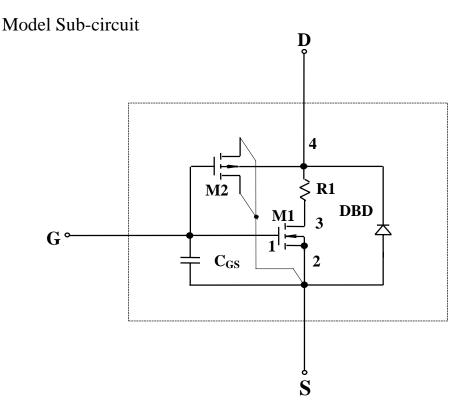
SPICE Device Model Si3424DV

N-Channel 30-V (D-S) MOSFET


Characteristics

- N-channel Vertical DMOS
- Macro-Model (Sub-circuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The sub-circuit model was extracted and optimized over a -55°C to 125°C temperature range under pulse conditions for 0 to 10 volts gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold voltage. A novel gate-to-drain

feedback capacitor network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measure electrical data and are not intended as an exact physical description of a device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

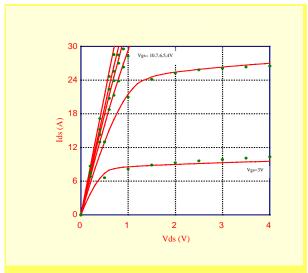
Siliconix 4/13/01 Document: 71525

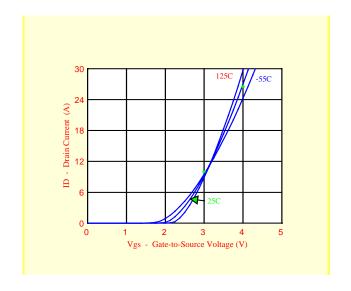
SPICE Device Model Si3424DV

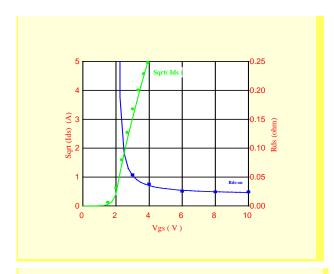
N-Channel Device (T_J=25°C Unless Otherwise Noted)

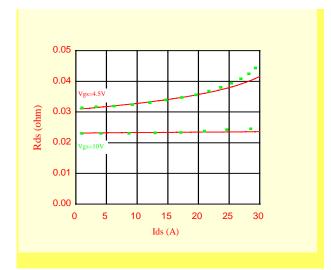
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static Data Data					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5V, V_{GS} = 10V$	178		A
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10V, I_D = 6.7A$	0.023	0.023	Ω
		$V_{GS} = 4.5 \text{V}, I_D = 5.7 \text{A}$	0.032	0.032	
Forward Transconductance ^a	g_{fs}	$V_{DS} = 10V, I_D = 6.7A$	14	14	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 1.7A, V_{GS} = 0V$	0.80	0.80	V
Dynamic ^b					
Total Gate Charge	Q_{g}		11.2	11.5	
Gate-Source Charge	Q_{gs}	$V_{DS} = 15V, V_{GS} = 10V,$	1.6	1.6	nC
		$I_D = 6.7A$			
Gate-Drain Charge	Q_{gd}		3.2	3.2	
Turn-On Delay Time	$t_{d(on)}$		6	7	
Rise Time	$t_{\rm r}$	$V_{DD} = 15V, R_L = 15\Omega,$	9	10	
Turn-Off Delay Time	$t_{ m d(off)}$	$I_D \cong 1A, V_{GEN} = 10V,$	20	20	ns
		$R_G = 6\Omega$			
Fall Time	t_{f}		31	11	
Source-Drain Reverse Recovery	t _{rr}	$I_F = 1.7A$, di/dt=100A/ μ s	40	40	
Time		·			

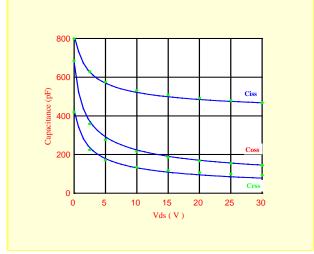
a) Pulse test; pulse width $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$

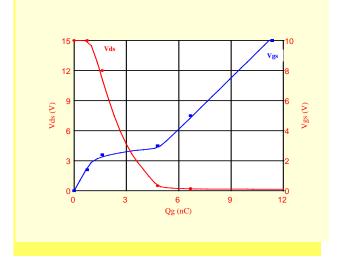

b) Guaranteed by design, not subject to production testing


Siliconix 4/13/01 Document: 71525


2







Siliconix 4/13/01 Document: 71525