

FEATURES

- 16 Analog Channels
- Independently User Configurable
- Programmable Gain And Offset
- Programmable bypass, 4 or 8 pole filtering
- Over Voltage Protection
- Single 5 Volt Operation
- 160 Lead Thin Quad Flatpack
- Available In Die Form

APPLICATIONS

- **Munitions Testing**
- General Analog Signal Conditioning
- Sensor Integration
- Industrial Instrumentation
- **Patient Monitoring**
- System Health Monitoring

GENERAL DESCRIPTION

The 16 Channel Input Signal Conditioner (ISC) IC provides analog signal conditioning that is required for many sensors in today's modern instrumentation systems. The ISC chip has 16 analog input channels that can be independently amplified, offset, and filtered. The 16 channels can be accessed independently or multiplexed into one analog channel for output. The channel gain, offset, and filtering bandwidth are channel independent and digitally controlled through a digital configuration interface.

A detailed drawing of the 16 Channel ISC IC is shown in Figure 1.

Table 1 lists the number of channels and supported bandwidth per channel that can be available using the 16 Channel ISC IC assuming a 120K samples per second rate at the output of the ISC DAC.

Table 1: System Channels vs. Bandwidth						
Number of Channel s	Samples per Second per Channel	Bandwidth Supported for 2X oversampling				
1	120K	60 KHz				
2	60K	30 KHz				
4	30K	15 KHz				
16	7.5K	3.75 KHz				

The digitally programmable amplifier has a gain range from 1 to 100 in 256 steps. The offset is programmable in 0.014 Volt increments over 3.54 Volts (256 steps) centered about the voltage reference. A channel's filter programmability is based on a 4 bit divisor referenced off the system clock. The following are some possible corner frequencies: 60K, 30K, 15K, 7.5K, 3.75K, 1.875K, 938, 469, 234, 117, and 59.

16 Channel ISC Integrated Circuit

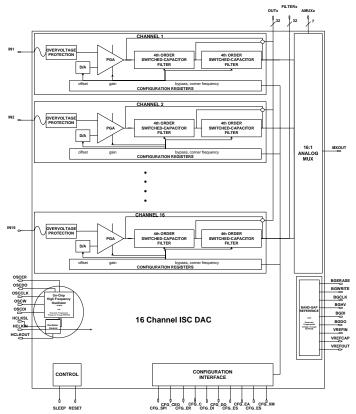
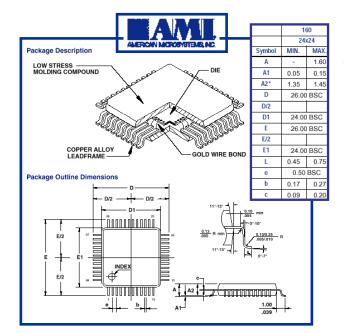


Figure 1: Functional Block Diagram

PROGRAMMING

The 16 Channel ISC IC initializes in a power-up default configuration that is hard-coded in the internal logic. If the chip is in configuration mode, a configuration file is loaded via the configuration interface from an external PROM. The configuration file contains the configuration data for the device(s).


Multiple Devices with different configurations can be connected together in a "daisy chain", and a single combined bit stream used to configure the chain of devices as shown in Figure 2.

The ISC configuration data contains the following:

- Offset for each channel
- Gain for each channel
- Filter Control
 - Bypass
 - Corner Frequency
 - Order (4/8)

Configuration software is available for the PC environment.

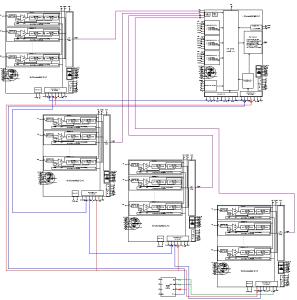


Figure 2: 64 Channel HSTSS PCM DAC System

SPECIFICATIONS

Parameter		Symbol	Min	Тур	Max	Units
Power Requirements						
O h . \ / - lt	Digital	V_{DDD}	4.5	5.0	5.5	V
Supply Voltage	Analog	V_{DDA}	4.5	5.0	5.5	V
Supply Current	Operating	I _{DD}			180	mA
Supply Current	Low-Power	I _{PD}		TBD		uA
Power	Operating				900	mW
Consumption	Low-Power			TBD		uW
Dynamic Specifications						
Operating Ambient Temperature		T_A	-40	25	85	°C
Voltage Reference		V_{REF}	1.5	2.25	2.5	V
Clock Frequency		F _C		23		MHz
Analog Frequency Response			DC		240K	Hz
Signal to Noise		S/N	54			dB
Total Harmonic Distortion		THD			0.14	%
Interchannel Isolation				60		dB
Interchannel Gain Mismatch					±0.5	dB
Absolute Gain Error				± 1	± 2	%
Gain Drift				100	200	ppm/°C
Analog Inputs						
Signal Input Span		V_{pp}	0.1*V _{REF}		1.8*V _{REF}	V
Input Capacitance		C _{INA}			15	pF
Input Resistance		R _{INA}	1M			Ω
Analog Outputs						
Signal Output Span		M _{OUT}	0.1*V _{REF}		1.8*V _{REF}	V
Output Resistance		R _{OA}		600	1K	Ω
External Load Capacitance		C_{LA}			20	pF
External Load Resistance		R_{LA}	10K			Ω
Clock						
Duty Ratio		CLK	45	50	55	%
Clock High Voltage		V _{CLKH}	$0.7xV_{DDD}$		V_{DDD}	V
Clock Low Voltage		V _{CLKL}	0		$0.3xV_{DDD}$	V
Digital Inputs and Outpu	ts					
Input High Voltage		V_{INHD}	2.4		V_{DDD}	V
Input Low Voltage		V_{INLD}	0		0.8	V
Input Current		I _{IND}			± 1	μΑ
Input Capacitance		C _{IND}			10	pF
Output High Voltage		V_{OHD}	4.0		V_{DDD}	V
Output Low Voltage		Voln	0		0.4	V

©2000 Systems & Processes Engineering Corporation – SoC Products 101 West Sixth Street, Suite 200, Austin, Texas 78701-2932 Tel: 512/479-7732 Fax: 512/494-0756

e-mail: socproducts.info@spec.com URL: http://www.spec.com REV A1-5

EXAMPLE APPLICATION

The 16 Channel ISC IC was originally developed to support expandability for the 4 Channel PCM IC (PMIC-DVC-101) and the HSTSS PCM DAC architecture. In the architecture shown in Figure 2, four 16 Channel ISC DACs provide 64 signal conditioned channels to be sampled by a single 4 Channel PCM IC.

PACKAGING

The Thin Quad Flatpack (TQFP) plastic package family is a reduced thickness plastic surface mount package. The 160 lead TQFP packages are constructed using the latest wire bonding and molding technology to provide surface mount packages with a body thickness of 1.0 or 1.4mm. This package finds many applications where size and weight are a critical factor.

The 16 Channel ISC IC will be available in die form.

