmission and device interrupts can be handled concurrently in the most effective way.

ESCC280C166

HDLC
Terminal

ASYNC
TerminalHDLC / ASYNC

Converter

RS-422
1 Mbit / s

PC Add-On-Card

ITB04359Functional Block Diagram
Semiconductor Group 4

General Information
The way how to serve multiple requests and frame lengths greater than 32 bytes is described in
form of finite state machines and corresponding flow diagrams.

● Chapter 5
A very simple application program module for the frame conversion on top of the ESCC2-device
driver software and the underlying run-time software is described.

● Appendix A
Detailed schematics for the hardware.

● Appendix B
Corresponding PAL-equations (1 PAL).

● Appendix C
Source code listings of all relevant software modules.

● Appendix D
A make file is included, which allows to build the software using the software development tools
from Tasking.

Remarks

It is recommended to have a basic understanding of the ESCC2-interrupt interface and the 2 × 32
byte FIFO-structure described in the ESCC2 Technical Manual. For details concerning the
SAB 80C166 please refer to the corresponding User’s Manual.

For this application note the 80C166-compiler and assembler from Boston Systems Office/Tasking
have been used. The software is completely written in C, with the exception of file
DDSHSERV.SRC, an assembler file containing the processor specific interrupt interface (setting
interrupt frames and vectors).

This application note has been realized with a PC-add-on board to shorten the software
development cycles. It supports a fast download of device driver software onto the communication
subsystem directly from the PC. The application example itself has been designed as a stand-alone
solution to reduce the requirements on an individual environment. This shall give you a first
impresssion of how easy it is to combine the ESCC2 with the 80C166 for communication
subsystems in general. Therefore the complexity of the software environment has been reduced to
a minimum.

The data transfer rate of 1 Mbit/s has been chosen for illustration purpose only. A higher data
transfer rate is possible.

Semiconductor Group 5

SAB 82532
1 Introduction

This application note describes a design example for an HDLC/ASYNC converter using the SAB
82532 (Enhanced Serial Communication Controller – 2 Channels, ESCC2) and the microcontroller
SAB 80C166. It is recommended that before reading this application note, the user has a basic
understanding of the interrupt interface and FIFO-structure of the SAB 82532, described in the
“ESCC2 Technical Manual”.

In this description of the HDLC/ASYNC converter two basic subjects are discussed. The first one is
how the SAB 82532 can be integrated into a hardware environment based on a 16-bit
microcontroller from Siemens, the SAB 80C166. One approach is to treat the SAB 82532 as a
peripheral device connected to the external bus of the SAB 80C166. In this case practically no glue
logic in the form of external hardware is required.

The second subject is the software of the HDLC/ASYNC converter. The special device driver for the
ESCC2 has the advantage of utilizing the SAB 82532 features concerning different transfer modes
(HDLC, ASYNC), interrupt treatment and FIFO-structure to enhance performance.

Due to their 16-bit system interface and all other inherent powerful features, the ESCC2 and the
80C166 build a strong combination well suited for high speed communication and protocol
conversion in general.

This application example has been written in C using the C-Compiler and Assembler 80C166 from
Boston Systems Office/Tasking.

Figure 1
Application HDLC/ASYNC Converter

ITS04360

ASYNC

Download of
SAB 80C166
Program

HDLC/ASYNC
Converter

of SAB 80C166
Development
Program

World of

World of
HDLC
Semiconductor Group 6

SAB 82532
2 Hardware of the HDLC/ASYNC Converter

The hardware of the HDLC/ASYNC converter is realized as a plug-in PC-board. Beside the
microcontroller SAB 80C166 the following components are used: a 64 K EPROM containing the
firmware, a 256 K RAM and a PAL for address decoding.

Figure 2 shows the functional block diagram of the hardware. A detailed schematic can be found in
Appendix A.

The Memory Organization

The SAB 80C166 provides a total addressable memory space of 256 Kbytes. This address space
is arranged in four segments of 64 Kbytes each, and each segment is again subdivided in
four pages of 16 Kbytes each. Figure 3 gives an overview of the memory organization of the
HDLC/ASYNC converter. The equations to decode the corresponding chip select signals are listed
in Appendix B.

Figure 2
Functional Block Diagram

SAB 82532SAB 80C166 256 K SRAM 64 K EPROM

4 K DPRAM Address DecoderPC Interface
RS 422

Line Driver

ITB04361
Semiconductor Group 7

SAB 82532
Figure 3
Memory Organization

Microprocessor Interface

Practically no external components are required to adapt the SAB 82532 to the SAB 80C166. The
SAB 82532 is directly connected to the data bus and address bus of the SAB 80C166 system. The
RD-, WR- and BHE-signals are also connected directly.

The CS for the SAB 82532 is generated in a PAL. WIDTH is connected to + 5 V, which configures
the ESCC2 into 16-bit bus mode.

Interrupt

Since no interrupt acknowledge cycle is supported by SAB 80C166 pin INTA is deactivated by
connecting INTA to + 5 V. Because of the single device application IE0 and IE1 are not used; they
are tied to GND. The INT pin is connected to P2.1 (CC1IO); it has to be considered that the interrupt
is (positive) edge triggered. To avoid loosing an interrupt it is recommended masking interrupts for
a short time before leaving the interrupt function. In this way a new edge can be forced, because the
SAB 82532 safeguards the interrupts even while being masked.

SRAM

SRAM

H’10000

Further
Peripherals

SAB 82532

0F7FF

0F400

0F3FF

0F000

H

H

H

H

H0FFFF

SRAM

0F800H

DPRAM
0EFFFH

0E000H

08000

0DFFF
SRAM

H

H

00000

07FFF
EPROM / SRAM

H

H ’20000 H

’30000 H

ITD04362

1FFFFH

3FFFF
2FFFFH

H

Semiconductor Group 8

SAB 82532
Figure 4
Architecture of System

DMA Interface

DACKA and DACKB are tied to + 5 V, since no DMA-transfer is supported.

Reset

It should be considered that RES is an active high input signal, so that the RSTOUT-signal of the
SAB 80C166 has to be inverted.

ITS04363

D0..D15 A0..A17

INT

A0..A6 D0..D15

CS_ESCC2

ESCC2

Decoder

D0..D15A0..A6A10..A17System Bus

System
Memory

80C166

Port 2

BHE
RD
WRWR

RD
BHE
Semiconductor Group 9

SAB 82532
Serial Interface

The input signals RxDn, CTSn, CDn, RxCLKn (n = A, B) are pulled up to + 5 V by a resistor of
10 kΩ. Modem control functions are not supported in this application, therefore RTSn and CTSn are
connected directly.

The physical line is realized with a RS-422 compatible line driver interface, consisting of the driver
circuit AM26LS30 and the receiver circuit AM26LS32. These circuits are connected to the TxDn and
RxDn signals of the SAB 82532.

The Timing Characteristics

The timing of the microcontroller can be adapted to that of the ESCC2 by changing by software the
default values of the SAB 80C166 (refer to SAB 80C166 Technical Manual).

Starting with the address setup time tSU (A), which is specified as 0 ns for the microcontroller and
> 5 ns for the SAB 82532, a read/write delay has to be introduced. With the delay programmed, the
falling edge of the ALE-signal leads the falling edges of the RD or WR by a quarter of a machine
cycle (25 ns at fOSC = 40 MHz). This delay does not extend the memory cycle time, and thus it does
not slow down the controller in general.

Because of the read/write delay discussed above the RD-WR-pulse width is shortened from 65 ns
to 40 ns. The SAB 82532 specification however requires a RD-pulse width of > 60 ns; therefore one
wait state has to be programmed. One memory cycle time wait state requires half a machine cycle
(50 ns at fOSC = 40 MHz).

The address hold time tH(A) of the SAB 82532 has to be equal or longer than 10 ns (SAB 80C166:
0 ns). With an additional memory tristate time wait state the hold time has to be lengthened.

The timing can be modified by programming the bus configuration register or by modifying the
start-up code of the system. An advantage is that the timing can be modified individually in a
selected address space.

3 Device Driver System

This chapter gives an overview about the system software used to implement the application
specific software modules. This Device Driver System (DSS) provides a simple fundamental
platform for the integration of Device Driver Modules (DDMs) and Application Program Modules
(APMs).

Because of its reduced complexity and its high degree of portability it is possible to concentrate on
the main issues related to writing device driver code for the Enhanced Serial Communication
Controller (ESCC2) from Siemens.

3.1 Overview

The basic concept of the device driver system relies on the transfer of messages between DDMs
and APMs. A DDM contains the low level device driver functions, including the interrupt service
routines, which must fulfill individual real-time constraints. As opposed to the DDM an APM
combines the more intelligent time consuming data (message) processing functions. The general
concept is shown in figure 5.
Semiconductor Group 10

SAB 82532
Figure 5
Device Driver System Concept

The device driver system maintains a unique data structure, the Command/Indication Message
(C/I-Message) to transfer information between the different APMs and DDMs. The standard format
is depicted in figure 6.

ITS04311

APM APM

CIMAPI

APM APM DDMDDM

DDSU
DDSHX

C/I-Messages

Device Driver System

PC

DDSU := Device Driver System User Interface
Device Driver System Hardware Adaption=:DDSH
Application Program Module=:APM
Device Driver Module=:DDM
C/I-Message Application Program Interface=:CIMAPI

SAB 80C166 Coprocessor
Semiconductor Group 11

SAB 82532
Figure 6
C/I-Message Format

The device driver system itself provides all services necessary to build a high performance
communication system. The main tasks are summarized below:

● Initial Hardware Initialization
● Initial Software Initialization
● Main Program Control
● Message Routing
● Message Buffer Management
● Timer Management
● System Control
● User Interface

3.2 General Module Architecture

A module to be integrated into the device driver system’s environment must fulfill only a minimum
set of requirements. Figure 7 illustrates the basic architecture of a device driver module.

