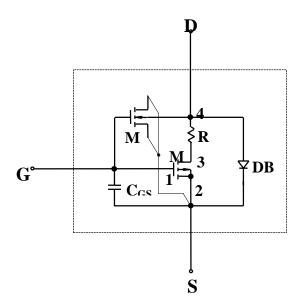
SPICE Device Model Si5435DC

P-Channel 30-V (D-S) MOSFET

Characteristics


- P-channel Vertical DMOS
- Macro-Model (Sub-circuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the p-channel vertical DMOS. The sub-circuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to -10 volt gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain feedback

capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measure electrical data and are not intended as an exact physical description of a device.

Model Sub-circuit

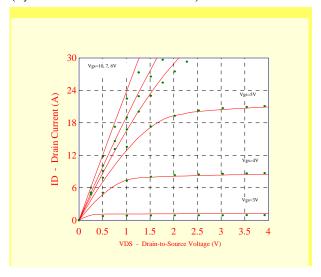
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

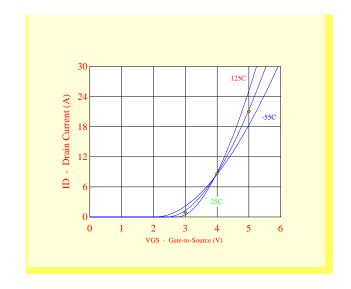
Siliconix 4/16/01 Document: 71529

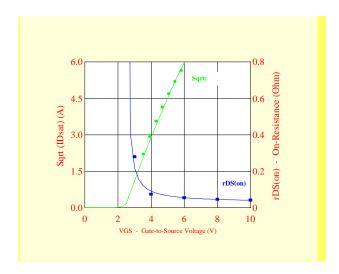
SPICE Device Model Si5435DC

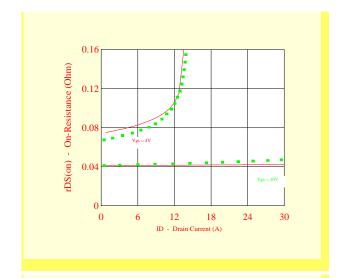
P-Channel Device (T_J=25°C Unless Otherwise Noted)

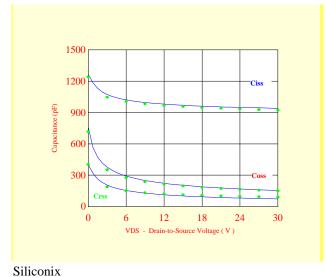
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	2.04	V
On-State Drain Current ^a	$I_{D(on)}$	$V_{DS} \le -5V, V_{GS} = -10V$	104	A
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10V, I_D = -4.1A$	0.041	Ω
		$V_{GS} = -4.5 V, I_D = -3.1 A$	0.078	
Forward Transconductance ^a	\mathbf{g}_{fs}	$V_{DS} = -15V, I_D = -4.1A$	7.8	S
Diode Forward Voltage	V_{SD}	$I_{S} = -1.1A, V_{GS} = 0V$	0.81	V
Dynamic ^b				
Total Gate Charge	Q_{g}		15.3	
Gate-Source Charge	Q_{gs}	$V_{DS} = -15V, V_{GS} = -10V,$	3.6	nC
		$I_D = -4.1A$		
Gate-Drain Charge	Q_{gd}		3.1	
Turn-On Delay Time	$t_{d(on)}$		8.8	
	$t_{\rm r}$	$V_{\rm DD} = -15 V, R_{\rm L} = 15 \Omega$	12	
Rise Time				
Turn-Off Delay Time	$t_{ m d(off)}$	$I_D \cong -1A, V_{GEN} =$	13	ns
		- 10 V, $R_G = 6\Omega$		
Fall Time	$t_{ m f}$		26	
Source-Drain Reverse Recovery Time	trr	If = -1.1A, di/dt =	30	
		100A/μs		

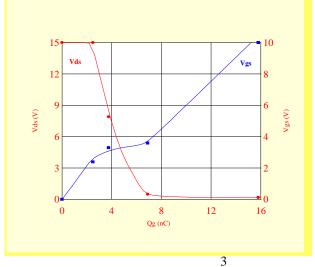

Notes:


- a) Pulse test; pulse width $\leq 300 \ \mu s$, duty cycle $\leq 2\%$
- c) Guaranteed by design, not subject to production testing


SPICE Device Model Si5435DC




Comparison of Model with Measured Data $(T_J=25^{\circ}C \text{ Unless Otherwise Noted})$



4/16/01 Document: 71529