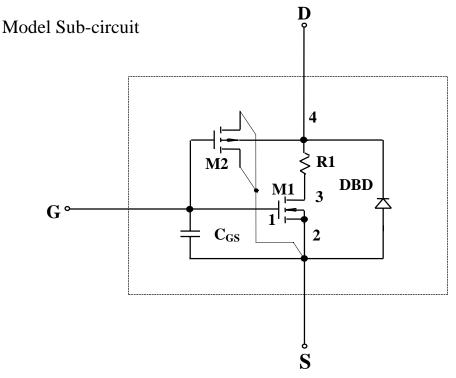


N-Channel Reduced Qg, Fast Switching MOSFET


Characteristics

- N-channel Vertical DMOS
- Macro-Model (Sub-circuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The sub-circuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to 10 volts gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain

feedback capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measure electrical data and are not intended as an exact physical description of a device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

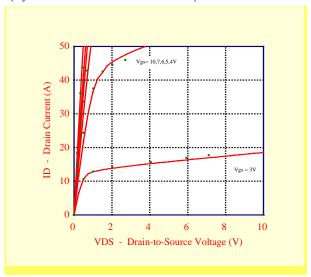
Siliconix 4/17/01 Document: 71600

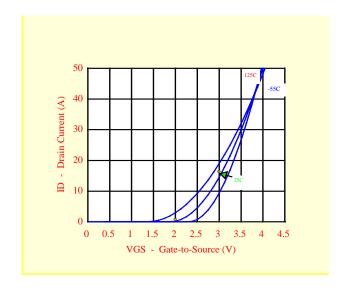
SPICE Device Model SI4890DY

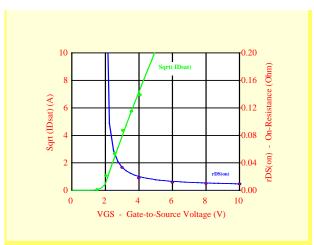
N-Channel Device (T_J=25°C Unless Otherwise Noted)

Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2	V
On-State Drain Current ^a	$I_{D(on)}$	$V_{DS} \ge 5V$, $V_{GS} = 10V$	434	A
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10V, I_D = 11A$	0.0096	Ω
		$V_{GS} = 4.5V, I_D = 9A$	0.0178	
Forward Transconductance ^a	g_{fs}	$V_{DS} = 15V, I_D = 11A$	26	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 2.3A, V_{GS} = 0V$	0.80	V
Dynamic ^b				
Total Gate Charge	Q_{g}		14.5	
Gate-Source Charge	Q_{gs}	$V_{DS} = 15V, V_{GS} = 5V,$	3.3	nC
		$I_D = 11A$		
Gate-Drain Charge	Q_{gd}		6.6	
Turn-On Delay Time	$t_{d(on)}$		7.7	
Rise Time	$t_{\rm r}$	$V_{DD} = 15V, R_L = 15\Omega$	12.3	
Turn-Off Delay Time	$t_{d(off)}$	$I_D \cong 1A, V_{GEN} = 10V,$	18	ns
		$R_G = 6\Omega$		
Fall Time	$t_{ m f}$		41	
Source-Drain Reverse Recovery Time	t_{rr}	$I_F = 2.3A$, $di/dt = 100A/\mu s$	35	

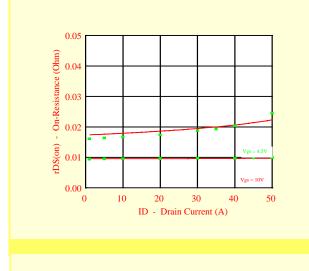
Notes:

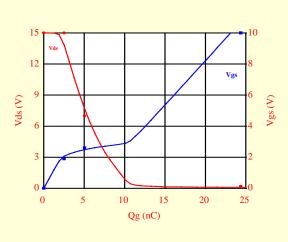

- a) Pulse test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$ b) Guaranteed by design, not subject to production testing


Siliconix 4/17/01 Document: 71600



Comparison of Model with Measured Data (T_J=25°C Unless Otherwise Noted)





VDS - Drain-to-Source Voltage (V)

Ciss

Siliconix 4/17/01 Document: 71600

1800 1500

1200

900600300

0

Capacitance (pF)