First of all a module, a Device Driver Module (DDM) or an Application Program Module (APM), must
have one general function to be used as message entry point. In addition to that, a DDM has to
assign and initialize its interrupt entry point and the corresponding modes. When the whole system

ITD04310

Next
SigByte
Type
Dest
Src
Entity
ID
DSize
DPtr

Message
Descriptor

Data
Buffer
Semiconductor Group 12

SAB 82532
is started, the device driver system sends an initial C/I-message (INIT_MODULE) to every module.
This gives every module the opportunity to establish its own context, initialize its data structures and
if necessary the related devices. Following this initialization an integrated module can receive
C/I-messages, which are decoded inside the module. Additional service functions, described in
section 3.5, are needed inside a module (e.g.: to request and send C/I-messages, en-/disable
interrupts, …).

Figure 7
General Module Architecture

3.3 Integration of Modules

To integrate individual modules into the device driver system’s environment one of the modules
must have the unique function DdsIntegrate. This generic function is called during the system
start-up phase. Its purpose is to assign the message entry points for the application program and
device driver modules by means of the service function DdskSetMsgEntry.

3.4 The Example “HDLC-ASYNC Converter”

The application example described in this document has been implemented on a PC-coprocessor
board using the new 16-bit microcontroller 80C166 from Siemens.

ITS04312

API Functions Device Driver System

DdskSetMsgEntry
DdskSendMsg
DdskRejectMsg
DdsmMsgBufAlloc
DdsmMsgBufFree
DdshSetHwIntVect
DdshIntCtrl
DdshIntSetMode
DdshGetDevAddr
MoveWords
ENTERNOINT
LEAVENOINT
INTRET

Msg Entry Point

Service
Function Structure

Data

INT Entry Point

Hardware
SIEMENS Communication ICs
(ESCC2)

Device
Driver
Module
Semiconductor Group 13

SAB 82532
A functional block diagram of the complete example is shown in figure 8.

Figure 8
Structure of Converter Software

To concentrate on the device driver software and the application of the ESCC2 in a communication
system, a minimum interface to the device driver system and the hardware specific adaptions (see
section 3.5 and Appendix C) are described in more detail.

Because the PC-user interface is highly specialized and used only for the downloading of the run-
time software onto the PC-board it is not described here. No timer functions are required in this
application, so they are omitted as well.

The following figure 9 shows the information flow inside the whole communication subsystem,
especially how the different software layers (modules) are involved. The conversion from HDLC
to ASYNC is illustrated, assuming an incoming HDLC-frame length greater than 32 bytes. The
ESCC2-device driver module handles the receive interrupts (see chapter 4; RPF and RME), and
translates the complete received HDLC-frame into a corresponding C/I-message. All C/I-messages
are inserted into a single message queue, maintained by the device driver system’s kernel.
The kernel routes all messages to the appropriate destination module. The C/I-message
RC_HDLC_FRAME_OK for instance, related to an incoming HDLC-frame via ESCC2-channel A,
is routed to the HACVT-module. The HACVT-module reacts by converting the HDLC to an
ASYNC-frame and sending a SEND_FRAME message to the ESCC2-device driver module.

HACVT ESCC2

A
B

HDLC

ASYNC

Device Driver System (DDS)
X

ITB04364

ESCC2 + 80C166
Semiconductor Group 14

SAB 82532
Figure 9
Information Flow HDLC to ASYNC

One element of the C/I-message, the parameter entity (see figure 8), determines the ESCC2-
channel to be used for transmission and the source for a received frame, be it an HDLC-frame via
channel A (entity = 0) or an ASYNC-frame via channel B (entity = 1). In this way the HACVT-module
converts an incoming HDLC-frame (entity = 0) to an outgoing ASYNC-frame (entity = 1), by
modifying the C/I-message descriptor appropriately.

ciMsg → Dest = ESCC2_MODULE;
ciMsg → Src = HACVT_MODULE;
ciMsg → Entity = CHANNEL_B;
ciMsg → ID = SEND_FRAME;

The data buffer of the converted C/I-message remains the same (DPtr; for more details refer to
chapter 5).

APM

DDS

DDM

HACVT

C / -Messages

ESSCC2

SEND_FRAME (ChB)

SEND_FRAME (ChB)RC_HDLC_FRAME_OK (ChA)

RC_HDLC_FRAME_OK (ChA)

Interrupts
Register
Access

ChA ChB
ESCC2

F CRC FData DataTC ITD04365

Ι

Semiconductor Group 15

SAB 82532
The SEND_FRAME message will force the ESCC2-module to transmit the data buffer content
either as an HDLC-frame or an ASYNC-frame depending on the parameter entity. It is again the
responsibility of the ESCC2-module to translate the send command into appropriate interactions
with the ESCC2-device and to serve the corresponding transmit interrupts (see chapter 4; XPR).

This approach of using a separate Device Driver Module (DDM) for real-time functions and a
corresponding Application Program Module (APM) as a specific message processor is a very
powerful concept, because the probability of loosing interrupt events is reduced to a minimum.

3.5 Application Program Interface

The following description briefly explains the main purpose of the device driver system’s service
functions and how they are called in C. No distinction between functions realized in C and in
assembly code is made on this level. The corresponding function prototypes, macro definitions,
typedefs and defines are included either in the header file DDSG.H or DDSH.H.

All hardware specific functions and macros belonging to the individual processor system
(e.g.: processor type, memory layout, …) are combined in one system module DDSH, which is
available in source code (see Appendix C). To transfer the device driver source code to another
processor system the main work consists in modifying the functions and macros in the DDSH-
module so that they fit into the new system.

Moreover you will find definitions concerning the C/I-messages in the MSG.H file, like module and
message IDs and related parameters (see also Appendix C).

DdskSetMsgEntry (int destld, (*msgEntryFctPtr)

Writes the pointer to the module entry function msgEntryFctPtr in the device driver system’s
message routing table in dependance on the module destination identifier destId.

DdskSendMsg (CIM_MSG_DESCR_PTR ciMsg);

Puts a C/I-message ciMsg into the device driver system’s central message queue. A module which
wants to send a message to another module calls this function with a pointer to the previously
prepared message buffer. This message buffer can be requested from the buffer management by
means of the function DdsmMsgBufAlloc (see below). As a minimum the C/I-message must contain
the destination ID of the addressed module, its own source ID and the message ID itself. In addition
to that, the data buffer must be filled with the appropriate information, if any. The C/I-message
format and the corresponding structure CIM_MSG_DESCR_PTR are specified in the source file
DDSG.H (see Appendix C).

DdskRejectMsg (CIM_MSG_DESCR_PTR ciMsg, int reason);

In case a just received C/I-message ciMsg contains wrong information, it may be rejected by means
of this function. The value reason may be used to signal why this message has been rejected.

ciMsg = DdsmMsgBufAlloc (int size);
CIM_MSG_DESCR_PTR ciMsg;

Returns a pointer ciMsg to the next available C/I-message buffer with a data buffer assigned to it,
depending on the parameter size. When there is no message buffer available, a NULL pointer will
be returned instead.
Semiconductor Group 16

SAB 82532
DdsmMsgBufFree (CIM_MSG_DESCR_PTR ciMsg);

Releases a previously allocated C/I-message buffer referenced by the pointer ciMsg.

DdshSetHWIntVect (HW_INT_TYPE intx, INT_FCT_PTR intFct);

Installs an interrupt frame function, which calls the specified interrupt function intFct. The interrupt
frame is initialized in the system module DDSH, which is dependant of the processor type
(e.g.: 80C166).

DdshIntCtrl (HW_INT_TYPE intx, BOOL enable);

Enables or disables an individual interrupt source. Only device no. 1 is supported in this application.

DdshIntSetMode (HW_INT_TYPE intx, INT_MODE_TYPE mode);

Sets interrupt mode. In this application only device no. 1 and mode 1 is supported. Mode 1 means
for the 80C166 that the interrupt is triggered on positive external transitions on pin CC1IO.

devAddr = DdshGetDevAddr (DEVICE_TYPE dev);
WORD32 devAddr;

Returns the base address devAddr of the specified device dev. Only device no. 1 is supported in this
application.

MoveWords (W16PTR srcPtr, W16PTR destPtr, WORD byteCnt);

Optimized procedure for a fast transfer of a memory block with the specified length byteCnt from
source address srcPtr to the destination address destPtr.

ENTERNOINT (WORD cpuState);

Is a special macro defined in DDSH. Disables temporarily all interrupts. The current CPU-state is
stored in cpuState. This allows nesting of interrupts in conjunction with macro LEAVENOINT.

LEAVENOINT (WORD cpuState);

Is a special macro defined in DDSH. Restores the old CPU-state by means of the variable cpuState.
It puts a previously interrupted program state back the way it was before ENTERNOINT was called.
This allows nesting of interrupts in conjunction with macro ENTERNOINT.

INTRET

Is a special macro defined in DDSH. It releases the interrupt logic of the corresponding interrupt line.
This is necessary to allow the interrupt controller to accept interrupts. Should be called whenever an
interrupt routine is left.
Semiconductor Group 17

SAB 82532
4 The ESCC2-Device Driver Module

4.1 Overview

The device driver module ESCC2, integrated into the device driver system’s environment,
represents the connection to the Siemens data communication device ESCC2 (Enhanced Serial
Communication Controller, ESCC2). Therefore, referring to the programming of the device by the
user, this module has to be understood as the interface module between the applications level
and the device itself. The functional description of the ESCC2 device driver module is shown in
figure 10.

Figure 10
The ESCC2-Device Driver Module

Supported by the device driver system the application program module HACVT is able to direct
individual tasks to the ESCC2-device. The ESCC2-device driver module receives these messages
and passes them to the ESCC2, matching the device’s programming specification. Commands and/
or data may be written to the ESCC2. Status and control information is read from the appropriate
ESCC2-registers.

In addition, the device driver module serves the interrupts generated by the ESCC2-device itself. In
this case a message to the application module can be sent.

ITS04366

Application
Program
Module
HACVT

Device Driver System
X

Device
Driver
Module
ESCC2

C/I-Messages

C/I-Messages

Data Control

Device
ESCC2

A

B
Serial
Data
Semiconductor Group 18

SAB 82532
The source code of the driver module is found in Appendix C. The module ESCC2.H contains the
defined values, data structures and function types, whereas all C-functions concerning ESCC2 are
to be found in ESCC2.C.

