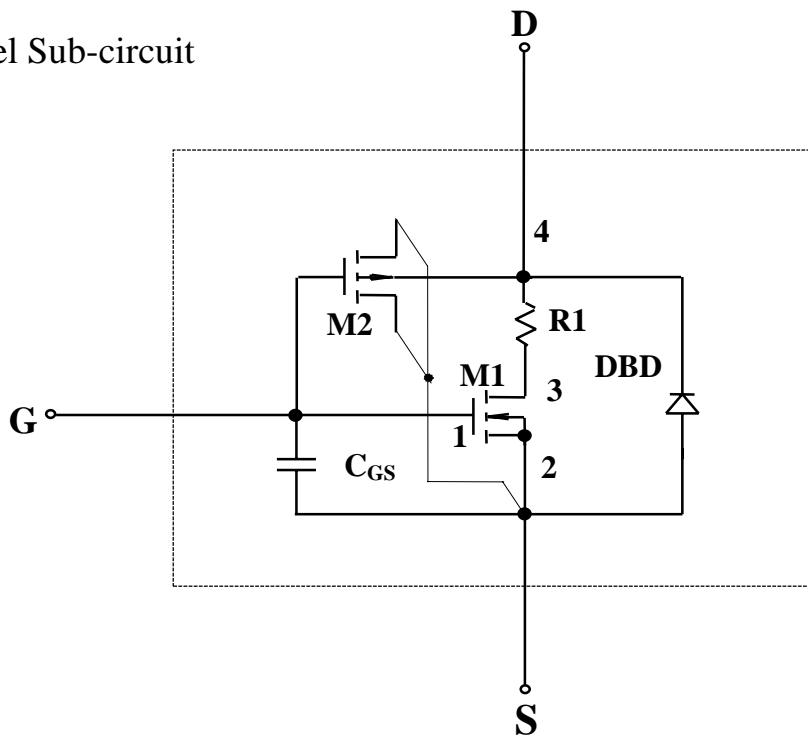


N-Channel Reduced Qg, Fast Switching MOSFET

Characteristics


- N-channel Vertical DMOS
- Macro-Model (Sub-circuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The sub-circuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to 10 volts gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain

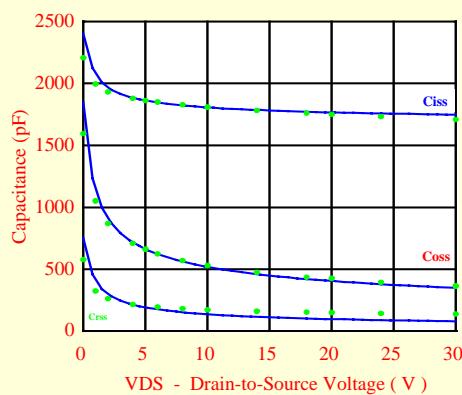
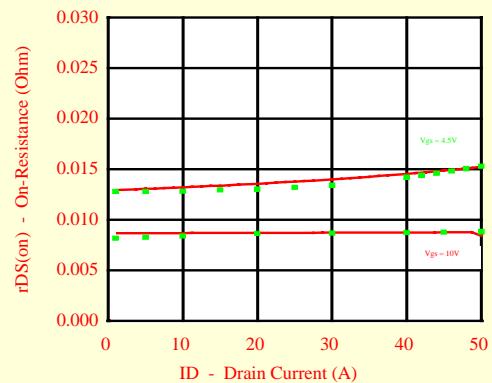
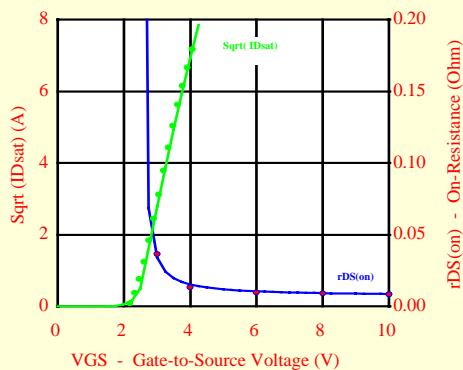
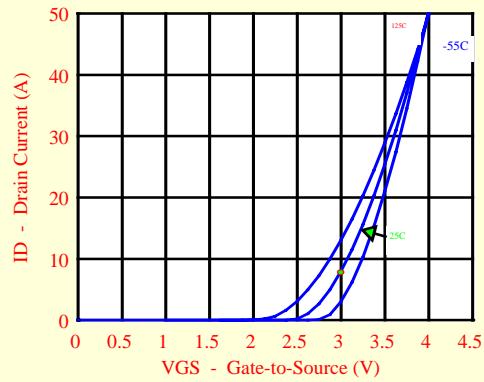
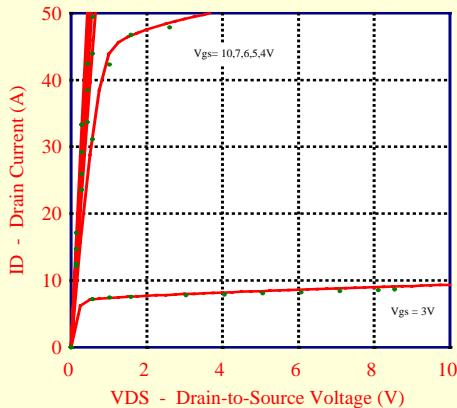
feedback capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched C_{gd} model. Model parameter values are optimized to provide a best fit to measure electrical data and are not intended as an exact physical description of a device.

Model Sub-circuit

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPICE Device Model SI4884DY

Model Evaluation







N-Channel Device ($T_J=25^\circ\text{C}$ Unless Otherwise Noted)

Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(\text{th})}$	$V_{DS} = V_{GS}$, $I_D = 250\mu\text{A}$	1.73	V
On-State Drain Current ^a	$I_{D(\text{on})}$	$V_{DS} \geq 5\text{V}$, $V_{GS} = 10\text{V}$	508	A
Drain-Source On-State Resistance ^a	$r_{DS(\text{on})}$	$V_{GS} = 10\text{V}$, $I_D = 12\text{A}$ $V_{GS} = 4.5\text{V}$, $I_D = 10\text{A}$	0.0087 0.0132	Ω
Forward Transconductance ^a	g_{fs}	$V_{DS} = 15\text{V}$, $I_D = 12\text{A}$	34	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 2.3\text{A}$, $V_{GS} = 0\text{V}$	0.74	V
Dynamic ^b				
Total Gate Charge	Q_g	$V_{DS} = 15\text{V}$, $V_{GS} = 5\text{V}$, $I_D = 12\text{A}$	15.3	nC
Gate-Source Charge	Q_{gs}		5.8	
Gate-Drain Charge	Q_{gd}		4.8	
Turn-On Delay Time	$t_{d(\text{on})}$	$V_{DD} = 15\text{V}$, $R_L = 15\Omega$ $I_D \approx 1\text{A}$, $V_{GEN} = 10\text{V}$, $R_G = 6\Omega$	10	ns
Rise Time	t_r		14	
Turn-Off Delay Time	$t_{d(\text{off})}$		30	
Fall Time	t_f		52	
Source-Drain Reverse Recovery Time	t_{rr}	$I_F = 2.3\text{A}$, $di/dt = 100\text{A}/\mu\text{s}$	44	

Notes:

- a) Pulse test: pulse width $\leq 300\ \mu\text{s}$, duty cycle $\leq 2\%$
- b) Guaranteed by design, not subject to production testing

Comparison of Model with Measured Data
($T_J=25^\circ\text{C}$ Unless Otherwise Noted)