4.2 Basic Data Structure of the ESCC2-Device Driver Module

Since the ESCC2-device has two symmetrical channels operating independently, two data links can
be supported. These data links are controlled by a number of parameters contained in two
structures of the type DATA_LINK_CTRL (see ESCC2.H), one for each channel. These are the
fundamental data structures the ESCC2-device driver module is based on.

Detailed description of the elements:

ESCC2_REG_MAP_ptr Escc2: The first problem when programming the ESCC2 is the access to
its registers. For the sake of clarity the registers are gathered in structures of registers, depending
on the mode (HDLC, ASYNC or BISYNC) and depending on the kind of access (READ or WRITE).
The offset of a single register in this structure corresponds to the register address (A0… A6).

typedef struct

{

WORD fifo [16]; /* RFIFO */
BYTE star; /* Status Register */
BYTE rsta; /* Receive Status Reg. */
BYTE mode; /* Mode Register */
BYTE timr; /* Timer Register */
BYTE xad1; /* Transmit Address */

.

.

.

BYTE gis; /* Global Int. Status */
BYTE ipc; /* Interrupt Port Conf. */
BYTE isr0; /* Interrupt Status 0 */
BYTE isr1; /* Interrupt Status 1 */
BYTE pvr; /* Port Value Register */
BYTE pis; /* Port Interrupt Status */
BYTE pcr; /* Port Conf. Reg. */
BYTE not_used_9;

}

HDLC_MODE_READ;

Since the registers in the different modes and for different kinds of access share the same address
region, these structures are combined in a union type definition, called ESCC2_REG_MAP.
Semiconductor Group 19

SAB 82532
typedef union

{

HDLC_MODE_READ Hdlc_Rd;
HDLC_MODE_WRITE Hdlc_Wr;
ASYNC_MODE_READ Async_Rd;
ASYNC_MODE_WRITE Async_Wr;
BISYNC_MODE_READ Bisync_Rd;
BISYNC_MODE_WRITE Bisync_Wr;

}

ESCC2_REG_MAP;

Now, that the relative location (= offsets) of the single registers are known for different modes and
kinds of access, the base address of this total register map can be defined. Seeing that the ESCC2
is a data communication device with two symmetrical serial channels using different memory
regions each control structure has its own base address. These addresses are defined during the
Escc2Init () routine. One gets the base address of the device in memory by executing
DdshGetDeviceAddress (device).

ESCC2_REG_MAP_ptr base;

.

.

base = DdshGetDeviceAddress (DEVICE1);

DataLinkCtrl [ESCC2_CH_A].ESCC2 = base;
base = (HSCX_REG_MAP far*)

(((DWORD) base) + 0x40);
DataLinkCtrl [ESCC2_CH_B].ESCC2 = base;

int ChID: The channel identification ChID conforms to the index of the actual data link control
structure (DataLinkCtrl[index].ChID = index). Like the Source the ChID is assigned during the
initialization of the corresponding ESCC2-channel:

.

.

.

Dlc = & DataLinkCtrl[command → Entity];
Dlc → ChID = command → Entity;
Dlc → Source = command → Src;

.

.

int Mode: Each channel operates in its own transfer mode: HDLC, ASYNC etc.. Mode contains this
transfer mode.

W16PTR FIFOfe: This pointer to the Tx/Rx-FIFO of the corresponding channel allows a fast access
during the execution of an interrupt routine.

W16PTR IsrReg: This pointer to the interrupt status register of the corresponding channel allows a
fast access during the execution of an interrupt routine.
Semiconductor Group 20

SAB 82532
W16PTR ImrReg: This pointer to the interrupt mask register of the corresponding channel allows a
fast access during the execution of an interrupt routine.

W16PTR CmdReg: This pointer to the command register of the corresponding channel allows a
fast access to the command register during the execution of an interrupt routine.

WORD16 IntMask: This element contains the channel and/or mode specific interrupt mask.

WORD8 TxShort: This element contains the channel and/or mode specific transmit command for
short frames; because of this element it is possible to design transmitter service routines
independent on mode (HDLC, ASYNC…).

WORD8 TxLong: This element contains the channel and/or mode specific transmit command for
long frames; because of this element it is possible to design transmitter service routines
independent on mode (HDLC, ASYNC…).

void (*ServeInterrupt) (void): This function pointer to the channel and/or mode specific interrupt
service routine allows designing the treatment of the interrupt function independent on mode
(HDLC, ASYNC…).

WORD8 Source: Since there may be different sources requesting a data link performed by the
ESCC2 the data link control structure contains an element called Source. Keeping in mind the
actual Source, the ESCC2-module is able to send the messages to the proper destination (e.g.
protocol modules, LAPD or other application modules, HACVT).

.

.

Dlc → message → Entity = Dlc → ChID;
Dlc → message → Dest = Dlc → Source;
Dlc → message → Src = ESCC2_MODULE;

…

DdskSendMsg (Dlc → message);

.

.

CIM_MSG_DESCR_PTR Msg: Assuming that an ESCC2-channel receives a frame, a message
buffer has to be allocated for this channel; Msg is the pointer to the channel’s current receive
message buffer.

.

.

Dlc → Msg = DdsmMsgBufAlloc (maxSize);
if (!Dlc → Msg)

{

Dlc → ESCC2 → Hdlc_Wr.cmdr = CMDR_RHR;
return;
}

.

.

Semiconductor Group 21

SAB 82532
CIM_MSG_DESCR_PTR head: Both channels use linked lists to store frames for transmission.
These linked lists are first-in first-out queues, frames are added at the tail end and taken away from
the head end. So head points to the item, which will be taken away as the next one. Tail points to
the item which was added as the last one. The tail is controlled by sending frames to the ESCC2-
channel; head is controlled by the channel specific transmitter interrupts.

CIM_MSG_DESCR_PTR tail: See CIM_MSG_DESCR_PTR head.

int RcState: The serial interface of the ESCC2 consists of two full duplex channels. So both
channels are able to receive and transmit data at the same time. Normally a receiver or a transmit
procedure consists of more than one interrupt routine; in this case various states are accepted. The
current states are stored in RcState and TxState.

int TxState: See int RcState.

W8PTR RcCurr: The frames received (transmitted) by the ESCC2-channel may be longer than one
FIFO-length. Then the FIFO has to be read (written) more than once and the receiver (transmitter)
has to keep in mind the current position of the data stream in the allocated buffer. W8PTR RcCurr
(W8PTR TxCurr) points to the current position of the data stream.

W8PTR TxCurr: See W8PTR RcCurr.

int TxCnt: When long frames (size > FIFO_SIZE) are transmitted, the number of remaining bytes
after writing FIFO_SIZE bytes to the FIFO is stored in TxCnt.

The items described above are necessary to write/read the registers and to control the receiver and
the transmitter of a channel. For the sake of security and clarity they are collected in a channel
specific data link control structure.

4.3 ESCC2-Device Driver Module Entries

As mentioned before the ESCC2-device driver module is accessible by both, the device driver
system and the ESCC2-device itself. The kind of access, however, is quite different.

The device driver system sends messages to the ESCC2-device driver module via the message
entry point. On the other hand the ESCC2-device accesses to the driver module by entering an
interrupt entry point. The two kinds of entry points are discussed below.

4.3.1 The Message Entry Point

Starting the device driver system all modules will be initialized. In particular, the ESCC2-device
driver module is initialized by executing Escc2Init (CIM_MSG_DESCR_PTR cmd). To send
messages to each other the modules of the device driver system use the module identification for
defining the Source or Destination of a message in its corresponding header.

All messages, which are dedicated to the ESCC2-device driver module, reach the defined message
entry point when Escc2MsgEntry (CI_MAILBOX far* message) is called by the device driver kernel.

To send a message to the device driver module is the same as setting the module a task. At the
moment seven different types of tasks are supported by the ESCC2-message entry point. These
tasks are distinguished by a task or message identification, named as ID, see figure 11.

The following message IDs are supported:

Semiconductor Group 22

SAB 82532
An important job of the message entry point is to decide quickly which action has to be executed
referring to the ID of the current task. So, for the sake of speed, a switch statement was
implemented.

Figure 11
Message Entry Point

The functional description of the message entry point Escc2MsgEntry (CIM_MSG_DESCR_PTR
cmd) is shown in figure 11.

The actions InitDataLink(), AssignAddress(), CtrlLoop(), CtrlBaudRate() and CtrlLineCode() are
discussed in section 4.4.1. SendFrame() is explained in chapter 4.4.2.

ID Action/Function

MODULE_INIT (= 0) Escc2Init()

INIT_DATA_LINK (= 1) InitDataLink()

ASSIGN_ADDRESS (= 2) AssignAddress()

CTRL_LOOP (= 3) CtrlLoop()

CTRL_BAUD_RATE (= 4) CtrlBaudRate()

CTRL_LINE_CODE (= 5) CtrlLineCode()

SEND_FRAME (= 6) SendFrame()

ITD04367

Escc2MsgEntry

ID = ASSIGN_ADDRESS

ID = CTRL_DL_LOOP

ID = CTRL_BAUD_RATE

ID = CTRL_LINE_CODE

AssignAddress

CtrlBaudRate

CtrlLineCode

Escc2Init

ID = INIT_DATA_LINK

ID = MODULE_INIT

ID = SEND_FRAME
SendFrame

InitDataLink

CtrlLoop
Semiconductor Group 23

SAB 82532
4.3.2 The Interrupt Entry Point

Similar to the message entry point, the interrupt entry point is introduced during the initialization of
the ESCC2-module.

As mentioned in the Technical Manual, special events in the ESCC2 are indicated by means of a
single interrupt output with programmable characteristics (open drain, push-pull; IPC-register)
which requests the CPU to read status information from the ESCC2, or, if interrupt mode is selected,
to transfer data from/to ESCC2. Since only one INT-request output is provided, the cause of an
interrupt must be determined by the CPU

– by evaluating the interrupt vector which is generated by the ESCC2 during an interrupt
acknowledge cycle, and/or

– by reading the ESCC2’s interrupt status registers (GIS, ISR0, ISR1, PIS).

In the device driver module the function of the interrupt output stage (pin INT) must be programmed
as active high (push-pull output). Since the SAB 80C166 doesn’t support the interrupt acknowledge
cycle interrupt polling mode is used.

The channels Channel A and Channel B operate independently, so the base address and other
control/status variables of a channel are collected in the DATA_LINK_CONTROL-structure, which
is described in section 4.2.

As the basic address is known, the registers can be accessed. At first all interrupts should be
masked out by writing FFH into the Interrupt Mask Register 0, 1 (IMR0, IMR1).

Further, as mentioned above, pin INT must be programmed as active high, so 03H has to be written
to the Interrupt Port Configuration Register (IPC).

DdshSetHWIntVect (DEVICE_INT, Escc2Interrupt) installs the interrupt entry. DdshIntSetMode
(DEVICE1_INT, MODE1) sets the interrupt mode: edge trigger mode. DdshIntCtrl (DEVICE1_INT,
INT_ON) enables the interrupt (for more information about the DDSH-interface see chapter 3.5).

The interrupt function really can be seen as an entry to the core of the ESCC2-device driver module,
which mainly consists of a transmitter and a receiver. A more detailed description of these two parts
will follow in section 4.4.2. Obviously the interrupt entry point makes it possible, for the receiver or
transmitter to be are ordered directly to read data from the receive FIFO or write data to the transmit
FIFO.

After entering the interrupt function Escc2Interrupt(), the General Interrupt Status Register
is analyzed and the channel and/or mode specific interrupt service routine is executed:
ServeHdlcInterrupt() or ServeAsyncInterrupt(). During the execution of these functions the Interrupt
Status Register is read. After that, the action corresponding to the specific kind of interrupt is
executed (e.g. HdlcTxAction […] […] ()).

The arrays of function pointers … Action […] […] () are described in section 4.4.2. INTRET releases
the interrupt logic of the SAB 80C166 to be able to accept further interrupts.

To summarize, up to now the entry points of the ESCC2-module have been described. There are
two different kinds of entry points:

– the message entry point Escc2MsgEntry (…), which branches into functions corresponding to
message IDs,

– the interrupt entry point, that calls functions according to the interrupt indication.
Semiconductor Group 24

SAB 82532
4.4 General Architecture of the ESCC2-Device Driver Module

Now, that the entry points have been described, the structure of the ESCC2-module can be
explained. Besides the entry points the ESCC2-device driver module can be divided into two parts:

● Initialization and Control Routines
● Receiver and Transmitter

4.4.1 Initialization and Control Routines

By manipulating the parameters of the actual command the user or an application module (HACVT
in this application) is able to control the initialization routines via the message entry point. Since
there are two channels, one can select the corresponding channel by modifying the structure
element Entity.

Six initialization and control routines are supported:

Escc2Init (CIM_MSG_DESCR_PTR cmd) initializes the ESCC2-device driver module. The base
device address is set by executing DdshGetDeviceAddr (DEVICE1). For the sake of speed during
the access to the general interrupt status register after an interrupt has occured the address of this
registers is stored in GisPtr. Furthermore all arrays and some DATA_LINK_CTRL-structure
elements are initialized in Escc2Init(). An important task finally is the initialization of the interrupt
entry (see section 4.3.2).

InitDataLink (CIM_MSG_DESCR_PTR cmd) contains the general initialization of all ESCC2-mode
specific functions and data. Per default the access to the register which are common to all modes
(HDLC, ASYNC, …), is done via the Hdlc_Wr or Hdlc_Rd union element of the corresponding
DATA_LINK_CTRL-structure (Interrupt Mask Register, Interrupt Status Register, Command
Register, …).

Parameter 1 of the CIM_MSG_DESCR-structure accessible by the pointer Command, selects the
transfer mode (HDLC, ASYNC, …). Parameter 2 has a different meaning in HDLC-mode (p2 =
transparent, auto-mode …) and ASYNC-mode (p2 = termination character). The clock mode is
represented by parameter 3. By writing 60H into the Mode Register (MODE) for example the HDLC
non-auto-mode and a 16-bit address field are selected. Furthermore the channel configurations are
fixed by programming the channel configuration registers. During the execution of InitDataLink() the
interrupt masks are set to enable the RME-, RFO-, RPF-, XDU- and XPR-interrupts in HDLC-mode
or the TCD-, RFO-, RPF- and XPR-interrupts in ASYNC-mode. Finally the InitDataLink-function
resets the receiver and transmitter.

AssignAddress (CIM_MSG_DESCR_PTR cmd) writes the low address value into the Receive
Address Byte Low Register 1 (RAL1) and the high address value into the Receive Address Byte
High Register 1 (RAH1). These values can be used for LAPD 2-byte address field recognition
corresponding to the ESCC2 non-auto-mode. Parameter 1 of the CIM_MSG_DESCR-structure
contains the high address value, parameter 2 contains the low address value. This function is used
only in HDLC-mode.

CtrlBaudRate (CIM_MSG_DESCR_PTR cmd) controls the baud rate of the channel in clock mode
set during InitDataLink() by programming the Baud Rate Generator Register (BGR) and the
Channel Configuration Register 2 (CCR2). Parameter 1 of the CIM_MSG_DESCR-structure
contains the baud rate division factor.
Semiconductor Group 25

SAB 82532
CtrlLineCode (CIM_MSG_DESCR_PTR cmd) determines the line code used for data transmission
by writing corresponding values into the Channel Configuration Register 0 (CCR0). Four line codes
are defined: NRZ, FM0, FM1 and Manchester. Parameter 1 of the CIM_MSG_DESCR-structure
determines which line code is selected.

CtrlLoop (CIM_MSG_DESCR_PTR cmd) switches test loops in transmission path on and off by
manipulating the least significant bit in the Mode Register (MODE). To switch the loop on or off
depends on the value of parameter 1 of the CIM_MSG_DESCR-structure.

4.4.2 Receiver and Transmitter

As mentioned in section 4.2.2 the receiver and the transmitter are the core of the ESCC2-driver
module. Indeed they are the most important parts of the device driver module, because they are
responsible for a high speed data communication. Therefore, they have to guarantee a quick
service of the interrupts generated by the ESCC2.

During the development of the receiver and the transmitter a further point has to be considered: the
FIFO-size of 32 bytes for both the receiver and the transmitter. Because of the FIFO-size, for
example, two cases have to be distinguished:

1) to receive/transmit a frame with a length less than or equal FIFO-size,

2) to receive/transmit a frame with a length greater than FIFO-size.

In the first case, a RME-interrupt (Receive Message End) is received in HDLC-mode; the
transmitter on the other hand has to write XTF (transmit pool full) and XME (transmit message end)
to the command register after writing data to the transmit FIFO. In ASYNC-mode a TCD-interrupt
(Termination Character Detected) is received; the transmitter has to write XF (transmit Frame) to
the command register.

In the second case, however, a RPF-interrupt (Receive Pool Full) is received. The receiver is
informed through this interrupt that the FIFO accessible to the processor does not contain the end
of the frame, the receiver is in a state which can be described as receiving. The transmitter, in the
second case, has to write XTF (transmit pool full) to the command register, after writing the first part
of the frame to the transmit FIFO. The transmitter has to keep in mind, that the transmission of the
current frame is not finished yet; the transmitter is in a state which can be described as sending.

This short introduction shows that various events may occur on the one hand in the ESCC2-device,
as indicated by interrupts (RPF, RME, TCD, XPR, …), and on the other hand on application side,
requesting to send a short or long frame. Further it should be noticed that the receiver and the
transmitter stay in certain states, waiting for the next event. Finally, if the event occurs, the receiver
or transmitter executes some action corresponding to the actual state and actual event.

Event State Table – General Aspect

The method of working described above can be represented by an event state table, shown in
figure 12 .
Semiconductor Group 26

SAB 82532
Figure 12
State Event Table

Each element of this table represents a certain action to be executed and a next state to be taken
on – corresponding to the actual state and actual event. The execution of these actions and state
transitions is controlled by the finite state machine. This technique allows immediate execution of
actions by avoiding the use of switch statements. The actions become very short and easier to read.
The following chapter gives an idea of the concept of a finite state machine.

As mentioned before the two channels of the ESCC2 operate independently. To minimize line of
code the channels share the same action code. This is a further advantage of the finite state
machine, since the channel only has to retain its current state. At the occurence of an event related
to this channel, the channel’s state and the event cause the corresponding action. The code of this
action is independent from the actual channel. The description of the channel’s state is an important
part of the control structure DataLinkCtrl [channel], introduced above.

A more detailed description of the actions themselves can be given by SDL (specification and
description language) diagrams. They are useful for describing source code, since they allow a
quick overview of the algorithm.

ITD04368

Event State Table

States

Element Containing
Action and Next State

State x

Event y

Events
Semiconductor Group 27

SAB 82532
Finite State Machines and SDL-Diagrams

A key concept used in many driver and protocol models is the finite state machine, illustrated in
figure 13.

Figure 13
Finite State Machine

With this technique, each driver machine (i.e. transmitter or receiver) is always in a specific state at
every instant of time. From each state, there are zero or more possible transitions to other states.
Transitions occur when some event takes place. Given a complete description of the driver
machines, it is possible to draw a directed graph showing all the states as nodes and all the
transitions as directed lines or arcs. One particular state, for example, is designated as the initial
state (e.g., called IDLE). This state corresponds to the description of the system when it starts
running. From the initial state some, perhaps all, of the other states can be reached by a sequence
of transitions.

Receiver – Event State Table

The receiver is suitable to make oneself familiar with the concept of event driven programming.
Assuming HDLC-mode there are three interrupts controlling the receiver: RPF-interrupt, RME-
interrupt and RFO-interrupt. The RPF-interrupt means that 32 (= FIFO-size) bytes were received,
but the message end has not yet been received.

The RME-interrupt, however, means that 32 bytes or less than 32 bytes were received and the
message end has been received, too. The RFO-interrupt says that a Receive Frame Overflow has
occured. Depending on the current state these events cause different actions. In the following table

ITD04369

Event (e.g.Interrupt B)

State k

State i

(-> Action y)

(-> Action x)
Event (e.g.Interrupt A)

(-> Action z)
Event (e.g.Task K)

Transitions
Semiconductor Group 28

SAB 82532
the event and state combination for the receiver are shown (different states correspond to different
columns, different events to different lines).

The actions of the receiver are described in a locally defined two-dimensional array, called
HdlcRcAction […] […] (…).

In ASYNC-mode instead of an RME-interrupt a TCD-interrupt occurs; so the ServeRme () function
can be replaced by ServeTCD (). This function is the only difference to the treatment of HDLC-
mode.

During the initialization at first HdlcRcAction/AsyncRcAction […] […] is set to NoAction for all
elements of the arrays. Then, corresponding to the event state table the action is entered only for
the event-state-combination, which may occur.

…

HdlcRcAction [IDLE] [RME_INTERRUPT] = ServeRme;

…

AsyncRcAction [IDLE] [TCD_INTERRUPT] = Serve Tcd;

…

The assigned control structure contains elements like the actual state of the receiver RcState and
the pointer to the current position RcCurr to which the next bytes (of a frame longer than 32 bytes)
have to be written.

Receiver – Finite State Machine

Interpreting the event state table of the receiver, the finite state machine can be constructed without
problems. Figure 14 shows the graph, which describes the receiver in the ESCC2-module as a
finite state machine.

Event State

IDLE RECEIVING

RFO ServeRfo RpfServeRfo

INTERRUPT IDLE IDLE

RME ServeRme RpfServeRme

INTERRUPT IDLE IDLE

RPF ServeRpf RpfServeRpf

INTERRUPT RECEIVING RECEIVING
Semiconductor Group 29

SAB 82532
Figure 14
Receiver Finite State Machine

ITD04370

RECEIVING

IDLE
RFO_INTERRUPT
(-> ServeRfo)(-> ServeRme)

RME_INTERRUPT

RPF_INTERRUPT
(-> RpfServeRpf)

(-> ServeRpf)
RPF_INTERRUPT RFO_INTERRUPT

(-> ServeRfo)

(-> RpfServeRme)
RME_INTERRUPT

HDLC-Mode

ITD04371

RECEIVING

IDLE
RFO_INTERRUPT
(-> ServeRfo)(-> ServeTcd)

TCD_INTERRUPT

RPF_INTERRUPT
(-> RpfServeRpf)

(-> ServeRpf)
RPF_INTERRUPT RFO_INTERRUPT

(-> ServeRfo)

(-> RpfServeTcd)
TCD_INTERRUPT

ASYNC Mode
Semiconductor Group 30

SAB 82532
Receiver – SDL-Diagrams

All SDL-diagrams start with the current state, followed by the actual event.

Getting an RPF-interrupt during the state IDLE means that the receiver has to allocate a data buffer
greater than 32 (= FIFO-size) bytes. Then the first 32 bytes of the frame, read from the RFIFO can
be written to the buffer. After that the RFIFO is reset by writing RMC to the command register. The
pointer to data buffer RcCurr has to be increased by FIFO-size. Finally the state is changed.

If the actual state is RECEIVING when a RPF-interrupt occurs, the same algorithm (as for state:
IDLE, event: RPF_INTERRUPT) is executed except for allocating the data buffer.

If an RME-(TCD-) interrupt occurs, at first the length of the received frame is read from the RBC-
register. The action ServeRme (ServeTcd) has to allocate a data buffer with less or equal then 32
bytes. From now the action RpfServeRme (RpfServeTcd) and ServeRme (ServeTcd) are similar.

The receive status byte is read from the RFIFO as the first byte after the end of the received frame.
Then analyzing the receive status byte it has to be decided if the received frame is ok. If the frame
is ok, a message is sent to the user, otherwise the function ReportRcError() is executed, to give
more detailed error information.

In ASYNC-mode there is no receive status byte available if the RFDF-bit in the RFC-register is set
to 0.

Figure 15
Action: ServeRpf

ITD04372

IDLE

RPF_INTERRUPT

CMDR_RMC

MoveWords(FIFO_SIZE)

RcPtr+ = FIFO_SIZE

RECEIVING

DdsmMsgBufAlloc(maxSize)
Semiconductor Group 31

SAB 82532
Figure 16
Action: RpfServeRpf

ITD04373

RECEIVING

RPF_INTERRUPT

CMDR_RMC

MoveWords(FIFO_SIZE)

RcPtr+ = FIFO_SIZE

RECEIVING
Semiconductor Group 32

SAB 82532
Figure 17
Action: RpfServeRme
Semiconductor Group 33

SAB 82532
Figure 18
Action: ServeRme

ITD04375

IDLE

RME_INTERRUPT

DdskSendMsg0

IDLE

CMDR_RMC

MoveWords(RcLength)

RcStatus<-RFIFO

ReceiveFrameYes No

O.K.?

RcLength<-RBCregister

ReportRcError

DdsmMsgBufAlloc(FIFO_SIZE)
Semiconductor Group 34

SAB 82532
Figure 19
Action: RpfServeTcd

ITD04376

RECEIVING

TCD_INTERRUPT

DdskSendMsg0

IDLE

CMDR_RMC

MoveWords(rest)

RcLength<-RBCregister
Semiconductor Group 35

SAB 82532
Figure 20
Action: ServeTcd

ITD04377

IDLE

TCD_INTERRUPT

DdskSendMsg0

IDLE

CMDR_RMC

DdsmMsgBufAlloc0

RcLength<-RBCregister

MoveWords(RcLength)
Semiconductor Group 36

SAB 82532
Figure 21
Action: ServeRfo

ITD04378

IDLE

RFO_INTERRUPT

DdsmMsgBufAlloc(8)

DdskSendMsg0

IDLE

CMDR_RRES
Semiconductor Group 37

SAB 82532
Figure 22
Action: RpfServeRfo

Transmitter – Event State Table

While the events for the receiver are generated by interrupts only, the events for the transmitter are
caused by both the application and the ESCC2-device. A key position on application side has the
function SendFrame (…). Corresponding to the length of the frame (shorter or longer than
FIFO-size), two different events are generated: SEND_SHORT_FRAME, SEND_LONG_FRAME.

After transmit FIFO reset the ESCC2-channel gets an XPR-interrupt. This event brings the
transmitter from the state IDLE into the state READY. The transmitter is able to start transmission.

It may happen that the transmitter gets a task while it is still busy with a previous one. Consecutive
tasks are queued in a linked list.

Because of that, the control structure of the channel contains the following two elements:
.
.

CIM_MSG_DESCR_PTR head;
CIM_MSG_DESCR_PTR tail;
.

For clarity’s sake the event table is divided into two parts. The first part shows the events caused by
the user. Different states corresponds to different lines, the events are represented by the columns.

ITD04379

RECEIVING

RFO_INTERRUPT

DdskSendMsg0

IDLE

CMDR_RRES
Semiconductor Group 38

SAB 82532
The device generates two interrupts dedicated to the transmitter: XDU-, XPR-interrupt.

1) SENDING_END is only be taken on, if no bytes remain. Otherwise the state will be unchanged.

2) READY is only be taken on, if the task queue is empty. Otherwise the next task (long or short
frame) will be executed and the state will be SENDING or SENDING_END.

In ASYNC-mode no XDU-interrupt occurs. This is the only difference to the treatment of HDLC-
mode.

During the initialization at first HdlcTxAction/AsyncTxAction […] […]() is set to NoAction for all
elements of the arrays. Then, corresponding to the event state table the Action is entered only for
the event-state-combination which can occur.

…
HdlcTxAction[IDLE][XPR_INTERRUPT]=SetReady;
…
AsyncTxAction[IDLE][XPR_INTERRUPT]=SetReady;
…

State Event

SEND_SHORT_FRAME SEND_LONG_FRAME

SENDING NoAction NoAction

SENDING SENDING

SENDING_END NoAction NoAction

SENDING_END SENDING_END

READY TxShortFrame StartTxLongFrame

SENDING_END SENDING

IDLE NoAction NoAction

IDLE IDLE

State Event

XPR-INTERRUPT XPR-INTERRUPT

SENDING ContTxLongFrame ServeXdu

SENDING_END 1) IDLE

SENDING_END ServeNextFrame ServeXdu

READY 2) IDLE

READY NoAction NoAction

READY IDLE

IDLE SetReady NoAction

READY IDLE
Semiconductor Group 39

SAB 82532
Transmitter – Finite State Machine

The following graphs show the transmitter of the ESCC2-driver module as a finite state machine, for
both HDLC-mode and ASYNC-mode.

Figure 23
Transmitter Finite State Machine HDLC-Mode

ITD04380

IDLE

(-> SetReady)
XPR_INTERRUPT

READY

SENDING

XPR_INTERRUPT[TxCnt<=32]
(-> ContTxLongFrame)

(-> ServeNextFrame)
XPR_INTERRUPT[further frame,TxCnT>32]

XPR_INTERRUPT[further frame,TxCnT<=32]
(-> ServeNextFrame) (-> ContTxLongFrame)

XPR_INTERRUPT[TxCnt>32]

SEND_LONG_FRAME
(-> StartTxLongFrame)

(-> TxShortFrame)
SEND_SHORT_FRAME(-> ServeNextFrame)

XPR_INTERRUPT[no further frame]

XDU_INTERRUPT
(-> ServeXdu)

(-> ServeXDU)
XDU_INTERRUPT

(-> ServeXDU)
XDU_INTERRUPT

SENDING_END
Semiconductor Group 40

SAB 82532
Figure 24
Transmitter Finite State Machine ASYNC-Mode

ITD04381

IDLE

(-> SetReady)
XPR_INTERRUPT

READY

SENDING

XPR_INTERRUPT[TxCnt<=32]
(-> ContTxLongFrame)

(-> ServeNextFrame)

(-> ServeNextFrame) (-> ContTxLongFrame)
XPR_INTERRUPT[TxCnt>32]

SEND_LONG_FRAME
(-> StartTxLongFrame)

(-> TxShortFrame)
SEND_SHORT_FRAME(-> ServeNextFrame)

SENDING_END

XPR_INTERRUPT[no further frame]

XPR_INTERRUPT[further frame,TxCnT<=32]

XPR_INTERRUPT[further frame,TxCnT>32]
Semiconductor Group 41

SAB 82532
Transmitter – SDL-Diagrams

At the end of this chapter the SDL-diagrams for the transmitter are presented. They provide a brief
overview of the transmitter’s actions.

Figure 25
Action: SetReady

Figure 26
Action: TxShortFrame

ITD04282

XPR_INTERRUPT

READY

IDLE

ITD04383

READY

SEND_SHORT_FRAME

MoveWords(FrameSize)

Cmd: *(Dlc->TxShort)

SENDING_END
Semiconductor Group 42

SAB 82532
Figure 27
Action: ServeXdu

ITD04382

SENDING

XDU_INTERRUPT

CMDR_XRES

SENDING_END

SENDING_END,

ErrMsg(ID_TX_DATA_UNDERRUN)
Semiconductor Group 43

SAB 82532
Figure 28
StartTxLongFrame

ITD04384

READY

SEND_LONG_FRAME

MoveWords(FIFO_SIZE)

Cmd: *(Dlc->TxLong)

SENDING_END

TxCurr = FramePtr
TxCnt = FrameSize

TxCnt- = FIFO_SIZE
TxCurr+ = FIFO_SIZE
Semiconductor Group 44

SAB 82532
Figure 29
Action: ContTxLongFrame

ITD04385

SENDING

XPR_INTERRUPT

TxCnt< = FIFO_SIZE

MoveWords(TxCnt) MoveWords(FIFO_SIZE)

TxCurr+ = FIFO_SIZE
TxCnt- = FIFO_SIZE

Cmd: *(Dlc->TxLong)Cmd: *(Dlc->TxShort)

SENDING_END SENDING

Yes No
Semiconductor Group 45

SAB 82532
Figure 30
Action: ServeNextFrame

SENDING_END

XPR_INTERRUPT

Release(LastFrame)
ActualFrame = NextFrame

ActualFrame
No Yes

MoveWords(TxCnt)
TxCnt = FrameSize
TxCurr = FramePtr

MoveWords(FIFO_SIZE)

TxCnt- = FIFO_SIZE
TxCurr+ = FIFO_SIZE

Cmd: *(Dlc->TxShort) Cmd: *(Dlc->TxLong)

SENDINGSENDING_REST

ITD04386

NoYes
TxCnt< = FIFO_SIZE

READY
Semiconductor Group 46

SAB 82532
5 The Application Module HACVT

HACVT (HDLC- to ASYNC-ConVerTer) converts HDLC-frames received to ASYNC-frames and
vice versa. Since the ESCC2 is able to transfer frames in HDLC-mode as well as in ASYNC-mode
and the ESCC2-device driver supports these transfer modes the application module HACVT can be
designed very easily.

5.1 Structure of the Application Module

Depending on the specific application, all modules used are integrated by executing DdsIntegrate()
(Refer to chapter 3.2). DdsIntegrate() sets the message entry points of the modules which
are necessary to run the application. The message entry points are set by executing
DdskSetMsgEntryPoint (INT16 module, MSG_FCT_PTR_msg_entry).

The application on hand sets the message entry points to the ESCC2-device driver module and to
the application module HACVT itself. After the Device Driver System (DDS) has executed
DdsIntegrate() all modules are initialized by the DDS (Escc2Init(), HaCvtInit()).

5.2 Detailed Description of the Application Module

In addition to the function DdsIntegrate() and the message entry point HaCvtMsgEntry
(CIM_MSG_DESCR_PTR command) the application module contains three routines, which
initialize the module or perform the conversion of the transfer mode: TransCvtInit (…), HdlcToAsync
(…) and AsyncToHdlc (…).

HaCvtInit (CIM_MSG_DESCR_PTR command) sends message to the ESCC2-device driver
module to initialize the data links (ID = INIT_DATA_LINK). The channel identification (entity),
transfer mode (P1), receive mode or termination character (P2) and clock mode (P3) are passed as
parameters of the message. After the initialization the application module receives messages from
the ESCC2-device driver whenever a frame has been received.

There are two kinds of message IDs which are supported: RC_HDLC_FRAME_ESCC2_OK and
RC_ASYNC_FRAME_ESCC2_OK.

If a HDLC-frame has been received the function HdlcToAsync (CIM_MSG_DESCR_PTR cmd) is
executed; if an ASYNC-frame has been received AsyncToHdlc (CIM_MSG_DESCR_PTR cmd) is
executed.

HdlcToAsync (…): All HDLC-frames received on one channel (e.g. ESCC2-channel A) are sent
transparently in ASYNC-mode on the other channel (e.g. ESCC2-channel B). The HDLC-frames
are completed with the termination character, to guarantee correct transfer in ASYNC-mode. The
address byte are not stripped from the HDLC-frame.

AsyncToHdlc (…): All ASYNC-frames received on one channel (e.g. ESCC2-channel B) are sent
transparently in HDLC-mode on the other channel (e.g. ESCC2-channel A). From the ASYNC-
frame received the termination character (e.g. AAH) is stripped.
Semiconductor Group 47

SAB 82532
ITS04324

J 1

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31

1A
A 2
A 3
A 4
A 5
A 6
A 7
A 8
A 9

A 10
A 11
A 12
A 13
A 14
A 15
A 16
A 17
A 18
A 19
A 20
A 21
A 22
A 23
A 24
A 25
A 26
A 27
A 28
A 29
A 30
A 31

IOCHCK
D 7
D 6
D 5
D 4
D 3
D 2
D 1
D 0
ID_CH_RDY
AEN
ADDR19 H_A 19

H_AADDR18
H_AADDR17
H_AADDR16
H_AADDR15
H_AADDR14
H_AADDR13
H_AADDR12
H_AADDR11
H_AADDR10
H_AADDR 9
H_AADDR 8
H_AADDR 7
H_AADDR 6
H_AADDR 5
H_AADDR 4
H_AADDR 3
H_AADDR 2
H_AADDR 1
H_AADDR 0 0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

7
6
5
4
3
2
1
0H_D

H_D
H_D
H_D
H_D
H_D
H_D
H_D

GND
RESETDRV

V+5
IRQ2
-5 V
DRQ2

V-12
DWS
+12 V
GND
MEMW
MEMR
IOW
IOR
DACK
DRQ3

3

1
1DRQ

DACK

DACK0
CLK
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
DACK2
TC
ALE
+5 V
OSC
GND

GND SSV

IBM Con

2 1

A4U

04HCT74
1 k Ω

R1

C1
1 nF

GND

+5VCCVVDD

SW1

GND

3

U1A

&

HC74 08

2

1

+5 V

R2
10 Ωk

4

5

0874 HC

&

B1U

6

PC Edge Connector
CPU Reset

3 2

126HCT74

6 5

1

4
74 HCT126

U 2A

U 2B

HIOW
HMEMR
HMEMW

(0...7)

HIORDY
HAEN

H_D

H_A (0...19)

SWRST
RST

IRQ3EN

HINTR

IRQSEN

89

GNDGND

U 2 C
74 HCT 126

10

13

126HCT74
D2U

GND GND

12 11

1=

A3U
1

2
3

74 HCT32

GND

Appendix A

Figure 31
PC-Host Bus
Semiconductor Group 48

SAB 82532
Figure 32
Main Block Diagram

H_A (0...19)

H_D (0...7)
H_A (0...19)
H_D (0...7)

HMEMR
HMEMW

HIOW

HIORDY
HAEN

HINTR
SWRST

RST

IRQ5EN
IRQ3EN

H_A (0...19)
H_D (0...7)
HMEMR
HMEMW
HIOW
HAEN
DPBSY
RST
SWRST
HINTR
IRQ3EN
IRQ5EN

PC_D (0...7)
PC_A (0...19)

PC_RD
PC_WR
PC_CE
HINTR

DPBSY
RST

Transceivers,
Latches ...

PC Bus InterfacePC Bus

Connector
IBM

PC Interface Unit

H_A (0...19)

H_D (0...7)
a)

b)DACK (A,B)

DR (A,B)

ADDR (0...17)

DATA (0...15)

RSTOUT

RBUSY

DPINT

RST

ALE

EPROM

SR_O

SR_E

DP_E

P_CS_1

P_CS_0

DP_O

RD

WR

NMI

P2. (0...15)

P3. (0...15)

P5. (0...9)

P3.33

c)

RBUSY
DPINT
NMI
RST

ADDR (0...17)
DATA (0...15)

P2. (0...15)
P3. (0...15)
P5. (0...9)

ALE
RD

RSTOUT
EPROM

SR_E

DP_E
DP_O

SR_O

P_CS_1
P_CS_0

Coprocessor

SAB 80C166

Coprocessor Unit
ITS04388
Semiconductor Group 49

SAB 82532

Semiconductor Group 50

ESCC2

ITS05574

P2.15
P2.14
P2.1
P2.2
P3.12

ADDR (0...17)
DATA (0...15)
RD
WR
HOLD
HOLDA
INT ESCC2
INT ADMA
BHE
DACK (A,B)
DR (A,B)
P_CS_1
RSTOUT

SAB
82258

ADMA

PC_A (0...19)
PC_D (0...7)
PC_RD
PC_WR
PC_CE
HINTR
DPBSY
RST

ADDR (0...17)
DATA (0...15)

RD
WR

DP_O
DP_E

DPINT
RBUSY

RST

ITD 71321

Dual Port RAM

a)
PC_A(0...19)
PC_D (0...17)

b)
DACK (A,B)

DR (A,B)

ADDR (0...17)

DATA (0...15)

RSTOUT

DPINT

RBUSY

RST

ALE

EPROM

SR_O

SR_E

DP_O

DP_E

P_CS_1

P_CS_0

RD

WR

NMI

P2. (0...15)

P3. (0...15)

P5. (0...9)

SAB 82532

ADDR (0...17)
DATA (0...15)
P2. (0...15)
P3. (0...15)
P5. (0...9)
RSTOUT
ALE
RD

P_CS_0

DACK (A,B)
DR (A,B)

c)

Memory

RAM and EPROM

ADDR (0...17)
DATA (0...15)
RD
WR
EPROM
SR_O
SR_E

SAB 82532
Figure 33
PC-Bus Interface-Logic

e)

=1

HINTR

DPBSY

H D (0... 7)

H A (0...19)

19
1

2
3
4
5
6
7
8
9

DBUSEN

18
16
14
12
9
7
5
3

GND 74HCT244

1 1G
2G19

U8

1A1
1A2
1A3
1A4
2A1
2A2
2A3
2A4

1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4

PC A16
PC A17
PC A18
PC A19

H A16
H A17
H A18
H A19

2
4
6
8

11
13
15
17

AEN
MEMR>
MEMW>
IOW>

HAEN
HMEMR
HMEMW
NICW

SWRST

RST

AEN

74HCT32

6
5

U3B
4

GND SW DIP-8

SW2

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

ITS04325

PC_A2
PC_A3
PC_A4
PC_A5
PC_A6
PC_A7
PC_A8
PC_A9

4 5 6 7 8 92 3

1 8 x 10k
RP1+5V

Ω

GND

2A4
2A3
2A2

1A4
1A3
1A2

2G
1G

2A1

1A1

2Y4
2Y3
2Y2
2Y1
1Y4
1Y3
1Y2
1Y1

U7

1
19

2

11

15
17

13

6
8

4

74HCT244

18

9

3
5
7

12
14
16

H A12
H A13
H A14
H A15

H A8
H A9
H A10
H A11

PC A12
PC A13
PC A14
PC A15

PC A8
PC A9
PC A10
PC A11

d)

H A6 PC A65
3 PC A7

14
12

7
9

16
18

PC A2
PC A3
PC A4
PC A5

PC A0
PC A1

2A3
2A4
1G

2Y3
2Y4

1A2
1A3
1A4

2A2
2A1

1A1 1Y1
1Y2
1Y3
1Y4
2Y1
2Y2

2G

1
19

GND 74HCT244

U6

15
17

6

11
13

8

2
4

H A7

H A0
H A1
H A2
H A3
H A4
H A5

U5

74HCT245

PC D414

B6
B5

B8
B7

13

11
12

PC D5
PC D6
PC D7

B4
B3
B2
B1

18
17

15
16

PC D0
PC D1
PC D2
PC D3A4

A5
A6
A7
A8

A1
A2
A3

DIR
G

H A4

H A7
H A6
H A5

H A3
H A2
H A1
H A0

c)

b)

a)

PC D1
PC D0

PC D2
PC D3
PC D4
PC D5
PC D6
PC D7

PC D7
PC D6
PC D5
PC D4
PC D3
PC D2
PC D1
PC D0
Semiconductor Group 51

SAB 82532
a)

b)

c)

HINTR

DPBSY
PC D (0...7)

PC A (0...19)

U1C

U1D

9
10

& 8

74HC08

74HC08

11
13
12

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

2
5
6
9
12
15
16
19

3
4
7
8

13
14
17
18
11
1

D1
D2
D3
D4
D5
D6
D7
D8
CLK

CLR

EN 2K
EN 4K
X A13
X A14
X A15
X A16
X A17
X A18

74HCT273

U12

11
1

18

14
17

8
13

4
7

3

D7

CLK
CLR

D8

D3

D5
D6

D4

D1
D2

U13

19
16
15
12
9
6
5
2

Q7
Q8

Q3

Q6
Q5
Q4

Q2
Q1

74HCT273

IRQ3EN
IRQ5EN

&

U14B

6 &

74HCT00

U14C

&

74HCT00

4
5

8 9
10

TRQ3EN
TRQ5EN

PC RD

PC WR

PC CE

RST

ITS05572

74HCT00

&

U14A

2
1 3

10
9

74HCT32

=1

U3C

8
ENDPRAM

PC A19

e)

P0
P1
P2
P3
P4
P5
P6
P7
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
G

P-Q
2
4
6
8

11
13
15
17

3
5
7
9

12
14
16
18
1

U9

74HC688

15 P5

Q5

1
18
16

Q7
G

Q6

14
12
9
7

3
5

17

Q1

Q3
Q4

Q2

P7
Q0

P6

6

11
13

8

2
4

P4

P2
P3

P1
P0

U11

P-Q
19X_A11

X_A12
X_A13
X_A14
X_A15
X_A16
X_A17
X_A18
PC_A11
PC_A12
PC_A13
PC_A14
PC_A15
PC_A16
PC_A17
PC_A18

74HC688

2
3

4
5
6
7

U10A

Y0
Y1

Y3
Y2

G

B
A

PC_A0
PC_A1

1

74HCT139

19
Semiconductor Group 52

SAB 82532
ADDR (0...17)

DATA (0...15)

P3. (0...15)

P2. (0...15)

P5. (0...9)

RBUSY

RST

DPINT

NMI

Pullup2
VCC

GND

a)
b)

c)

U19
10
83
84
85
86
87
88
89
90
93
94
95
96
97
98
99
100
15
16
17
18
19
20
21
22
25
26
27
28
29
30
31
32
1
2
11
65
66
67
68
69
70
71
72
73
74
75
76
77
80
81
82

DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
DATA8
DATA9
DATA10
DATA11
DATA12
DATA13
DATA14
DATA15
ADDR0
ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9
ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15
ADDR16
ADDR17
RD
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P3.8
P3.9
P3.10
P3.11
P3.12
P3.13
P3.14
P3.15

ALE
P0.0 / AD0
P0.1 / AD1
P0.2 / AD2
P0.3 / AD3
P0.4 / AD4
P0.5 / AD5
P0.6 / AD6
P0.7 / AD7
P0.8 / AD8
P0.9 / AD9

P0.10 / AD10
P0.11 / AD11
P0.12 / AD12
P0.13 / AD13
P0.14 / AD14
P0.15 / AD15

P1.0 / A0
P1.1 / A1
P1.2 / A2
P1.3 / A3
P1.4 / A4
P1.5 / A5
P1.6 / A6
P1.7 / A7
P1.8 / A8
P1.9 / A9

P1.10 / A10
P1.11 / A11
P1.12 / A12
P1.13 / A13
P1.14 / A14
P1.15 / A15
P4.0 / A16
P4.1 / A17

P3.0 / T0IN
P3.1 / T6OUT
P3.2 / CAPIN

P3.3 / T3OUT
P3.4 / T3EUD

P3.5 / T4IN
P3.6 / T3IN
P3.7 / T2IN
P3.8 / TXD1
P3.9 / RXD1

P3.10 / TXD0
P3.11 / RXD0

P1.12 / BHE
P1.13 / WR

P1.14 / READY
P1.15 / CLKOUT

d)

e)
f)

g)

h)

ADDR0

ADDR (11...17)

P3.12 / BHE

P3.14 / READY

ITS0431780C166

P2.0

12
13
14

9
8

39
40
33
34
35
36
37
38
41
42
43
44
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
6
7

24
45
63
79
91
5
4
3

23
46

RSTIN
RSTOUT
NMI
EBC0
EBC1

P5.0 / AN0
P5.1 / AN1
P5.2 / AN2
P5.3 / AN3
P5.4 / AN4
P5.5 / AN5
P5.6 / AN6
P5.7 / AN7
P5.8 / AN8
P5.9 / AN9
P2.0 / CC0IO
P2.1 / CC1IO
P2.2 / CC2IO
P2.3 / CC3IO
P2.4 / CC4IO
P2.5 / CC5IO
P2.6 / CC6IO
P2.7 / CC7IO
P2.8 / CC8IO
P2.9 / CC9IO
P2.10 / CC10IO
P2.11 / CC11IO
P2.12 / CC12IO
P2.13 / CC13IO
P2.14 / CC14IO
P2.15 / CC15IO

XTAL1
XTAL2

AREFV

AGNDV
P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.6
P5.7
P5.8
P5.9
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P2.8
P2.9

SS

SSV
V

V

SS

SS
V

SS

SS
V
V

VSS

VCC
V

V
V

V
V

CC

CC

CC

CC

CC

64
78
92

CCV

GND

X1

PMI

OSX 40MHz

VCC

VCC

GND

GND

Ι

RD

Figure 34
SAB 80C166 - CPU Block
Semiconductor Group 53

SAB 82532
RSTOUTRSTOUT

ALE

a)

b)

c)

U4C

56READY

d)

e)
f)

g)

h)

ADDR (11...17)

ADDR0

RD

74HCT04

U18

ADDR11

ADDR12

ADDR13

ADDR14

ADDR15

ADDR16

ADDR17

ADDR0

RSTOUT

BHE

RD

1

2

3

4

5

6

7

8

9

10

11

13

14

23

P3.14 READY

P3.12 BHE

Ι 1

Ι 2

Ι 3

Ι 4

Ι 5

Ι 6

Ι 7

Ι 8

Ι 9

Ι 10

Ι 11

Ι 12

Ι 13

Ι 14

O1

O2

O3

O4

O5

O6

O7

O8

22

21

20

19

18

17

16

15 P CS 0

DP_E

DP_O

SR_E

SR O

RSTOUT

EPROM

P CS 1

RD

ITS05569

20L8
Chip Select Decoder
Semiconductor Group 54

SAB 82532
 Figure 35
 RAM and EPROM

ADDR (0...17)

DATA (0...15)
a)

b)

c)

d)

e)

f)

EPROM

RD

SR O

SR E

WR

ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9
ADDR10
ADDR11
ADDR12
ADDR13
ADDR14

10
9
8
7
6
5
4
3

25
24
21
23

2
26
20
22
27

1 PCM
OE
CE

A12
A13

A11

A9
A10

A8

A6
A7

A5

A3
A4

A2
A1
A0

VPP

CCV

DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA721

20
19
18
17
15
14
13

D0

D7

D5
D6

D4

D1
D2
D3

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9
ADDR10
ADDR11
ADDR12
ADDR13
ADDR14

ADDR1

A9

27
22
20
26

21
23

OE

PP

PCM1
V

A13
A12
A11
A10

CE

2

24
25

10

A3

A63

A8
A7

5
4

6

A5
A4

A09
8
7 A2

A1

D3
D4
D5
D6
D7

21

19
20

18

D0
D1
D2

15
17

14
13

DATA15
DATA14
DATA13
DATA12
DATA11
DATA10
DATA9
DATA8

27128

CCV

U21

U20

27128

ITS04316
Semiconductor Group 55

SAB 82532
ADDR (0...17)

DATA (0...15)
a)

b)

ADDR1

ADDR2

ADDR3

ADDR4

ADDR5

ADDR6

ADDR7

ADDR8

ADDR9

ADDR10

ADDR11

ADDR12

ADDR13

ADDR14

ADDR15

ADDR16

ADDR17

29

24

22

2

31

3

28

4

25

23

26

27

5

6

7

8

9

10

11

12

U22

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

WE

OE

CE N.C.

N.C.

1

30

21

20

19

18

17

15

14

13

DATA10

DATA15

DATA14

DATA13

DATA12

DATA11

DATA9

DATA8

628128

ADDR17

ADDR16

ADDR15

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

24

29

22

31

2

3

4

28

25

26

23

27

ADDR8

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

10

6

5

7

8

9

11

12

WE

A13

A16

OE

CE

A15

A14

A10

A12

A11

A9

A8

A7

A6

A5

A4

A3

A2

U22

A1

A0

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

15

21

20

19

18

17

14

13

O7

O6

O5

O4

O3

O2

O1

O0

O7

O4

O6

O5

O3

O2

O1

O0

f)

e)

c)

d)

RD

SR O

SR E

WR

628128

N.C.

N.C.
30

1

ITS05568
Semiconductor Group 56

SAB 82532

Semiconductor Group 57

Figure 36
ESCC2 - Serial Port

ADDR (0...17)

DATA (0...15)

P2. (0...15)

P3. (0...15)

RSTOUT

GND

+
1 Fµ
C4

C 2
1 Fµ

C 5

1 Fµ
C3
1 Fµ

+ +

+
GND

LT1081

P3.10

P3.11

11
10
12
9
1
3
4
5
2
6

REC1IN
REC2IN

TR2OUT
TR1OUT

RES
A0
A1
A2
A3
A4
A5
A6
D0
D1

14
7
13
8

GND

U24
a)

X2

C
22pF

7
22pF

6C16 MHz

GNDGND
U25

GND

GND

GND

5
9
4
8
3
7
2
6
1

P1

DB9

RD

P_CS_0

GND

P5. (0...9)

ALE

P_CS_1

NMI

VCC

CCV

VCC

b)

c)

ITS04389

ESCC2

8

59
60

5

7
6

3
4

2
28

58
57
56
55
54
53
52
51
50
49
48
47
46
45
9

12
11
10
13
22
29
26
25
24
23

D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
ALE
WR / R / W
RD / DS
BHE / BLE
CS
DTACR
WIDTH
INT
INTA
IE0
IE1

REC1OUT
REC2OUT

TR2IN
TR1IN

C1+
C1
C2+
C2
V+
V

P3.13

P3.12

P2.1

DACKB
DRRB
DRTB

DACKA
DRRA
DRTA

P7
P6
P5
P4
P3
P2
P1
P0

RXCLKB
TXCLKB

CDB
CTSB / CXDB

RTSB
RXDB
TXDB

RXCLKA
TXCLKA

CDA
CTSA / CXDA

RTSA
RXDA
TXDA

XTAL2
XTAL1

38
37
17
14
15
16
42
44
43
18
21
20
19
41
39
40
62
63
64
65
66
67
68
1
34
32
36
33
31
35

SAB 82532

Semiconductor Group 58

VCC

1

RPACK1
R-PACK8

9 8 7 6 5 4 3 2

a) TxDA
RxDA
RTSA
CTSA / CxDA
CDA
TxCLKA
RxCLKA
TxDB
RxDB
RTSB
CTSB / CxDB
CDB
TxCLKB
RxCLKB

JP2
JUMPER

JP2
JUMPER

b)

c)

3
2
6
7
4

14
15
11
10

ENA
AIN
ENB
BIN
MODE

AOUT
AOUT
BOUT
BOUT

GND AM26LS30

U26

AM26LS32

U27

12
4

11
13

5
3

GND

GND

1
2
7
6

14
15
10
9

AOUT
BOUT
COUT
DOUT
EN
EN

AIN
AIN
BIN
BIN
CIN
CIN
DIN
DIN

P2

1
6
2
7
3

4

5
9

8

CONNECTOR DB9

CONNECTOR DB9

5
9
4
8
3
7
2
6
1

P3

ITS04390

SAB 82532

Semiconductor Group 59

Figure 37
Communication System: ESCC2, ADMA and SAB 80C166

PC_D(0...7)

EVEN

ODD

Y0
Y1
Y2
Y3

A
B

G

4
5
6
7

2
3

1

U15A

74HC139

PC_A0

PC_A(0...19)

PC_CE

Pullup2

Pullup1

U16

RST

PC_WR

PC_RD

DPBSY

HINTR 4 3

74HCT04

U4B

1
2
3
4
6

17
18
19
20
21
22
23
24
7
8
9

10
11
12
13
14
15
16

5

PC_D0
PC_D1
PC_D2
PC_D3
PC_D4
PC_D5
PC_D6
PC_D7
PC_A1
PC_A2
PC_A3
PC_A4
PC_A5
PC_A6
PC_A7
PC_A8
PC_A9
PC_A10
PC_A11

+ 5 V
1

2 3 4 5 6 7 8 9

R P2
8 x 1 k Ω

RST

CEL
R / WL
BUSYL
INTL
OEL
D0L
D1L
D2L
D3L
D4L
D5L
D6L
D7L
A0L
A1L
A2L
A3L
A4L
A5L
A6L
A7L
A8L
A9L
A10L

CER
R / WR
BUSYR

INTR
OER
D0R
D1R
D2R
D3R
D4R
D5R
D6R
D7R
A0R
A1R
A2R
A3R
A4R
A5R
A6R
A7R
A8R
A9R

A10R

51
50
49
48
46
27
28
29
30
31
32
33
34
45
44
43
42
41
40
39
38
37
36
47

DATA5

ADDR6

ADDR10
ADDR11

ADDR8
ADDR9

ADDR7

ADDR2

ADDR4
ADDR5

ADDR3

DATA7
ADDR1

DATA6

DATA1

DATA3
DATA4

DATA2

DATA0

DATA (0...15)

ADDR (0...17)

DP E

22PC_D5

12PC_A6

PC_A11
PC_A10
PC_A9
PC_A8
PC_A7

16
5

13
14
15

PC_A5
PC_A4
PC_A3
PC_A2
PC_A1
PC_D7
PC_D6

8

10
11

9

23
24
7

PC_D4
PC_D3
PC_D2
PC_D1
PC_D0

18
19
20
21

17

4
6

2
3

1

ADDR11
ADDR10
ADDR9
ADDR8
ADDR7
ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
DATA15
DATA14
DATA13
DATA12
DATA11
DATA10
DATA9
DATA8

D5L D5R 32

A10L
A9L
A8L
A7L
A6L
A5L
A4L
A3L
A2L
A1L

D7L
A0L

D6L

40

A9R
A10R

A5R
A6R
A7R
A8R

36
47

38
37

39

A3R
A4R

A2R
A1R
A0R
D7R
D6R

44

42
41

43

34
45

33

BUSYL

D1L

D3L
D4L

D2L

OEL
INTL

D0L

R / WL
CEL

U17

BUSYR

D1R

D4R
D3R
D2R

D0R
OER
INTR

28

30
31

29

27
46
48

R / WR
CER

49
50
51

DP O

WR

RBUSY

DPINT

RD

ITS04395

SAB 82532
Appendix B

PAL-Description File

TITLE DECODER_PAL1

; This decoder-PAL generates the appropriate chip select signals for EPROM, static RAM,
; Dual Port RAM and peripherals on the SAB 80C166 Evaluation Board.

CHIP MEM_DEC1 PALCE20V8

STRING EPROM_ADDR_SELECT ‘(A17 × A16 × A15)’
;00000H–07FFFH

STRING DPRAM_ADDR_SELECT ‘(A17 × A16 × A15 × A14 × A13 × A12)’
;0E000H–0EFFFH

STRING PERI_ADDR0_SELECT ‘(A17 × A16 × A15 × A14 × A13 × A12 × A11 × A10)’
;0F000H–0F3FFH

STRING PERI_ADDR1_SELECT ‘(A17 × A16 × A15 × A14 × A13 × A12 × A11 × A10)’
;0F400H–0F7FFH

EQUATIONS

EPROM_CS = EPROM_ADDR_SELECT × RD × RSTOUT
PERI_CS_0 = PERI_ADDR0_SELECT
PERI_CS_1 = PERI_ADDR1_SELECT
DPRAM_CS_ODD = DPRAM_ADDR_SELECT × BHE
DPRAM_CS_EVEN = DPRAM_ADDR_SELECT × A0
SRAM_CS_ODD = (EPROM_ADDR_SELECT × (RSTOUT + RSTOUT × RD))

× PERI_ADDR0_SELECT
× PERI_ADDR1_SELECT
× DPRAM_ADDR_SELECT
× BHE

SRAM_CS_EVEN = (EPROM_ADDR_SELECT × (RSTOUT + RSTOUT × RD))
× PERI_ADDR0_SELECT
× PERI_ADDR1_SELECT
× DPRAM_ADDR_SELECT
× A0
Semiconductor Group 60

SAB 82532
Appendix C

Source Code

Because of its volume, the source code is not attached to this description. On request, we’ll send
you the complete listing on floppy disk.
Semiconductor Group 61

	1 Introduction
	2 Hardware of the HDLC/ASYNC Converter
	3 Device Driver System
	3.1 Overview
	3.2 General Module Architecture
	3.3 Integration of Modules
	3.4 The Example “HDLC-ASYNC Converter”
	3.5 Application Program Interface

	4 The ESCC2-Device Driver Module
	4.1 Overview
	4.2 Basic Data Structure of the ESCC2-Device Drive...
	4.3 ESCC2-Device Driver Module Entries
	4.3.1 The Message Entry Point
	4.3.2 The Interrupt Entry Point

	4.4 General Architecture of the ESCC2-Device Drive...
	4.4.1 Initialization and Control Routines
	4.4.2 Receiver and Transmitter

	5 The Application Module HACVT
	5.1 Structure of the Application Module
	5.2 Detailed Description of the Application Module...

